
Multi-Party Threshold Private Set Intersection
with Sublinear Communication

Saikrishna Badrinarayanan1, Peihan Miao2, Srinivasan Raghuraman1, and
Peter Rindal1

1 Visa Research, {sabadrin, srraghur, perindal}@visa.com
2 University of Illinois at Chicago, peihan@uic.edu

Abstract. In multi-party threshold private set intersection (PSI), n par-
ties each with a private set wish to compute the intersection of their
sets if the intersection is sufficiently large. Previously, Ghosh and Simkin
(CRYPTO 2019) studied this problem for the two-party case and demon-
strated interesting lower and upper bounds on the communication com-
plexity. In this work, we investigate the communication complexity of the
multi-party setting (n ≥ 2). We consider two functionalities for multi-
party threshold PSI. In the first, parties learn the intersection if each of
their sets and the intersection differ by at most T . In the second func-
tionality, parties learn the intersection if the union of all their sets and
the intersection differ by at most T .
For both functionalities, we show that any protocol must have commu-
nication complexity Ω(nT). We build protocols with a matching upper
bound of O(nT) communication complexity for both functionalities as-
suming threshold FHE. We also construct a computationally more effi-
cient protocol for the second functionality with communication complex-
ity Õ(nT) under a weaker assumption of threshold additive homomorphic
encryption. As a direct implication, we solve one of the open problems
in the work of Ghosh and Simkin (CRYPTO 2019) by designing a two-

party protocol with communication cost Õ(T) from assumptions weaker
than FHE.
As a consequence of our results, we achieve the first “regular” multi-party
PSI protocol where the communication complexity only grows with the
size of the set difference and does not depend on the size of the input
sets.

1 Introduction

Private set intersection (PSI) protocols allow several mutually distrustful parties
P1, P2, . . . , Pn each holding a private set S1, S2, . . . , Sn respectively to jointly
compute the intersection I =

⋂n
i=1 Si without revealing any other information.

PSI has numerous privacy-preserving applications, e.g., DNA testing and pattern
matching [TPKC07], remote diagnostics [BPSW07], botnet detection [NMH+10],
online advertising [IKN+17, MPR+20]. Over the last years enormous progress
has been made towards realizing this functionality efficiently [HFH99, FNP04,
KS05,DCT10,DCW13,PSZ14,PSSZ15,KKRT16,OOS16,RR17,KMP+17,HV17,

PSWW18, PRTY19, GN19, PRTY20, CM20] in the two-party, multi-party, and
server-aided settings with both semi-honest and malicious security.

Threshold PSI. In certain scenarios, the standard PSI functionality is not
sufficient. In particular, the parties may only be willing to reveal the intersection
if they have a large intersection. For example, in privacy-preserving data mining
and machine learning [MZ17] where the data is vertically partitioned among
multiple parties (that is, each party holds different features of the same object),
the parties may want to learn the intersection of their datasets and start their
collaboration only if their common dataset is sufficiently large. If their common
dataset is too small, in which case they are not interested in collaboration,
it is undesirable to let them learn the intersection. In privacy-preserving ride
sharing [HOS17], multiple users only want to share a ride if large parts of their
trajectories on a map intersect. In this case, the users may be interested in the
intersection of their routes, but only when the intersection is large. This problem
can be formalized as threshold private set intersection, where, roughly speaking,
the parties only learn the intersection if their sets differ by at most T elements.

Many works [FNP04, HOS17, PSWW18, ZC18, GN19] achieve this function-
ality by first computing the cardinality of the intersection and then checking if
this is sufficiently large. The communication complexity of these protocols scales
at least linearly in the size of the smallest input set. Notice that Freedman et
al. [FNP04] proved a lower bound of Ω(m) on the communication complexity
of any private set intersection protocol, where m is the size of the smallest in-
put set. This lower bound directly extends to protocols that only compute the
cardinality of the intersection, which constitutes a fundamental barrier to the
efficiency of the above protocols.

Recently, the beautiful work of Ghosh and Simkin [GS19a] revisited the com-
munication complexity of two-party threshold PSI and demonstrated that the
Ω(m) lower bound can be circumvented by performing a private intersection
cardinality testing (i.e., testing whether the intersection is sufficiently large) in-
stead of computing the actual cardinality. After passing the cardinality testing,
their protocol allows each party to learn the set difference, where the communi-
cation complexity only grows with T , which could be sublinear in m. Specif-
ically, [GS19a] proved a communication lower bound of Ω(T) for two-party
threshold PSI and presented a protocol achieving a matching upper bound O(T)
based on fully homomorphic encryption (FHE). They also showed a computa-

tionally more efficient protocol with communication complexity of Õ(T 2) based
on weaker assumptions, namely additively homomorphic encryption (AHE).

In this work, we investigate the communication complexity of multi-party
threshold PSI. In particular, we ask the question of whether sublinear lower and
upper bounds can also be achieved in the multi-party setting.

1.1 Our Contributions

We first identify and formalize the definition of multi-party threshold private set
intersection. We put forth and study two functionalities that are in fact equiv-

2

alent in the two-party case but are vastly different in the multi-party scenario.
Assume there are n parties P1, P2, . . . , Pn, and each party Pi holds a private set
Si of size m. The first functionality allows the parties to learn the intersection
I =

⋂n
i=1 Si only if ∀i, |Si \ I| ≤ T , or equivalently, |I| ≥ m − T . In the second

functionality, the parties can learn the intersection I only if | (
⋃n
i=1 Si) \ I| ≤ T .

We briefly discuss the difference between the two functionalities. The first
functionality focuses on whether the intersection is sufficiently large, hence we
call it FTPSI-int. The second functionality focuses on whether the set difference
is sufficiently small, thus we call it FTPSI-diff . In the two-party case, we have the
guarantee that | (

⋃n
i=1 Si) \ I| = 2 · |Si \ I|, so we do not have to differentiate

between these two functionalities. However, in the multi-party case, we only
know that 2 · |Si \ I| ≤ | (

⋃n
i=1 Si) \ I| ≤ n · |Si \ I|, hence the two functionalities

could lead to very different outcomes. Which functionality to choose and what
threshold to set in practice highly depend on the actual application.

Sublinear Communication. The core contribution of this work is demon-
strating sublinear (in the set sizes) communication lower and upper bounds for
both functionalities. We summarize our results in Table 1. For lower bound, we
prove that both functionalities require at least Ω(nT) bits of communication. For
upper bound, we present protocols for both functionalities achieving a match-
ing upper bound of O(nT) based on n-out-of-n threshold fully homomorphic
encryption (TFHE) [BGG+18]. We also give a computationally more efficient
protocol based on weaker assumptions, namely n-out-of-n threshold additively
homomorphic encryption (TAHE) [Ben94,Pai99], with communication complex-

ity of Õ(nT) that almost matches the lower bound.3 All these protocols achieve
semi-honest security where up to (n− 1) parties could be corrupted.

Functionality
Communication TFHE-based TAHE-based
Lower Bound Upper Bound Upper Bound

FTPSI-int Ω(nT) O(nT) unknown

FTPSI-diff Ω(nT) O(nT) Õ(nT)

Table 1: Communication lower and upper bounds for multi-party threshold PSI.

Our Protocols. As summarized in Table 1, we present three protocols for
upper bounds, one for FTPSI-int and two for FTPSI-diff . At a high level, all three
protocols compute their functionality in two phases. In the first phase, they
perform a multi-party private intersection cardinality testing where the parties
jointly decide whether their intersection is sufficiently large. In particular, for
FTPSI-int, the cardinality testing, which we call FCTest-int, allows all the parties

3 Õ(·) hides polylog factors. All the upper bounds omit a poly(λ) factor where λ is the
security parameter.

3

to learn whether |I| ≥ (m − T). For FTPSI-diff , the cardinality testing, which
we call FCTest-diff , allows all the parties to learn whether | (

⋃n
i=1 Si) \ I| ≤ T .

The communication complexity of our protocols for FCTest-int and FCTest-diff is
summarized in Table 2. In particular, for FCTest-int, we present a protocol with
communication complexity O(nT) based on TFHE. For FCTest-diff , we show a
TFHE-based construction with communication complexity O(nT) and a TAHE-

based construction with communication complexity Õ(nT).

Functionality
TFHE-based TAHE-based

Protocol Protocol

FCTest-int O(nT) unknown

FCTest-diff O(nT) Õ(nT)

Table 2: Communication complexity of our protocols for multi-party private
cardinality testing.

If the intersection is sufficiently large, namely it passes the cardinality testing,
then the parties start the second phase of our protocols, which allows each party
Pi to learn their set difference Si \ I. We present a singe protocol for the second
phase, which works for both FTPSI-int and FTPSI-diff . The second-phase protocol is
based on TAHE and has communication complexity of O(nT). Thus, to construct
a protocol for multi-party threshold PSI, we combine the first-phase protocols
summarized in Table 2 with the second-phase one described above. Doing so, we
achieve the communication upper bounds in Table 1.

This modular design enables our constructions to minimize the use of TFHE
as it is not needed in the second phase. Moreover, it allows future work to
focus on improving Table 2. In particular, to design a protocol for FTPSI-int from
assumptions weaker than TFHE, future work could focus on building protocols
for FCTest-int and directly plug in our second phase protocol after that.

Communication Topology. All our protocols are designed in the so-called
star network topology, where a designated party communicates with every other
party. An added benefit of this topology is that not all parties must be online
at the same time. Our communication lower bounds are proved in point-to-point
fully connected networks, which are a generalization of the star network.

For networks with broadcast channels, we prove another communication
lower bound of Ω(T log n + n) for FTPSI-int in the full version and leave further
exploration in the broadcast model for future work.

1.2 Other Implications

Two-Party Threshold PSI. Recall that in the two-party case, both func-
tionalities FTPSI-int and FTPSI-diff are identical. Ghosh and Simkin [GS19a] built
a two-party threshold PSI protocol from AHE with communication complexity

4

Õ(T 2). They left it as an open problem to build a two-party threshold PSI proto-

col with communication complexity Õ(T) from assumptions weaker than FHE.
Observe that for the special case of n = 2, we can achieve a two-party threshold
PSI protocol with communication complexity Õ(T) from AHE thereby solving
this open problem (refer to Section 6 and Section 7 for more details).

Sublinear Communication PSI. Our multi-party threshold PSI protocols
for both FTPSI-int and FTPSI-diff can also be used to achieve multi-party “regular”
PSI4 where the communication complexity only grows with the size of the set
difference and independent of the input set sizes. In particular, if we run a se-
quence of multi-party threshold PSI protocols on T = 20, 21, 22, . . . until hitting
the smallest T = 2k where the protocol outputs the intersection, then we can
achieve multi-party PSI. The communication complexity of the resulting proto-
col is a factor log T times that of a single instance but still independent of the
input set sizes. Therefore, when the intersection is very large, namely the set dif-
ference is significantly smaller than the set sizes, this new approach achieves the
first multi-party PSI with sublinear (in the set sizes) communication complexity.

Compact MPC. It is an open problem to construct a compact MPC protocol
in the plain model where the communication complexity does not grow with the
output length of the function. Prior works [HW15,BFK+19] construct compact
MPC for general functions in the presence of a trusted setup (CRS, random
oracle) from strong computational assumptions such as obfuscation. Our multi-
party threshold PSI protocols have communication complexity independent of
the output size (the set intersection). To the best of our knowledge, ours are the
first compact MPC protocols for any non-trivial function in the plain model. The
only prior compact protocol in the plain model we are aware of is the two-party
threshold PSI protocol [GS19a].

1.3 Concurrent and Independent Work

Concurrent to our work, a recent update to the full version of the paper by
Ghosh and Simkin [GS19b] extends the two-party threshold PSI protocol to
the multi-party setting and consider the functionality FTPSI-int. They do not
consider the functionality FTPSI-diff that we additionally consider in our work. For
FTPSI-int, [GS19b] also first constructs a TFHE-based protocol for the intersection
cardinality testing FCTest-int with communication complexity O(nT). Then in
the second phase for computing the intersection, they use an MPC protocol
to compute the evaluations of a random polynomial, where the communication
complexity depends on how the MPC is instantiated, which is not discussed

Another concurrent work by Branco, Döttling, and Pu [BDP21] studies multi-
party private intersection cardinality testing with the functionality FCTest-int and
presents a TAHE-based protocol with communication complexity Õ(nT 2), which
complements our Table 2. They also do not consider the other functionality
FCTest-diff .

4 By “regular” PSI, we refer to the standard notion of PSI without threshold.

5

1.4 Roadmap

We describe some notations and definitions in Section 2, a technical overview
in Section 3, and the lower bound in Section 4. We present the TFHE based
protocols for FCTest-int and FCTest-diff in Section 5 and the TAHE based protocol
for FCTest-diff in Section 6. We present the second phase protocol to compute the
actual intersection in Section 7.

2 Preliminaries

In this section, we introduce some notations and define the our ideal function-
alities. See the full version for the remaining definitions.

2.1 Notations

We use λ to denote the security parameters. By poly(λ) we denote a polynomial
function in λ. By negl(λ) we denote a negligible function, that is, a function f
such that f(λ) < 1/p(λ) holds for any polynomial p(·) and sufficiently large λ.

We use JxK to denote an encryption of x. We use Õ(x) to ignore any polylog

factor, namely Õ(x) = O(x · polylog(x)).

2.2 Multi-Party Threshold Private Set Intersection

Setting. Consider n parties P1, . . . , Pn with input sets S1, . . . , Sn respectively.
Throughout the paper, we consider all the sets to be of equal size m. We assume
that the set elements come from a field Fp, where p is a Θ(λ)-bit prime. Also,
throughout the paper, we focus only on the point-to-point network channels.
For the lower bounds, we consider a setting where every pair of parties has a
point-to-point channel between them. For the upper bounds, we consider a more
restrictive model – the star network, where only one central party has a point-to-
point channel with every other party and the other parties cannot communicate
with each other.

The goal of the parties is to run an MPC protocol Π at the end of which
each party learns the intersection I of all the sets if certain conditions hold.
In the definition of two-party threshold PSI, both parties P1 and P2 learn the
intersection I if the size of their set difference is small, namely |(S1 \ S2)∪ (S2 \
S1)| < 2T . In the multi-party case, we consider two different functionalities, each
of which might be better suited to different applications.

Functionalities. In the first definition, we consider functionality FTPSI-int, in
which each party Pi learns the intersection I if the size of its own set minus the
intersection is small, namely |Si \ I| ≤ T for some threshold T . Recall that we
consider all the sets to be of equal size, hence either all the parties learn the
output or all of them don’t. In the second definition, we consider a functionality
FTPSI-diff , where each party learns the intersection I if the size of the union of all
the sets minus the intersection is small, namely |(

⋃n
i=1 Si) \ I| ≤ T . The formal

definitions of the two ideal functionalities are shown in Figure 1 and Figure 2.

6

Parameters: Parties P1, . . . , Pn. Each party has a set of m elements. Threshold T ∈ N.

Inputs: Party Pi has an input set Si = {ai1, . . . , aim} where aij ∈ Fp for all j ∈ [m].

Output: Each party Pi receives I =
⋂n
i=1 Si if and only if |Si \ I| ≤ T .

Fig. 1: Ideal functionality FTPSI-int for multi-party threshold PSI.

Parameters: Parties P1, . . . , Pn. Each party has a set of m elements. Threshold T ∈ N.

Inputs: Party Pi has an input set Si = {ai1, . . . , aim} where aij ∈ Fp for all j ∈ [m].

Output: Each party Pi receives I =
⋂n
i=1 Si if and only if

∣∣(⋃n
i=1 Si

)
\ I
∣∣ ≤ T .

Fig. 2: Ideal functionality FTPSI-diff for multi-party threshold PSI.

2.3 Multi-Party Private Intersection Cardinality Testing

An important building block in our multi-party threshold PSI protocols is a
multi-party protocol for private intersection cardinality testing which we define
below. Consider n parties P1, . . . , Pn with input sets S1, . . . , Sn respectively of
equal size m. Their goal is to run an MPC protocol Π at the end of which
each party learns whether the size of the intersection I of all the sets is suffi-
ciently large. As before, we consider two functionalities. In the first functionality
FCTest-int, each party Pi learns whether |Si \ I| ≤ T . In the second functionality
FCTest-diff , each party learns whether |(

⋃n
i=1 Si) \ I| ≤ T . The formal definitions

of the two ideal functionalities are presented in Figure 3 and Figure 4.

Parameters: Parties P1, . . . , Pn. Each party has a set of m elements. Threshold T ∈ N.

Inputs: Party Pi has an input set Si = {ai1, . . . , aim} where aij ∈ Fp for all j ∈ [m].

Output: Each party Pi receives similar if |Si \ I| ≤ T and different otherwise where
I =

⋂n
i=1 Si.

Fig. 3: Ideal functionality FCTest-int for multi-party intersection cardinality test.

3 Technical Overview

We now give an overview of the techniques used in our work. We denote P1 as
the designated party that can communicate with all the other parties.

3.1 TFHE-Based Protocol for FCTest-int

In Section 5.1 we construct a protocol for FCTest-int from TFHE. Our starting
point is the two-party protocol of [GS19a]. Recall that there are two parties Alice
and Bob with sets SA = {a1, . . . , am} and SB = {b1, . . . , bm} respectively. These
sets define two polynomials pA(x) :=

∏m
i=1(x − ai) and pB(x) :=

∏m
i=1(x − bi).

7

Parameters: Parties P1, . . . , Pn. Each party has a set of m elements. Threshold T ∈ N.

Inputs: Party Pi has an input set Si = {ai1, . . . , aim} where aij ∈ Fp for all j ∈ [m].

Output: Each party Pi receives similar if
∣∣(⋃n

i=1 Si
)
\ I
∣∣ ≤ T and different otherwise

where I =
⋂n
i=1 Si.

Fig. 4: Ideal functionality FCTest-diff for multi-party intersection cardinality test.

Let I := SA ∩ SB be the intersection. A key observation in [MTZ03, GS19a] is

that p(x) := pB(x)
pA(x) =

pB\I(x)

pA\I(x)
. Both the numerator and denominator of p have

degree m− |I|. If m− |I| = |SA \ I| ≤ T , then p(x) has degree at most 2T and
can be recovered from 2T + 1 evaluations by rational function interpolation.5

Given p(x), the elements in SA \ I are simply the roots of the polynomial in the
denominator.

Two-party protocol. At a high level, the two-party protocol [GS19a] works
as follows. First, Alice and Bob evaluate their own polynomials on 2T + 1 pub-
licly known distinct points {α1, . . . , α2T+1} to obtain {pA(α1), . . . , pA(α2T+1)}
and {pB(α1), . . . , pB(α2T+1)}, respectively. Then, Alice generates a public-secret
key pair for FHE and sends Bob the FHE public key, encrypted evaluations
{JpA(α1)K , . . . , JpA(α2T+1)K}, a uniformly random z and encrypted evaluation
JpA(z)K. Bob can homomorphically interpolate the rational function Jp(x)K from
{JpA(α1)K , . . . , JpA(α2T+1)K} and {pB(α1), . . . , pB(α2T+1)}, and then homomor-
phically compute Jp(z)K. Bob can also compute pB(z) and homomorphically

compute pB(z)
JpA(z)K . We know that p(z) = pB(z)

pA(z) if and only if the degree of p(x) is

≤ 2T . Therefore Bob homomorphically computes an encryption of the predicate

JbK :=
(
Jp(z)K ?

= pB(z)
JpA(z)K

)
and sends the encryption JbK back to Alice. Finally

Alice decrypts and learns b.

Multi-party protocol. For n parties, a natural idea is to consider

p(x) :=
p2(x) + · · ·+ pn(x)

p1(x)
=

p2\I(x) + · · ·+ pn\I(x)

p1\I(x)
, (1)

where pi(x) encodes the set Si = {ai1, . . . , aim} as pi(x) :=
∏m
j=1(x − aij).

The n parties first jointly generate the TFHE keys. Each party Pi sends en-
crypted evaluations {Jpi(α1)K , . . . , Jpi(α2T+1)K , Jpi(z)K} to P1. Now P1 can in-
terpolate Jp(x)K from 2T + 1 evaluations and compute an encryption JbK :=(
Jp(z)K ?

= Jp2(z)K+···+Jpn(z)K
p1(z)

)
. Finally the parties jointly decrypt JbK.

5 A rational function is a fraction of two polynomials. We refer to Minskey et
al. [MTZ03] for details on rational function interpolation over a field. Also, we note
that monic polynomials can be interpolated with 2T evaluation but we use 2T + 1
for consistency with our other protocols.

8

Unexpected degree reduction. This seemingly correct protocol has a subtle
issue.6 Intuitively, we want to argue that p(x) in Equation 1 has degree ≤ 2T if
and only if |S1 \ I| ≤ T . However, this is not true because elements not in the
intersection might be accidentally canceled out, which results in a lower degree
than the intersection carnality would imply. As a concrete example, consider
three sets with distinct elements S1 = {a}, S2 = {b}, S3 = {c}, where b+c = 2·a.
The intersection I = ∅. Ideally we hope the rational polynomial p(x) has degree
1 in both the numerator and denominator because |S1 \ I| = 1. However,

p(x) =
(x− b) + (x− c)

x− a
=

2x− (b+ c)

x− a
=

2x− 2a

x− a
= 2.

Randomness to the rescue. On first thought, this approach seems funda-
mentally flawed as additional roots can always be created if we add polynomials
in the numerator. To solve this problem, we add a random multiplicative term
(x− ri) to each polynomial pi and set a new polynomial p′i(x) := pi(x) · (x− ri)
for a random ri chosen by party Pi. Now, consider the rational polynomial

p′(x) :=
p′2(x) + · · ·+ p′n(x)

p′1(x)
=

p′2\I(x) + · · ·+ p′n\I(x)

p′1\I(x)
.

At a high level, the terms (x − ri) will randomize the roots of the numerator
sufficiently to ensure that these roots are unlikely to coincide with the roots of
the denominator.

3.2 TFHE-Based Protocol for FCTest-diff

In Section 5.2 we present an TFHE-based protocol for FCTest-diff . In summary,
party P1 tries to homomorphically interpolate

p̃i(x) =
pi(x)

p1(x)
=

pi\1(x)

p1\i(x)

from (2T+1) evaluations and computes encrypted D1,i = S1\Si as well as Di,1 =
Si \S1 for every other party Pi. Note that if | (

⋃m
i=1 Si)\I| ≤ T , then |Si \I| ≤ T

for all i and the degree of each p̃i(x) is at most 2T , hence P1 can interpolate
it using (2T + 1) evaluations. Observe that (

⋃m
i=1 Si) \ I =

⋃m
i=2 (D1,i ∪Di,1),

because each element a ∈ (
⋃m
i=1 Si) \ I must be one of the two cases: (1) a ∈ S1

and a /∈ Si for some i (i.e., a ∈ D1,i), or (2) a /∈ S1 and a ∈ Si for some i (i.e.,
a ∈ Di,1). Therefore, party P1 can homomorphically compute an encryption

of (
⋃m
i=1 Si) \ I and an encryption of the predicate b =

(
|(
⋃m
i=1 Si) \ I|

?
≤ T

)
.

Finally, as before, the n parties jointly decrypt JbK to learn the output.

6 In fact, this subtle issue was initially overlooked by [GS19b] in their recent update
of the multi-party protocol. It has subsequently been fixed after we notified them.

9

3.3 TAHE-Based Protocol for FCTest-diff

Section 6 presents our protocol for FCTest-diff based on TAHE. This protocol
reduces the communication complexity for two-party from Õ(T 2) to Õ(T) as

well as generalizes it to multi-party with communication Õ(Tn).

Two-party protocol. For two parties Alice and Bob with private sets SA and
SB , if we encode their elements into two polynomials pA(x) =

∑m
i=1 xai and

pB(x) =
∑m
i=1 xbi , then the number of monomials in the polynomial p(x) :=

pA(x)− pB(x) is exactly |(SA \ SB) ∪ (SB \ SA)|. Now the problem of cardinal-
ity testing (i.e., determining if |(SA \ SB) ∪ (SB \ SA)| ≤ 2T) has be reduced
to determining whether the number of monomials in p(x) is ≤ 2T . Using the
polynomial sparsity test of Grigorescu et al. [GJR10], we can further reduce the
problem to determining whether the Hankel matrix below is singular or not:

H =

p(u0) p(u1) . . . p(u2T)
p(u1) p(u2) . . . p(u2T+1)

...
...

. . .
...

p(u2T) p(u2T+1) . . . p(u4T)

,

where u is chosen uniformly at random. In the two-party protocol, Alice gener-
ates a public-secret key pair for AHE and sends Bob the public key, a uniformly
random u along with encrypted Hankel matrix for pA. Then Bob can homomor-
phically compute encrypted Hankel matrix for p. Now Alice holds the secret key
and Bob holds an encryption of matrix H. They need to jointly perform a secure
matrix singularity testing to determine if the matrix is singular, which can be
done using the protocol of Kiltz et al. [KMWF07] with communication Õ(T 2).

Our approach. Our key observation is that the protocol of Kiltz et al. [KMWF07]
can be used to perform singularity testing for arbitrary matrices, while we are
only interested in testing the singularity of Hankel matrices. Since a Hankel
matrix only has linear (in its dimension) number of distinct entries, there is
a more efficient way to test its singularity. In particular, the work of Brent et
al. [BGY80] demonstrates an elegant connection between the problem of testing
singularity of a Hankel matrix and the so-called “half-GCD” problem, which can
be solved in quasi-linear time. Thus, testing singularity of the Hankel matrix H
only takes Õ(T) computation. In our scenario, we can first let Alice and Bob
learn an additive share of H, and then engage in a two-party computation (us-
ing AHE or Yao’s garbled circuits) to jointly test if H is singular or not. The
important point to note here is that both communication and computation are
only quasi-linear in the dimension of H. This is already an improvement over
the quadratic cost of protocol in [KMWF07] and solves the open problem posed
by Ghosh and Simkin [GS19a].

Multi-party protocol. In designing a multi-party protocol, our strategy is to
first find a polynomial where the number of monomials equals the size of the

10

set difference |(
⋃m
i=1 Si) \ I|. Furthermore, the polynomial should only involve

linear operations among the parties, which allows the parties to obtain additive
secret shares of the Hankel matrix for the polynomial. Then, the parties perform
an MPC protocol to test singularity of the Hankel matrix.

3.4 Computing Set Intersection

In Section 7 we present a single construction that computes the concrete set
intersection for both FTPSI-int and FTPSI-diff after the cardinality testing.

Two-party protocol. For two parties Alice and Bob, we use the first encoding
method to encode the elements into two polynomials pA(x) =

∏m
i=1(x − ai)

and pB(x) =
∏m
i=1(x − bi). After the cardinality testing, we already know that

the rational polynomial p(x) := pB(x)
pA(x) =

pB\I(x)

pA\I(x)
has degree at most 2T . If Alice

learns the evaluation of pB(·) on 2T+1 distinct points {α1, . . . , α2T+1}, then she
can evaluate pA on those points by herself and compute {p(α1), . . . , p(α2T+1)}.
Using these evaluations of p(·), Alice can recover p(x) by rational polynomial
interpolation, and then learn the set difference SA \ I from the denominator
of p(x). However, p(x) also allows Alice to learn SB \ I, which breaks security.
Instead of letting Alice learn the evaluations of pB(·), the two-party protocol
of [GS19a] enables Alice to learn the evaluations of a “noisy” polynomial V(x) :=
pA(x) ·R1(x)+pB(x) ·R2(x), where R1 and R2 are uniformly random polynomials
of degree T . Note that

p′(x) :=
V(x)

pA(x)
=

pA\I(x) · R1(x) + pB\I(x) · R2(x)

pA\I(x)

has degree at most 3T . Given 3T + 1 evaluations of V(·), Alice can interpolate
p′(x) and figure out the denominator, but now the numerator is sufficiently
random and does not leak any other information about SB .

Multi-party protocol. For n parties, we first encode each set Si = {ai1, . . . , aim}
as a polynomial pi(x) :=

∏m
j=1(x− aij), and then define

V(x) :=p1(x) · R1(x) + · · ·+ pn(x) · Rn(x)

:=p1(x) · (R1,1(x) + · · ·+ Rn,1(x)) + · · ·+ pn(x) · (R1,n(x) + · · ·+ Rn,n(x)) ,

where (Ri,1, . . . ,Ri,n) are random polynomials of degree T generated by party Pi.
Different from the two-party protocol, it is crucial that each party Pi contributes
a random term in every polynomial R1, . . . ,Rn. For both functionalities FTPSI-int

and FTPSI-diff , if the protocol passes the cardinality testing, then

p′(x) :=
V(x)

p1(x)
=

p1\I(x) · R1(x) + · · ·+ pn\I(x) · Rn(x)

p1\I(x)

has degree at most 3T . If P1 learns 3T + 1 evaluations of V(·), then it can
interpolate p′(x) and recover S1 \ I from the denominator while the numerator
does not leak any other information. Since V(·) can be broken down to linear
operations among the parties, it can be securely evaluated by TAHE.

11

Communication blow-up. However, this protocol requires O(n2) communi-
cation complexity per evaluation, and the total communication complexity is
O(n2T) for (3T + 1) evaluations. Observe that the bottleneck of the communi-
cation in this approach is that every party Pi needs to contribute n randomizing
polynomials (Ri,1, . . . ,Ri,n). Through a careful analysis we demonstrate that it
is sufficient for each party to only contribute two randomizing polynomials. The
first is used to randomize their own polynomial while the second randomizes
the polynomials from the other parties. Nevertheless, there is a subtle issue of
unexpected degree reduction, similar to what we have seen in the TFHE-based
protocol FCTest-int. We follow the same approach as in the TFHE-based protocol
by adding additional randomness in th polynomial, which reduces the commu-
nication complexity to O(nT).

3.5 Lower Bounds

We briefly discuss the communication lower bound for multi-party threshold
PSI. To prove lower bound in the point-to-point network, we perform a reduc-
tion from two-party threshold PSI (for which [GS19a] showed a lower bound of
Ω(T)) to multi-party threshold PSI. We first prove that the total “communi-
cation complexity of any party” is Ω(T) which denotes the sum of all the bits
exchanged by that party (both sent and received). As a corollary, the total com-
munication complexity of any multi-party threshold PSI protocol is Ω(nT). We
refer to Section 4 for more details about the reduction.

To prove a lower bound in the broadcast model, we rely on the communication
lower bound of the multi-party set disjointness problem shown by Braverman
and Oshman [BO15]. We reduce the problem of multi-party set disjointness to
multi-party threshold PSI FTPSI-int and prove a lower bound Ω(T log n + n) for
any multi-party threshold PSI protocol in the broadcast network. We refer to
the full version for more details about the reduction.

4 Communication Lower Bound

In this section, we prove communication lower bounds for multi-party threshold
PSI protocols in the point-to-point network model. Recall that we consider all
parties to have sets of the same size m. We show that any secure protocol must
have communication complexity at least Ω(n·T) for both functionalities FTPSI-int

and FTPSI-diff . We prove the lower bound for FTPSI-int and defer the proof for
FTPSI-diff to the full version. Before proving the lower bound, we first prove
another related theorem below.

Theorem 1. For any multi-party threshold PSI protocol for functionality FTPSI-int

that is secure against a semi-honest adversary that can corrupt up to (n−1) par-
ties, for every party Pi, the communication complexity of Pi is Ω(T).7

7 We define the communication complexity of a party Pi in any protocol execution
as the complexity of all the communication that Pi is involved in. That is, the
complexity of the messages both incoming to and outgoing from Pi.

12

Proof. Suppose this is not true. That is, suppose there exists a secure multi-party
threshold PSI protocol Π for functionality FTPSI-int in which for some party Pi∗ ,
CC(Pi∗) = o(T) where CC(·) denotes the communication complexity. We will
now use this protocol Π as a subroutine to design a secure two-party threshold
PSI protocol which has communication complexity o(T).

Consider two parties Q1 and Q2 with input sets X1 and X2 (of same size
m) who wish to run a secure two-party threshold PSI protocol for the following
functionality: both parties learn the output if |(X1 \X2)∪ (X2 \X1)| ≤ 2 ·T . We
invoke the multi-party threshold PSI protocol Π with threshold T as follows:
Q1 emulates the role of party Pi∗ with input set Si∗ = X1 and Q2 emulates the
role of all the other (n − 1) parties with each of their input sets as X2. From
the definition of the functionality FTPSI-int, Q1 learns the output at the end of
the protocol if and only if |X1 \ I| ≤ T . Similarly, Q2 learns the output at the
end of the protocol if and only if |X2 \ I| ≤ T . Notice that since |X1| = |X2|
and I = X1 ∩X2, |X1 \ I| = |X2 \ I|. Thus, the parties learn the output if and
only if (|X1 \ I|) + (|X2 \ I|) ≤ 2 · T , namely |(X1 \ X2) ∪ (X2 \ X1)| ≤ 2 · T ,
which is the functionality of the two-party threshold PSI. Therefore, correctness
is easy to observe. For security, notice that if Q1 is corrupt, we can simulate
it by considering only a corrupt Pi∗ in the underlying protocol Π and if Q2 is
corrupt, we can simulate it by considering all parties except Pi∗ to be corrupt
in the underlying protocol Π.

Finally, notice that the communication complexity of the two-party protocol
is exactly the same as CC(Pi∗) in the multi-party protocol Π, which is o(T).
However, recall from the work of Ghosh and Simkin [GS19a] that any two-party
threshold PSI for this functionality has communication complexity lower bound
Ω(T) leading to a contradiction. Thus, the assumption that there exists a secure
multi-party PSI protocol Π in which for some party Pi∗ , CC(Pi∗) = o(T) is
wrong and this completes the proof of the theorem.

It is easy to observe that as a corollary of the above theorem, in a setting
with only point-to-point channels (which also includes the star network), the
overall communication complexity of the protocol must be at least n times the
minimum communication complexity that each party is involved in, giving the
lower bound of Ω(n · T). Formally,

Corollary 1. For any multi-party threshold PSI protocol for functionality FTPSI-int

that is secure against a semi-honest adversary that can corrupt up to (n−1) par-
ties, the communication complexity is Ω(n · T).

5 TFHE-Based Private Intersection Cardinality Testing

In this section, we present two protocols for private intersection cardinality test-
ing, one for functionalities FCTest-int (described in Figure 3) and the other for
FCTest-diff (described in Figure 4). Both protocols are based on n-out-of-n thresh-
old fully homomorphic encryption with distributed setup. The former function-
ality states that the intersection must be of size at least (m−T) where m is the

13

size of each set. The latter functionality requires the difference between the union
of all the sets and the intersection be of size at most T . Due to the possibility
of elements appearing in a strict subset of the sets, these two functionalities are
not equivalent.

5.1 Protocol for Functionality FCTest-int

In this protocol, we compute the cardinality predicate b where b = 1 if and only if
∀i, |Si \ I| ≤ T . The communication complexity of this protocol involves sending
O(nT) TFHE ciphertexts and performing a single decryption of the result. We
briefly describe the approach below.

Each party Pi first encodes their set Si as a polynomial pi(x) :=
∏
a∈Si

(x−
a) ∈ F[x]. Each of these polynomials are then randomized as p′i(x) := pi(x) ·
(x − ri) where Pi uniformly samples ri

$← F. The central party also picks a

random z
$← F which is sent to every other party. Each party Pi then computes

ei,j := p′i(j) for j ∈ [2T + 3] and e′i := p′i(z). Pi sends the ciphertexts Jei,jK :=
TFHE.Enc(pk, ei,j) and Je′iK := TFHE.Enc(pk, e′i) to P1. Party P1 considers the
rational polynomial

p′(x) =
p′2(x) + · · ·+ p′n(x)

p′1(x)

and homomorphically computes 2T + 3 encrypted evaluations(
j,

s
e2,j + · · ·+ en,j

e1,j

{)
for j = [2T + 3]. Using these encrypted evaluations, P1 homomorphically com-
putes an encrypted rational polynomial Jp∗(x)K using rational polynomial in-
terpolation. Note that p∗(x) = p′(x) if p′(x) has degree at most 2T + 2. Fur-
thermore, P1 can homomorphically compute an encryption of the predicate

b :=
(

p∗(z)
?
=

e′2+···+e
′
n

e′1

)
. Finally the parties jointly perform a threshold de-

cryption of JbK and party P1 learns the output which is sent to every other
party. The full protocol is detailed in Figure 5.

Theorem 2. Assuming threshold FHE with distributed setup, protocol ΠTFHE-CTest-int

(Figure 5) securely realizes FCTest-int (Figure 3).

Proof. Correctness. We first prove the protocol is correct. By the correctness
of the TFHE scheme, we only need to show that the computed predicate b = 1
if and only if ∀i, |Si \ I| ≤ T . First consider the case where the protocol should
output similar. Since

p′(x) =
p′2(x) + · · ·+ p′n(x)

p′1(x)
=

p2\I(x) · (x− r2) + · · ·+ pn\I(x) · (x− rn)

p1\I(x) · (x− r1)
,

the degree of each term pi\I(x) · (x − ri) is at most T + 1 and therefore the
rational polynomial interpolation requires a total of (2T + 3) evaluation points.

Therefore p∗(x) = p′(x) and p∗(z) = p′(z) =
e′2+···+e

′
n

e′1
. Thus b = 1 as required.

14

Parameters: Parties P1, . . . , Pn. Each party has a set of m elements. Threshold T ∈ N.
F is a finite field where |F| = Ω(2λ).

Inputs: Party Pi has an input set Si = {ai1, . . . , aim} where aij ∈ F for all j ∈ [m].

Output: Each party Pi receives similar if |Si \ I| ≤ T and different otherwise where
I =

⋂n
i=1 Si.

Protocol:
1. Each party Pi generates (pki, ski) ← TFHE.DistSetup(1λ, i) and sends pki to P1.

Then P1 sends pk = (pk1‖ . . . ‖pkn) to all the other parties.
2. P1 picks a random value z ∈ F and sends it to all the other parties.
3. Each party Pi does the following:

(a) Define the polynomial pi(x) :=
∏
a∈Si

(x − a) and randomize it by p′i(x) :=

pi(x) · (x− ri) where ri
$← F.

(b) Compute ei,j := p′i(j) for j ∈ [2T + 3] and e′i := p′i(z).
(c) Send encrypted evaluations Jei,jK := TFHE.Enc(pk, ei,j) for all j ∈ [2T + 3]

and Je′iK := TFHE.Enc(pk, e′i) to P1.
4. P1 does the following:

(a) Use the algorithm TFHE.Eval to homomorphically compute an encryption
Jp∗(x)K by rational polynomial interpolation from encrypted evaluations(
j,

r
e2,j+···+en,j

e1,j

z)
for j ∈ [2T + 3].

(b) Homomorphically compute the encrypted predicate JbK where b = 1 if p∗(z) =
e′2+···+e

′
n

e′1
and 0 otherwise.

5. P1 sends JbK to all parties who respond with Jb : skiK := TFHE.PartialDec(ski, JbK).
P1 broadcasts b := TFHE.Combine(pk, {Jb : skiK}i∈[n]) and all parties output similar
if b = 1 and different otherwise.

Fig. 5: Multi-party private intersection cardinality testing protocol ΠTFHE-CTest-int

for FCTest-int.

Now consider the case where the protocol should output different, namely
when |I| < m − T . Observe that gcd(p1\I , · · · , pn\I) = 1 by construction and
therefore

gcd
(

p′2\I(x) + · · ·+ p′n\I(x), p′1\I(x)
)

= 1

except with negligible probability, where p′i\I(x) := pi\I(x)·(x−ri). The algebraic
proof is deferred to the full version.

Assuming gcd
(

p′2\I(x) + · · ·+ p′n\I(x), p′1\I(x)
)

= 1, it then follows that the

degree of the rational polynomial p′(x) is the degree of p′2\I(x) + · · · + p′n\I(x)

plus the degree of p′1\I(x). The former must have a leading term with degree

(m − |I| + 1) > (T + 1). Similarly, the latter also has degree (m − |I| + 1) >
T + 1. Hence the degree of p′(x) is at least 2T + 4. The probability of b = 1
is Prz[p

′(z) = p∗(z)] where p∗(x) is the polynomial interpolated by P1 using
(2T + 3) evaluations. However, since the degree of p′(x) is at least 2T + 4,
Prz[p

′(z) = p∗(z)] ≤ negl(λ).

15

Communication Cost. Each party sends (2T +4) TFHE encryptions and one
partial decryption to P1 where each plaintext is a field element. P1 sends one
ciphertext to every other party. The size of each encryption and each partial
decryption is poly(λ). Thus, the overall communication complexity is O(n · T ·
poly(λ)) in a star network and the protocols runs in O(1) rounds.

Security. Consider an environment Z who corrupts a set S∗ of n∗ parties
where n∗ < n. The simulator Sim has output w ∈ {similar, different} from the
ideal functionality. Sim sets a bit b∗ = 1 if w = similar and b∗ = 0 otherwise.
Also, for each corrupt party Pi, Sim has as input the tuple (Si, ri) indicating the
party’s input and randomness for the protocol. The strategy of the simulator
Sim for our protocol is described below.

1. Sim runs the distributed key generation algorithm TFHE.DistSetup(1λ, i) of
the TFHE scheme honestly on behalf of each honest party Pi as in the real
world. Note that Sim also knows ({ski}i∈S∗) as it knows the randomness for
the corrupt parties.

2. In Steps 2-4 of the protocol, Sim plays the role of the honest parties exactly
as in the real world except that on behalf of every honest party Pi, when-
ever Pi has to send any ciphertext, compute J0K = TFHE.Enc(0) using fresh
randomness.

3. In Step 5, on behalf of each honest party Pi, instead of sending the value
Jb : skiK by running the honest TFHE.PartialDec algorithm as in the real
world, Sim computes the partial decryptions by running the simulator TFHE.Sim
as follows: {Jb : SimiK}i∈[n]\S∗ ← TFHE.Sim(C, b∗, JbK , {ski}i∈S∗) where the
circuit C denotes the whole computation done by P1 in the real world to eval-
uate bit b. On behalf of the honest party Pi the simulator sends Jb : SimiK.
This corresponds to the ideal world.

We now show that the above simulation strategy is successful against all
environments Z that corrupt parties in a semi-honest manner. We will show this
via a series of computationally indistinguishable hybrids where the first hybrid
Hybrid0 corresponds to the real world and the last hybrid Hybrid2 corresponds
to the ideal world.

– Hybrid0 - Real World: In this hybrid, consider a simulator SimHyb that
plays the role of the honest parties as in the real world.

– Hybrid1 - Simulate Partial Decryptions: - In this hybrid, in Step 5,
SimHyb simulates the partial decryptions generated by the honest parties as
done in the ideal world. That is, the simulator calls {Jb : SimiK}i∈[n]\S ←
TFHE.Sim(C, b∗, JbK , {ski}i∈S). On behalf of the honest party Pi the simula-
tor sends Jb : SimiK instead of Jb : skiK.

– Hybrid2 - Switch Encryptions: In this hybrid, SimHyb now computes every
ciphertext generated on behalf of any honest party as encryptions of 0 as
done by Sim in the ideal world. This hybrid corresponds to the ideal world.

We show that every pair of consecutive hybrids is computationally indistinguish-
able in the full version.

16

5.2 Protocol for Functionality FCTest-diff

This protocol will compute the cardinality predicate b where b = 1 if and only
if |(

⋃n
i=1 Si) \ I| ≤ T . The core idea behind the protocol is that P1 (the star of

the network) and Pi first run a protocol to compute an encryption (via TFHE)
of their set differences D1,i = S1 \ Si and Di,1 = Si \ S1 with O(T) commu-
nication complexity if |S1 \ Si| ≤ T . Before we describe how this is achieved,
notice that at this point, the protocol enables P1 to reconstruct an encryption
of (
⋃n
i=1 Si) \ I =

⋃
i∈[n]\{1}(D

∗
1,i ∪ D∗i,1) and a predicate b where b = 1 if and

only if |(
⋃n
i=1 Si) \ I| ≤ T . P1 can then send this encryption to all parties to run

threshold decryption.
We now describe in more detail how the encryption of D1,i and Di,1 are com-

puted. The idea follows from the two-party protocol of Ghosh and Simkin [GS19a].
Each party Pi encodes their set Si as pi(x) := Πa∈Si

(x−a) ∈ F[x]. Pi then com-
putes ei,j := pi(j) for j ∈ [2T + 1] and e′i := pi(z) on a special random point
z ∈ F (picked uniformly at random by P1). Party Pi encrypts these values as
Jei,jK , Je′iK and sends them to P1. Party P1 considers the rational polynomial

p̃i(x) =
pi(x)

p1(x)
=

pi\1(x)

p1\i(x)

and homomorphically computes 2T+1 encrypted evaluations
(
j,

r
ei,j
e1,j

z)
for j =

[2T + 1]. Using these encrypted evaluations, P1 homomorphically computes an
encrypted rational polynomial Jp̃∗i (x)K using rational polynomial interpolation.
P1 then homomorphically reconstructs the roots of pi\1(x) and p1\i(x) from p̃∗i
to obtain

q
D∗i,1

y
,
q
D∗1,i

y
. Note that p̃∗i (x) = p̃i(x) if p̃i(x) has degree at most

2T , in which case D∗i,1 = Di,1 and D∗1,i = D1,i.
In the final protocol, P1 homomorphically computes encrypted predicates bi

where bi = 1 iff p̃∗i (z) =
e′i
e′1

for each i ∈ [n]\{1} and encrypted predicate b′ where

b′ = 1 iff
∣∣∣⋃i∈[n]\{1}(D∗1,i ∪D∗i,1)

∣∣∣ ≤ T . The output predicate b is homomorpically

computed as JbK =
r
b′ ·
∏
i∈[n]\{1} bi

z
and jointly decrypted by all the parties.

The protocol is formally described in Figure 6.

Theorem 3. Assuming threshold FHE with distributed setup, protocol ΠTFHE-CTest-diff

(Figure 6) securely realizes FCTest-diff (Figure 4).

Proof. Correctness. We first prove the protocol is correct. By the correctness
of the TFHE scheme, we only need to show that the computed predicate b = 1 if
and only if |(

⋃n
i=1 Si) \ I| ≤ T . First consider the case where the protocol should

output similar. Since

p̃i(x) =
pi(x)

p1(x)
=

pi\1(x)

p1\i(x)
,

both the numerator and denominator have degree at most T and therefore the
rational polynomial interpolation requires at most (2T + 1) evaluation points.

17

Parameters: Parties P1, . . . , Pn. Each party has a set of m elements. Threshold T ∈ N.
F is a finite field where |F| = Ω(2λ).

Inputs: Party Pi has an input set Si = {ai1, . . . , aim} where aij ∈ F for all j ∈ [m].

Output: Each party Pi receives similar if
∣∣(⋃n

i=1 Si
)
\ I
∣∣ ≤ T and different otherwise

where I =
⋂n
i=1 Si.

Protocol:
1. Each party Pi generates (pki, ski) ← TFHE.DistSetup(1λ, i) and sends pki to P1.

Then P1 sends pk = (pk1‖ . . . ‖pkn) to all the other parties.
2. P1 picks a random value z ∈ F and sends it to all parties.
3. Each party Pi does the following:

(a) Define the polynomial pi(x) :=
∏
a∈Si

(x− a).

(b) Compute ei,j := pi(j) for j ∈ [2T + 1] and e′i := pi(z).
(c) Send encrypted evaluations Jei,jK := TFHE.Enc(pk, ei,j) for j ∈ [2T + 1] and

Je′iK := TFHE.Enc(pk, e′i) to P1.
4. P1 does the following:

(a) For each i ∈ [n] \ {1}, use the algorithm TFHE.Eval to homomorphically com-
pute an encryption Jp̃∗i (x)K by rational polynomial interpolation from 2T + 1

encrypted evaluations
(
j,

r
ei,j
e1,j

z)
for j ∈ [2T + 1].

(b) For each i ∈ [n] \ {1}, homomorphically compute the encrypted predicate JbiK
where bi = 1 if p̃∗i (z) =

e′i
e′1

and 0 otherwise.

(c) For each i ∈ [n] \ {1}, homomorphically compute the encrypted roots
q
D∗i,1

y
,q

D∗1,i
y

of the numerator and denominator of p̃∗i (x), respectively.
(d) Homomorphically compute the encrypted predicate Jb′K where b′ = 1 if∣∣∣⋃i∈[n]\{1}(D∗1,i ∪D∗i,1)

∣∣∣ ≤ T and 0 otherwise.

5. P1 sends JbK =
r
b′ ·
∏
i∈[n]\{1} bi

z
to all parties who respond with Jb : skiK :=

TFHE.PartialDec(ski, JbK). P1 broadcasts b := TFHE.Combine(pk, {Jb : skiK}i∈[n])
and all parties output similar if b = 1 and different otherwise.

Fig. 6: Multi-party private intersection cardinality testing protocol
ΠTFHE-CTest-diff for FCTest-diff

Hence p̃∗i (x) = p̃i(x) and p̃∗i (z) = p̃i(z) =
e′i
e′1

, thus bi = 1. Since the roots of

pi\1 is simply the set difference Di,1 = Si \ S1, we have D∗i,1 = Di,1 = Si \ S1.

Similarly D∗1,i = S1 \ Si. Since
∣∣∣⋃i∈[n]\{1}(D∗1,i ∪D∗i,1)

∣∣∣ = |(
⋃n
i=1 Si) \ I| ≤ T ,

we have b′ = 1. Hence the protocol will output b = 1.

Now consider the case where the protocol should output different, namely
|(
⋃n
i=1 Si) \ I| > T . There are two possible cases. In the first case, |Si \ S1| > T

for some i. Then p̃i has degree at least 2T + 2 but p̃∗i is interpolated from 2T + 1
evaluation points, hence b′i = 0 with all but negligible probability. In the second
case, |Si \S1| ≤ T for all i ∈ [n]\{1}. Then D∗i,1 = Di,1 = Si \S1, D∗1,i = S1 \Si,
and bi = 1 for all i. Since |(

⋃n
i=1 Si) \ I| > T , b′ = 0. In both cases, we have

b = b′ ·
∏
i∈[n]\{1} bi = 0 with all but negligible probability.

18

Communication Cost. Each party sends (2T +2) TFHE encryptions and one
partial decryption to P1 where each plaintext is a field element. P1 sends one
ciphertext to every other party. The size of each encryption and each partial
decryption is poly(λ). Thus, the overall communication complexity is O(n · T ·
poly(λ)) in a star network and the protocols runs in O(1) rounds.

Security. The proof of security is identical to the proof of Theorem 2. We defer
the formal proof to the full version.

6 TAHE-Based Protocol for FCTest-diff

In this section, we present a multi-party protocol for private intersection car-
dinality testing for functionality FCTest-diff based on threshold additive homo-
morphic encryption with distributed setup. That is, the parties learn whether
their sets satisfy |(

⋃n
i=1 Si) \ I| ≤ T . Our protocol works in the star network

communication model where P1 is the central party.
In our construction, we need a secure multi-party computation (MPC) pro-

tocol that tests the singularity of a specific Hankel matrix (defined later), which
we discuss in Section 6.1. Using this, we present our complete protocol in Sec-
tion 6.2.

6.1 Singularity Testing of Hankel Matrices

In Section 6.2, we will see that intersection cardinality testing can be reduced to
determining whether the determinant of a specific matrix is 0 or not. The latter
problem can be reduced to computing the so-called “Half-GCD” of two specific
polynomials. In this section, we present a summary of the various results that go
into these reductions and refer the reader to the cited works for further details.

Half-GCD Problem. Consider the ring of polynomials F[x]. Note that since
F[x] is a Euclidean domain, Euclid’s GCD algorithm can be applied to poly-
nomials as well. Consider p0, p1 ∈ F[x] with d = deg(p0) > deg(p1) ≥ 0. The
Euclidean algorithm can be viewed as a sequence of transformations of 2-vectors
as below: (

p0

p1

)
M1−→

(
p1

p2

)
M2−→ . . .

Mh−1−→
(

ph−1
ph

)
Mh−→

(
ph
0

)
(2)

Here, M1, . . . ,Mh are 2 × 2 matrices, p2, . . . , ph ∈ F[x]. For vectors U, V and a

matrix M , we write U
M−→ V to denote U = MV .

Equation 2 can be correctly interpreted if we define

Mi =

(
qi 1
1 0

)
.

We call such matrices elementary matrices, where qi is a polynomial of positive
degree. We also refer to qi as the partial quotient in Mi. A regular matrix M is

19

a product of zero or more elementary matrices, namely

M = M1M2 . . .Mk (k ≥ 0)

where if k = 0, then M is defined to be the identity matrix of order 2.
We define the half-GCD (HGCD) problem for the polynomial ring F[x] as

follows. Given p0, p1 ∈ F[x] with d = deg(p0) > deg(p1) ≥ 0, compute a regular
matrix

M = HGCD(p0, p1)

such that if (
p0

p1

)
M−→
(

p2

p3

)
,

then
deg(p2) ≥ d/2 > deg(p3).

We now recall the result of Thull and Yap [TY90] on the computational com-
plexity of HGCD.

Imported Theorem 4 Consider the polynomial ring F[x] and the polynomials
p0, p1 ∈ F[x] with d = deg(p0) > deg(p1) ≥ 0. The computational complexity of
the HGCD problem is O(d log2 d).

Singularity Testing of Hankel Matrices. Next, we proceed to outline the
results that enable us to use the HGCD problem to test singularity of Hankel
matrices. A Hankel matrix is a matrix in which each ascending skew-diagonal
from left to right is constant. We will be working with square Hankel matrices.
In particular, a (k + 1)× (k + 1) Hankel matrix takes the form

H =

a0 a1 . . . ak
a1 a2 . . . ak+1

...
...

...
...

ak ak+1 . . . a2k

where the 2k + 1 entries a0, a1, . . . , a2k define H. Define the two polynomials

p0(x) = x2k+1

p1(x) = a0 + a1x + a2x2 + . . .+ a2kx2k

where p0, p1 ∈ F[x]. Let M = HGCD(p0, p1) and(
p0

p1

)
M−→
(

p2

p3

)
.

Then we have
deg(p2) ≥ k + 1 > deg(p3).

We recall the setting and results of Brent, Gustavson and Yun [BGY80] that
elegantly connect the singularity of H with the HGCD of p0(x) and p1(x).

20

Imported Theorem 5 The Hankel matrix H is singular iff deg(p3) < k.

Putting Imported Theorems 4 and 5 together, we have the following theorem.

Imported Theorem 6 The computational complexity of testing singularity of
a (k + 1)× (k + 1) Hankel matrix is O(k log2 k).

Multi-Party Singularity Testing. Looking ahead, in our multi-party inter-
section cardinality testing protocol, we will need to test for the singularity of
a Hankel matrix H which the parties have additive shares of, and the parties
will run a secure multi-party computation (MPC) protocol to jointly test for the
singulairty of H. The ideal functionality FSingTest for the multi-party minimal
polynomial computation is defined in Figure 7. We will need an MPC protocol
that realizes FSingTest with communication complexity at most Õ(k · n · poly(λ)).
Any such protocol suffices, and we denote by ΠSingTest the MPC protocol realizing
FSingTest.

Parameters: Parties P1, . . . , Pn.

Inputs: Each party Pi inputs 2k + 1 field elements a0,i, a1,i, . . . , a2k,i ∈ F.

Output: Let

Hi =

a0,i a1,i . . . ak,i
a1,i a2,i . . . ak+1,i

...
...

...
...

ak,i ak+1,i . . . a2k,i

be the Hankel matrix defined by the inputs of party Pi for i = 1, . . . , n, and let

H =

n∑
i=1

Hi.

Determine if the Hankel matrix H is singular. Each party receives 0 if H is singular,
and 1 otherwise.

Fig. 7: Ideal functionality FSingTest for multi-party singularity testing of a Hankel
matrix.

Here we describe two such protocols with communication complexity Õ(k ·n ·
poly(λ)) based on TAHE. In the first protocol, after the TAHE setup, each party
Pi sends JHiK to P1 and P1 homomorphically computes JHK. Afterwards P1 can

homomorphically evaluate a circuit C that computes a predicate b
?
= (det(H) =

0), following the ideas from [FH96, CDN01]. Finally the parties jointly decrypt
the encrypted output. Since the size and depth of C are both O(k log2 k) by
Imported Theorem 6, the total communication complexity of this protocol is
O(k log2 k · n · poly(λ)) and the round complexity is O(k log2 k).

As a second protocol, the parties jointly compute another C ′ that takesH and
a random PRF key r as input and outputs a Yao’s garbled circuit [Yao86] that

21

computes C. This approach is inspired by the work of Damg̊ard et al. [DIK+08].
Since both H and r are additively shared among all the parties, this MPC can
be done similarly as in the previous protocol, namely P1 first obtains JHK and

JrK and then homomorphically evaluates C ′. Since the size C ′ is Õ(k · poly(λ))
and the depth of C ′ is constant assuming PRG is a circuit in NC1 [AIK05], the

total communication complexity of this protocol is Õ(k · n · poly(λ)) and the
round complexity is O(1).

Two-party case. Notice that for two parties, FSingTest can be instantiated via

Yao’s garbled circuits with communication complexity Õ(k · poly(λ)).

6.2 Our Protocol

In this section we present our multi-party private intersection cardinality testing
protocol. That is, the parties learn whether their sets satisfy |(

⋃n
i=1 Si) \ I| ≤ T .

At a high level, our protocol first encodes each party Pi’s set as a polynomial

pi(x) =
∑m
j=1 xa

i
j , and let p(x) := (n− 1)p1(x)−

∑n
i=2 pi(x). Notice that a term

xa is cancelled out in the polynomial p if and only if the element a is in the set
intersection I. Therefore, the number of monomials in p is exactly |(

⋃n
i=1 Si) \ I|.

To determine if the number of monomials in p is ≤ T , we can apply the
polynomial sparsity test of Grigorescu et al. [GJR10] similarly as in [GS19a]. In

particular, pick a field Fq, sample u
$← Fq uniformly at random, and compute

the Hankel matrix

H =

p(u0) p(u1) . . . p(uT)
p(u1) p(u2) . . . p(uT+1)

...
...

. . .
...

p(uT) p(uT+1) . . . p(u2T)

 .
Determining if the number of monomials in p is ≤ T can be reduced to testing
the singularity of H. In particular, we take the following theorem from [GJR10,
Theorem 3] and [GS19a, Theorem 1].

Imported Theorem 7 Let q > T (T + 1)(p − 1)2κ be a prime. If the number
of monomials in p is ≤ T , then Pr[det(H) = 0] = 1, and if the number of
monomials in p is > T , then Pr[det(H) = 0] ≤ 2−κ,

In our multi-party private intersection cardinality testing protocol, the par-
ties will first compute additive shares of H and then run a multi-party minimal
polynomial computation protocol to jointly test the singularity of H. The pro-
tocol is presented in Figure 8.

Theorem 8. Let q > T (T+1)(p−1)2κ be a prime. Assuming threshold additive
homomorphic encryption scheme with distributed setup, the protocol ΠCTest-diff

(Figure 8) securely realizes FCTest-diff in the FSingTest-hybrid model.

22

1. Computing Shares of Hankel Matrix H.

(a) P1 picks a uniform random u
$← Fq and sends to all other parties.

(b) P1 sets a polynomial p1(x) =
∑m
j=1(n− 1) · xa

1
j in Fq[x].

(c) Each party Pi (i = 2, 3, . . . , n) sets a polynomial pi(x) = −
∑m
j=1 xa

i
j in Fq[x].

(d) Each party Pi (i = 1, 2, 3, . . . , n) computes the values aj,i = pi(u
j) for j =

0, 1, . . . , 2T .

2. Matrix Singularity Testing of H. Parties invoke an instance of FSingTest where
each party Pi inputs a0,i, . . . , a2T,i and obtains a bit b.

3. Output. Each party Pi outputs similar if b = 0 and different otherwise.

Fig. 8: Multi-party private intersection cardinality testing protocol ΠCTest-diff .

Proof. Correctness. By the correctness of FSingTest, in Step 2 all the parties
learn a bit b and b = 0 if and only if H is singular, where H is the Hankel matrix
H =

∑n
i=1Hi and each Hankel matrix Hi is defined by the inputs of party Pi as

Hi =

a0,i a1,i . . . aT,i
a1,i a2,i . . . aT+1,i

...
...

. . .
...

aT,i aT+1,i . . . a2T,i

for i = 1, . . . , n. By Imported Theorem 7, b = 0 if and only if |(

⋃n
i=1 Si) \ I| ≤ T

with all but negligible probability. Therefore the protocol is correct with all but
negligible probability.

Communication Cost. The communication cost is the same as the protocol
ΠSingTest. In particular, the round complexity is O(1) in a star network and the

total communication complexity is Õ(T · n · poly(λ)).

Security. We construct a PPT Sim which simulates the view of the corrupted
parties. The simulator Sim gets the output w ∈ {similar, different} from the ideal
functionality. Sim sets a bit b∗ = 1 if w = similar and b∗ = 0 otherwise. Also, for
each corrupt party Pi, Sim has as input the tuple (Si, ri) indicating the party’s
input and randomness for the protocol. The strategy of the simulator Sim for
our protocol is described below.

1. Invoke the corrupted parties with their corresponding inputs and random-
ness.

2. Play the role of the honest parties as follows: Run the protocol honestly.
Note that P1 is the only party that ever sends a message, so this step in the
simulation is trivial.

3. In Step 2, play the role of FSingTest and respond b∗.

4. Finally, output the view of the corrupted parties.

23

Next we argue that the view of the corrupted parties generated by Sim is
computationally indistinguishable to their view in the real world from Z’s point
of view. The only difference between the real and ideal worlds is that in the
ideal world, the output from FSingTest is replaced by 0 if |(

⋃n
i=1 Si) \ I| ≤ T

and 1 otherwise. This is computationally indistinguishable from the real world
because of the correctness of the protocol.

Corollary 2. Assuming TAHE with distributed setup, protocol ΠCTest-diff (Fig-
ure 8) securely realizes FCTest-diff in the star network communication model with

communication complexity Õ(n · T · poly(λ)) and round complexity O(1).

7 Threshold PSI for FTPSI-diff

Recall that in a multi-party threshold PSI protocol for functionality FTPSI-diff

defined in Figure 2, each party wishes to learn the intersection of all their sets
if |(

⋃n
i=1 Si) \ I| ≤ T , that is, if the size of the union of all their sets minus

the intersection is less than the threshold T . In this section, we describe our
multi-party threshold PSI protocol based on any protocol for multi-party private
intersection cardinality testing. We rely on TAHE with distributed setup.

Theorem 9. Assuming threshold additive homomorphic encryption with dis-
tributed setup, protocol ΠTPSI-diff (Figure 9) securely realizes FTPSI-diff in the
FCTest-diff-hybrid model in the star network communication model. Our proto-
col is secure against a semi-honest adversary that can corrupt up to (n − 1)
parties.

The protocol runs in a constant number of rounds and the communication
complexity is O(n·T ·poly(λ)) in the FCTest-diff -hybrid model. We then instantiate
the FCTest-diff -hybrid with the two protocols from the previous sections: one based
on TFHE from Section 5.2 that has round complexity O(1) and O(n ·T ·poly(λ))
communication complexity and the other based on TAHE from Section 6 that
has round complexity O(1) and communication complexity Õ(n · T · poly(λ)).
Formally, we get the following corollaries:

Corollary 3. Assuming TFHE (resp. TAHE) with distributed setup, protocol
ΠTPSI-diff (Figure 9) securely realizes FTPSI-diff in the star network communication

model with communication complexity O(n ·T · poly(λ)) (resp. Õ(n ·T · poly(λ)))
and round complexity O(1).

Our threshold PSI protocol for functionality FTPSI-int is almost identical and we
defer the details to the full version.

7.1 Protocol

Consider n parties P1, . . . , Pn with input sets S1, . . . , Sn of size m and a star
network where the central party is P1. The parties first run the private intersec-
tion cardinality testing protocols for functionality FCTest-diff from the previous

24

sections and proceed if |(
⋃n
i=1 Si) \ I| ≤ T . Then, each party Pi encodes its set

as a polynomial p′i(x) = (x− ri) ·
∏m
j=1(x− aij) where ri is picked uniformly at

random. The parties then compute (3T + 4) evaluations of the following poly-
nomial V(·) on points 1, , (3T + 4) using threshold additive homomorphic
encryption: V(x) =

∑n
i=1 (p′i(x) · Ri(x)) where each Ri(·) is a uniformly random

polynomial of degree T that is computed as an addition of n random polynomi-
als - one generated by each party. Then, each party Pi interpolates the degree

(3T + 3) rational polynomial V(·)
p′i(·)

using the (3T + 4) evaluations. Finally, each

party outputs the intersection as Si \Di where Di denotes the roots of the above
interpolated polynomial. Our protocol is formally described in Figure 9.

Two-party case. For two parties Alice and Bob, we can rely on AHE alone,
where Alice holds the secret key. In particular, define V(x) := pA(x)·

(
RA1 (x) + RB1 (x)

)
+

pB(x) ·
(
RA2 (x) + RB2 (x)

)
, where (RA1 ,R

A
2) and (RB1 ,R

B
2) are uniformly random

polynomials of degree T generated by Alice and Bob, respectively. To obtain an
evaluation of V(x), Alice first sends an encryption of pA(x) and RA2 (x) to Bob.
Then Bob homomorphically computes an encryption of r = pA(x) · RB1 (x) +
pB(x) ·

(
RA2 (x) + RB2 (x)

)
and sends it back. Alice can decrypt JrK and compute

V(x) = pA(x) · RA1 (x) + r. The communication complexity is O(T · poly(λ)).

7.2 Security Proof

Correctness. If |(
⋃n
i=1 Si) \ I| > T , then the protocol terminates after the first

step – private intersection cardinality testing. If, on the other hand, |(
⋃n
i=1 Si) \ I| ≤

T , observe that polynomial V(x) can be rewritten as
∑n
i=1 p′i(x) · Ui(x) where

each Ui is a uniformly random polynomial of degree at most T + 1. Now, from
the correctness of the TAHE scheme, each party Pi learns 3T + 4 evaluations of
the rational polynomial:

qi(x) =
V(x)

p′i(x)
=

∑n
i=1 p′i(x) · Ui(x)

p′i(x)
=

∑n
i=1 pi\I(x) · (x− ri) · Ui(x)

pi\I(x) · (x− ri)
.

Since |Si − I| ≤ T for each i ∈ [n], the numerator is a polynomial of degree
at most 2T + 2 and the denominator is a polynomial of degree at most T + 1.
Further, since each Ui is uniformly random, we can show that the numerator is
a random degree 2T + 2 polynomial, and that the gcd of the polynomials in the
numerator and denominator is 1 and hence no other terms will get canceled out.
The algebraic proofs are deferred to the full version. Therefore, each party Pi can
interpolate this rational polynomial using 3T + 4 evaluation points and thereby
learn the numerator and denominator. Finally, observe that for each party Pi,
the roots of the denominator contains the set Si \I and a random ri, from which
Pi can easily compute the intersection I.

Communication Cost. The first phase of the protocol, namely private inter-
section cardinality testing, has a communication complexity of O(n ·T · poly(λ))

25

Parameters: Parties P1, . . . , Pn. Each party has a set of m elements. Threshold T ∈ N.
F is a finite field where |F| = Ω(2λ).

Inputs: Party Pi has an input set Si = {ai1, . . . , aim} where aij ∈ F for all j ∈ [m].

Output: Each party Pi receives the set intersection I =
⋂n
i=1 Si if and only if∣∣(⋃n

i=1 Si
)
\ I
∣∣ ≤ T .

Protocol:

1. Private Intersection Cardinality Testing. The parties invoke FCTest-diff on
inputs S1, . . . , Sn and receive back w ∈ {similar, different}. If w = different then all
parties output ⊥.

2. TAHE Key Generation. Each party Pi generates (pki, ski) ←
TAHE.DistSetup(1λ, i) and sends pki to P1. Then P1 sends pk = (pk1‖ . . . ‖pkn) to
all the other parties.

3. Evaluations of Random Polynomial. In this phase the parties will evaluate a
polynomial

V(x) =

n∑
i=1

(
p′i(x) ·

(
R1(x) + . . .+ Ri−1(x) + R̃i(x) + Ri+1(x) . . .+ Rn(x)

))
for x ∈ [3T + 4] where the terms are defined as follows.
(a) Each party Pi defines pi(x) =

∏m
j=1(x− aij) and p′i(x) = pi(x) · (x− ri) where

ri
$← F.

(b) Each party Pi uniformly samples Ri, R̃i
$← F[x] of degree T+1, computes Ri(x)

for x ∈ [3T + 4] and sends encrypted JRi(x)K to P1.

(c) For each i ∈ [n], x ∈ [3T + 4], party P1 sends Jei,xK =
r∑

j∈[n]\{i} Rj(x)
z

to

Pi.

(d) For each x ∈ [3T + 4], each party Pi sends Jvi,xK =
r

p′i(x) ·
(
ei,x + R̃i(x)

)z
to

P1.
(e) For each x ∈ [3T + 4], P1 sends JvxK =

q∑n
i=1 vi,x

y
to all Pi.

(f) For each x ∈ [3T + 4], each party Pi sends Jvx : skiK ← TAHE.PartialDec(ski,
JvxK) to P1.

(g) For each x ∈ [3T + 4], P1 sends V(x) = TAHE.Combine(pk, {Jvx : skiK}i∈[n]) to
all Pi.

4. Computing Set Intersection. Each party Pi does the following:
(a) Interpolate qi(x) to be the degree 3T+3 rational polynomial such that qi(x) =

V(x)
p′i(x)

for x ∈ [3T + 4] and the gcd of the numerator and denominator is 1. Let

Di be the roots of the denominator of qi(x).
(b) Output the set intersection I = Si \Di.

Fig. 9: Multi-party threshold PSI protocol ΠTPSI-diff for functionality FTPSI-diff .

when instantiated with the TFHE-based scheme in Section 5.2 and a communi-
cation complexity of Õ(n · T · poly(λ)) when instantiated with the TAHE-based
scheme in Section 6.

We now analyze the communication cost for the second phase where the par-
ties compute the concrete intersection. The TAHE key generation is independent
of the set sizes and the threshold T and has a communication complexity of only

26

O(n ·poly(λ)). The bottleneck of the protocol is in Step 3, that is, evaluating the
random polynomial. In Steps 3b, 3d, and 3f, every party sends 3T+4 encryptions
or partial decryptions to P1 hence the cost for these steps is O(n · T · poly(λ)).
In Steps 3c, 3e, and 3g, P1 sends 3T + 4 ciphertexts or plaintexts to every other
party so the cost of these steps is O(n ·T ·poly(λ)). Finally, the last stage, namely
computing the set intersection, does not involve any communication. Thus, the
overall communication cost for computing the intersection is O(n · T · poly(λ)).

Therefore, when the private intersection cardinality testing protocol is instan-
tiated with the TFHE-based protocol, the overall communication complexity is
O(n·T ·poly(λ)) and when instantiated with the TAHE-based scheme, the overall

communication complexity is Õ(n ·T ·poly(λ)) for some apriori fixed polynomial
poly(·) and is independent of the size of each input set m.

Security. Consider an environment Z who corrupts a set S∗ of n∗ parties
where n∗ < n. The simulator Sim has the output of the functionality FTPSI-diff ,
namely the intersection set I or ⊥. Sim sets w = similar if the output is I and
w = different if the output is ⊥. In addition, Sim has the tuple (Si, ri) for each
corrupt party Pi indicating the party’s input and randomness for the protocol.
The strategy of the simulator Sim for our multi-party threshold PSI protocol is
described below.

(a) Private Intersection Cardinality Testing: Sim plays the role of the
ideal functionality FCTest-diff and responds with w.

(b) TAHE Key Generation: Sim runs the distributed key generation algo-
rithm TAHE.DistSetup(1λ, i) of the TAHE scheme honestly on behalf of each
honest party Pi as in the real world. Note that Sim also knows ({ski}i∈S∗) as it
knows the randomness for the corrupt parties.

(c) Evaluations of Random Polynomial: Sim does the following:

1. Encode the intersection set I = {b1, . . . , b|I|} as a polynomial as follows:

pI(x) = Π
|I|
i=1(x− bi).

2. Pick a random polynomial U(·) of degree 2T +2 and set the polynomial V(x)
as follows: V(x) = pI(x) · U(x).

3. In Steps 3b-3e, on behalf of every honest party Pi, whenever Pi has to send
any ciphertext, send J0K using fresh randomness.

4. For each x ∈ [3T + 4], let JvxK denote the ciphertext that is sent to all the
parties at the end of Step 3f.

5. In Step 3f, for each j ∈ [3T + 4], on behalf of each honest party Pi, in-
stead of computing {Jvx : skiK} by running the honest TAHE.PartialDec al-
gorithm as in the real world, Sim computes the partial decryptions by run-
ning the simulator TAHE.Sim as follows: {Jvx : skiK} ← TAHE.Sim(C,V(x),
JvxK , {ski}i∈S∗), where C is the public linear circuit to compute V(x) by P1.

6. Finally, in Step 3g, if P1 is honest, send the evaluations of polynomial V(x)
as in the real world description.

27

Hybrids. We now show that the above simulation strategy is successful against
all environments Z that corrupt parties in a semi-honest manner. That is, the
view of the corrupt parties along with the output of the honest parties is com-
putationally indistinguishable in the real and ideal worlds. We will show this
via a series of computationally indistinguishable hybrids where the first hybrid
Hybrid0 corresponds to the real world and the last hybrid Hybrid4 corresponds
to the ideal world.

– Hybrid0 - Real World: In this hybrid, consider a simulator SimHyb that
plays the role of the honest parties as in the real world.

– Hybrid1 - Private Intersection Cardinality Testing: In this hybrid,
SimHyb plays the role of the ideal functionality FCTest-diff and responds with
similar if |(

⋃n
i=1 Si) \ I| ≤ T and different otherwise.

– Hybrid2 - Simulate Partial Decryptions: In this hybrid, in the evaluations
of random polynomial, SimHyb simulates the partial decryptions generated
by the honest parties in Step 3f as done in the ideal world. That is, for each
j ∈ [3T + 4], SimHyb computes the partial decryptions as {Jvx : skiK} ←
TAHE.Sim(C,V(x), JvxK , {ski}i∈S∗). Observe that the polynomial V(·) is still
computed as in the real world (and in Hybrid2).

– Hybrid3 - Switch Polynomial Computation: In this hybrid, the polyno-
mial V(·) is no longer computed as in the real world. Instead, SimHyb now
picks a random polynomial U(·) of degree 2T + 2 and sets the polynomial
V(·) as follows: V(x) = pI(x) · U(x).

– Hybrid4 - Switch Encryptions: In this hybrid, in the evaluations of random
polynomial, SimHyb now computes every ciphertext generated on behalf of
any honest party as encryptions of 0 as done by Sim in the ideal world. This
hybrid corresponds to the ideal world.

We show that every pair of consecutive hybrids is computationally indistinguish-
able in the full version.

References

AIK05. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally
private randomizing polynomials and their applications. In CCC, 2005.

BDP21. Pedro Branco, Nico Döttling, and Sihang Pu. Multiparty cardinality testing
for threshold private set intersection. In PKC, 2021.

Ben94. Josh Benaloh. Dense probabilistic encryption. May 1994.
BFK+19. Saikrishna Badrinarayanan, Rex Fernando, Venkata Koppula, Amit Sahai,

and Brent Waters. Output compression, mpc, and io for turing machines.
In ASIACRYPT, 2019.

BGG+18. Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim,
Peter M. R. Rasmussen, and Amit Sahai. Threshold cryptosystems from
threshold fully homomorphic encryption. In CRYPTO, 2018.

BGY80. Richard P. Brent, Fred G. Gustavson, and David Y. Y. Yun. Fast solution
of Toeplitz systems of equations and computation of padé approximants.
J. Algorithms, 1(3):259–295, 1980.

28

BO15. Mark Braverman and Rotem Oshman. On information complexity in the
broadcast model. In PODC, 2015.

BPSW07. Justin Brickell, Donald E Porter, Vitaly Shmatikov, and Emmett Witchel.
Privacy-preserving remote diagnostics. In CCS, 2007.

CDN01. Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Multiparty com-
putation from threshold homomorphic encryption. In EUROCRYPT, 2001.

CM20. Melissa Chase and Peihan Miao. Private set intersection in the internet
setting from lightweight oblivious PRF. In CRYPTO, 2020.

DCT10. Emiliano De Cristofaro and Gene Tsudik. Practical private set intersection
protocols with linear complexity. In FC, 2010.

DCW13. Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection
meets big data: an efficient and scalable protocol. In CCS, 2013.

DIK+08. Ivan Damg̊ard, Yuval Ishai, Mikkel Krøigaard, Jesper Buus Nielsen, and
Adam D. Smith. Scalable multiparty computation with nearly optimal
work and resilience. In CRYPTO, 2008.

FH96. Matthew K. Franklin and Stuart Haber. Joint encryption and message-
efficient secure computation. J. Cryptology, 1996.

FNP04. Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private
matching and set intersection. In EUROCRYPT, 2004.

GJR10. Elena Grigorescu, Kyomin Jung, and Ronitt Rubinfeld. A local decision
test for sparse polynomials. Information Processing Letters, 2010.

GN19. Satrajit Ghosh and Tobias Nilges. An algebraic approach to maliciously
secure private set intersection. In EUROCRYPT, 2019.

GS19a. Satrajit Ghosh and Mark Simkin. The communication complexity of
threshold private set intersection. In CRYPTO, 2019.

GS19b. Satrajit Ghosh and Mark Simkin. The communication complexity of
threshold private set intersection, 2019. ia.cr/2019/175.

HFH99. Bernardo A. Huberman, Matt Franklin, and Tad Hogg. Enhancing privacy
and trust in electronic communities. In In Proc. of the 1st ACM Conference
on Electronic Commerce, 1999.

HOS17. Per A. Hallgren, Claudio Orlandi, and Andrei Sabelfeld. Privatepool:
Privacy-preserving ridesharing. In CSF, 2017.

HV17. Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. Scalable
multi-party private set-intersection. In PKC, 2017.

HW15. Pavel Hubáček and Daniel Wichs. On the communication complexity of
secure function evaluation with long output. In ITCS, 2015.

IKN+17. Mihaela Ion, Ben Kreuter, Erhan Nergiz, Sarvar Patel, Shobhit Saxena,
Karn Seth, David Shanahan, and Moti Yung. Private intersection-sum
protocol with applications to attributing aggregate ad conversions. 2017.
ia.cr/2017/738.

KKRT16. Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Ef-
ficient batched oblivious PRF with applications to private set intersection.
In CCS, 2016.

KMP+17. Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and
Ni Trieu. Practical multi-party private set intersection from symmetric-
key techniques. In CCS, 2017.

KMWF07. Eike Kiltz, Payman Mohassel, Enav Weinreb, and Matthew Franklin. Se-
cure linear algebra using linearly recurrent sequences. In TCC, 2007.

KS05. Lea Kissner and Dawn Song. Privacy-preserving set operations. In
CRYPTO, 2005.

29

ia.cr/2019/175
ia.cr/2017/738

MPR+20. Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti Yung.
Two-sided malicious security for private intersection-sum with cardinality.
In CRYPTO, 2020.

MTZ03. Yaron Minsky, Ari Trachtenberg, and Richard Zippel. Set reconciliation
with nearly optimal communication complexity. IEEE Transactions on
Information Theory, 2003.

MZ17. Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable
privacy-preserving machine learning. In IEEE S and P, 2017.

NMH+10. Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and
Nikita Borisov. Botgrep: Finding p2p bots with structured graph analysis.
In USENIX security symposium, 2010.

OOS16. Michele Orrù, Emmanuela Orsini, and Peter Scholl. Actively secure 1-out-
of-n OT extension with application to private set intersection. In CT-RSA,
2016.

Pai99. Pascal Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In EUROCRYPT, 1999.

PRTY19. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Spot-light:
Lightweight private set intersection from sparse ot extension. In CRYPTO,
2019.

PRTY20. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from paxos:
Fast, malicious private set intersection. In EUROCRYPT, 2020.

PSSZ15. Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing:
Private set intersection using permutation-based hashing. In USENIX,
2015.

PSWW18. Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. Ef-
ficient circuit-based PSI via cuckoo hashing. In EUROCRYPT, 2018.

PSZ14. Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set
intersection based on ot extension. In USENIX, 2014.

RR17. Peter Rindal and Mike Rosulek. Malicious-secure private set intersection
via dual execution. In CCS, 2017.

TPKC07. Juan Ramón Troncoso-Pastoriza, Stefan Katzenbeisser, and Mehmet Ce-
lik. Privacy preserving error resilient dna searching through oblivious au-
tomata. In CCS, 2007.

TY90. Klaus Thull and Chee Yap. A unified approach to hgcd algorithms for
polynomials and integers. Manuscript, 1990.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In FOCS, 1986.

ZC18. Yongjun Zhao and Sherman SM Chow. Can you find the one for me?
privacy-preserving matchmaking via threshold psi. 2018. ia.cr/2018/184.

30

ia.cr/2018/184

	Multi-Party Threshold Private Set Intersection with Sublinear Communication

