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Abstract. The Signal protocol is a secure instant messaging protocol
that underlies the security of numerous applications such as WhatsApp,
Skype, Facebook Messenger among many others. The Signal protocol
consists of two sub-protocols known as the X3DH protocol and the double
ratchet protocol, where the latter has recently gained much attention. For
instance, Alwen, Coretti, and Dodis (Eurocrypt’19) provided a concrete
security model along with a generic construction based on simple building
blocks that are instantiable from versatile assumptions, including post-
quantum ones. In contrast, as far as we are aware, works focusing on the
X3DH protocol seem limited.
In this work, we cast the X3DH protocol as a specific type of authenti-
cated key exchange (AKE) protocol, which we call a Signal-conforming
AKE protocol, and formally define its security model based on the vast
prior work on AKE protocols. We then provide the first efficient generic
construction of a Signal-conforming AKE protocol based on standard
cryptographic primitives such as key encapsulation mechanisms (KEM)
and signature schemes. Specifically, this results in the first post-quantum
secure replacement of the X3DH protocol on well-established assumptions.
Similar to the X3DH protocol, our Signal-conforming AKE protocol offers
a strong (or stronger) flavor of security, where the exchanged key remains
secure even when all the non-trivial combinations of the long-term secrets
and session-specific secrets are compromised. Moreover, our protocol has
a weak flavor of deniability and we further show how to strengthen it
using ring signatures. Finally, we provide a full-fledged, generic C im-
plementation of our (weakly deniable) protocol. We instantiate it with
several Round 3 candidates (finalists and alternates) to the NIST post-
quantum standardization process and compare the resulting bandwidth
and computation performances. Our implementation is publicly available.



1 Introduction

Secure instant messaging (SIM) ensures privacy and security by making sure that
only the person you are sending the message to can read the message, a.k.a. end-
to-end encryption. With the ever-growing awareness against mass-surveillance
of communications, people have become more privacy-aware and the demand
for SIM has been steadily increasing. While there have been a range of SIM
protocols, the Signal protocol [1] is widely regarded as the gold standard. Not
only is it used by the Signal app4, the Signal protocol is also used by WhatsApp,
Skype, Facebook Messenger among many others, where the number of active
users is well over 2 billions. One of the reasons for such popularity is due to the
simplicity and the strong security properties it provides, such as forward secrecy
and post-compromise secrecy, while simultaneously allowing for the same user
experience as any (non-cryptographically secure) instant messaging app.

The Signal protocol consists of two sub-protocols: the X3DH protocol [45] and
the double ratchet protocol [44]. The former protocol can be viewed as a type of
key exchange protocol allowing two parties to exchange a secure initial session
key. The latter protocol is executed after the X3DH protocol and it allows two
parties to perform a secure back-and-forth message delivery. Below, we briefly
recall the current affair of these two protocols.
The Double Ratchet Protocol. The first attempt at a full security analysis
of the Signal protocol was made by Cohn-Gordon et al. [18,19]. They considered
the Signal protocol as one large protocol and analyzed the security guarantees
in its entirety. Since the double ratchet protocol was understood to be the root
of the complexity, many subsequent works aimed at further abstracting and
formalizing (and in some cases enhancing) the security of the double ratchet
protocol by viewing it as a stand-alone protocol [9,49,2,26,36,37]. Under these
works, our understanding of the double ratchet protocol has much matured.
Notably, Alwen et al. [2] fully abstracted the complex Diffie-Hellman based
double ratchet protocol used by Signal and provided a concrete security model
along with a generic construction based on simple building blocks. Since these
blocks are instantiable from versatile assumptions, including post-quantum ones,
their work resulted in the first post-quantum secure double ratchet protocol.
Here, we elucidate that all the aforementioned works analyze the double ratchet
protocol as a stand-alone primitive, and hence, it is assumed that any two parties
can securely share an initial session key, for instance, by executing a “secure”
X3DH protocol.
The X3DH Protocol. In contrast, other than the white paper offered by
Signal [45] and those indirectly considered by Cohn-Gordon et al. [18,19], works
focusing on the X3DH protocol seems to be limited. As far as we are aware, there
is one recent work that studies the formalization [14] and a few papers that study
one of the appealing security properties, known as (off-line) deniability, claimed
by the X3DH protocol [53,51,52].

4 The name Signal is used to point to the app and the protocol.
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Brendel et al. [14] abstract the X3DH protocol and provides the first generic
construction based on a new primitive they call a split key encapsulation mecha-
nism (KEM). However, so far, instantiations of split KEMs with strong security
guarantees required for the X3DH protocol are limited to Diffie-Hellman style
assumptions. In fact, the recent result of Guo et al. [33] implies that it would be
difficult to construct them from one of the promising post-quantum candidates:
lattice-based assumptions (and presumably coded-based assumptions). On the
other hand, Vatandas et al. [53] study one of the security guarantees widely
assumed for the X3DH protocol called (off-line) deniability [45, Section 4.4] and
showed that a strong knowledge-type assumption would be necessary to formally
prove it. Unger and Goldberg [51,52] construct several protocols that can be used
as a drop-in replacement of the X3DH protocol that achieves a strong flavor of
(on-line) deniability from standard assumptions, albeit by making a noticeable
sacrifice in the security against key-compromise attacks: a type of attack that
exploits leaked secret information of a party. For instance, while the X3DH
protocol is secure against key-compromise impersonation (KCI) attacks [11],5
the protocols of Unger and Goldberg are no longer secure against such attacks.6

Motivation. In summary, although we have a rough understanding of what the
X3DH protocol offers [45,18,19], the current state of affairs is unsatisfactory for
the following reasons, and making progress on these issues will be the focus of
this work:

- It is difficult to formally understand the security guarantees offered by the
X3DH protocol or to make a meaningful comparison among different protocols
achieving the same functionality as the X3DH protocol without a clearly
defined security model.

- The X3DH protocol is so far only instantiable from Diffie-Hellman style
assumptions [14] and it is unclear whether such assumptions are inherent to
the Signal protocol.

- Ideally, similarly to what Alwen et al. [2] did for the double ratchet protocol,
we would like to abstract the X3DH protocol and have a generic construction
based on simple building blocks that can be instantiated from versatile
assumptions, including but not limited to post-quantum ones.

- No matter how secure the double ratchet protocol is, we cannot completely
secure the Signal protocol if the initial X3DH protocol is the weakest link
in the chain (e.g., insecure against state-leakage and only offering security
against classical adversaries).

5 Although [45, Section 4.6] states that the X3DH protocol is susceptible to KCI
attacks, this is only because they consider the scenario where the session-specific
secret is compromised. If we consider the standard KCI attack scenario where the
long-term secret is the only information being compromised [11], then the X3DH
protocol is secure.

6 Being vulnerable against KCI attacks seems to be intrinsic to on-line deniabil-
ity [51,52,45].
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1.1 Our Contribution

In this work, we cast the X3DH protocol (see Figure 1) as a specific type of
authenticated key exchange (AKE) protocol, which we call a Signal-conforming
AKE protocol, and define its security model based on the vast prior work on AKE
protocols. We then provide an efficient generic construction of a Signal-conforming
AKE protocol based on standard cryptographic primitives: an (IND-CCA secure)
KEM, a signature scheme, and a pseudorandom function (PRF). Since all of
these primitives can be based on well-established post-quantum assumptions,
this results in the first post-quantum secure replacement of the X3DH protocol.
Similarly to the X3DH protocol, our Signal-conforming AKE protocol offers a
strong flavor of key-compromise security. Borrowing terminologies from AKE-
related literature, our protocol is proven secure in the strong Canetti-Krawczyk
(CK) type security models [15,39,30,42], where the exchanged session key remains
secure even if all the non-trivial combinations of the long-term secrets and
session-specific secrets of the parties are compromised. In fact, our protocol is
more secure than the X3DH protocol since it is even secure against KCI-attacks
where the parties’ session-specific secrets are compromised (see Footnote 5). 7

We believe the level of security offered by our Signal-conforming AKE protocol
aligns with the level of security guaranteed by the double ratchet protocol where
(a specific notion of) security still holds even when such secrets are compromised.
Moreover, while our Signal-conforming AKE already provides a weak form of
deniability, we can strengthen its deniability by using a ring signature scheme
instead of a signature scheme. Likewise to the X3DH protocol [53] although our
construction seemingly offers (off-line) deniability, the formal proof relies on a
strong knowledge-type assumption. However, relying on such assumptions seems
unavoidable considering that all known deniable AKE protocols secure against
key-compromise attacks, including the X3DH protocol, rely on them [24,57,53].

We implemented our (weakly deniable) Signal-conforming AKE protocol
in C, building on the open source libraries PQClean and LibTomCrypt. Our
implementation8 is fully generic and can thus be instantiated with a wide range of
KEMs and signature schemes. We instantiate it with several Round 3 candidates
(finalists and alternates) to the NIST post-quantum standardization process, and
compare the bandwidth and computation costs that result from these choices. Our
protocol performs best with “balanced” schemes, for example most lattice-based
schemes. The isogeny-based scheme SIKE offers good bandwidth performance,
but entails a significant computation cost. Finally, schemes with large public
keys (Classic McEliece, Rainbow, etc.) do not seem to be a good match for our
protocol, since these keys are transferred at each run of the protocol.

7 The X3DH can be made secure against leakge of session-specific secrets by using
NAXOS trick [42], but it requires additional computation. Because it affects efficiency,
we do not consider AKE protocols using NAXOS trick (e.g., [30,40,56]).

8 It is available at the URL [41].
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1.2 Technical Overview

We now briefly recall the X3DH protocol and abstract its required properties by
viewing it through the lens of AKE protocols. We then provide an overview of
how to construct a Signal-conforming AKE protocol from standard assumptions.
Recap on the X3DH Protocol. At a high level, the X3DH protocol allows for
an asynchronous key exchange where two parties, say Alice and Bob, exchange a
session key without having to be online at the same time. Even more, the party,
say Bob, that wishes to send a secure message to Alice can do so without Alice
even knowing Bob. For instance, imagine the scenario where you send a friend
request and a message at the same time before being accepted as a friend. At
first glance, it seems what we require is a non-interactive key exchange (NIKE)
since Bob needs to exchange a key with Alice who is offline, while Alice does not
yet know that Bob is trying to communicate with her. Unfortunately, solutions
based on NIKEs are undesirable since they either provide weaker guarantees than
standard (interactive) AKE or exhibit inefficient constructions [10,17,29,50].

The X3DH protocol circumvents this issue by considering an untrusted server
(e.g., the Signal server) to sit in the middle between Alice and Bob to serve as
a public bulletin board. That is, the parties can store and retrieve information
from the server while the server is not assumed to act honestly. A simplified
description of the X3DH protocol, which still satisfies our purpose, based on the
classical Diffie-Hellman (DH) key exchange is provided in Figure 1.9 As the first
step, Alice sends her DH component gx ∈ G to the server10 and then possibly
goes offline. We point out that Alice does not need to know who she will be
communicating with at this point. Bob, who may ad-hocly decide to communicate
with Alice, then fetches Alice’s first message from the server and uploads its DH
component gy to the server. As in a typical DH key exchange, Bob computes the
session key kB using the long-term secret exponent b ∈ Zp and session-specific
secret exponent y ∈ Zp. Since Bob can compute the session key kB while Alice is
offline, he can begin executing the subsequent double ratchet protocol without
waiting for Alice to come online. Whenever Alice comes online, she can fetch
whatever message Bob sent from the server.
Casting the X3DH Protocol as an AKE Protocol. It is not difficult to
see that the X3DH protocol can be cast as a specific type of AKE protocol. In
particular, we can think of the server as an adversary that tries to mount a
man-in-the-middle (MIM) attack in a standard AKE protocol. Viewing the server
as a malicious adversary, rather than some semi-honest entity, has two benefits:
the parties do not need to put trust in the server since the protocol is supposed

9 We assume Alice and Bob know each other’s long-term key. In practice, this can be
enforced by “out-of-bound” authentications (see [45, Section 4.1]).

10 In the actual protocol, Alice also signs gx sent to the server (i.e., signed pre-keys).
We ignore this subtlety as it does not play a crucial role in the analysis of security.
See Remark 4.2 for more detail. Also, we note that in practice, Bob may initiate the
double ratchet protocol using kB and send his message to Alice along with gy to the
server before Alice responds.
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Alice: (lpkA = ga, lskA = a) Server Bob: (lpkB = gb, lskB = b)

x←$Zp

Store x
Upload gx to server
–- go offline –-

gx

Store
(Alice, gx)

gx

Fetch (Alice, gx)
y←$Zp

kB := KDF((gx)b,

(ga)y, (gx)y)
Upload gy to server
Erase y

–- come online –-

Fetch ((Alice, Bob), gy)

kA := KDF((gb)x, (gy)a, (gy)x)

gy

Store
((Alice,Bob),

gy)

gy

Fig. 1. Simplified description of the X3DH Protocol. Alice and Bob have the long-term
key pairs (lpkA, lskA) and (lpkB, lskB), respectively. Alice and Bob agree on a session key
kA = kB, where KDF denotes a key derivation function.

to be secure even against a malicious server, while the server or the company
providing the app is relieved from having to “prove” that it is behaving honestly.
One distinguishing feature required by the X3DH protocol when viewed as an
AKE protocol is that it needs to be a two-round protocol where the initiator
message is generated independently from the receiver. That is, Alice needs to
be able to store her first message to the server without knowing who she will
be communicating with. In this work, we define an AKE protocol with such
functionality as a Signal-conforming AKE protocol.

Regarding the security model for a Signal-conforming AKE protocol, we
base it on the vast prior works on AKE protocols. Specifically, we build on the
recent formalization of [32,20] that study the tightness of efficient AKE protocols
(including a slight variant of the X3DH protocol) and strengthen the model to also
incorporate state leakage compromise; a model where an adversary can obtain
session-specific information called session-state. Since the double ratchet protocol
considers a very strong form of state leakage security, we believe it would be the
most rational design choice to discuss the X3DH protocol in a security model
that captures such leakage as well. Informally, we consider our Signal-conforming
AKE protocol in the Canetti-Krawczyk (CK) type security model [15,39,30,42],
which is a strengthening of the Bellare-Rogaway security model [7] considered by
[32,20]. A detailed discussion and comparison between ours and the numerous
other security models of AKE protocols are provided in Sec. 3.

Lack of Signal-Conforming AKE Protocol. The main feature of a Signal-
conforming AKE protocol is that the initiator’s message does not depend on
the receiver. Although this seems like a very natural feature considering DH-
type AKE protocols, it turns out that they are quite unique (see Brendel et
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al. [14] for some discussion). For instance, as far as we are aware, the only other
assumption that allows for a clean analog of the X3DH protocol is based on the
gap CSIDH assumption recently introduced by De Kock et al. [22] and Kawashima
et al. [38]. Considering the community is still in the process of assessing the
concrete parameter selection for standard CSIDH [13,48], it would be desirable
to base the X3DH protocol on more well-established and versatile assumptions.
On the other hand, when we turn our eyes to known generic construction of AKE
protocols [30,31,55,34,54] that can be instantiated from versatile assumptions,
including post-quantum ones, we observe that none of them is Signal-conforming.
That is, they are all either non-2-round or the initiator’s message depends on the
public key of the receiver.
Our Construction. To this end, in this work, we provide a new practical generic
construction of a Signal-conforming AKE protocol from an (IND-CCA secure)
KEM and a signature scheme. We believe this may be of independent interest in
other scenarios where we require an AKE protocol that has a flavor of “receiver
obliviousness.”11 The construction is simple: The construction is simple: Let
us assume Alice and Bob’s long-term key consist of KEM key pairs (ekA, dkA)
and (ekB, dkB) and signature key pairs (vkA, skA) and (vkB, skB), respectively.
The Signal-conforming AKE protocol then starts by Alice (i.e., the initiator)
generating a session-specific KEM key (ekT , dkT ) and sending ekT to Bob (i.e., the
receiver).12 Here, observe that Alice’s message does not depend on who she will
be communicating with. Bob then constructs two ciphertexts: one using Alice’s
long-term key (KA,CA)← KEM.Encap(ekA) and another using the session-specific
key (KT ,CT )← KEM.Encap(ekT ). It then signs these ciphertext M := (CA,CT )
as σB ← SIG.Sign(skB,M), where we include other session-specific components in
M in the actual construction. Since sending σB in the clear may serve as public
evidence that Bob communicated with Alice, Bob will hide this. To this end, he
derives two keys, a session key kAKE and a one-time pad key kOTP, by running a
key derivation function on input the random KEM keys (KA,KT ). Bob then sends
(CA,CT , c := σB ⊕ kOTP) to Alice and sets the session key as kAKE. Once Alice
receives the message from Bob, she decrypts the ciphertexts (CA,CT ), derives the
two keys (kAKE, kOPT), and checks if σ := c⊕ kOTP is a valid signature of Bob’s. If
so, she sets the session key as kAKE. At a high level, Alice (explicitly) authenticates
Bob through verifying Bob’s signature and Bob (implicitly) authenticates Alice
since Alice is the only party that can decrypt both ciphertexts (CA,CT ). We turn
this intuition into a formal proof and show that our scheme satisfies a strong
flavor of security where the shared session key remains pseudorandom even to
an adversary that can obtain any non-trivial combinations of the long-term
private keys (i.e., dkA, dkB, skA, skB) and session-specific secret keys (i.e., dkT ).
Notably, our protocol satisfies a stronger notion of security compared to the

11 This property has also been called as post-specified peers [16] in the context of Internet
Key Exchange (IKE) protocols.

12 As we briefly commented in Footnote 10, Alice can sign her message ekT as in the
X3DH protocol. This will only make our protocol more secure. See Remark 4.2 for
more detail.
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X3DH protocol since it prevents an adversary to impersonate Alice even if her
session-specific secret key is compromised [45, Section 4.6].

Finally, our Signal-conforming AKE protocol already satisfies a limited form
of deniability where the publicly exchanged messages do not directly leak the
participant of the protocol. However, if Alice at a later point gets compromised
or turns malicious, she can publicize the signature σB sent from Bob to crypto-
graphically prove that Bob was communicating with Alice. This is in contrast to
the X3DH protocol that does not allow such a deniability attack. We, therefore,
show that we can protect Bob from such attacks by replacing the signature
scheme with a ring signature scheme. In particular, Alice now further sends a
session-specific ring signature verification key vkT , and Bob signs to the ring
{vkT , vkB}. Effectively, when Alice outputs a signature from Bob σB,T , she cannot
fully convince a third party whether it originates from Bob since she could have
signed σB,T using her signing key skT corresponding to vkT . Although the intu-
ition is clear, it turns out that turning this into a formal proof is quite difficult.
Similar to all previous works on AKE protocols satisfying a strong flavor of
key-compromise security [24,57] (including the X3DH protocol [53]), the proof
of deniability must rely on a strong knowledge-type assumption. We leave it as
future work to investigate the deniability of our Signal-conforming AKE protocols
from more standard assumptions.

2 Preliminaries

The operator ⊕ denotes bit-wise “XOR”, and ‖ denotes string concatenation. For
n ∈ N, we write [n] to denote the set [n] := {1, . . . , n}. For j ∈ [n], we write [n\j]
to denote the set [n\j] := {1, . . . , n} \ {j}. We denote by x←$S the sampling of
an element x uniformly at random from a finite set S. PPT (resp. QPT) stands
for probabilistic (resp. quantum) polynomial time. Due to page limitation, we
refer standard definitions to the full version.

3 Security Model for Signal-Conforming AKE Protocols

In this section, we define a security model for a Signal-conforming authenticated
key exchange (AKE) protocol; AKE protocols that can be used as a drop-in
replacement of the X3DH protocol. We first provide in Sections 3.1 to 3.3 a game-
based security model building on the recent formalization of [32,20] targeting
general AKE protocols. We then discuss in Sec. 3.4 the modifications needed to
make it Signal-conforming. A detailed comparison and discussion between ours
and other various security models for AKE protocols are provided in Sec. 3.5.

3.1 Execution Environment

We consider a system of µ parties P1 , . . . ,Pµ. Each party Pi is represented by a
set of ` oracles

{
π1
i , . . . , π

`
i

}
, where each oracle corresponds to a single execution
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of a protocol, and ` ∈ N is the maximum number of protocol sessions per party.
Each oracle is equipped with fixed randomness but is otherwise deterministic.
Each oracle πsi has access to the long-term key pair (lpki, lski) of Pi and the public
keys of all other parties, and maintains a list of the following local variables:

– randsi is the randomness hard-wired to πsi ;
– sidsi (“session identifier”) stores the identity of the session as specified by the

protocol;
– Pidsi (“peer id”) stores the identity of the intended communication partner;
– Ψsi ∈ {⊥, accept, reject} indicates whether oracle πsi has successfully com-

pleted the protocol execution and “accepted” the resulting key;
– ksi stores the session key computed by πsi ;
– statesi holds the (secret) session-state values and intermediary results required

by the session;
– rolesi ∈ {⊥, init, resp} indicates πsi ’s role during the protocol execution.

For each oracle πsi , these variables, except the randomness, are initialized to ⊥.
An AKE protocol is executed interactively between two oracles. An oracle that
first sends a message is called an initiator (role = init) and a party that first
receives a message is called a responder (role = resp). The computed session key
is assigned to the variable ksi if and only if πsi reaches the accept state, that is,
ksi 6= ⊥ ⇐⇒ Ψsi = accept.
Partnering. To exclude trivial attacks in the security model, we need to define
a notion of “partnering” of two oracles. Intuitively, this dictates which oracles
can be corrupted without trivializing the security game. We define the notion of
partnering via session-identifiers following the work of [15,23]. Discussions on
other possible choices of the definition for partnering is provide in Sec. 3.5.

Definition 3.1 (Partner Oracles). For any (i, j, s, t) ∈ [µ]2 × [`]2 with i 6= j,
we say that oracles πsi and πtj are partners if (1) Pidsi = j and Pidtj = i; (2)
rolesi 6= roletj; and (3) sidsi = sidtj.

For correctness, we require that two oracles executing the AKE protocol
faithfully (i.e., without adversarial interaction) derive identical session-identifiers.
We also require that two such oracles reach the accept state and derive identical
session keys except with all but a negligible probability. We call a set S ⊆
([µ]× [`])2 to have a valid pairing if the following properties hold:

– For all ((i, s), (j, t)) ∈ S, i ≤ j.
– For all (i, s) ∈ [µ]× [`], there exists a unique (j, t) ∈ [µ]× [`] such that i 6= j

and either ((i, s), (j, t)) ∈ S or ((j, t), (i, s)) ∈ S.

In other words, a set with a valid pairing S partners off each oracle πsi and πtj
in a way that the pairing is unique and no oracle is left out without a pair. We
define correctness of an AKE protocol as follows.

Definition 3.2 ((1 − δ)-Correctness). An AKE protocol ΠAKE is (1 − δ)-
correct if for any set with a valid pairing S ⊆ ([µ]× [`])2, when we execute the
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AKE protocol faithfully between all the oracle pairs included in S, it holds that

(1− δ) ≤ Pr
[
πsi and πtj are partners ∧ Ψsi = Ψ tj = accept
∧ksi = ktj 6= ⊥ for all ((i, s), (j, t)) ∈ S

]
,

where the probability is taken over the randomness used in the oracles.

3.2 Security Game

We define security of an AKE protocol via the following game, denoted by
GΠAKE(µ, `), played between an adversary A and a challenger C. The security
game is parameterized by two integers µ (the number of honest parties) and `
(the maximum number of protocol executions per party), and is run as follows:

Setup: C first chooses a secret bit b←$ {0, 1}. Then C generates the public
parameter of ΠAKE and µ long-term key pair {(lpki, lski) | i ∈ [µ]}, and ini-
tializes the collection of oracles {πsi | i ∈ [µ], s ∈ [`]}. C runs A providing the
public parameter and all the long-term public keys {lpki | i ∈ [µ]} as input.

Phase 1: A adaptively issues the following queries any number of times in an
arbitrary order:
– Send(i, s,m): This query allows A to send an arbitrary message m to

oracle πsi . The oracle will respond according to the protocol specification
and its current internal state. To start a new oracle, the message m takes
a special form:
〈START : role, j〉; C initializes πsi in the role role, having party Pj as its
peer, that is, C sets Pidsi := j and rolesi := role. If πsi is an initiator (i.e.,
role = init), then C returns the first message of the protocol.13

– RevLTK(i): For i ∈ [µ], this query allows A to learn the long-term secret
key lski of party Pi . After this query, Pi is said to be corrupted.

– RegisterLTK(i, lpki): For i ∈ N \ [µ], this query allows A to register a
new party Pi with public key lpki. We do not require that the adversary
knows the corresponding secret key. After the query, the pair (i, lpki)
is distributed to all other oracles. Parties registered by RegisterLTK are
corrupted by definition.

– RevState(i, s): This query allows A to learn the session-state statesi of
oracle πsi . After this query, statesi is said to be revealed.

– RevSessKey(i, s): This query allows A to learn the session key ksi of
oracle πsi .

Test: Once A decides that Phase 1 is over, it issues the following special Test-
query which returns a real or a random key depending on the secret bit b.
– Test(i, s): If (i, s) /∈ [µ]× [`] or Ψsi 6= accept, C returns ⊥. Else, C returns
kb, where k0 := ksi and k1←$K (where K is the session key space).

After this query, πsi is said to be tested.
13 Looking ahead, when the first message is independent of party Pj (i.e., C can first

create the first message without knowledge of Pj and then set Pids
i := j), we call the

scheme receiver oblivious. See Sec. 3.4 for more details.
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Phase 2: A adaptively issues queries as in Phase 1.
Guess: Finally, A outputs a guess b′ ∈ {0, 1}. At this point, the tested oracle

must be fresh. Here, an oracle πsi with Pidsi = j14 is fresh if all the following
conditions hold:
1. RevSessKey(i, s) has not been issued;
2. if πsi has a partner πtj for some t ∈ [`], then RevSessKey(j, t) has not been

issued;
3. Pi is not corrupted or statesi is not revealed;
4. if πsi has a partner πtj for some t ∈ [`], then Pj is not corrupted or statetj

is not revealed;
5. if πsi has no partner oracle, then Pj is not corrupted.
If the tested oracle is not fresh, C aborts the game and outputs a random bit
b′ on behalf of A. Otherwise, we say A wins the game if b = b′.

The advantage of A in the security game GΠAKE(µ, `) is defined as AdvAKE
ΠAKE

(A) :=∣∣Pr [b = b′]− 1
2
∣∣ .

Definition 3.3 (Security of AKE Protocol). An AKE protocol ΠAKE is
secure if AdvAKE

ΠAKE
(A) is negligible for any QPT adversary A.

3.3 Security Properties

In this section, we explain the security properties captured by our security model.
Comparison between other protocols is differed to Sec. 3.5.

The freshness clauses Items 1 and 2 imply that we only exclude the reveal
of session keys for the tested oracle and its partner oracles. This captures key
independence; if the revealed keys are different from the tested oracle’s key, then
such keys must not enable computing the session key. Note that key independence
implies resilience to “no-match attacks” presented by Li and Schäge [43]. This is
because revealed keys have no information on the tested oracle’s key. Moreover,
the two items capture implicit authentication between the involved parties. This
is because an oracle π that computes the same session key as the tested oracle but
disagrees on the peer would not be a partner of the tested oracle, and hence, an
adversary can obtain the tested oracle’s key by querying the session key computed
by π. Specifically, our model captures resistance to unknown key-share (UKS)
attacks [12]; a successful UKS attack is a specific type of attack that breaks
implicit authentication where two parties compute the same session key but have
different views on whom they are communicating with.

The freshness clauses Items 3 to 5 indicate that the game allows the adversary
to reveal any subset of the four secret information — the long-term secret keys
and the session-states of the two parties (where one party being the party defined
by the tested oracle and the other its peer) — except for the combination where
both the long-term secret key and session-state of one of the party is revealed.
These clauses capture weak forward secrecy [39]: the adversary can obtain the
long-term secret keys of both parties if it has been passive in the protocol run
14 Note that by definition, the peer id Pids

i of a tested oracle πs
i is always defined.
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of the two oracles. Another property captured by our model is resistance to
key-compromise impersonation (KCI) attacks [11]. Recall that KCI attacks are
those where the adversary uses a party Pi ’s long-term secret key to impersonate
other parties towards Pi . This is captured by our model because the adversary
can learn the long-term secret key of a tested oracle without any restrictions.
Most importantly, our model captures resistance to state leakage [15,39,42,30]
where an adversary is allowed to obtain session-states of both parties. We point
out that our security model is strictly stronger than the recent models [32,20]
that do not allow the adversary to learn sessions-states. More discussion on state
leakage is provided in Sec. 3.5.

3.4 Property for Signal-Conforming AKE: Receiver Obliviousness
In this work, we care for a specific type of (two-round) AKE protocol that is
compatible with the X3DH protocol [45] used by the Signal protocol [1]. As
explained in Sec. 1.2, the X3DH protocol can be viewed as a special type of AKE
protocol where the Signal server acts as an (untrusted) bulletin board, where
parties can store and retrieve information from. More specifically, the Signal
server can be viewed as an adversary for an AKE protocol that controls the
communication channel between the parties. When casting the X3DH protocol
as an AKE protocol, one crucial property is that the first message of the initiator
is generated independently of the communication partner. This is because, in
secure messaging, parties are often offline during the key agreement so if the first
message depended on the communication partner, then we must wait until they
become online to complete the key agreement. Since we cannot send messages
without agreeing on a session key, such an AKE protocol where the first message
depends on the communication partner cannot be used as a substitute for the
X3DH protocol.

We abstract this crucial yet implicit property achieved by the X3DH protocol
as receiver obliviousness.15

Definition 3.4 (Receiver Obliviousness / Signal-Conforming). An AKE
protocol is receiver oblivious (or Signal-conforming) if it is two-rounds and the
initiator can compute the first-message without knowledge of the peer id and
long-term public key of the communication peer.
Many Diffie-Hellman type AKE protocols (e.g., the X3DH protocol used in Signal
and some CSIDH-based AKE protocols [22,38]) can be checked to be receiver
oblivious. In contrast, known generic AKE protocols such as [30,31,55,34,54]
are not receiver oblivious since the first message requires the knowledge of the
receiver’s long-term public key.

3.5 Relation to Other Security Models
In the literature of AKE protocols, many security models have been proposed:
the Bellare-Rogaway (BR) model [7], the Canetti-Krawczyk (CK) model [15],
15 This property has also been called as post-specified peers [16] in the context of Internet

Key Exchange (IKE) protocols.
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Common public parameters: (s, ppKEM, ppwKEM, ppSIG)

Initiator Pi Responder Pj

lpki = (eki, vki), lski = (dki, ski) lpkj = (ekj , vkj), lskj = (dkj , skj)

(ekT , dkT )← wKEM.KeyGen(ppwKEM)
statei := dkT

K← KEM.Decap(dki,C)
KT ← wKEM.Decap(dkT ,CT )
K1 ← Exts(K); K2 ← Exts(KT )
sidi := Pi‖Pj‖lpki‖lpkj‖ekT ‖C‖CT

ki‖k̃ ← FK1 (sidi)⊕ FK2 (sidi)
σ ← c⊕ k̃

SIG.Verify(vkj , sidi, σ) ?= 1
Output the session key ki

ekT

C,CT , c

(K,C)← KEM.Encap(eki)
(KT ,CT )← wKEM.Encap(ekT )
K1 ← Exts(K); K2 ← Exts(KT )
sidj := Pi‖Pj‖lpki‖lpkj‖ekT ‖C‖CT

kj‖k̃ ← FK1 (sidj)⊕ FK2 (sidj)
σ ← SIG.Sign(skj , sidj)
c← σ ⊕ k̃
Output the session key kj

Fig. 2. Our Signal-conforming AKE protocol ΠSC-AKE.

the CK+ model [39,30], the extended CK (eCK) model [42], and variants
therein [21,3,32,20,34,35]. Although many of these security models are built
based on similar motivations, there are subtle differences. (A comparison between
our model and the models listed above can be found in the full version.)

4 Generic Construction of Signal-Conforming AKE
ΠSC-AKE

In this section, we propose a Signal-conforming AKE protocol ΠSC-AKE that can
be used as a drop-in replacement for the X3DH protocol. Unlike the X3DH
protocol, our protocol can be instantiated from post-quantum assumptions, and
moreover, it also provides stronger security against state leakage. The protocol
description is presented in Figure 2. Details follow.
Building Blocks. Our Signal-conforming AKE protocol ΠSC-AKE consists of the
following building blocks.

– ΠKEM = (KEM.Setup,KEM.KeyGen,KEM.Encap,KEM.Decap) is a KEM
scheme that is IND-CCA secure and assume we have (1− δKEM)-correctness.16

– ΠwKEM = (wKEM.Setup,wKEM.KeyGen,wKEM.Encap,wKEM.Decap) is a
KEM schemes that is IND-CPA secure (and not IND-CCA secure) and assume
we have (1− δwKEM)-correctness.

16 To prove the security ofΠSC-AKE, we requireΠKEM andΠwKEM to have high min-entropy
of the encapsulation key and the ciphertext.
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– ΠSIG = (SIG.Setup,SIG.KeyGen,SIG.Sign,SIG.Verify) is a signature scheme
that is EUF-CMA secure and (1− δSIG)-correctness. We denote d as the bit
length of the signature generated by SIG.Sign.

– F : FK × {0, 1}∗ → {0, 1}κ+d is a pseudo-random function family with key
space FK.

– Ext : S × KS → FK is a strong randomness extractor.

Public Parameters. All the parties in the system are provided with the fol-
lowing public parameters as input: (s, ppKEM, ppwKEM, ppSIG). Here, s is a random
seed chosen uniformly from S, and ppX for X ∈ {KEM,wKEM,SIG} are public
parameters generated by X.Setup.
Long-Term Public and Secret Keys. Each party Pi runs (eki, dki) ←
KEM.KeyGen(ppKEM) and (vki, ski) ← SIG.KeyGen(ppSIG). Party Pi ’s long-term
public key and secret key are set as lpki = (eki, vki) and lski = (dki, ski), respec-
tively.
Construction. A key exchange between an initiator Pi in the s-th session (i.e.,
πsi ) and responder Pj in the t-th session (i.e., πtj) is executed as in Figure 2. More
formally, we have the following.

1. Party Pi sets Pidsi := j and rolesi := init. Pi computes (dkT , ekT ) ←
wKEM.KeyGen(ppwKEM) and sends ekT to party Pj . Pi stores the ephemeral
decapsulation key dkT as the session-state i.e., statesi := dkT .17

2. Party Pj sets Pidtj := i and roletj := resp. Upon receiving ekT , Pj first
computes (K,C) ← KEM.Encap(eki) and (KT ,CT ) ← wKEM.Encap(ekT ).
Then Pj derives two PRF keys K1 ← Exts(K), K2 ← Exts(KT ). It then defines
the session-identifier as sidtj := Pi‖Pj‖lpki‖lpkj‖ekT ‖C‖CT and computes
kj‖k̃ ← FK1(sidj) ⊕ FK2(sidj), where kj ∈ {0, 1}κ and k̃ ∈ {0, 1}d, and sets
the session key as ktj := kj . Pj then signs σ ← SIG.Sign(skj , sidtj) and encrypts
it as c← σ⊕ k̃. Finally, it sends (C,CT , c) to Pi and sets Ψj := accept. Here,
note that Pj does not require to store any session-state, i.e., statetj = ⊥.

3. Upon receiving (C,CT , c), Pi first decrypts K ← KEM.Decap(dki,C) and
KT ← wKEM.Decap(dkT ,CT ), and derives two PRF keys K1 ← Exts(K)
and K2 ← Exts(KT ). It then sets the session-identifier as sidsi :=
Pi‖Pj‖lpki‖lpkj‖ekT ‖C‖CT and computes ki‖k̃ ← FK1(sidi)⊕FK2(sidi), where
kj ∈ {0, 1}κ and k̃ ∈ {0, 1}d. Pi then decrypts σ ← c ⊕ k̃ and checks
whether SIG.Verify(vkj , sidsi , σ) = 1 holds. If not, Pi sets (Ψi, ksi , statei) :=
(reject,⊥,⊥) and stops. Otherwise, it sets (Ψi, ksi , statei) := (accept, ki,⊥).
Here, note that Pi deletes the session-state statesi = dkT at the end of the
key exchange.

Remark 4.1 (A Note on Session-State). The session-state of the initiator Pi
contains the ephemeral decryption key dkT and Pi must store it until the peer
responds. Any other information that is computed after receiving the message
17 Notice the protocol is receiver oblivious since the first message is computed indepen-

dently of the receiver.
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from the peer is immediately erased when the session key is established. In
contrast, the responder Pj has no session-state because the responder directly
computes the session key after receiving the initiator’s message and does not
have to store any session-specific information. That is, all states can be erased as
soon as a session key is computed.

Remark 4.2 (Signed Prekeys). In the X3DH protocol, the initiator sends the first
message with a signature attached called signed prekey. Informally, this allows
Bob to explicitly authenticate Alice, while otherwise without the signature, Bob
can only implicitly authenticate Alice. Moreover, this signature enhances the
X3DH protocol to be perfect forward secret rather than being only weak forward
secret, where the former allows the adversary to be active in the protocol run of
the two oracles. Indeed, according to [45], the X3DH is considered to have perfect
forward secrecy. We observe that adding such signature in our protocol has the
same effect as long as the added signature is not included in the session-identifier.
This is due to Li and Schäge [43, Appendix D], who showed that adding new
messages to an already secure protocol cannot lower the security as long as the
derived session keys and the session-identifiers remain the same as the original
protocol. Here, note the latter implies that the partnering relation remains the
same. Similarly, Cremers and Feltz [21] show that adding a signature to the
exchanged messages can enhance weak forward secrecy to perfect forward secrecy
for natural classes of AKE protocols.

Security. Correctness holds by a routine check. The following establishes the
security or ΠSC-AKE. We provide a proof overview and refer the full proof to the
full version.

Theorem 4.1 (Security of ΠSC-AKE). Assume ΠwKEM is IND-CPA secure,
ΠKEM is IND-CCA secure, ΠSIG is EUF-CMA secure, and F is secure PRF. Then
ΠSC-AKE is secure AKE protocol with respect to Definition 3.3.

Proof sketch. Let A be an adversary that plays the security game GΠSC-AKE(µ, `).
We distinguish between all possible strategies that can be taken by A. Specif-
ically, A’s strategy can be divided into the eight types of strategies listed in
Table 1. Here, each strategy is mutually independent and covers all possible
(non-trivial) strategies. We point out that for our specific AKE construction
we have stateresp := ⊥ since the responder does not maintain any states (see
Remark 4.1). Therefore, the Type-1 (resp. Type-3, Type-7) strategy is strictly
stronger than the Type-2 (resp. Type-4, Type-8) strategy. Concretely, for our
proof, we only need to consider the following four cases and to show that A
has no advantage in each cases: (a) A uses the Type-1 strategy; (b) A uses the
Type-3 strategy; (c) A uses the Type-5 or Type-6 strategy; (d) A uses the Type-7
strategy.

In cases (a), (b) and (d), the session key is informally protected by the
security properties of KEM, PRF, and randomness extractor. In case (a), since
the ephemeral decapsulation key dkT is not revealed, KT is indistinguishable from
a random key due to the IND-CPA security of ΠwKEM. On the other hand, in case
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Strategy Role of tested oracle Partner oracle lskinit stateinit lskresp stateresp

Type-1 init or resp Yes 3 7 3 7

Type-2 init or resp Yes 3 7 7 3

Type-3 init or resp Yes 7 3 3 7

Type-4 init or resp Yes 7 3 7 3

Type-5 init No 3 7 7 -
Type-6 init No 7 3 7 -
Type-7 resp No 7 - 3 7

Type-8 resp No 7 - 7 3
Table 1. The strategy taken by the adversary in the security game when the tested
oracle is fresh. “Yes” means the tested oracle has some (possibly non-unique) partner
oracles and“No” means it has none. “3” means the secret-key/session-state is revealed
to the adversary, “7” means the secret-key/session-state is not revealed. “-” means the
session-state is not defined.

(b) and (d), since the initiator’s decapsulation key dkinit is not revealed, K is
indistinguishable from a random key due to the IND-CCA security of ΠKEM. Here,
we require IND-CCA security because there are initiator oracles other than the
tested oracle that uses dkinit, which the reduction algorithm needs to simulate.
This is in contrast to case (a) where dkT is only used by the tested oracle. Then,
in all cases, since either KT or K has sufficient high min-entropy from the view
of the adversary, Ext on input KT or K outputs a uniformly random PRF key.
Finally, we can invoke the pseudo-randomness of the PRF and argue that the
session key in the tested oracle is indistinguishable from a random key.

In case (c), the session key is informally protected by the security property
of the signature scheme. More concretely, in case (c), the tested oracle is an
initiator and the signing key skresp included in the long-term key of its peer is
not revealed. Then, due to the EUF-CMA security of ΠSIG, A cannot forge the
signature for the session-identifier of the tested oracle sidtest. In addition, since
the tested oracle has no partner oracles, no responder oracle ever signs sidtest.
Therefore, combining these two, we conclude that the tested oracle cannot be in
the accept state unless A breaks the signature scheme. In other words, when
A queries Test, the tested oracle always returns ⊥. Thus the session key of the
tested oracle is hidden from A.

5 Instantiating Post-Quantum Signal-Conforming AKE
ΠSC-AKE

In this section, we present the implementation details of our post-quantum
Signal-conforming AKE protocol ΠSC-AKE. We take existing implementations
of post-quantum KEMs and signature schemes submitted for the NIST PQC
standardization. To instantiate our Signal-conforming AKE we pair variants
of KEMs and signature schemes corresponding to the same security level. We
consider security levels 1, 3 and 5 as defined by NIST for the PQC standardization.
With more than 30 variants of KEM and 13 variants of signature schemes, we can
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create at least 128 different instantiations of post-quantum Signal-conforming
AKE protocols. The provided implementation simulates post-quantum, weakly
deniable authenticated key exchange between two entities. We study the efficiency
of our instantiations through two metrics — the total amount of data exchanged
between parties and run-time performance. Our implementation is available at
the URL [41].

5.1 Instantiation details

Our implementation is instantiated with the following building blocks:

– s: (pseudo)-randomly generated 32 bytes of data calculated at session initial-
ization phase,

– Exts: uses HMAC-SHA256 as a strong randomness extractor. As an input
message we use a key KT prepended with byte 0x02 which works as a domain
separator (since we also use HMAC-SHA256 as a PRF). Security of using
HMAC as a strong randomness extractor is studied in [28],

– PRF: uses HMAC-SHA256 as a PRF. The session-specific sid is used as an
input message to HMAC, prepended with byte 0x01. An output from Exts is
used as a key. Security of using HMAC as a PRF is studied in [4],

– b: depends on the security level of the underlying post-quantum KEM scheme,
where b ∈ {128, 192, 256},

– d: depends on the byte length of the signature generated by the post-quantum
signature scheme ΠSIG,

– ΠKEM, ΠwKEM, ΠSIG: to instantiate ΠSC-AKE, implementation uses pairs of
KEM and signature schemes. List of the schemes used can be found in the
table below. We always use the same KEM scheme for ΠKEM and ΠwKEM.

NIST
security level KEM Signature

1
SABER, CLASSIC-MCELIECE, KYBER, NTRU

HQC, SIKE, FRODOKEM, BIKE
RAINBOW, FALCON, DILITHIUM

SPHINCS, PICNIC

3
SABER, NTRU, CLASSIC-MCELIECE, KYBER,

SIKE, HQC, BIKE, FRODOKEM
DILITHIUM, RAINBOW
PICNIC, SPHINCS

5
SABER, CLASSIC-MCELIECE, NTRU, KYBER

FRODOKEM, SIKE, HQC
FALCON, RAINBOW
PICNIC, SPHINCS

Table 2. Considered KEM and signature schemes under NIST security level 1, 3, and 5.

At a high level, the implementation is split into 3 main parts. The initiator’s
ephemeral KEM key generation (offer function), the recipient’s session key
generation (accept function), and initiator’s session key generation (finalize
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function). Additionally there is an initialization part which performs the genera-
tion and exchange of the long-term public keys as well as dynamic initialization
of memory. To evaluate the computational cost of ΠSC-AKE, we instantiate it
with concrete parameters as described above. The implementation runs 3 main
functions in a loop for a fixed amount of time. We do not include the time
spent in the initialization phase, hence the cost of key generation and memory
initialization has no impact on the results.

Finally, we use an implementation of post-quantum algorithms that can be
found in libOQS18. We also use LibTomCrypt19 which provides an implementation
of the building blocks HMAC, HKDF and SHA-256.

5.2 Efficiency Analysis

In this subsection, we provide an assessment of the costs related to running the
concrete instantiation of ΠSC-AKE. We provide two metrics:

– Communication cost: the amount of data exchanged between two parties
trying to establish a session key.

– Computational cost: number of CPU cycles spent in computation during
session establishment by both parties.

The computational cost of the protocol depends on the performance of the
cryptographic primitives used. More precisely, the most expensive operations are
those done by the post-quantum schemes. ΠSC-AKE performs 7 such operations
during a session agreement: the initiator runs a KEM key generation, two KEM
decapsulations and one signature verification, and the recipient performs two
KEM encapsulations and one signing.

For benchmarking, we modeled a scenario in which two parties try to establish
a session key. Alice generates and makes her long-term public key lpkA and
ephemeral KEM key ekT publicly available. Bob retrieves the pair (lpkA, ekT )
and uses it to perform his part of the session establishment. Namely, Bob generates
the triple (C,CT , c) and sends it to Alice along with its long-term public key lpkB.
Upon receipt, Alice finalizes the process by computing the session key on her side.
We note that in the case of the Signal protocol, both parties communicate with a
server (e.g., the Signal server), and not directly. For simplicity, we abstract this
fact out of our scenario. Further note that in the Signal protocol, the long-term
public keys lpk must be fetched from the server as the parties do not store the
keys lpk corresponding to those that they have not communicated with before.20

Table 3 provides the results for Round 3 candidates of the NIST PQC stan-
dardization process.21 The CPU cycles column is related to the computational
cost. It is the number of cycles needed on both the initiator and responder side
18 https://github.com/open-quantum-safe/liboqs
19 https://github.com/libtom/libtomcrypt
20 The X3DH protocol assumes the parties authenticate the long-term public keys

through some authenticated channel [45, Section 4.1].
21 The results for all 128 instantiations can be found at the URL [41].
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to run the protocol for a given instantiation. We run benchmarking on the Intel
Xeon E3-1220v3 @3.1GhZ with Turbo Boost disabled. The last four columns
relate to communication cost. They contain the byte size of the data exchanged
during session key establishment. In particular, the lpk column contains the size
of the long-term public key. The ekT column contains the size of the ephemeral
KEM key. The (C,CT , c) column is the size of the triple generated by Bob. Here,
the amount of data transferred from Alice to Bob is the sum of lpk and ekT ,
while the amount of data transferred from Bob to Alice is the sum of lpk and
C,CT , c. Finally, the column Total contains the total size of data exchanged
between Alice and Bob.

Scheme CPU cycles lpk ekT (C,CT , c) Total
NIST security level 1

Dilithium2/Saber Light 2770622 1856 672 3516 7900
Dilithium2/Kyber512 3059898 1984 800 3516 8284
Falcon512/NTRU hps2048509 28830055 1596 699 2088 5979
SPHINCS-SHAKE256-128f-s/Saber Light 269464814 704 672 18448 20528

NIST security level 3

Dilithium4/Saber 4204171 2752 992 5542 12038
Dilithium4/NTRU hps2048677 24513381 2690 930 5226 11536
SPHINCS-SHAKE256-192f-s/Kyber768 337783175 1232 1184 37840 41488
Dilithium4/SIKE p610 790625496 2222 462 4338 9244

NIST security level 5

Falcon1024/Saber Fire 37423092 3105 1312 4274 11796
Falcon1024/Kyber1024 37875710 3361 1568 4466 12756
Falcon1024/SIKE p751 356918904 2357 564 2522 7800
SPHINCS-SHAKE256-256f-s/SIKE p751 1041010995 628 564 50408 52228

Table 3. Computational and communication cost of running ΠSC-AKE instantiated with
various post-quantum schemes.

In a scenario as described above, instantiations with Falcon, Dilithium, Saber
and Kyber schemes seem to be the most promising when it comes to computational
cost. The communication cost can be minimized by using the SIKE scheme as
ΠKEM and ΠwKEM, but this significantly increases the computational cost.

We note that the computational cost is far less absolute as it depends on
the concrete implementation of the post-quantum schemes. Our implementation
is biased by the fact that it uses unoptimized, portable C code. There are two
reasons for such a choice. First, our goal was to show the expected results on a
broad number of platforms. Second, the libOQS library that we used does not
provide hardware-assisted optimizations for all schemes, hence enabling those
optimizations only for some algorithms would provide biased results.
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Our implementation is based on open-source libraries, which makes it possible
to perform fine-tuning and further analysis. For example, one could imagine a
scenario for IoT devices that knows in advance which devices it may communicate
with. Then, the long term keys of the devices can be exchanged prior to the
session key establishment. In such a scenario, schemes with larger public keys
may become more attractive since transferring long-term public keys could be
done ahead of time.
Note on Low Quality Network Links. We anticipate ΠSC-AKE to be used
with handheld devices and areas with a poor quality network connection. In such
cases, larger key, ciphertext and signature sizes generated may negatively impact
the quality of the connection. Network packet loss is an additional factor which
should be considered when choosing schemes for concrete instantiation.

Data on the network is exchanged in packets. The maximum transmission
unit (MTU) defines the maximal size of a single packet, usually set to 1500 bytes.
Ideally, the size of data sent between participants in a single pass is less than
MTU. Network quality is characterized by a packet loss rate. When a packet is
lost, the TCP protocol ensures that it is retransmitted, where each retransmission
causes a delay. A typical data loss on a high-quality network link is below 1%,
while data loss on a mobile network depends on the strength of the network
signal.

Depending on the scheme used, increased packet loss may negatively impact
session establishment time (see [47]). For example, a scheme instantiated with
Falcon512/NTRU hps2048509 requires exchange of npacks = 7 packets over
the network, where instantiation with SPHINCS-SHAKE256-128f-simple/Saber
Light requires 16. Assuming increased packet rate loss of 5%, the probability
of losing a packet in the former case is 1 − (1 − rate)npacks = 30%, where in
the latter it is 56%. In the latter case, at the median, every other session key
establishment will experience packet retransmission and hence a delay.

6 Adding Deniability to Our Signal-Conforming AKE
ΠSC-AKE

In this section, we provide a theory-oriented discussion on the deniability aspect of
our Signal-conforming AKE protocol ΠSC-AKE. In the following, we first informally
show that ΠSC-AKE already has a very weak form of deniability that may be
acceptable in some applications. We then show that we can slightly modify
ΠSC-AKE to satisfy a more stronger notion of deniability. As it is common with
all deniable AKE protocols secure against key-compromise attacks [24,57,53], we
prove deniability by relying on strong knowledge-type assumptions, including a
variant of the plaintext-awareness (PA) for the KEM scheme [8,5,6].
Weak Deniability of ΠSC-AKE. Our Signal-conforming AKE protocol ΠSC-AKE
already satisfies a weak notion of deniability, where the communication transcript
does not leave a trace of the two parties if both parties honestly executed the AKE
protocol. Namely, an adversary that is passively collecting the communication
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transcript cannot convince a third party that communication between two parties
took place. Informally, this can be observed by checking that all the contents
in the transcript can be simulated by the adversary on its own. We discuss a
stronger notion of deniability next.

6.1 Definition of Deniability and Tool Preparation

We follow a simplified definition of deniability for AKE protocols introduced by Di
Raimondo et al. [24]. Discussion on the simplification is provided in Remark 6.2.
Let Π be an AKE protocol and KeyGen be the key generation algorithm. That is,
for any integer µ = µ(κ) representing the number of parties in the system, define
KeyGen(1κ, µ) → (pp,

−→
lpk,
−→
lsk), where pp is the public parameter used by the

system and
−→
lpk := {lpki | i ∈ [µ]} and

−→
lsk := {lski | i ∈ [µ]} are the corresponding

long-term public and secret keys of the µ parties, respectively.
LetM denote an adversary that engages in an AKE protocol with µ-honest

parties in the system with long-term public keys
−→
lpk, acting as either an initiator

or a responder. M may run individual sessions against an honest party in a
concurrent manner and may deviate from the AKE protocol in an arbitrary
fashion. The goal ofM is not to impersonate someone to an honest party P but
to collect (cryptographic) evidence that an honest party P interacted withM.
Therefore, when M interacts with P, it can use a long-term public key lpkM
that can be either associated to or not toM’s identity (that may possibly be
generated maliciously). We then define the view of the adversaryM as the entire
sets of input and output ofM and the session keys computed in all the protocols
in which M participated with an honest party. Here, we assume in case the
session is not completed byM, the session key is defined as ⊥. We denote this
view as ViewM(pp,

−→
lpk,
−→
lsk).

In order to define deniability, we consider a simulator SIM that simulates the
view of honest parties (both initiator and responder) to the adversaryM without
knowledge of the corresponding long-term secret keys

−→
lsk of the honest parties.

Specifically, SIM takes as input all the input given to the adversaryM (along
with the description of M) and simulates the view of M with the real AKE
protocol Π. We denote this simulated view as SIMM(pp,

−→
lpk). Roughly, if the

view simulated by SIMM is indistinguishable from those generated by ViewM,
then we say the AKE protocol is deniable sinceM could have run SIMM (which
does not take any secret information as input) to generate its view in the real
protocol. More formally, we have the following.

Definition 6.1 (Deniability). We say an AKE protocol Π with key generation
algorithm KeyGen is deniable, if for any integer µ = poly(κ) and PPT adversary
M, there exist a PPT simulator SIMM such that the following two distributions
are (computationally) indistinguishable for any PPT distinguisher D:

FReal := {pp,
−→
lpk,ViewM(pp,

−→
lpk,
−→
lsk) : (pp,

−→
lpk,
−→
lsk)← KeyGen(1κ, µ)},

FSim := {pp,
−→
lpk,SIMM(pp,

−→
lpk) : (pp,

−→
lpk,
−→
lsk)← KeyGen(1κ, µ)}.
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When M is semi-honest (i.e., it follows the prescribed protocol), we say Π is
deniable against semi-honest adversaries. When M is malicious (i.e., it takes
any efficient strategy), we say Π is deniable against malicious adversaries.

Remark 6.1 (Including Public Information and Session Keys). It is crucial that
the two distributions FReal and FSim include the public information (pp,

−→
lpk).

Otherwise, SIMM can simply create its own set of (pp′,
−→
lpk′,
−→
lsk′) and simulate the

view toM. However, this does not correctly capture deniability in the real-world
sinceM would not be able to convince anybody with such a view using public
information that it cooked up on its own. In addition, it is essential that the
value of the session key is part of the output of SIMM. This guarantees that the
contents of the sessions authenticated by the session key can also be denied.

Remark 6.2 (Comparison between Prior Definition). Our definition is weaker
than the deniability notion originally proposed by Di Raimondo et al. [24]. In
their definition, an adversary M (and therefore the simulator SIMM) is also
provided as input some auxiliary information aux that can depend non-trivially
on (pp,

−→
lpk,
−→
lsk).22 For instance, this allows to capture information thatM may

have obtained by eavesdropping conversations between honest parties (which is
not modeled by ViewM). Since our goal is to provide a minimal presentation
on the deniability of our protocol, we only focus on the weaker definition where
M does not obtain such auxiliary information. We leave it as future work to
prove our protocol deniable in the sense of Di Raimondo et al. [24]. We also note
that stronger forms of deniability are known and formalized in the universally
composable (UC) model [25,51,52], however, AKE protocols satisfying such a
strong deniability notion are known to achieve weaker security guarantees. For
instance, as noted in [52], an AKE protocol cannot be on-line deniable while also
being secure against KCI attacks.

Remark 6.3 (Extending to Malicious Quantum Adversaries). We only consider
classical deniability above. Although we can show deniability for semi-honest
quantum adversaries, we were not able to do so for malicious quantum adversaries.
This is mainly due to the fact that to prove deniability against malicious classical
adversaries, we require a strong knowledge type assumption (i.e., plaintext-
awareness for KEM) that assumes an extractor can invoke the adversary multiple
of times on the same randomness. We leave it as an interesting problem to
formally define a set of tools that allow to show deniability even against malicious
quantum adversaries.

Required Tools. To argue deniability in the following section we rely on the
following tools: ring signature, plaintext-aware (PA-1) secure KEM scheme, and
22 Although in [24, Definition 2], aux is defined as fixed information that M cannot

adaptively choose, we observe that in their proof they implicitly assume that aux
is sampled adaptively from some distribution dependent on (pp,

−→
lpk,
−→
lsk). Such a

definition of aux is necessary to invoke PA-2 security of the underlying encryption
scheme.
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a non-interactive zero-knowledge (NIZK) argument.23 We use standard notions
of ring signatures and NIZK arguments. On the other hand, we use a slightly
stronger variant of PA-1 secure KEM schemes than those originally defined in
[8,5,6]. Informally, a KEM scheme is PA-1 secure if for any adversaryM that
outputs a valid ciphertext C, there is an extractor ExtM that outputs the matching
session key K. In our work, we require PA-1 security to hold even when M is
given multiple public keys rather than a single public key [46]. We note that
although Di Raimondo et al. [24] considered the standard notion of PA-1 security,
we observe that their proof only works in the case where multiple public keys
are considered. Finally, we further require the extractor ExtM to be efficiently
computable givenM.

6.2 Deniable Signal-Conforming AKE ΠSC-DAKE against Semi-Honest
Adversaries

We first provide a Signal-conforming AKE protocol ΠSC-DAKE that is deniable
against semi-honest adversaries. The construction of ΠSC-DAKE is a simple modifi-
cation of ΠSC-AKE where a standard signature is replaced by a ring signature. In
the subsequent section, we show how to modify ΠSC-DAKE to a protocol that is
deniable against malicious adversaries by relying on further assumptions. The
high-level idea presented in this section naturally extends to the malicious setting.
An overview of ΠSC-DAKE and Π ′SC-DAKE is provided in Figure 3.
Building Blocks. Our deniable Signal-conforming AKE protocol ΠSC-DAKE
against semi-honest adversaries consists of the following building blocks.

– ΠKEM = (KEM.Setup,KEM.KeyGen,KEM.Encap,KEM.Decap) is a KEM
scheme that is IND-CCA secure and assume we have (1− δKEM)-correctness.24

– ΠwKEM = (wKEM.Setup,wKEM.KeyGen,wKEM.Encap,wKEM.Decap) is a
KEM schemes that is IND-CPA secure (and not IND-CCA secure) and assume
we have (1− δwKEM)-correctness.

– ΠRS = (RS.Setup,RS.KeyGen,RS.Sign,RS.Verify) is a ring signature scheme
that is anonymous and unforgeable and assume we have (1− δRS)-correctness.
We denote d as the bit length of the signature generated by RS.Sign.

– F : FK × {0, 1}∗ → {0, 1}κ+d is a pseudo-random function family with key
space FK.

– Ext : S × KS → FK is a strong randomness extractor.

Public Parameters. All the parties in the system are provided the follow-
ing public parameters as input: (s, ppKEM, ppwKEM, ppRS). Here, s is a random
seed chosen uniformly from S, and ppX for X ∈ {KEM,wKEM,RS} are public
parameters generated by X.Setup.
23 Due to the page limitation, the formal definitions of these tools are provided in the

full version.
24 Similar to ΠSC-AKE, to prove the security of ΠSC-DAKE, we require ΠKEM and ΠwKEM to

have high min-entropy of the encapsulation key and the ciphertext.
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Common public parameters: (s, ppKEM, ppwKEM, ppRS , crs )
Initiator Pi Responder Pj

lpki = (eki, vki ), lski = (dki, ski ) lpkj = (ekj , vkj ), lskj = (dkj , skj )

(ekT , dkT )← wKEM.KeyGen(ppwKEM)

(vkT , skT )← RS.KeyGen(ppRS; randT )

XT ← (ppRS, vkT ); WT ← (skT , randT )

πT ← NIZK.Prove(crs,XT ,WT )

statei := dkT

K← KEM.Decap(dki,C)
KT ← wKEM.Decap(dkT ,CT )
K1 ← Exts(K); K2 ← Exts(KT )
sidi := Pi‖Pj‖lpki‖lpkj‖ekT ‖vkT ‖C‖CT

ki‖k̃ ← FK1 (sidi)⊕ FK2 (sidi)
σ ← c⊕ k̃

RS.Verify({vkT , vkj} , sidi, σ) ?= 1

Output the session key ki

ekT , vkT , πT

C,CT , c

XT ← (ppRS, vkT )

NIZK.Verify(crs,XT , πT ) ?= 1

(K,C)← KEM.Encap(eki)
(KT ,CT )← wKEM.Encap(ekT )
K1 ← Exts(K); K2 ← Exts(KT )
sidj := Pi‖Pj‖lpki‖lpkj‖ekT ‖vkT ‖C‖CT

kj‖k̃ ← FK1 (sidj)⊕ FK2 (sidj)

σ ← RS.Sign(skj , sidj , {vkT , vkj})

c← σ ⊕ k̃
Output the session key kj

Fig. 3. Deniable Signal-conforming AKE protocol ΠSC-DAKE and Π ′
SC-DAKE. The compo-

nents that differ from the non-deniable protocol ΠSC-AKE is indicated by a box. The
protocol with (resp. without) the gray and dotted-box component satisfies deniability
against malicious (resp. semi-honest) adversaries.
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Long-Term Public and Secret Keys. Each party Pi runs (eki, dki) ←
KEM.KeyGen(ppKEM) and (vki, ski) ← RS.KeyGen(ppRS). Party Pi ’s long-term
public key and secret key are set as lpki = (eki, vki) and lski = (dki, ski) ,
respectively.
Construction. A key exchange between an initiator Pi in the s-th session (i.e.,
πsi ) and responder Pj in the t-th session (i.e., πtj) is executed as in Figure 2. More
formally, we have the following.

1. Party Pi sets Pidsi := j and rolesi := init. Pi computes (dkT , ekT ) ←
wKEM.KeyGen(ppwKEM) and (vkT , skT ) ← RS.KeyGen(ppRS), and sends
(ekT , vkT ) to party Pj . Pi erases the signing key skT and stores the ephemeral
decapsulation key dkT as the session-state i.e., statesi := dkT .25

2. Party Pj sets Pidtj := i and roletj := resp. Upon receiving (ekT , vkT ), Pj first
computes (K,C)← KEM.Encap(eki) and (KT ,CT )← wKEM.Encap(ekT ) and
derives two PRF keys K1 ← Exts(K), K2 ← Exts(KT ). It then defines the
session-identifier as sidtj := Pi‖Pj‖lpki‖lpkj‖ekT ‖vkT ‖C‖CT and computes
kj‖k̃ ← FK1(sidj) ⊕ FK2(sidj), where kj ∈ {0, 1}κ and k̃ ∈ {0, 1}d. Pj sets
the session key as ktj := kj . Pj then signs σ ← RS.Sign(skj , sidtj , {vkT , vkj})
and encrypts it as c ← σ ⊕ k̃. Finally, it sends (C,CT , c) to Pi and sets
Ψj := accept. Here, note that Pj does not require to store any session-state,
i.e., statetj = ⊥.

3. Upon receiving (C,CT , c), Pi first decrypts K ← KEM.Decap(dki,C) and
KT ← wKEM.Decap(dkT ,CT ), and derives two PRF keys K1 ← Exts(K)
and K2 ← Exts(KT ). It then sets the session-identifier as sidsi :=
Pi‖Pj‖lpki‖lpkj‖ekT ‖vkT ‖C‖CT and computes ki‖k̃ ← FK1(sidi)⊕ FK2(sidi),
where ki ∈ {0, 1}κ and k̃ ∈ {0, 1}d. Pi then decrypts σ ← c ⊕
k̃ and checks whether RS.Verify({vkT , vkj} , sidsi , σ) = 1 holds. If not,
Pi sets (Ψi, ksi , statei) := (reject,⊥,⊥) and stops. Otherwise, Pi sets
(Ψi, ksi , statei) := (accept, ki,⊥). Here, note that Pi deletes the session-state
statesi = dkT at the end of the key exchange.

Security. We first check that ΠSC-DAKE is correct and secure as a standard AKE
protocol. Since the proof is similar in most parts to the non-deniable protocol
ΠSC-AKE, we defer the details to the full version. The main difference from the
security proof of ΠSC-AKE is that we have to make sure that using a ring signature
instead of a standard signature does not allow the adversary to mount a key-
compromise impersonation (KCI) attack (see Sec. 3.3 for the explanation on KCI
attacks).

The following guarantees deniability of our protocol ΠSC-DAKE against semi-
honest adversaries.

Theorem 6.1 (Deniability of ΠSC-DAKE against Semi-Honest Adver-
saries). Assume ΠRS is anonymous. Then, the Signal-conforming protocol
ΠSC-DAKE is deniable against semi-honest adversaries.
25 Notice the protocol is receiver oblivious since the first message is computed indepen-

dently of the receiver.
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Proof. LetM be any PPT semi-honest adversary. We explain the behavior of
the simulator SIMM by considering three cases: (a) M initializes an initiator
Pi , (b) M queries the initiator Pi on message (C,CT , c), and (c) M queries
the responder Pj on message (ekT , vkT ). In case (a), SIMM runs the honest
initiator algorithm and returns (ekT , vkT ) as specified by the protocol. In case
(b), sinceM is semi-honest, we are guaranteed that it runs the honest responder
algorithm to generate (C,CT , c). In particular, sinceM is run on randomness
sampled by SIMM, SIMM gets to learn the key K that was generated along
with C. Therefore, SIMM runs the real initiator algorithm except that it uses K
extracted fromM rather than computing K← KEM.Decap(dki,C). Here, note
that SIMM cannot run the latter since it does not know the corresponding dki
held by an honest initiator party Pi . In case (c), similarly to case (b), SIMM learns
dkT and skT used by M to generate ekT and vkT . Therefore, SIMM runs the
honest responder algorithm except that it runs σ ← RS.Sign(skT , sidj , {vkT , vkj})
instead of running σ ← RS.Sign(skj , sidj , {vkT , vkj}) as in the real protocol. Here,
note that SIMM cannot run the latter since it does not know the corresponding
skj held by an honest responder party Pj .

Let us analyze SIMM. First, for case (a), the output by SIMM is distributed
exactly as in the real transcript. Next, for case (b), the only difference between
the real distribution and SIMM’s output distribution (which is the derived session
key k) is that SIMM uses the KEM key K output by KEM.Encap to compute the
session key rather than using the KEM key decrypted using KEM.Decap with
the initiator party Pi ’s decryption key dki. However, by (1− δKEM)-correctness
of ΠKEM, these two KEM keys are identical with probability at least (1− δKEM).
Hence, the output distribution of SIMM and the real view are indistinguishable.
Finally, for case (c), the only difference between the real distribution and SIMM’s
output distribution (which is the derived session key and the message sent
(C,CT , c)) is how the ring signature is generated. While the real protocol uses
the signing key skj of the responder party Pj , the simulator SIMM uses skT .
However, the signatures outputted by these two distributions are computationally
indistinguishable assuming the anonymity of ΠRS. Hence, the output distribution
of SIMM and the real view are indistinguishable.

Combining everything together, we conclude the proof.

6.3 Deniable Signal-Conforming AKE Π ′
SC-DAKE against Malicious

Adversaries
We discuss security of our Signal-conforming AKE protocol Π ′SC-DAKE against
malicious adversaries. As depicted in Figure 3, to achieve deniability against
malicious adversaries, we modify the protocol so that the initiator party adds
a NIZK proof attesting to the fact that it constructed the verification key of
the ring signature vkT honestly. Formally, we require the following additional
building blocks.
Building Blocks. Our deniable Signal-conforming AKE protocol Π ′SC-DAKE
against malicious adversaries requires the following primitives in addition to
those required by ΠSC-DAKE in the previous section.
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– ΠKEM = (KEM.Setup,KEM.KeyGen,KEM.Encap,KEM.Decap) is an IND-CCA
secure KEM scheme as in the previous section that additionally satisfies
PAµ-1 security with an efficiently constructible extractor, where µ is the
number of parties in the system.

– ΠNIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) is a NIZK argument system
for the relation RRS where (X,W) ∈ RRS if and only if the statement X =
(pp, vk) and witness W = (sk, rand) satisfy (vk, sk) = RS.KeyGen(pp; rand).

Additional Assumption. We require a knowledge-type assumption to prove
deniability against malicious adversaries. Considering that all of the previous
AKE protocols satisfying a strong form of security and deniability require such
knowledge-type assumptions [24,57,53], this seems unavoidable. On the other
hand, there are protocols achieving a strong form of deniability from standard
assumptions [25,51,52], however, they make a significant compromise in the
security such as being vulnerable to KCI attacks and state leakages.

The following knowledge assumption is defined similarly in spirit to those of
Di Raimondo et al. [24] that assumed that for any adversaryM that outputs
a valid MAC, then there exists an extractor algorithm Ext that extracts the
corresponding MAC key. Despite it being a strong knowledge-type assumption in
the standard model, we believe it holds in the random oracle model if we further
assume the NIZK comes with an online knowledge extractor26 like those provide
by Fischlin’s NIZK [27]. We leave it to future works to investigate the credibility
of the following assumption and those required to prove deniability of the X3DH
protocol [53].

Assumption 6.2 (Key-Awareness Assumption for Π ′SC-DAKE). We say that
Π ′SC-DAKE has the key-awareness property if for all PPT adversaries M in-
teracting with a real protocol execution in the deniability game as in Defi-
nition 6.1, there exists a PPT extractor ExtM such that for any choice of
(pp,
−→
lpk,
−→
lsk) ∈ KeyGen(1κ, µ), whenever M outputs a ring signature verifica-

tion key vk and a NIZK proof π for the language LRS, then ExtM taking input
the same input asM (including its randomness) outputs a signing key sk such
that (vk, sk) ∈ RS.KeyGen(ppRS) for any ppRS ∈ RS.Setup(1κ).

With the added building blocks along with the key-awareness assumption, we
prove the following theorem. The high-level approach is similar to the previous
proof against semi-honest adversaries but the concrete proof requires is rather
involved. The main technicality is when invoking the PAµ-1 security: if we do
the reduction naively, the extractor needs the randomness used to sample the
ring signature key pairs of the honest party but the simulator of the deniability
game does not know such randomness. We circumvent this issue by hard-wiring
the verification key of the ring signature of the adversary and considering PAµ-1
security against non-uniform adversary. The proof is presented in the full version.

26 This guarantees that the witness from a proof can be extracted without rewinding
the adversary.
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Theorem 6.3 (Deniability of Π ′SC-DAKE against Malicious Adversaries).
Assume ΠKEM is PAµ-1 secure with an efficiently constructible extractor, ΠRS
is anonymous, ΠNIZK is sound,27 and the key-awareness assumption in Assump-
tion 6.2 holds. Then, the Signal-conforming protocol Π ′SC-DAKE with µ parties is
deniable against malicious adversaries.

Finally, we show Π ′SC-DAKE is correct and secure as a standard Signal-
conforming AKE protocol in the full version.
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