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Abstract. We put forward the notion of universal proxy re-encryption
(UPRE). A UPRE scheme enables a proxy to convert a ciphertext under
a (delegator) public key of any existing public-key encryption (PKE)
scheme into another ciphertext under a (delegatee) public key of any
existing PKE scheme (possibly different from the delegator one). The
proxy has a re-encryption key generated from the delegator’s secret key
and the delegatee public key. Thus UPRE generalizes proxy re-encryption
by supporting arbitrary PKE schemes and allowing to convert ciphertexts
into ones of possibly different PKE schemes. In this work, we
– provide syntax and definitions for both UPRE and a variant we call

relaxed UPRE. The relaxed variant means that decryption algorithms
for re-encrypted ciphertexts are slightly modified but still only use
the original delegatee secret keys for decryption.

– construct a UPRE based on probabilistic indistinguishability obfusca-
tion (PIO). It allows us to re-encrypt ciphertexts polynomially many
times.

– construct relaxed UPRE from garbled circuits (GCs). We provide
two variants of this construction, one which allows us to re-encrypt
ciphertexts polynomially many times, and a second one which satisfies
a stronger security requirement but only allows us to re-encrypt
ciphertexts a constant number of times.

Keywords. universal proxy re-encrytion, public-key encryption, secret
sharing.

1 Introduction

1.1 Background

Constructing cryptographic systems from scratch is a challenging task. When
migrating from a legacy cryptosystem to a new one with better security and
functionality, it would be desirable to reuse existing public key infrastructures
(PKI) to reduce the cost of migration. In this work, we explore a universal
methodology to construct a new and easily deployable cryptographic system from
existing cryptographic systems and PKI.

As a particular example of cryptographic systems, we consider proxy re-
encryption (PRE) [BBS98]. PRE allows to convert a ciphertext under public
key pkf (we call delegator public key and f denotes “from”) into another ci-
phertext under public key pkt (we call delegatee public key and t denotes “to”)
by using a re-encryption key rkf→t without decrypting the original ciphertext
by skf (we call delegator secret key). A third party, called proxy, owns the
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re-encryption key rkf→t and executes the re-encryption procedure. PRE thus
enables delegation of re-encryption and several useful applications. It can be
used to achieve encrypted email forwarding [BBS98,Jak99], key escrow [ID03],
encrypted file storage [AFGH05], secure publish-subscribe operation [PRSV17],
and secure payment systems for credit cards [GSL19].

However, all known PRE schemes only support conversions from ciphertexts
under a public key generated by their key generation algorithm into other ones
under another key generated by the same key generation algorithm with the
same parameter. They cannot convert ciphertexts into ones under another key
generated by another key generation algorithm of another encryption scheme.
Moreover, almost all known PRE schemes were constructed from scratch by using
specific cryptographic assumptions such as the decisional Diffie-Hellman (DDH)
assumption and the learning with errors (LWE) assumption. The formats of
their keys and ciphertexts are fixed in advance at the setup and can never be
changed. Only a few PRE schemes use public-key encryption (PKE) schemes
generically [HKK+12]. However, in such schemes, we cannot use a PKE scheme as
it is (some additional conversion is needed). Moreover, only delegatees (receivers
of converted ciphertexts) can select any PKE scheme and delegators (senders of
original ciphertexts) cannot. From a practical point of view, this is unsatisfactory
as we need to build a new system using a PRE scheme from scratch if we want
to use applications of PRE described above. When we use a PRE scheme, we
cannot use existing and widely used public-key cryptosystems to achieve the
applications of PRE. Ideally, we would like to achieve a re-encryption mechanism
that works for any pair of PKE schemes without any modification and setup.

Universal Proxy Re-Encryption. To resolve the problems above, we put forward
the concept of universal proxy re-encryption (UPRE). UPRE enables us to
convert ciphertexts under a public key of a scheme Σf (delegator scheme) into
ciphertexts under another public key of another scheme Σt (delegatee scheme).
We can select arbitrary secure PKE schemes for Σf , Σt. For example, we can use
Goldwasser-Micali PKE [GM84] as Σf and ElGamal PKE [ElG85] as Σt. If a
delegator and delegatee have key pairs (pkf , skf ) and (pkt, skt) of schemes Σf
and Σt, respectively, then a re-encryption key generation algorithm of UPRE can
output a re-encryption key rkf→t from (Σf , Σt, skf , pkt). A proxy can generate
a re-encrypted ciphertext rct from rkf→t and Encf (pkf ,m) where Encf is the
encryption algorithm of Σf . Of course, the re-encrypted ciphertext rct can be
correctly decrypted to m by using skt.

Ideally, a re-encrypted ciphertext should be decrypted by the original decryp-
tion algorithm of the delegatee scheme (i.e., Dect(skt, ·)). However, we can also
consider a relaxed variant where a re-encrypted ciphertext can be decrypted via a
slightly modified decryption algorithm with the original delegatee decryption key
skt. We call this variant relaxed UPRE. Here, we emphasize that the delegator
uses only pkf and Encf to encrypt a message and the delegatee uses only skt to
decrypt a re-encrypted ciphertext (they do not need any additional keys) even
if its decryption procedure is slightly modified. Our work is the first to explore
such a universal methodology for proxy re-encryption.
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UPRE enables us to build a re-encryption mechanism dynamically by using
currently deployed cryptosystems. Users who have already used PKE schemes can
convert ciphertexts into other ones by using a UPRE scheme. They do not need
to setup a proxy re-encryption system from scratch. Therefore, UPRE offers more
flexibility than standard PRE. In addition, UPRE has applications that PRE does
not have, e.g. the following. UPRE enables us to delegate migration of encryption
systems to a third party such as cloud-servers with many computational resources
when an encryption scheme with some parameter settings becomes obsolete,
or vulnerability is found in an encryption system. That is, we can outsource
renewing encrypted storage to a third party.

UPRE can be seen as a generalized notion of PRE. Therefore, we can consider
several analogies of the notions used in PRE. They are the notions of “direction”
and “the number of hops”. For directions, there are unidirectional and bidirec-
tional, which means that a re-encryption key between pkf and pkt can be used
for only one-way from f to t and both ways, respectively. For the number of hops,
there are single-hop and multi-hop, which mean a re-encrypted ciphertext cannot
be converted anymore and can be converted polynomially-many times, respec-
tively. In particular, when only a constant number of conversions is possible, we
call it constant-hop. We consider unidirectional single/constant/multi-hop but do
not focus on bidirectional since the functionality of a bidirectional re-encryption
key is simulated by two unidirectional re-encryption keys.

The main question addressed in this work is how to achieve UPRE. Regarding
feasibility, it seems plausible that UPRE can be achieved from indistinguishability
obfuscation (IO) [BGI+12,GGH+16] or multilinear maps [GGH13,CLT13,GGH15].3.
And in fact, we present a construction based on IO as an initial step, though
we emphasize that formally proving security is not a trivial task even if we use
IO. Consequently, the main focus of this work is concerned with the following
question.

Is it possible to achieve a UPRE scheme without IO and multilinear maps?

We give a positive answer to this question.

1.2 Our Contributions

The main contributions of this study are the following.

1. We introduce the notion of UPRE and formally define its security.
2. We present a general construction of multi-hop UPRE for some class of PKE

by using probabilistic IO (PIO).
3. We present a general construction of multi-hop relaxed UPRE for any PKE by

using only garbled circuits (GC) and therefore need no additional assumptions.
4. By using our general constructions and known instantiations of tools above, we

can obtain multi-hop (relaxed) UPRE schemes from IO, or generic standard
assumptions.

3 A.k.a. “heavy hammers”.
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The third contribution is notable since we introduce a new design idea and use
only weak assumptions. We explain more details (tools, security levels, and so
on) of these contributions below.

For UPRE, we can consider a natural analog of security against chosen
plaintext attacks (CPA) for PRE (PRE-CPA), where adversaries execute CPA
attacks with oracles that give re-encryption keys and re-encrypted ciphertexts.
However, we do not focus on the definition of CPA-security for UPRE (UPRE-
CPA) because Cohen introduced a better security notion called security against
honest re-encryption attacks (HRA) for PRE [Coh19]4. Thus, we define security
against honest re-encryption attacks for UPRE (UPRE-HRA), which implies
UPRE-CPA, instead of CPA-security. We also define security against corrupted-
delegator re-encryption attacks (CRA) to consider the setting of migration
of encryption system explained in Section 1.1. That is, even if a delegator is
corrupted, once a ciphertext is re-encrypted for an honest delegatee, then the
delegator cannot obtain information about a plaintext from the re-encrypted
ciphertext.56 See Section 2 for details.

We present three general constructions of UPRE. One is UPRE for some
class of PKE based on PIO. PIO was introduced by Canetti, Lin, Tessaro, and
Vaikuntanathan [CLTV15]. Another is relaxed UPRE for any PKE based on GC.
The other is constant-hop and CRA-secure relaxed UPRE for any PKE based
on GC. We emphasize that our relaxed UPRE is based on generic standard
assumptions without relying on heavy tools. We look closer at what kind of
(relaxed) UPRE is achieved below.

Our UPRE scheme based on PIO is a unidirectional multi-hop UPRE scheme.
The required properties for PKE schemes depend on the security level of PIO.
If we assume additional properties on PKE, then we can achieve UPRE from
sub-exponentially secure IO (sub-exp IO) and sub-exponentially secure OWF
(sub-exp OWF). Most well-known CPA-secure PKE schemes such as ElGamal,
Goldwasser-Micali PKE schemes satisfy the additional properties. However, if
we use any PKE, we need PIO with the strongest security for specific circuits
(refer to [CLTV15]). If we use the exponential DDH assumption, we can achieve
UPRE from any PKE and polynomially secure IO. The advantage of the scheme
based on PIO is that it is a multi-hop UPRE scheme and conceptually simple.

Our relaxed UPRE scheme based on garbled circuits (GC) is a unidirectional
multi-hop relaxed UPRE scheme for any PKE scheme. This is a significant
contribution since GC exist if one-way functions exist (a very weak cryptographic
assumption). This relaxed UPRE scheme satisfies HRA-security. However, some
meta information (all garbled circuits from the first delegator to the last delegatee)
4 Derler, Krenn, Lorünser, Ramacher, Slamanig, and Striecks also proposed a similar
security notion in the forward secret setting as (fs)-RIND-CPA [DKL+18].

5 Note that the corrupted delegator does not have a ciphertext to be re-encrypted here.
6 Davidson, Deo, Lee, and Martin [DDLM19] independently introduced a stronger
notion called strong post-compromised security in the standard PRE setting. Note
that our work appeared before their publication. Our work appeared on September
7th in 2018 while their work [DDLM19] did on April 5th in 2019. (See the submission
dates on Cryptology ePrint Archive.)
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is directly preserved in all re-encrypted ciphertexts. Therefore, the number of hops
cannot be hidden in the scheme based on GC. In particular, when a delegator is
corrupted, we do not know how to prove that a re-encrypted ciphertext does not
reveal information about the plaintext.

Our last UPRE scheme is a unidirectional constant-hop relaxed UPRE scheme
for any PKE scheme based on GC. This scheme satisfies CRA-security unlike
the multi-hop scheme above, but it can re-encrypt only constant times since its
re-encryption procedure incurs polynomial blow-up.

In the GC-based schemes, we must use a slightly modified decryption algo-
rithm (i.e., we achieve relaxed UPRE) though we can use the original delegatee
decryption key as it is. While this is a small disadvantage of the GC-based
constructions, we would like to emphasize that these are the first constructions
of relaxed UPRE, achieved by the standard assumptions.

1.3 Technical Overview

In this section, we give a high-level overview of our UPRE schemes and techniques.
To achieve the re-encryption mechanism, we use a circuit with a hard-wired secret
key of a delegator PKE scheme to generate a re-encryption key. This is because
UPRE supports general PKE schemes and we need to decrypt ciphertexts once
to re-encrypt them. However, such a circuit should not be directly revealed to
a proxy to guarantee security. Therefore, we must hide information about the
secret-key in a re-encryption key. That is, to use CPA security of the delegator
PKE scheme, we must erase information about the secret key embedded in a
re-encryption key in security proofs. This is the most notable issue to prove the
security of UPRE. When we succeed in erasing secret keys from re-encryption
keys in our reductions, we can directly use the CPA-security of delegators to
prove the security of a UPRE scheme.

Based on IO IO is a promising tool to hide information about delegator secret
keys since IO is a kind of compiler that outputs a functionally equivalent program
that does not reveal information about the original program. We define a re-
encryption circuit Cre, in which a delegator secret key skf and a delegatee public
key pkt are hard-wired in and which takes a delegator ciphertext ctf as an input.
The re-encryption circuit decrypts ctf by using skf , obtains a plaintext m, and
generates a ciphertext of m under pkt. We can hide information about skf by
using PIO (note that Cre is a randomized circuit). That is, a re-encryption key
from delegator f to delegatee t is piO(Cre) where piO is a PIO algorithm. A
re-encrypted ciphertext is a fresh ciphertext under pkt. Thus, we can achieve
multi-hop UPRE. This construction is similar to the FHE scheme based on PIO
presented by Canetti et al. [CLTV15]. However, we cannot directly use the result
by Canetti et al. since the setting of unidirectional multi-hop UPRE is different
from that of FHE.

The security proof proceeds as follows. To erase skf , we use a dummy re-
encryption circuit that does not run the decryption algorithm of Σf with skf
and just outputs a dummy ciphertext under pkt (does not need plaintext m). We
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expect that adversaries cannot distinguish this change. This intuition is not false.
However, to formally prove it, we cannot directly use the standard CPA-security of
PKE since an obfuscated circuit of the re-encryption circuit generates ciphertexts
under hard-wired pkt. It means that we cannot use a target ciphertext of the
CPA-security game and the common “punctured programming” approach unless
the scheme has a kind of “puncturable” property for its secret key [CHN+18].
Therefore, we use trapdoor encryption introduced by Canetti et al. [CLTV15].

In trapdoor encryption, there are two modes for key generation. One is
the standard key generation, and the other one is the trapdoor key genera-
tion, which does not output a secret key for decryption. The two modes are
computationally indistinguishable. Ciphertexts under a trapdoor key are compu-
tationally/statistically/perfectly indistinguishable. Thus, we proceed as follows.
First, we change the hard-wired public key pkt into a trapdoor key tkt. Second,
we use the security of PIO. The indistinguishability under tkt is used to satisfy
the condition of PIO.

We can consider the relationships among keys as a directed acyclic graph
(DAG). Each vertex is a user who has a key pair, and each edge means that
a re-encryption key was generated between two vertices. To prove ciphertext
indistinguishability under a target public-key, we repeat the two processes above
from the farthest vertex connected to the target vertex to the target vertex.
We gradually erase information about secret keys of vertices connected to the
target vertex. At the final step, information about the target secret key is also
deleted, and we can use security under the target public-key of the delegator’s
PKE scheme. Those processes are the notable differences from the security proof
of FHE based on PIO by Canetti et al. [CLTV15]. The point is that one vertex
can be connected to multiple vertices in the multi -hop (U)PRE setting.

Types of indistinguishability under trapdoor keys affect what kind of PIO
can be used. The weakest indistinguishability under a trapdoor key, which is
equivalent to the standard IND-CPA security, requires stronger security of PIO.
If we use perfect indistinguishability under a trapdoor key, which is achieved
by re-randomizable PKE schemes such as ElGamal PKE scheme, then we can
use weaker PIO for circuits that are implied by sub-exp IO for circuits and sub-
exp OWF. Finally, we can use doubly-probabilistic IO introduced by Agrikola,
Couteau, and Hofheinz [ACH20] instead of PIO to achieve UPRE for IND-CPA
PKE. Agrikola et al. prove that we can achieve doubly-probabilistic IO by using
polynomially secure IO and the exponential DDH assumption.

Based on GC The most challenging task in this work is achieving a relaxed
UPRE scheme without obfuscation. Surprisingly, we can achieve a relaxed UPRE
scheme for any CPA-secure PKE scheme by using GC in combination with a
secret sharing scheme. The idea is that a proxy and a delegatee are different
entities and can separately use shares of a decryption key. We generate shares of
a decryption key, and use a garbled circuit where one of the shares is hardwired
to hide information about the decryption key.

Our re-encryption mechanism proceeds in the following two steps. First, we
generate shares (s1, s2) of a delegator secret key skf by a secret sharing scheme.
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We encrypt share s1 by using pkt and obtain c̃tt ← Enc(pkt, s1). A re-encryption
key from f to t is rkf→t := (s2, c̃tt). Roughly speaking, s1 is hidden by the CPA-
security of PKE, and s2 does not reveal information about skf by the privacy
property of secret sharing. We define a circuit Cre

de where s2 and the delegator
ciphertext ctf are hard-wired. The circuit Cre

de takes as input s1, reconstructs skf
from (s1, s2), and computes Decf (skf , ctf ). Now, we garble Cre

de[s2, ctf ] and obtain
a garbled circuit C̃re

de and labels {labelsi,b}i∈[|s1|]b∈{0,1} . We set a re-encrypted
ciphertext to rct := (c̃tt, C̃re

de, {labelsi,b}) (we omit {i ∈ [|s1|], b ∈ {0, 1}} if it is
clear from the context). The delegatee t can evaluate the garbled circuit and
obtain decrypted value since the delegatee can obtain s1 from c̃tt. However, this
does not work since sending {labelsi,b} breaks the security of GC and skf is
revealed.

Before we move to the second step, we introduce the notion of weak batch
encryption, which is a non-succinct variant of batch encryption [BLSV18] and
easily constructed from standard CPA-secure PKE. A batch key pair (p̂k, ŝk)
is generated from a choice string s ∈ {0, 1}λ. We can encrypt a pair of vector
messages ({mi,0}i∈[λ], {mi,1}i∈[λ]) by using p̂k. We can obtain {mi,s[i]}i∈[λ] from
a batch ciphertext and ŝk. A batch public-key p̂k does not reveal any information
about s. Adversaries cannot obtain any information about {mi,1−s[i]}i∈[λ] from
a batch ciphertext even if ŝk is given. By using 2λ pairs of a public-key and
secret-key of PKE, we can achieve weak batch encryption (we select a key pair
based on each bit of s). Note that we can recycle p̂k for many vectors of messages.
See Section 3.1 for details.

Now, we move to the second step. To send only {labelsi,s1[i]]}i∈|s1| to the
delegatee t, we use weak batch encryption. That is, we let s1 be choice bits of a
batch key pair and {labelsi,b} be messages of batch encryption. To achieve
a re-encryption mechanism with this idea, at the re-encryption key gener-
ation phase, we generate a batch key pair (p̂k, ŝk) ← BatchGen(s1). More-
over, we encrypt the batch secret-key ŝk under pkt. That is, we set rkf→t :=
(p̂k, s2,Enc(pkt, ŝk)). At the re-encryption phase, we generate not only the gar-
bled circuit C̃re

de of Cre
de[s2, ctf ] and {labelsi,b}i,b but also the batch ciphertext

ĉt← BatchEnc(p̂k, ({labelsi,0}i, {labelsi,1}i)). That is, a re-encrypted ciphertext
is rct := (c̃tt, ĉt, C̃re

de), where c̃tt ← Enc(pkt, ŝk).
The delegatee t can obtain the plaintext m as follows. It obtains ŝk ←

Dect(skt, c̃tt) by its secret key skt, recover selected messages {labelsi,s1[i]}i ←
BatchDec(ŝk, ĉt), and m′ ← Eval(C̃re

de, {labelsi,s1[i]}i). By the functionality of GC,
it holds that m′ = Cre

de[s2, ctf ](s1) = m. Thus, this construction works as relaxed
UPRE for any PKE scheme if there exists GC.

Intuitively, the re-encryption key rkf→t does not reveal information about skf
since the CPA-security of PKE and the receiver privacy of weak batch encryption
hides information about s1. Adversaries cannot obtain any information about
skf from the other share s2 by the privacy property of the secret sharing scheme.
That is, we can erase information about skf and can use the CPA-security of
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pkf . Here, the choice s1 is fixed at the re-encryption key generation phase and
recycled in many re-encryption phases. However, this is not an issue since the
security of weak batch encryption holds for many batch ciphertexts under the
same batch key pair.

We explain only the single-hop case. However, we can easily extend the
idea above to a multi-hop construction. See Section 3 for the detail. We note
that the secret sharing mechanism was used in previous (non-universal) PRE
schemes [CWYD10,HKK+12]. (The technique is called token-controlled technique
in some papers.) However, using garbled circuits and batch encryption is new in
the PRE setting.

In the construction above, a delegator might obtain information about the
plaintext since the re-encrypted ciphertext includes ctf in the garbled circuit
and the delegator has skf . We have no way to prove that the construction above
satisfies CRA-security. This is a problem when we use a relaxed UPRE scheme
for migration of encryption systems explained in Section 1.1. However, we can
easily solve this problem by encrypting a garbled circuit under the delegatee’s
public key since we can hide ctf by using the security of the delegatee’s PKE
scheme. Yet, this extension incurs polynomial blow-up of ciphertext size. Thus,
we can apply the re-encryption procedure only constant times.

Summary of Our Results. We give a summary of our concrete instantiations
in Table 1.

Table 1. Summary of our UPRE schemes. In “Type” column, rUPRE means relaxed UPRE. In “#Hop”
column, const/multi means constant/multi-hop, respectively. In “Security” column, HRA and CRA means
security against honest-re-encryption/corrupted-delegator-re-encryption attacks, respectively. In “Sup-
ported PKE” column, 0-hiding trapdoor means trapdoor encryption that satisfies 0-hiding security.

Instantiation Type #Hop Security Supported PKE Assumptions

Ours from IO + [CLTV15] UPRE multi HRA & CRA 0-hiding trapdoor sub-exp IO and OWF
Ours from IO + [CLTV15] UPRE multi HRA & CRA any IND-CPA di-PIO and OWF
Ours from IO + [ACH20] UPRE multi HRA & CRA any IND-CPA IO and exp. DDH
Ours in Sec. 3 rUPRE multi HRA any IND-CPA PKE
Ours in Sec. 4 rUPRE const HRA & CRA any IND-CPA PKE

1.4 Related Work

Encryption switching protocol (ESP), which was introduced by Couteau, Peters,
and Pointcheval [CPP16], is a related notion. It is an interactive two-party
computation that enables us to transform a ciphertext of a PKE scheme into a
ciphertext of another PKE scheme and vice versa. It has a similar functionality
to that of UPRE. However, they are incomparable in the following sense. In
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an ESP, parties must interactively communicate each other though there does
not exists a proxy (and no re-encryption key). UPRE does not need interactive
communication. Moreover, the proposed ESPs are not universal, that is, the
protocols work only for specific PKE schemes. Thus, the purpose of ESPs is
different from that of UPRE and they are incomparable.

There is a universal methodology to construct a new cryptographic system
from existing signature schemes. Hohenberger, Koppula, and Waters introduce
the notion of universal signature aggregator (USA) [HKW15], which enables us
to aggregate signatures under different secret keys of different signature schemes.
Standard aggregate signatures enable us to compress multiple signatures under
different secret keys of the same scheme into one compact signature that is verified
by a set of multiple verification keys [BGLS03]. Thus, USA is a generalization
of aggregate signatures. Hohenberger et al. [HKW15] constructed selectively
(resp. adaptively) secure USA scheme from sub-exp IO, sub-exp OWF, and
additive homomorphic encryption (resp. IO, OWF, homomorphic encryption,
and universal samplers) in the standard (resp. random oracle) model.

Reconfigurable cryptography was introduced by Hesse, Hofheinz, and Rupp [HHR16].
It makes updating PKI easier by using long-term keys, short-term keys, and
common reference strings. Reconfigurable encryption can update keys, but cannot
update ciphertexts.

There is a long series of works on proxy re-encryption. After the introduction of
proxy cryptography by Blaze, Bleumer, and Strauss [BBS98], improved construc-
tions [ID03,AFGH05], CCA-secure constructions [CH07,LV08,DWLC08,SC09,HKK+12],
key-private constructions [ABH09,ABPW13,NX15], obfuscation-based definition
and constructions [HRsV11,CCV12,CCL+14] have been proposed. Note that this
is not an exhaustive list.

Organization. The main body of this paper consists of the following parts. In Sec-
tion 2, we introduce the syntax and security definitions of UPRE. In Section 3,
we present our relaxed UPRE scheme based on GC, and prove its security. In Sec-
tion 4, we present our CRA-secure relaxed UPRE scheme. We omit many contents
(basic preliminaries) due to space limitations. In particular, we omit our UPRE
scheme based on IO. See the full version of this paper for omitted contents.

2 Definition of Universal Proxy Re-Encryption

In this section, we present the definitions of universal proxy re-encryption (UPRE).
In particular, we present the definition of UPRE for PKE and its security notions.
A UPRE scheme enables us to convert ciphertexts of a PKE scheme Σf into
ciphertexts of a (possibly) different PKE scheme Σt. A UPRE scheme does not
need a setup for a system. That is, it can use existing PKE schemes with different
parameters. UPRE can be seen as a generalization proxy re-encryption [BBS98].
Therefore, we borrow many terms of proxy re-encryption [AFGH05,CH07].
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Notations. We consider multiple PKE schemes and key pairs, so we assume that
every known PKE scheme is named by a number in [N ] (say, 1 is for Goldwasser-
Micali PKE, 2 is for ElGamal PKE etc). We also put a number in [U ] for a
generated key pair. When we write (pki, ski)← Genσi

(1λ), we mean that i-th key
pair is generated by PKE scheme Σσi

= (Genσi
,Encσi

,Decσi
) where σi ∈ [N ].

In this paper, when we emphasize which user is a delegator or delegatee, we
denote delegator and delegatee key pairs by (pkf , skf ) and (pkt, skt), respectively
(f and t mean “from” and “to”, respectively). That is, a ciphertext under pkf
will be converted into a ciphertext pkt. We assume that in the description of
Σσi

, ciphertext space Cσi
and message spaceMσi

are also included. When we
use Σσi

as an input for algorithms of UPRE, we interpret it as a description of
algorithms (rather than Turing machines or circuits). Note that the length of
such descriptions is polynomial since algorithms of PKE should be PPT.

2.1 Unidirectional UPRE
Definition 2.1 (Universal Proxy Re-Encryption for PKE: Syntax). A
universal re-encryption scheme UPRE consists of two PPT algorithms (ReKeyGen,
ReEnc).
– ReKeyGen(1λ, Σσf

, Σσt , skf , pkt) takes the security parameter, a pair of PKE
scheme (Σσf

, Σσt), a secret-key skf of Σσf
, and a public-key pkt of Σσt and

outputs a re-encryption key rkf→t for ciphertexts under pkf . The security
parameter is often omitted.

– ReEnc(Σσf
, Σσt

, rkf→t, ctf ) takes a pair of PKE schemes (Σσf
, Σσt

), a re-
encryption key rkf→t, and a ciphertext ctf under pkf of Σσf

, and outputs a
re-encrypted ciphertext ctt under pkt.

Definition 2.2 (Relaxed Universal Proxy Re-Encryption for PKE: Syn-
tax). A relaxed universal re-encryption scheme UPRE consists of two PPT and
one deterministic polynomial-time algorithms (ReKeyGen,ReEnc,mDec).
– ReKeyGen(1λ, Σσf

, Σσt
, skf , pkt) is the same as in Def. 2.1.

– ReEnc(Σσf
, Σσt

, rkf→t, ctf ) takes a pair of PKE schemes (Σσf
, Σσt

), a re-
encryption key rkf→t, and a ciphertext ctf under pkf of Σσf

, and outputs
a re-encrypted ciphertext rct. We implicitly assume that rct includes index `
which indicates how many times ReEnc was applied so far. When we write
rct(`), it means that rct(`) was obtained by applying ReEnc ` times.

– mDec(Σσt
, skt, rct(`), `) is a deterministic algorithm and takes a PKE scheme

Σσt
, a secret key skt, a re-encrypted ciphertext rct(`) under rkf→t, and index

` and outputs a message m. When ` = 1, we omit the index.
The difference between UPRE and relaxed UPRE is that we can use the

decryption algorithm of Σσt
as it is in UPRE. In relaxed UPRE, we need use a

modified decryption algorithm though what we need for decryption is the original
secret key skt. Note that re-encrypted ciphertext space Cσf→σt

potentially depends
on Cσf

and Cσt
and possibly rct /∈ Cσt

happens.
Hereafter, we focus only on the relaxed notion since we can easily replace

mDec(Σσt , skt, rct(`), `) with Dec(skt, ctt).
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On Message Space. For simplicity, we consider messages inMσ1 ∩ · · · ∩MσN

where N is the number of considered PKE scheme in security games (described
later). We can consider {0, 1}` as a message space where ` is a polynomial of a
security parameter and UPRE for such a message space by considering bit-by-bit
encryption for all PKE scheme. However, this is cumbersome. Thus, hereafter,
we consider messages in the intersection of all message spaces though we do not
explicitly mention.

Bidirectional UPRE. We can consider bidirectional UPRE, where a re-encryption
key generated from key pairs (pkf , skf ) and (pkt, skt) can convert ciphertexts
under pkf (resp. pkt) into ciphertexts that can be decrypted by skt (resp. skf ).
Although unidirectional UPRE can support the functionality of bidirectional
UPRE by generating two re-encryption keys rkf→t and rkt→f , it is not clear
whether security is preserved. We focus on unidirectional UPRE in this study.

Functionality and Security. We introduce the correctness and a security notion
of UPRE that we call security against honest re-encryption attacks (HRA) for
UPRE. Correctness is easy to understand.

This HRA for UPRE is based on security against HRA of PRE introduced by
Cohen [Coh19]. Roughly speaking, in the setting of HRA, adversaries are allowed
to obtain an honestly encrypted ciphertext via an honest encryption oracle and
can convert it into a re-encrypted ciphertext under a key of a corrupted user via
a re-encryption oracle. In PRE-CPA security, adversaries cannot obtain such a
re-encrypted ciphertext because it is not allowed to obtain a re-encryption key
query from an honest user to a corrupted user via the re-encryption key oracle to
prevent trivial attacks7. Cohen observes that PRE-CPA security is not sufficient
for many applications of PRE. Therefore, we define HRA-security for UPRE (in
fact, we also define a selective variant).

First, we consider single-hop UPRE, where if a ciphertext is converted into
another ciphertext, then we cannot convert the re-encrypted one anymore.

Definition 2.3 (UPRE for PKE: Single-Hop Correctness). A relaxed
UPRE scheme UPRE for PKE is correct if for all pairs of PKE schemes (Σσf

, Σσt),
(pkf , skf ) ← Genσf

(1λf ), (pkt, skt) ← Genσt
(1λt), m ∈ Mσf

∩ Mσt
, ctf ←

Encσf
(pkf ,m), it holds that

Pr[mDec(Σσt
, skt,ReEnc(Σ′,ReKeyGen(Σ′, skf , pkt), ctf )) = m] = 1,

where Σ′ := (Σσf
, Σσt

). In the case of UPRE, mDec(Σσt
, ·, ·) = Decσt

(·, ·).

Before we present the definition of the HRA security for UPRE, we give
an informal explanation about it. Readers who are familiar with PRE-HRA
security [Coh19] may be able to skip explanations below and jump into the formal
definition. Readers who are familiar with PRE-CPA security [ABH09,Coh19] may
7 Of course, a re-encryption query from an honest user to a corrupted user is also
prohibited in PRE-CPA security.
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be able to skip explanations below except “Honest encryption and re-encryption
query” part.
Challenge query: We consider a natural extension of the CPA security of
PKE. The adversary selects a target public-key pki∗ indexed by i∗ and tries to
distinguish whether a target ciphertext cti∗ is an encryption of m0 or m1 that it
selects. This will be modeled by the challenge oracle Ocha.
Key query: The adversary can be given public keys pki or key pairs (pki, ski)
by specifying a user and a PKE scheme at the setup phase since we consider
multiple keys and schemes. When a secret key is given, it means its owner is
corrupted.
Re-encryption key query: The most notable feature is that the adversary is
given re-encryption keys by the re-encryption key oracle Orekey. If the adversary
specifies existing indices of keys, say (i, j), then it is given a corresponding re-
encryption key from i to j. Here, we must restrict queries for some indices to
prevent trivial attacks. If j is a corrupted user and i is the target user (queried
to Ocha), then the adversary trivially wins the security game by converting the
target ciphertext and decrypting with the corrupted key skj . Therefore, such
queries must be prohibited.
Honest encryption and re-encryption query: If the adversary specifies keys
and a ciphertext to the re-encryption oracle Oreenc, then it is given a re-encrypted
ciphertext generated from queried values. One might think this oracle is redun-
dant since it is simulatable by Orekey. However, there is a subtle issue here since
a re-encryption key query with a corrupted delegatee is prohibited as explained
above. As Cohen observed [Coh19] in the setting of PRE, simply prohibiting
such a query is not sufficient and considering re-encryption queries is meaningful.

Re-encrypted ciphertexts may leak information about a delegator key pair
and help to attack a delegator ciphertext. As Cohen observed [Coh19], if a re-
encryption key is Enc(pkt, skf ) and it is included in a re-encrypted ciphertext,
then the delegatee easily breaks security. This is unsatisfactory when we con-
sider applications of PRE and UPRE. However, in the setting of PRE, such
a construction is secure under the standard CPA-security model since it pro-
hibits queries (i, j) (resp. (i, j, cti)) to the re-encryption key generation (resp.
re-encryption) oracle [Coh19]. Thus, we introduce the notion of derivative and
the honest encryption oracle Oenc in UPRE as Cohen did.

We say that a (re-encrypted) ciphertext is a derivative if it is the target
ciphertext generated by the challenge oracle or a re-encrypted ciphertext from
the target ciphertext. This is managed by a set Drv. The honest encryption oracle
allows the adversary to obtain a re-encrypted ciphertext under a corrupted key
from honest encryption. The re-encryption oracle does not accept queries whose
delegatee is a corrupted user j and ciphertext is a derivative to prevent trivial
attacks. Moreover, the re-encryption oracle does not accept ciphertexts that are
not generated via the honest encryption oracle.

Definition 2.4 (Derivative). We say that a (re-encrypted) ciphertext is a
derivative when the (re-encrypted) ciphertext is a target ciphertext itself or
obtained from a target ciphertext given by Ocha by applying re-encryption.
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Definition 2.5 (UPRE for PKE: Single-Hop selective HRA Security).
We define the experiment Expupre-hra

A (1λ, b) between an adversary A and a chal-
lenger. The experiment consists of three phases.
Phase 1 (Setup): This is the setup phase. All security parameters are chosen
by the challenger.

– The challenger initializes #Keys := 0,HList := ∅,CList := ∅, #CT := 0,
KeyCTList := ∅, Drv := ∅. Note that we assume that all indices are recorded
with keys and corresponding schemes though we do not explicitly write for
simplicity.

– For an honest key query (i, σi, λi) from A, if the challenger already received
(i, ∗, ∗) before, it outputs ⊥. Otherwise, the challenger generates uncorrupted
keys (pki, ski)← Genσi

(1λi), sends (Σσi
, pki) to A, and sets HList := HList∪i

and #Keys := #Keys + 1. If λi < λ, then the challenger ignores the query.8
– For a corrupted key query (i, σi, λi) from A, if the challenger already received

(i, ∗, ∗) before, it outputs ⊥. Otherwise, the challenger generates corrupted keys
(pki, ski)← Genσi(1λi), sends (Σσi , pki, ski) to A, and sets CList := CList ∪ i
and #Keys := #Keys + 1.

Let MU be the intersection of all message spaces defined by pki1 , . . . , pki#Keys
.

At the end of Phase 1, we assume that the list ((1, σ1), . . . , (#Keys, σ#Keys)) is
broadcasted and all entities know it.
Phase 2 (Oracle query): This is the oracle query phase.

Oenc(i,m): For an honest encryption query (i,m) where i ≤ #Keys, the chal-
lenger generates cti ← Encσi(pki,m), sets #CT := #CT+1, records (cti, Σσi , i,
#CT) in KeyCTList, and gives (cti,#CT) to A.

Orekey(i, j): For a re-encryption key query (i, j) where i, j ≤ #Keys, the chal-
lenger outputs ⊥ if i = j or i ∈ HList ∧ j ∈ CList. Otherwise, the challenger
generates rki→j ← ReKeyGen(Σσi

, Σσj
, ski, pkj) and gives rki→j to A.

Oreenc(i, j, k): For a re-encryption query (i, j, k) where i, j ≤ #Keys and k ≤
#CT, the challenger does the following.
1. If j ∈ CList ∧ k ∈ Drv, then returns ⊥.
2. If there is no value (∗, ∗, i, k) in KeyCTList, returns ⊥.
3. Otherwise, retrieves rki→j for (i, j) (if it does not exists, generates

rki→j ← ReKeyGen(Σσi
, Σσj

, ski, pkj) and stores it), generates rct ←
ReEnc(Σσi , Σσj , rki→j , cti) from cti in KeyCTList, sets #CT := #CT + 1,
records (rct, Σσj , j,#CT) in KeyCTList, and gives (rct,#CT) to A.

Ocha(i∗,m0,m1): This oracle is invoked only once. For a challenge query (i∗,m0,m1)
where i∗ ∈ HList and m0,m1,∈ MU (defined at the end of Phase 1), the
challenger generates ct∗ ← Encσi∗ (pki∗ ,mb), gives it to A, and sets #CT :=
#CT+1, Drv := Drv∪{#CT}, KeyCTList := KeyCTList∪{(ct∗, Σσi∗ , i

∗,#CT)}.

Phase 3 (Decision) : This is the decision phase. A outputs a guess b′ for b.
The experiment outputs b′.

8 If we prefer longer security parameters, then we can change the condition to λi < cλ
for some constant c > 1.



14 N. Döttling, R. Nishimaki

We say the UPRE is single-hop UPRE-HRA secure if, for any σi ∈ [N ], for
any PPT A, it holds that

Advupre-hra
A (λ) := |Pr[Expupre-hra

A (1λ, 0) = 1]− Pr[Expupre-hra
A (1λ, 1) = 1]| ≤ negl(λ).

Discussion on Def. 2.5. (1) On security parameter: We can simply set ∀i λi := λ.
Some λj may be longer than other λi (say, λj = poly(λi)). (2) On adaptive
corruption: The adversary is not allowed to adaptively corrupt users during the
experiment. This is because, in general, it is difficult to achieve security against
adaptive corruption. In particular, in our setting, Orekey cannot decide whether it
should return ⊥ or a valid re-encryption key if j may be corrupted later. This
static security is standard in the PRE setting [AFGH05,CH07,LV08,ABH09]. One
exception is the work by Fuchsbauer, Kamath, Klein, and Pietrzak [FKKP19].
We do not know whether the techniques by Fuchbauer et al. are applicable to
the UPRE setting. This is an interesting future work. The honest and corrupted
key generation queries could be moved to the oracle query phase, but it does not
incur a significant difference. Thus, we select a simpler model as most works on
re-encryption did [AFGH05,LV08,ABH09,Coh19].

Knowledgeable readers might think a UPRE definition based on the PRE
definition by Chow et al.[CWYD10] is better than the definition above. In the
PRE setting, the defition by Chow et al. might be stronger than that by Cohen.
However, the relationship between them is not formally studied. Thus, which
definition is better or not is out of scope of this paper.

2.2 Unidirectional Multi-Hop UPRE

In this section, we introduce multi-hop UPRE, which is an extension of single-
hop UPRE, where a re-encrypted ciphertext rct generated by rkf→t could be
re-encrypted many times. Let L = L(λ) be the maximum number of hops that a
UPRE scheme can support.

Definition 2.6 (UPRE for PKE: L-hop Correctness). A multi-hop UPRE
scheme mUPRE for PKE is L-hop correct if for all PKE schemes (Σσ0 , Σσ1 , . . . ,
ΣσL

) that satisfy correctness and σi−1 6= σi for all i ∈ [L], (pki, ski)← Genσi
(1λi)

(for all i = 0, . . . , L), m ∈Mσ0 ∩ · · · ∩MσL
, ct0 ← Encσ0(pk0,m), it holds that

Pr[mDec(Σσj , skj , rct(j), j) = m] = 1

where rct(j) ← ReEnc(Σ′j ,ReKeyGen(Σ′j , skj−1, pkj), rct(j−1)), rct(0) = ct0, Σ′j :=
(Σσj−1 , Σσj ) and j ∈ [1, L].

The reason why mDec is indexed by j is that the decryption procedure for
j-times re-encrypted ciphertexts might be different. See Section 3 as a concrete
example.

The security notion of multi-hop UPRE is similar to that of single-hop one,
but slightly more complex since we consider many intermediate keys from a
delegator to a delegatee. In particular, we use a directed acyclic graph (DAG) to
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reflect the relationships among keys. A user is modeled as a vertex in a graph
and if there exists a re-encryption key from vertex (user) i to vertex (user) j,
then a directed edge (i, j) is assigned between the vertices (note that edge (i, j) is
not equal to (j, i) since we consider DAGs). That is, a DAG G = (V,E) denotes
that V is a set of users and E is a set of index pairs whose re-encryption key was
issued. We do not consider cyclic graphs in this study since it incurs an issue of
circular security in our constructions9.

We introduce the notion of admissible edges to exclude trivial attacks by using
oracles. Roughly speaking, an admissible edge means that ciphertexts under a
target public key will not be converted into ciphertexts under corrupted public
keys in CList. We denote by i j there exists a path from vertex i to vertex j
in G.

Definition 2.7 (Admissible edge). We say that (i, j) is an admissible edge
with respect to G = (V,E) if, in E ∪ (i, j), there does not exist a path from any
vertex i∗ ∈ HList (honest user set fixed at the setup phase) to j∗ ∈ CList such
that the path includes edge (i, j) as an intermediate edge (this includes the case
j = j∗). That is, no i∗ ∈ HList, j∗ ∈ CList such that a path i∗  j∗ exists in
G′ = (V,E ∪ (i, j)).

We also introduce the notion of the selective-graph model as a weaker attack
model. In the selective-graph model, the adversary must commit a graph G∗ =
(V ∗, E∗) at the beginning of an experiment. To formally define this model, we
define a deviating pair with respect to G∗ and G.

Definition 2.8 (deviating pair). We say that (i, j) is a deviating pair with
respect to G∗ = (V ∗, E∗) and G = (V,E) in the selective-graph model if i ∈
V ∗ ∧ j ∈ V or j ∈ V ∗ ∧ i ∈ V .

In the selective-graph model, the adversary must select i∗ ∈ V ∗ as the target
vertex that will be queried to Ocha. Moreover, the adversary is not given re-
encryption keys and re-encrypted ciphertexts from Orekey and Oreenc, respectively,
if queried (i, j) is a deviating pair. That is, the structure of DAG that is connected
to the target vertex must be determined at the beginning of the game. We focus
on security in the selective-graph model in this study since it is what our schemes
achieve. For admissible edges in the selective-graph model, we consider i∗ ∈ V ∗h
(defined below) instead of i∗ ∈ HList (i.e., replacing HList with V ∗h in Def. 2.7).

Definition 2.9 (UPRE for PKE: Multi-Hop selective-graph HRA Se-
curity). We define the experiment Expupre-msg-hra

A (1λ, b) between an adversary A
and a challenger. The experiment consists of three phases.
Phase 1 (Setup): This is the setup phase. All security parameters are chosen
by the challenger.

9 The circular security issue arises in constructions that use general PKE schemes. If
there exists a cycle, we have no way to use the CPA-security of a PKE scheme in
the cycle since the information of each secret key in the cycle is in a re-encryption
key in the cycle. This does not happen in concrete constructions based on some hard
problems such as the DDH.
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– The challenger initializes #Keys := 0,HList := ∅,CList := ∅,#CT := 0,KeyCTList :=
∅,Drv := ∅, V := ∅, E := ∅.

– At the beginning of this phase, A must commit a graph G∗ = (V ∗ =
(V ∗h , V ∗c ), E∗). We assume that V ∗ = {1, . . . , |V ∗|} by using appropriate
renaming. If there is an edge (i, j) ∈ E∗ such that i ∈ V ∗h ∧ j ∈ V ∗c , then the
game aborts. The challenger generates keys (pki, ski) ← Genσi

(1λi) for all
i ∈ V ∗ and sends {pki}i∈V ∗h ,

{
(pkj , skj)

}
j∈V ∗c

to A. We assume that A selects
(σi, λi) for all i ∈ V ∗ as the key generation queries below (if λi < λ for i ∈ V ∗h ,
then the game aborts). The challenger also generates rki→j ← ReKeyGen(Σσi ,
Σσj , ski, pkj) for all (i, j) ∈ E∗ and sends them to A. The challenger sets
HList := HList ∪ V ∗h , CList := CList ∪ V ∗c , and #Keys := #Keys + |V ∗|.

– For the i-th honest key generation query (σi, λi) from A, if λi < λ, the
challenger outputs ⊥. Otherwise, the challenger generates uncorrupted keys
(pki, ski) ← Genσi

(1λi), sends (Σσi
, pki) to A, and sets HList := HList ∪ i,

#Keys := #Keys + 1, and V := V ∪ {i}.
– For the j-th corrupted key generation query (j, σj , λj) from A, the challenger
generates corrupted keys (pki, ski)← Genσi(1λi), sends (Σσi , pki, ski) to A,
and sets CList := CList ∪ i, #Keys := #Keys + 1, and V := V ∪ {i}.

– The challenger maintains graph G := (V,E) during the experiment. Note that
we assume that all keys and schemes are recorded with vertices and edges
though we do not explicitly write for simplicity.

Phase 2 (Oracle query): This is the oracle query phase.

Oenc(i,m): For an honest encryption query (i,m) where i ≤ #Keys, the chal-
lenger generates cti ← Encσi(pki,m), sets #CT := #CT+1, record (cti, Σσi , i,
#CT) in KeyCTList, and gives (cti,#CT) to A.

Orekey(i, j): For a re-encryption key query (i, j) where i, j ≤ #Keys, the chal-
lenger does the following.
1. If i ∈ V ∗ or j ∈ V ∗ or i = j, then output ⊥.
2. Otherwise, the challenger generates rki→j ← ReKeyGen(Σσi

, Σσj
, ski,

pkj) and updates E := E ∪ (i, j) and gives rki→j to A.
Oreenc(i, j, k): For a re-encryption query (i, j, k) where i, j ≤ #Keys and k ≤

#CT, the challenger does the following.
1. If (A) (i, j) is a deviating pair with respect to G∗ and G, or (B) (i, j) is

not an admissible edge with respect to G∗ = (V ∗, E∗) and k ∈ Drv, then
returns ⊥.

2. If there is no (∗, ∗, i, k) in KeyCTList, then outputs ⊥.
3. Otherwise, generates rki→j ← ReKeyGen(Σσi , Σσj , ski, pkj) and rctj ←

ReEnc(Σσi , Σσj , rki→j , rcti) from rcti in KeyCTList, sets #CT := #CT+1,
records (rctj , Σσj

, j,#CT) in KeyCTList, and gives (#CT, rctj) to A. If
k ∈ Drv, then also sets Drv := Drv ∪ {#CT}.

Ocha(i∗,m0,m1): This oracle is invoked only once. For a challenge query (i∗,m0,m1)
where i∗ ∈ V ∗h and m0,m1,∈ MU (same as defined in Def. 2.5), the
challenger generates ct∗ ← Encσi∗ (pki∗ ,mb) and gives it to A. The chal-
lenger also sets #CT := #CT + 1, Drv := Drv ∪ {#CT}, KeyCTList :=
KeyCTList ∪ {(ct∗, Σσi∗ , i

∗,#CT)}.
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Phase 3 (Decision) : This is the decision phase. A outputs a guess b′ for b.
The experiment outputs b′.

We say the UPRE is multi-hop selective-graph UPRE-HRA secure if, for any
PPT A, it holds that

Advupre-msg-hra
A (λ) := |Pr[Expupre-msg-hra

A (1λ, 0) = 1]− Pr[Expupre-msg-hra
A (1λ, 1) = 1]| ≤ negl(λ).

UPRE-CPA Security. We can easily consider the CPA-security of UPRE. We can
obtain the security experiment of the CPA-security if we employ the following
items in the experiment of the HRA security.

1. The honest encryption oracle Oenc is not used.
2. Neither the set Drv nor number #CT is used.
3. The condition that Oreenc outputs ⊥ for a query (i, j) such that i ∈ HList∧j ∈

CList (or (i, j) is not an admissible edge) is used instead of the first and
second conditions of Oreenc in the experiment of the HRA security.

2.3 Security against Corrupted-Delegator Re-Encryption Attacks

Re-encrypted ciphertexts of relaxed UPRE schemes might include values that
leak information about a plaintext to a delegator (that is, an entity that has a
secret key for the original ciphertext). This is an important issue to use UPRE in
migration of encryption systems explained in Section 1.1. We will see a concrete
example in Section 3. To capture attacks on re-encrypted ciphertext by corrupted
delegator, we define a new security notion for UPRE (and PRE), security against
corrupted-delegator re-encryption attacks (CRA). We write the definition of the
UPRE case. The PRE case is similarly defined as PRE-CRA security. We can
also similarly define a single-hop variant.

Definition 2.10 (Selective-graph UPRE-CRA security). The experiment
Expupre-msg-cra
A (1λ, b) of this security notion is the same as that of multi-hop

selective-graph UPRE-HRA security except that the challenge oracle Ocha is
modified as follows.

Ocha(ic, i∗,m0,m1): This oracle is invoked only once. For a challenge query
(ic, i∗,m0,m1) where ic ∈ V ∗c ∧ i∗ ∈ V ∗h and m0,m1,∈ MU (same as
defined in Def. 2.5), the challenger does the following.
1. Generates ctic ← Encσic

(pkic ,mb).
2. Generates rkic→i∗ = ReKeyGen(Σσic

, Σσi∗ , skic , pki∗).
3. Generates rct∗ ← ReEnc(Σσic

, Σσi∗ , rkic→i∗ , ctic) and gives (rct∗, rkic→i∗)
to A.

The challenger also sets #CT := #CT+1, Drv := Drv∪{#CT}, KeyCTList :=
KeyCTList ∪ {(ct∗, Σσi∗ , i

∗,#CT)}.

We say the UPRE is multi-hop selective-graph UPRE-CRA secure if, for any PPT
A, it holds that

Advupre-msg-cra
A (λ) := |Pr[Expupre-msg-cra

A (1λ, 0) = 1]− Pr[Expupre-msg-cra
A (1λ, 1) = 1]| ≤ negl(λ).
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This definition means that adversaries that have secret key skic cannot break
the security of the re-encrypted ciphertext rct∗ generated from the ciphertext ctic
under pkic if they are not given the original ciphertext ctic (even if re-encryption
key rkic→i∗ is given). The fact that ctic is not given to A guarantees that A
cannot trivially break the security.

2.4 On Re-Encryption Simulatability

Cohen introduced the notion of re-encryption simulatability for PRE to prove
PRE-HRA security in a modular way [Coh19]. He proved that if a PRE scheme
is PRE-CPA secure and satisfies re-encryption simulatability10, then the scheme
is PRE-HRA secure.

The re-encryption simulatability is sufficient to prove PRE-HRA security (if
a PRE is PRE-CPA secure scheme) and useful. Thus, one might think it is better
to use re-encryption simulatability for UPRE. However, it is a slightly stronger
security notion. Our relaxed UPRE schemes in Sections 3 and 4 are UPRE-HRA
secure, yet does not satisfy re-encryption simulatability. Thus, we do not use
re-encryption simulatability to prove UPRE-HRA security in this study11.

2.5 UPRE for More Advanced Encryption

We give the basic definitions of UPRE for PKE in Sections 2.1 and 2.2. We
can consider more definitions for advanced encryption since UPRE is a general
concept.

CCA-security. First, we can consider CCA-security of UPRE for PKE. The
definition of CCA-security of UPRE for PKE could be defined in a similar way
to that of PRE [CH07,LV08,HKK+12] though it will be more complex. We leave
giving a formal definition of CCA-security and concrete constructions as an open
problem since they are not in the scope of this paper. The focus of this study is
that we initiate the study of UPRE, present the basic definition, and construct
concrete schemes from well-known cryptographic assumptions.

Beyond PKE. We can also consider not only UPRE for PKE but also UPRE for
identity-based encryption (IBE), attribute-based encryption (ABE), and func-
tional encryption (FE). Moreover, we can even consider UPRE from a primitive
to another primitive such as from IBE to FE. It is easier to consider UPRE
between the same primitive since additional inputs to encryption algorithms
10 Note that Cohen does not use key-privacy of PRE [ABH09] to prove PRE-HRA

security.
11 We could define a weaker variant of re-encryption simulatability for UPRE (and PRE)

that still implies HRA security. However, such a definition is not simple, and proofs
are not simplified. Proving such a weak re-encryption simulatability takes almost
the same efforts to prove HRA security directly. Thus, we do not use re-encryption
simulatability.
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such as an attribute in a delegator ciphertext can be recycled in a re-encrypted
ciphertext. Defining UPRE between different primitives is much challenging since
we have issues about how to set such additional inputs at re-encryption phase
and define security between different primitives. We leave these as open problems
since they are not in the scope of this paper.

3 Multi-Hop Construction based on Garbled Circuits

In this section, we provide a UPRE scheme using garbled circuits. The main idea
of the construction provided here is that the re-encryptor delegates decryption
to the target node via garbled circuits. To achieve UPRE, we use weak batch
encryption schemes, which are constructed from standard IND-CPA secure PKE
schemes.

3.1 Weak Batch Encryption

Definition 3.1 (Weak Batch Encryption). Let M be a message space. A
weak batch encryption scheme is a tuple of algorithms (BatchGen,BatchEnc,BatchDec)
where

– BatchGen(1λ, s) takes as input the security parameter and selection bits
s ∈ {0, 1}λ, and outputs a pair (p̂k, ŝk) of public and secret keys.

– BatchEnc(p̂k, {(mi,0,mi,1)}i∈[λ]) takes as input a public key p̂k and λ-pairs
of messages {(mi,0,mi,1)}i∈[λ] where mi,b ∈M, and outputs a ciphertext ĉt.

– BatchDec(ŝk, ĉt) takes as input a secret key ŝk and a ciphertext message ĉt,
and outputs {m′i}i∈[λ], or ⊥.

Correctness: For any λ, s ∈ {0, 1}λ, mi,b ∈M, we have that

Pr

∀i m′i = mi,s[i]

∣∣∣∣∣∣∣
(p̂k, ŝk)← BatchGen(1λ, s),

ĉt← BatchEnc(p̂k, {(mi,0,mi,1)}i∈[λ]),
{m′i}i∈[λ] ← BatchDec(ŝk, ĉt)

 > 1−negl(λ),

where s[i] denotes i-th bit of s.
Receiver Privacy: We require that public keys p̂k are independent of the se-

lection bits s ∈ {0, 1}λ used to generate p̂k. That is, for all s1, s2 it holds
that

p̂k1 ≡ p̂k2

where (p̂k1, ŝk1)← BatchGen(1λ, s1) and (p̂k2, ŝk2)← BatchGen(1λ, s2) and
≡ means the statistical distance is equal to 0.

Sender Privacy against Semi-Honest Receiver: We define the experiment
Expwbe-cpa
A (1λ, β) between an adversary A and challenger as follows.

1. A chooses s ∈ {0, 1}λ and sends it to the challenger.
2. The challenger computes (p̂k, ŝk)← BatchGen(1λ, s) and sends p̂k to A.
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3. A sends {(mi,0,mi,1)}i∈[λ] to the challenger and:
– If β = 0, the challenger computes ĉt∗ ← BatchEnc(p̂k, {(mi,0,mi,1)}).
– Else if β = 1, the challenger computes ĉt∗ ← BatchEnc(p̂k,

{
(mi,s[i],mi,s[i])

}
).

4. The challenger sends (ŝk, ĉt∗) to A.
5. A outputs a guess β′ for β. The experiment outputs β′.

We say (BatchGen,BatchEnc,BatchDec) is WBE-CPA secure against semi-
honest receiver if for any PPT adversary A, it holds that

Advwbe-cpa
A (λ) := |Pr[Expwbe-cpa

A (1λ, 0) = 1]− Pr[Expwbe-cpa
A (1λ, 1) = 1]| ≤ negl(λ).

We can consider a multi-challenge variant. That is, A can send {(m(j)
i,0 ,m

(j)
i,1 )}i∈[λ]

and obtain many target ciphertexts after (p̂k, ŝk) is given for j = 1, . . . ,poly(λ).
IND-CPA Security: The experiment Expind-cpa

A (1λ, β) is the same as Expwbe-cpa
A (1λ, β)

above except that
1. A is not given ŝk.
2. If β = 1, then ĉt∗ ← BatchEnc(p̂k, {(0,0)}) where 0 is a fixed special

message (considered as all zero) that does not depend on β.
If Pr[Expind-cpa

A (1λ, 0) = 1] − Pr[Expind-cpa
A (1λ, 1) = 1] is negligible, then the

weak batch encryption is IND-CPA secure.

The difference between weak batch encryption and batch encryption proposed
by Brakerski, Lombardi, Segev, and Vaikuntanathan [BLSV18] is that there is
no efficiency requirement on the size of the batch public-key p̂k. Thus, it is easy
to achieve weak batch encryption.

Theorem 3.1 (Weak Batch Encryption from IND-CPA PKE). If there
exists IND-CPA secure PKE, then there exists weak batch encryption.

Proof. Let Σ = (Gen,Enc,Dec) be an IND-CPA secure PKE scheme.

BatchGen(1λ, s): It generates (pki,b, ski,b)← Gen(1λ) for all i ∈ [λ] and b ∈ {0, 1}
and outputs p̂k :=

{
pki,b

}
i∈[λ],b∈{0,1} and ŝk :=

{
ski,s[i]

}
i∈[λ].

BatchEnc(p̂k, {(mi,0,mi,1)}i∈[λ]): It generates cti,b ← Enc(pki,b,mi,b) for all i ∈
[λ] and b ∈ {0, 1}. It outputs ĉt := {cti,b}i∈[λ],b∈{0,1} .

BatchDec(ŝk, ĉt): It parses ŝk = (sk1, . . . , skλ) and ĉt = {cti,b}i∈[λ],b∈{0,1} . It
computes m′i ← Dec(ski, cti,b) for b ∈ {0, 1} and sets mi := m′i,b if m′i,b 6= ⊥.
It outputs {mi}i∈[λ].

The receiver privacy trivially holds since p̂k does not include any information
about s. The sender privacy follows from the IND-CPA security of Σ and the
standard hybrid argument because {ski,1−s[i]}i∈[λ] are never used. Moreover, it is
easy to see that the scheme satisfies the multi-challenge version by the standard
hybrid argument. The IND-CPA security trivially holds.
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3.2 Our Multi-Hop Scheme from GC

Our scheme UPREgc is based on a garbling scheme (Garble,Eval), a weak batch-
encryption scheme (BatchGen,BatchEnc,BatchDec) and a 2-player secret-sharing
scheme (Share,Reconstruct). We overload the notationΣσi

= (Genσi
,Encσi

,Decσi
)

by Σi = (Geni,Enci,Deci) for ease of notation. Moreover, we sometimes write
labels instead of {labelsk,b}k∈[n],b∈{0,1} if it is clear from the context for ease of
notation. We also denote by labelss labels selected by s, that is, {labelsi,si}i∈[λ].
Moreover, l̃abels basically denotes selected labels output by BatchDec.

– ReKeyGen(1λ, Σf , Σt, skf , pkt):
• Compute (s1, s2)← Share(skf )
• (p̂k, ŝk)← BatchGen(1λ, s1)
• Compute c̃tt ← Enct(pkt, ŝk)
• Output rkf→t := (p̂k, s2, c̃tt).

– ReEnc(Σf , Σt, rkf→t, ctf ):
• Parse rkf→t = (p̂k, s2, c̃tt).
• If ctf is in the ciphertext space of Σf (1st level), set C← P[s2, ctf ]; Else if
(level i > 1), parse ctf = (ĉt′, c̃tf , C̃i−1, . . . , C̃1) and set C← Q[s2, ĉt′, c̃tf ]
• Compute (C̃i, labels)← Garble(C).
• Compute ĉt← BatchEnc(p̂k, labels)
• Output (ĉt, c̃tt, C̃i, . . . , C̃1)

– mDec(Σt, skt, rct, i): Parse rct = (ĉt, c̃tt, C̃i, . . . , C̃1).
• Compute ŝk′ ← Dec(skt, c̃tt).
• Compute l̃abelsi ← BatchDec(ŝk′, ĉt)
• For j = i, . . . , 2 do: Compute l̃abelsj−1 ← Eval(C̃j , l̃abelsj).
• Compute and output m′ ← Eval(C̃1, l̃abels1).

First Level Re-Encryption Circuit P[s2, ctf ](s1)

Hardwired: s2, ctf .
Input: A share s1.

– Compute sk′
f ← Reconstruct(s1, s2).

– Compute and output m′ ← Decf (sk′
f , ctf ).

Fig. 1. The description of the first level re-encryption circuit P
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Higher Level Re-Encryption Circuit Q[s2, ĉt′, c̃tf ](s1)

Hardwired: s2, ĉt′, c̃tf .
Input: A share s1.

– Compute sk′
f ← Reconstruct(s1, s2).

– Compute ŝk′ ← Dec(sk′
f , c̃tf ).

– Compute and output l̃abels← BatchDec(ŝk′, ĉt′).

Fig. 2. The description of the higher level re-encryption circuit Q

Correctness. We now turn to the correctness of (ReKeyGen,ReEnc,mDec). We
will show correctness via induction.

We will first show correctness for level 1 ciphertexts. Let thus rct = (ĉt, c̃tt, C̃1)
be a level 1 ciphertext, where (C̃1, labels)← Garble(P[s2, ctf ]), ĉt = BatchEnc(p̂k, labels)
and c̃tt = Enct(pkt, ŝk). Consider the computation of mDec(Σt, skt, rct). By the
correctness of Σt it holds that ŝk′ = Dec(skt, c̃tt) = ŝk. Next, by the correct-
ness of the batch public key encryption (BatchGen,BatchEnc,BatchDec) it holds
that that l̃abels = BatchDec(ŝk, ĉt) = labelss1 . Thus, by the correctness of the
garbling scheme (Garble,Eval) it holds that Eval(C̃1, l̃abels) = Eval(C̃1, labelss1) =
P[s2, ctf ](s1). By the definition of P, P[s2, ctf ](s1) computes skf ← Reconstruct(s1, s2)
and outputs m′ ← Decf (sk′f , ctf ). Thus, by the correctness of (Share,Reconstruct)
it holds that sk′f = skf and finally by the correctness of Σf we get that m′ = m.

Now assume that decryption is correct for level (i − 1) ciphertexts and
consider a ciphertext rct = (ĉt, c̃tt, C̃i, . . . , C̃1) at level i > 1. As before, it
holds that (C̃i, labels) ← Garble(Q[s2, ĉt′, c̃tf ]), ĉt = BatchEnc(p̂k, labels) and
c̃tt = Enct(pkt, ŝk). Again consider the computation of mDec(Σt, skt, rct). By the
correctness of Σt it holds that ŝk′ = Dec(skt, c̃tt) = ŝk. Next, by the correctness of
the batch public key encryption scheme (BatchGen,BatchEnc,BatchDec) it holds
that that l̃abels = BatchDec(ŝk, ĉt) = labelss1 . Thus, by the correctness of the
garbling scheme (Garble,Eval) it holds that Eval(C̃i, l̃abelsi) = Eval(C̃i, l̃abelss1) =
Q[s2, ĉt′, c̃tf ](s1).

Notice now that we can substitute Q[s2, ĉt′, c̃tf ](s1) by

– Compute sk′f ← Reconstruct(s1, s2).
– Compute ŝk← Dec(skf , c̃tf ).
– Compute l̃abels← BatchDec(ŝk, ĉt′).

By the correctness of (Share,Reconstruct) it holds that sk′f = Reconstruct(s1, s2) =
skf . By inspection we see that the remaining steps of the computation are iden-
tical to the decryption of a level (i − 1) ciphertext. The induction hypothesis
provides that decryption is correct for level (i− 1) ciphertexts and we are done.
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3.3 Security Proof

Theorem 3.2 (UPRE-HRA security). Assume that gc = (Garble,Eval) is
a selectively secure garbling scheme, (Share,Reconstruct) is a 2-out-of-2 secret
sharing scheme and (BatchGen,BatchEnc,BatchDec) is a weak batch encryption
scheme in the sense of Def. 3.1, and both Σf and Σt are IND-CPA secure PKE,
then UPREgc is selective-graph UPRE-HRA secure.

Proof. We define a sequence of hybrid experiments HybxA(b). We emphasize differ-
ences among hybrid experiments by using red underlines. Hereafter, HybxA(b) ≈
HybyA(b) denotes |Pr[HybxA(b) = 1]− Pr[HybyA(b) = 1]| ≤ negl(λ). We say that a
ciphertext ct is a level i re-encryption, if ct is of the form ct = (ĉt, c̃tt, C̃i, . . . , C̃1),
i.e. ct is the result of i re-encryptions.

Hyb0
A(b): The first experiment is the original security experiment for b, Expupre-msg-hra

A
(1λ, b). That is, it holds that Hyb0

A(b) = Expupre-msg-hra
A (1λ, b). Note that in the

successive experiments, we can easily simulate all keys in G = (V,E) since
vertices in V are not connected to the target vertex in G∗ and simulators
can generate keys for them by itself.

Hyb0′
A(b): This experiment is the same as Hyb0

A(b) except that we guess the
target vertex i∗ that will be queried to challenge oracle Ocha and abort
if the guess is incorrect. The guess is correct with probability 1/|V ∗h |, so
Pr[Hyb0′

A(b) = 1] = 1
|V ∗h |
· Pr[Hyb0

A(b) = 1].
Hyb1

A(b): In this hybrid we record not only (rcti, Σi, i,#CT) but also m in
KeyCTList for encryption query (i,m).
Moreover, for each re-encryption query, store the value l̃abels = labelss1 .

The modification between Hyb0′
A(b) and Hyb1

A(b) is merely syntactic, thus it
holds that Pr[Hyb0′

A(b) = 1] = Pr[Hyb1
A(b) = 1].

We will now replace re-encrypted ciphertexts by simulated re-encrypted
ciphertexts. For re-encryption query (̂i, j, k) such that (̂i, j) is not an admissible
edge with respect to G∗ = (V ∗, E∗) and k /∈ Drv, the re-encrypted ciphertext is
differently generated by a modified re-encryption procedure. We can assume î is
honest since we do not need guarantee anything if î is not honest. The goal of the
processes below is erasing secret keys of honest vertices queried by re-encryption
queries. Note that î = i∗ is possible due to the restriction k /∈ Drv though (̂i, j) is
not admissible. We repeat the processes below for u = 1, . . . , Qreenc where Qreenc
is the total number of tuples (̂i, j, k) such that (̂i, j) is not an admissible edge
with respect to G∗ = (V ∗, E∗) and k /∈ Drv. Without loss of generality, we can
assume that each î is different for each such re-encryption query.12 The changes
in experiments below are for re-encryption query for u-th tuple (̂i, j, k) such that
(̂i, j) is not an admissible edge with respect to G∗ = (V ∗, E∗) and k /∈ Drv.
12 If there exists (̂i, j1, k1) and (̂i, j2, k2) such that (̂i, j1) and (̂i, j2) are not admissible

and k1, k2 /∈ Drv, then we can use the same simulation process described in hybrid
experiments for those queries.
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Hyb1,u,1
A (b): This is the same as Hyb1,(u−1),3

A except that: Retrieve s1 of î,
– Parse rk̂

i→j = (p̂k, s2, c̃tj).
– If ctf is in the ciphertext space of Σf , set C← P[s2, ct̂

i
]; Else if, parse

ctf = (ĉt′, c̃tf , C̃i−1, . . . , C̃1) and set C← Q[s2, ĉt′, c̃t̂
i
].

– Compute (C̃ι, labels)← Garble(C).
– Compute labels∗ ←

{
(labelsi,s1[i], labelsi,s1[i])

}
i∈[λ]

– Compute ĉt← BatchEnc(p̂k, labels∗).
– Output (ĉt, c̃tj , C̃ι, . . . , C̃1).

That is, we compute ĉt via BatchEnc(p̂k, labels∗) instead of BatchEnc(p̂k, labels).
Hyb1,u,2

A (b): This is the same as Hyb1,u,1
A except that: Retrieve s1 of î,

– Parse rk̂
i→j = (p̂k, s2, c̃tj).

– If ctf is in the ciphertext space of Σf , set C← P[s2, ct̂
i
]; Else if, parse

ctf = (ĉt′, c̃tf , C̃i−1, . . . , C̃1) and set C← Q[s2, ĉt′, c̃t̂
i
].

– Compute (C̃ι, l̃abels)← GCSim(C(s1)).
– Compute labels∗ ← (l̃abels, l̃abels).
– Compute ĉt← BatchEnc(p̂k, labels∗).
– Output (ĉt, c̃tj , C̃ι, . . . , C̃1).

Hyb1,u,3
A (b): This is the same as Hyb1,u,2

A (b) except that: Retrieve m and labels
l̃abels

′
(corresponding to ĉt′),

– Parse rk̂
i→j = (p̂k, s2, c̃tj).

– If ctf is in the ciphertext space ofΣf , set compute (C̃ι, l̃abels)← GCSim(m);

Else if, parse ctf = (ĉt′, c̃tf , C̃i−1, . . . , C̃1) and compute (C̃ι, l̃abels)← GCSim(l̃abels
′
).

– Compute labels∗ ← (l̃abels, l̃abels).
– Compute ĉt← BatchEnc(p̂k, labels∗).
– Output (ĉt, c̃tj , C̃ι, . . . , C̃1).

For syntactic convention, we let Hyb1,0,3
A (b) := Hyb1

A(b). Moreover, notice that at
hybrid Hyb1,Qreenc,3

A (b) all re-encryption queries are simulated with garbled circuits
and their labels that do not depends on secret keys (or more specifically, without
values that depend on secret keys). That is, we do not explicitly use ski∗ to
compute re-encrypted ciphertexts as above. However, in p̂k and s2, information
about ski∗ still remains. We will handles these issues in the following process.

Process for removing ski∗ of the target vertex. Now, we focus on vertices in
V ∗ connected via admissible edges. To use the security of Σi∗ , we need remove
information about ski∗ from all re-encryption keys in G∗ = (V ∗, E∗) possibly
connected to i∗. Let Q be the total number of admissible edges connected to
target vertex i∗. We call the following procedure a depth-search from vertex i:
We seek a vertex that is connected to i and does not have an outgoing edge in a
forward direction. If there is a vertex i′ (possibly i′ = i) that has two or more
than two edges during the search, then we select a vertex i′1 that is not searched
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yet and is numbered by the smallest number, and set a flag such that the vertex
is already searched to i′1. We scan G∗ = (V ∗, E∗) by the depth-search as follows.

First, we do a depth-search from i∗ and find a vertex j such that j does not
have an outgoing edge.

Repeat the following process.
1. (Backward scan process) Go back to the vertex i′ that has two or more

than two edges. If there is no such a vertex, then we end. If an edge was
scanned by this backward scan, then we set a “scanned” flag to the edge.

2. Do the depth-search from i′.

During the backward scan process above, we repeat the hybrid transitions Hyb2,v,1
A ,

Hyb2,v,2
A , and Hyb2,v,3

A below whenever we move on a edge where v = 1, . . . , Q.
We let Dlist be the list of vertices whose re-encryption key consists of a simulated
and dummy values. That is, if j ∈ Dlist, then rki→j = (p̂k, s2,Enc(pkj , 0n))
where (p̂k, ŝk)← BatchGen(0n) and (s1, s2)← Share(0n) for any i. We initialize
Dlist := ∅ and maintain Dlist during the repeated processes below.

In the following hybrids we modify the key-generation for honest vertices.
That is, all changes in the experiments are in the computation of rki→j .

Hyb2,v,1
A (b) : At this point, we are at vertex i and edge (i, j) was just scanned.
– Compute (s1, s2)← Share(ski)
– Compute (p̂k, ŝk)← BatchGen(s1).
– Compute c̃tj ← Encj(pkj , 0n)
– Output rki→j := (p̂k, s2, c̃tj).

That is, we compute c̃tj ← Encj(pkj , 0n) instead of c̃tj ← Encj(pkj , (s1, ŝk)).
Hyb2,v,2

A (b) :
– Compute (s1, s2)← Share(ski)
– Compute (p̂k, ŝk)← BatchGen(0n).
– Compute c̃tj ← Encj(pkj , 0n)
– Output rki→j := (p̂k, s2, c̃tj).

Hyb2,v,3
A (b) :
– Compute (s1, s2)← Share(0n)
– Compute (p̂k, ŝk)← BatchGen(0n).
– Compute c̃tj ← Encj(pkj , 0n)
– Output rki→j := (p̂k, s2, c̃tj) and renew Dlist := Dlist ∪ {j}.

For syntactic convention, we let Hyb2,0,3
A (b) := Hyb1,Qreenc,3

A (b).
Now, we prove indistinguishability of hybrid games. First notice that by

correctness of (Share,Reconstruct) and (BatchGen,BatchEnc,BatchDec) the mod-
ification between Hyb1,u,2

A (b) and Hyb1,u,3
A (b) is merely syntactic and the following

lemma holds.

Lemma 3.1. It holds that Hyb1,u,2
A (b) = Hyb1,u,3

A (b).
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Proof. This immediately holds since m and l̃abels
′
are outputs of C(s1) when

C = P and C = Q, respectively.

Indistinguishability of Hyb1,(u−1),3
A (b) and Hyb1,u,1

A (b)is shown in Lemma 3.2,
whereas indistinguishability of Hyb1,u,1

A (b) and Hyb1,u,2
A (b)is shown in Lemma 3.3.

Lemma 3.2. If (BatchGen,BatchEnc,BatchDec) is WBE-CPA secure, then it
holds that Hyb1,u,1

A (b) ≈ Hyb1,(u−1),3
A (b).

Proof of Lem. 3.2. We will construct a reduction B which breaks the sender pri-
vacy of (BatchGen,BatchEnc,BatchDec). The reduction B answers re-encryption
queries as follows. From the first to (u−1)-th re-encryption queries are handled as
in Hyb1,u,1

A (b). From the (u+ 1)-th to Qreenc-th re-encryption queries are handled
as in Hyb1,(u−1),3

A (b). B can simulate all oracles since B can generate secret keys
by itself. For the u-th query (̂i, j, k) such that (̂i, j) is not an admissible edge with
respect to G∗ and k /∈ Drv, B embeds its own challenge. That is, B sends s1 and
labels to the experiment and obtains (p̂k, ŝk, ĉt). It then uses these values in its
own simulation. Clearly, if ĉt = BatchEnc(p̂k, labels), then this query is handled
as in Hyb1,(u−1),3

A (b). On the other hand, if ĉt = BatchEnc(p̂k, labels∗), then the
query is handled as in Hyb1,u,1

A (b).

Lemma 3.3. If gc = (Garble,Eval) is a selectively secure garbling scheme, then
it holds that Hyb1,u,2

A (b) ≈ Hyb1,u,1
A (b).

Proof of Lem. 3.3. We will construct a reduction B which breaks the security
of (Garble,Eval). As in the proof of Lemma 3.2, from the first to (u − 1)-th
re-encryption queries are handled as in Hyb1,u,2

A (b) and from the (u + 1)-th to
Qreenc-th re-encryption queries are handled as in Hyb1,u,1

A (b). B can simulate all
oracles since B can generate secret keys by itself. B will embed its challenge in
the u-th re-encryption query (̂i, j, k) such that (̂i, j) is not an admissible edge
with respect to G∗ and k /∈ Drv. That is, B sends (C, s1) to the experiment
and obtains (C̃, l̃abels). It then uses these values in its own simulation. Clearly,
if (C̃, labels) = Grbl(C) and l̃abels = labelss1 , then this query is handled as in
Hyb1,u,1

A (b). On the other hand, if (C̃, l̃abels) = GCSim(C(s1)), then the query is
handled as in Hyb1,u,2

A (b).

Lemma 3.4. If Σj is CPA-secure, then it holds that Hyb2,(v−1),3
A

c
≈ Hyb2,v,1

A .

Proof. First, at this point, honest vertex j does not have any not-scanned edge.
That is, we never use skj for simulation at this point. We can construct an
adversary B that is given pkj . B sends (ŝk, 0n) as a challenge message pair and
receive a target ciphertext c̃t∗j . B uses c̃t∗j as a part of rki→j . Thus, the lemma
immediately follows from the CPA-security of Σj .

Lemma 3.5. It holds that Hyb2,v,2
A (b) ≡ Hyb2,v,1

A (b)
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Proof. This follows from the fact that the distribution of p̂k is independent of
s1

Lemma 3.6. If (Share,Reconstruct) is 2-out-of-2 secrete sharing scheme, then
it holds that Hyb2,v,2

A (b) s
≈ Hyb2,v,3

A (b).

Proof. This immediately follows from the security of (Share,Reconstruct) since
s1 is not used anywhere at this point.

In Hyb2,Q,3
A (b), ski∗ is neither written in any re-encryption key nor used to

generate a re-encrypted ciphertext. Thus, we can use the security of Σi∗ . We
can prove that Hyb2,Q,3

A (0) c
≈ Hyb2,Q,3

A (1) holds due to the CPA-security of
Σi∗ . Therefore, it holds that Hyb0

A(0) c
≈ Hyb0

A(1) since Qreenc, Q and |V ∗h | are
polynomials.

4 Constant-Hop Construction Secure against CRA

In this section, we present constant-hop and CRA-secure UPRE schemes for PKE
based on GC. The design is almost the same as that of the scheme in Section 3
except that we encrypt the garbled circuit C̃ by using the delegatee’s public key
to hide information about the delegator’s ciphertext.

4.1 Our Constant-Hop Scheme from GC

Our scheme UPREcra is based on a on a garbling scheme (Garble,Eval), a weak
batch encryption scheme (BatchGen,BatchEnc,BatchDec) and a 2-player secret-
sharing scheme (Share,Reconstruct). As in Section 3, we overload the notation
Σσi

= (Genσi
,Encσi

,Decσi
) by Σi = (Geni,Enci,Deci) for ease of notation.

– ReKeyGen(1λ, Σf , Σt, skf , pkt):
• Compute (s1, s2)← Share(skf )
• (p̂k, ŝk)← BatchGen(1λ, s1)
• Compute c̃tt ← Enct(pkt, ŝk)
• Output rkf→t := (p̂k, s2, c̃tt).

– ReEnc(Σf , Σt, rkf→t, ctf ):
• Parse rkf→t = (p̂k, s2, c̃tt).
• Parse ctf = (ĉt′, c̃tf , c̃t′f ).
• If this is the first re-encryption (1st level), set C ← P[s2, ctf ]; Else if
(level i > 1), set C← Q[s2, ĉt′, c̃tf , c̃t′f ]
• Compute (C̃, labels)← Garble(C).
• Compute ĉt← BatchEnc(p̂k, labels).
• Compute c̃t′t ← Enct(pkt, C̃).
• Output (ĉt, c̃tt, c̃t′t).

– mDec(Σt, skt, rct, i): Parse rct = (ĉt, c̃tt, c̃t′t).
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• Compute ŝk′ ← Dec(skt, c̃tt).
• Compute l̃abelsi ← BatchDec(ŝk′, ĉt).
• Compute C̃i := C̃← Dect(skt, c̃t′t).
• For j = i, . . . , 2 do: Compute (C̃j−1, l̃abelsj−1)← Eval(C̃j , l̃abelsj).
• Compute and output m′ ← Eval(C̃1, l̃abels1).

First Level Re-Encryption Circuit P[s2, ctf ](s1)

Hardwired: s2, ctf .
Input: A share s1.

– Compute sk′f ← Reconstruct(s1, s2).
– Compute and output m′ ← Decf (sk′f , ctf ).

Fig. 3. The description of the first level re-encryption circuit P

Higher Level Re-Encryption Circuit Q[s2, ĉt′, c̃tf , c̃t′
f ](s1)

Hardwired: s2, ĉt′, c̃tf , c̃t′f .
Input: A share s1.

– Compute sk′f ← Reconstruct(s1, s2).
– Compute ŝk′ ← Dec(sk′f , c̃tf ).
– Compute and output C̃← Decf (sk′f , c̃t′f ) and l̃abels← BatchDec(ŝk′, ĉt′).

Fig. 4. The description of the higher level re-encryption circuit Q

Theorem 4.1 (UPRE-CRA security). Assume that gc = (Garble,Eval) is
a selectively secure garbling scheme, (Share,Reconstruct) is a 2-out-of-2 secret
sharing scheme and (BatchGen,BatchEnc,BatchDec) is a weak batch encryption
scheme in the sense of Def. 3.1, and both Σf and Σt are IND-CPA secure PKE,
then UPREcra is a selective-graph UPRE-CRA secure UPRE scheme.

We omit the proof due to the space limit.
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