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Abstract. In this paper, we study the effect of two modifications to
multivariate public key encryption schemes: internal perturbation (ip),
and Q+. Focusing on the Dob encryption scheme, a construction utilis-
ing these modifications, we accurately predict the number of degree fall
polynomials produced in a Gröbner basis attack, up to and including
degree five. The predictions remain accurate even when fixing variables.
Based on this new theory we design a novel attack on the Dob encryp-
tion scheme, which breaks Dob using the parameters suggested by its
designers.
While our work primarily focuses on the Dob encryption scheme, we also
believe that the presented techniques will be of particular interest to the
analysis of other big–field schemes.

1 Introduction

Public key cryptography has played a vital role in securing services on the in-
ternet that we take for granted today. The security of schemes based on integer
factorization and the discrete logarithm problem (DLP) is now well understood,
and the related encryption algorithms have served us well over several decades.

In [25] it was shown that quantum computers can solve both integer fac-
torization and DLP in polynomial time. While large scale quantum computers
that break the actual implementations of secure internet communication have
yet to be built, progress is being made in constructing them. This has led the
community for cryptographic research to look for new public key primitives that
are based on mathematical problems believed to be hard even for quantum com-
puters, so called post–quantum cryptography.

In 2016 NIST launched a project aimed at standardizing post–quantum pub-
lic key primitives. A call for proposals was made and many candidate schemes
were proposed. The candidates are based on a variety of problems, including the
shortest vector problem for lattices, the problem of decoding a random linear
code, or the problem of solving a system of multivariate quadratic equations over
a finite field (the MQ problem).

The first encryption scheme based on the MQ problem, named C∗, was pro-
posed in [21] and was broken by Patarin in [23]. Since then, much work has



gone into designing new central maps, as well as modifications that can enhance
the security of existing ones. Several multivariate schemes have been proposed
following C∗, for instance [24, 5, 27, 28]. While some of the schemes for digital
signatures based on the MQ problem seem to be secure, it has been much harder
to construct encryption schemes that are both efficient and secure. The papers
[16, 22, 29, 26, 1], all present attacks on MQ-based public key encryption schemes,
and as of now we are only aware of a few (e.g., [9, 32]) that remain unbroken.

In [20] a new kind of central mapping is introduced, which can be used
to construct both encryption and signature schemes. The novel feature of the
central mapping is that it has a high degree over an extension field, while still
being easy to invert. The encryption variant proposed in [20] is called Dob and
uses two types of modifications to its basic construction.

Our Contribution

The initial part of our work provides a theoretical analysis of (combinations
of) two modifications for multivariate cryptosystems. The Q+–modification was
(to the best of our knowledge) first proposed in [20], while the second, internal
perturbation (ip), has been in use for earlier schemes [12, 8, 9]. More specifically,
we develop the tools for computing the dimension of the ideal associated with
these modifications, at different degrees. This in turn provides key insights into
the complexity of algebraic attacks based on Gröbner basis techniques.

As an application, we focus on the Dob encryption scheme proposed in [20].
We are able to deduce formulas that predict the exact number of first fall polyno-
mials for degrees 3,4 and 5. These formulas furthermore capture how the number
of degree fall polynomials changes as an attacker fixes variables, which also allows
for the analysis of hybrid methods (see e.g., [3]).

Finally, the newfound understanding allow us to develop a novel attack on the
Dob encryption scheme. Through analyzing and manipulating smaller, projected
polynomial systems, we are able to extract and isolate a basis of the secret
modifiers, breaking the scheme. While the details of the attack have been worked
out for the Dob encryption scheme, we believe the techniques themselves could
be further generalised to include different central maps and modifications.

Organisation

The paper is organized as follows. In Section 2 we recall the relation between Fd2
and F2d , as well as the necessary background for solving multivariate systems
over F2. In Section 3 we develop the general theory that explores the effective-
ness of the modifications Q+ and ip . Section 4 introduces the Dob scheme,
and we deduce formulas that predict the number of degree fall polynomials for
this construction. Experimental data verifying the accuracy of these formulas
is presented in Section 5. In Section 6 we develop the novel attack on the Dob
encryption scheme, using the information learned from the previous sections.
Finally, section 7 concludes the work.
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Table of definitions

Throughout the paper we will use the notation in Table 1. We list it here for
easy reference.

Term Meaning

B(n) B(n) = F2[x1, . . . , xn]/⟨x2
1 + x1, . . . , x

2
n + xn⟩

B(n) B(n) = F2[x1, . . . , xn]/⟨x2
1, . . . , x

2
n⟩

B(n)ν The set of homogeneous polynomials of degree ν in n variables.
⟨R⟩ The ideal associated with the set of polynomials R.
⟨R⟩ν The ν–th degree part of a graded ideal ⟨R⟩.

dimν(⟨R⟩) The dimension of ⟨R⟩ν as an F2–vector space.

Ph A set of homogeneous quadratic polynomials over B(n)2
Syz(Ph)ν The grade ν part of the (first) syzygy module of Ph. (See section 2.1)

T (Ph)ν The grade ν part of the trivial syzygy module of Ph. (See section 2.1)

S(Ph)ν S(P)ν = Syz(P)ν/T (Ph)ν .
Q+, qi, t The Q+ modifier, with q1, . . . , qt added quadratic polynomials.
(ip), vi, k The internal perturbation modifier with v1, . . . , vk linear forms.

N
(α,β)
ν Estimate of the number of degree fall polynomials at degree ν.

Table 1: Notation used in the paper

2 Preliminaries

Multivariate big–field encryption schemes are defined using the field Fqd and the
d-dimensional vector space over the base field, Fdq . In practical implementations,
q = 2 is very often used, and we restrict ourselves to only consider this case in
the paper.

2.1 Polynomial System Solving

A standard technique used in the cryptanalysis of multivariate schemes, is to
compute a Gröbner basis associated with the ideal ⟨pi+ yi⟩1≤i≤m, for a fixed ci-
phertext y1, . . . , ym (see for example [7] for more information on Gröbner bases).
As we are interested in an encryption system, we can reasonably expect a unique
solution in the boolean polynomial ring B(n). In this setting the solution can be
read directly from a Gröbner basis of any order.

One of the most efficient algorithms for computing Gröbner bases is F4 [15].
In the usual setting, the algorithm proceeds in a step–wise manner; each step
has an associated degree, D, where all the polynomial pairs of of degree D are
reduced simultaneously using linear algebra. The degree associated with the most
time consuming step is known as the solving degree, Dsolv, and time complexity
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of F4 can be estimated to be:

ComplexityGB = O
( (Dsolv∑

i=0

(
d

i

))ω )
, (1)

where 2 ≤ ω ≤ 3 denotes the linear algebra constant. Determining Dsolv is in
general difficult, but there is an important class of polynomial systems that is well
understood. Recall that a homogeneous polynomial system, Fh = (fh1 , . . . , f

h
m) ∈

B(n)m, is said to be semi–regular if the following holds; for all 1 ≤ i ≤ m and
any g ∈ B(n) satisfying

gfhi ∈ ⟨fh1 , . . . , fhi−1⟩ and deg(gfi) < Dreg, (2)

then g ∈ ⟨fh1 , . . . , fhi ⟩ (note that fhi is included since we are over F2). Here
Dreg is the degree of regularity as defined in [2], (for i = 1 the ideal generated by
∅ is the 0–ideal). We will also need a weaker version of this definition, where we
say that Fh is D0–semi–regular, if the same condition holds, but for D0 < Dreg

in place of Dreg in eq. (2). An inhomogeneous system F is said to be (D0–)semi–
regular if its upper homogeneous part is. For a quadratic, semi–regular system
F over B(n), the Hilbert series of B(n)/F is written as (Corollary 7 in [2]):

Tm,n(z) =
(1 + z)n

(1 + z2)m
, (3)

and the degree of regularity can be computed explicitly as the degree of the first
non–positive term in this series. Determining whether a given polynomial system
is semi–regular may, in general, be as hard as computing a Gröbner basis for it.
Nevertheless, experiments seem to suggest that randomly generated polynomial
systems behave as semi–regular sequences with a high probability [2], and the
degree of regularity can in practice be used as the solving degree in eq. (1). We
will denote the degree of regularity for a semi–regular sequence ofm polynomials
in n variables as Dreg(m,n). On the other hand, it is well known that many big–
field multivariate schemes are not semi–regular (e.g., [16][5]). In these cases the
first fall degree is often used to estimate the solving degree ([10][22]). The first
fall degree, according to [10], will be defined in definition 2, but before that we
recall the definition of a Macaulay matrix associated to a polynomial system.

Definition 1. Let P be an (inhomogeneous) polynomial system in B(n), of de-
gree two. An (inhomogeneous) Macaulay matrix of P at degree D, MD(P), is a
matrix with entries in F2, such that:

1. The columns are indexed by the monomials of degree ≤ D in B(n).
2. The rows are indexed by the possible combinations xαpi, where 1 ≤ i ≤ n

and xα ∈ B(n) is a monomial of degree ≤ D − 2. The entries in one row
corresponds to the coefficients of the associated polynomial.

Similarly, we define the homogeneous Macaulay matrix of P at degree D,MD(P),
by considering Ph ∈ B(n), only including monomials of degree D in the columns,
and rows associated to combinations xαphi , deg(x

α) = D − 2.
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Syzygies and Degree Fall Polynomials. Let Ph = (ph1 , . . . , p
h
m) ∈ B(n)m2

denote a homogeneous quadratic polynomial system. The set Ph induces a map:

ψPh

: B(n)m −→ B(n)
(b1, . . . , bm) 7−→

∑m
i=1 bip

h
i ,

(4)

which in turn splits into graded maps ψPh

ν−2 : B(n)mν−2 −→ B(n)ν . The B(n)–

module Syz(Ph)ν = Ker(ψPh

ν−2) is known as the ν–th grade of the (first) syzygy
module of Ph. When ν = 4, Syz(Ph)4 will contain the Koszul Syzygies3, which
are generated by (0, ..., 0, phj , 0, ..., 0, p

h
i , 0, ..., 0) (phj is in position i and phi is in

position j), and the field syzygies, which are generated by (0, ..., 0, phi , 0, ..., 0) (p
h
i

in position i). These syzygies correspond to the cancellations phj p
h
i + phi p

h
j = 0

and (phi )
2 = 0. As they are always present, and not dependent of the structure

of Ph, they are sometimes referred to as the trivial syzygies. More generally, we
will define the submodule T (Ph)ν ⊆ Syz(Ph)ν to be the ν–th graded component
of the module generated by the Koszul and field syzygies, and denote S(P)ν =
Syz(Ph)ν/T (Ph)ν .

Definition 2. The first fall degree associated with the quadratic polynomial sys-
tem P is the natural number

Dff = min{ D ≥ 2 | S(P)D ̸= 0 }.

Representations over base and extension fields For any fixed isomorphism
Fd2 ≃ F2d , there is a one–to–one correspondence between d polynomials in B(d)

and a univariate polynomial in F2d [X]/⟨X2d +X⟩ (see 9.2.2.2 in [4] for more de-
tails). For an integer j, let w2(j) denote the number of nonzero coefficients in the
binary expansion of j. For a univariate polynomial H(X), we define maxw2

(H)
as the maximal w2(j) where j is the degree of a term occurring in H. Let P (X)
be the univariate representation of the public key of a multivariate scheme, and
suppose there exists a polynomial H(X) such that

maxw2
(H(X)P (X)) < maxw2

(H(X)) + maxw2
(P (X)). (5)

Then the multivariate polynomials corresponding to the productH(X)P (X) will
yield degree fall polynomials from (multivariate) degree maxw2(H) +maxw2(P )
down to degree maxw2

(HP ).

It was mentioned in [16] that the presence of polynomials satisfying eq. (5)
was the reason for Gröbner basis algorithms to perform exceptionally well on
HFE–systems. Constructing particular polynomials that satisfy eq. (5) has also
been a central component in the security analyzes found in [10] and [22].

3 Here we follow the nomenclature used, for instance, in [18].
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3 Estimating the Number of Degree Fall Polynomials

We start by introducing a general setting, motivated by the Dob encryption
scheme which we will focus on later. Let F : Fn2 → Fm2 be a system ofm quadratic
polynomials over B(n). Furthermore, consider the following two modifiers4:

1. The internal perturbation (ip) modification chooses k linear combinations
v1, . . . , vk, and adds a random quadratic polynomial in the vi’s to each poly-
nomial in F .

2. The Q+ modifier selects t quadratic polynomials q1, . . . , qt, and adds a ran-
dom linear combination of them to each polynomial in F .

Let Hip be the random quadratic polynomials in v1, . . . , vk and HQ+ the random
linear combinations of q1, . . . , qt. A modification of the system F can then be
written as

P : Fn2 −→ Fm2
x 7−→ F(x) +Hip(x) +HQ+(x).

(6)

The problem we will be concerned with in this section is the following: given
full knowledge of the degree fall polynomials of the system F , what can we say
about the degree fall polynomials of the system P?

3.1 The Big Picture

Let Fh and Ph denote the homogeneous parts of the systems F and P respec-
tively, and consider them over B(n). For a positive integer α ≤ k, we define V α to
be the homogeneous ideal in B(n) that is generated by all possible combinations
of α linear forms from the ip modification, i.e.:

V α = ⟨(vi1vi2 · · · viα)h | 1 ≤ i1 < i2 < . . . < iα ≤ k⟩. (7)

In other words, V α is the product ideal

α︷ ︸︸ ︷
V 1 · V 1 · . . . · V 1. Similarly, for the

quadratic polynomials associated with the Q+ modifier we define Qβ for a pos-
itive integer β ≤ t to be the product ideal:

Qβ = ⟨(qi1qi2 · · · qiβ )h | 1 ≤ i1 < i2 < . . . < iβ ≤ t⟩. (8)

Finally, for 0 ≤ α ≤ k and 0 ≤ β ≤ t, we define the ideal of different combinations
of the modifiers, M (α,β) = ⟨V α, Qβ⟩, along with the boundary cases M (α,0) =
V α, M (0,β) = Qβ and M (0,0) = ⟨1⟩.

The following result is an important first step to understand how the degree
fall polynomials in F behave when modifiers are introduced to the scheme.

4 The authors of [20] named these two modifiers ⊕ and “ + ”. Note that in earlier
literature (c.f. [31]), the “ + ” modification refers to a different modification than
what is described in [20], and the⊕modification has been called internal perturbation
(ip). (To the best of our knowledge, the “ + ” modification from [20] has not been
used in earlier work). To avoid any confusion, we have chosen to stick with the name
(ip) and use Q+ for [20]’s “+”
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Lemma 1. Let Ph, Fh, M (2,1) be defined as above, and ψPh

be as defined in

eq. (4). Then ⟨ψPh

(S(F))⟩ and ⟨ψPh

(Syz(Fh))⟩ are homogeneous subideals of
⟨Ph⟩ ∩M (2,1).

Proof. We show the statement for ⟨ψPh

(Syz(Fh))⟩; the case of ⟨ψPh

(S(F))⟩ is
similar. First note that ψPh

(Syz(Fh)) is a group, as it is the image of a group
under a group homomorphism. Secondly, for any element a = (a1, . . . , am) ∈
Syz(Fh), and any r ∈ B(n), we have rψPh

(a) = ψPh

((ra1, . . . , ram)), where

also (ra1, . . . , ram) ∈ Syz(Fh). It follows that ψPh

(Syz(Fh)) is indeed an ideal.

The inclusion ⟨ψPh

(Syz(Fh))⟩ ⊆ ⟨Ph⟩ follows directly from the definition of

ψPh

. For the other inclusion we note that, by construction, we can write phi =

fhi +
∑t
j=1 bi,jq

h
j +

∑k
j,l=0 ci,j,l(vjvl)

h, for all 1 ≤ i ≤ m and for suitable constants

bi,j , ci,j,l ∈ F2, where f
h
i , p

h
i are the polynomials of Fh and Ph respectively.

When a ∈ Syz(Fh), the fhi –parts in ψ
Ph

(a) will vanish, and we are left with a
polynomial that can be generated from the elements of V 2 and Q1. Hence we

also have ⟨ψPh

(Syz(Fh))⟩ ⊆M (2,1).

In particular, there is the following chain of ideals

⟨ψPh

(S(F))⟩ ⊆ ⟨ψPh

(Syz(Fh))⟩ ⊆ ⟨Ph⟩ ∩M (2,1) ⊆M (2,1). (9)

We now allow ourselves to be slightly informal, in order to see how this all
relates in practice to the cases we are interested in. At each degree ν, the di-

mension dimν(M
(2,1)) of M

(2,1)
ν as a vector space over F2 can be seen as a mea-

sure of how much information the modifiers can hide. An interesting case from

an attacker’s point of view is when ⟨ψPh

(S(F))⟩ν0 has the maximal dimension

dimν0(⟨ψPh

(S(F))⟩) = dimν0(M
(2,1)), for a relatively small ν0. While ‘excess’

polynomials in ⟨ψPh

(S(F))⟩ν0 will sum to 0 in B(n), there is a chance that the
corresponding inhomogeneous polynomials will result in degree fall polynomials
when treated over B(n). In particular, this yields an upper bound Dff ≤ ν0 on
the first fall degree. We can do even better in practice.

Note that (M (2,1)⟨Ph⟩)ν will be a subspace of (the row space of) the Macaulay
matrix Mν(P). As this matrix can be constructed by an attacker, we should
count the possible combinations of polynomials from both (M (2,1)⟨Ph⟩) and the

image of ψPh

(S(F)). Some caution is warranted when counting these combina-

tions. For instance, ψPh

(ms) ∈ M (2,1)⟨Ph⟩ for any m ∈ M (2,1) and s ∈ S(F),
so we need to be careful in order to not count the same elements twice. For
now we will keep up with our informal theme and denote ‘M (2,1)⟨Ph⟩ mod-
ulo these collisions’ by PM(2,1) . We will deal with it more properly when com-
puting its dimension in section 3.3. It is shown in Appendix A of [33] that

⟨ψPh

(T (Fh))⟩ ⊆ M (2,1)⟨Ph⟩, which is why we will focus on ⟨ψPh

(S(F))⟩ (as

opposed to ⟨ψPh

(Syz(Fh))⟩).
We now have everything needed to discuss estimates of the number of degree

fall polynomials at different degrees. We start by assuming that none of the
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degree fall polynomials we get from S(F) (under ψPh

) can be reduced by lower–
degree Macaulay matrices of P. This allows us to directly use dimν(S(F)). We
furthermore add dimν(PM(2,1)), and subtract by dimν(M

(2,1)). This yields the

expression for our first estimate of degree fall polynomials, N
(0,0)
ν , at degree ν:

N (0,0)
ν = dimν(S(F)) + dimν(PM(2,1))− dimν(M

(2,1)). (10)

In a sense, N
(0,0)
ν can be thought of as estimating the number of degree fall

polynomials, as an effect of ‘over saturating’ M
(2,1)
ν . When N

(0,0)
ν is a positive

number, this is the number of degree fall polynomials we expect to find (based on

this effect); if N
(0,0)
ν is negative, there is no such over saturation, and we do not

expect any degree fall polynomials at degree ν. The benefits of having the ex-
pression in eq. (10) is that the study of the relatively complex polynomial system
Ph can be broken down to studying three simpler systems. The dimensions of
M (2,1) and PM(2,1) can, in particular, be further studied under the assumptions
that the modifiers form a semi–regular system. In addition to being a reasonable
assumption as the modifiers are randomly chosen, this is also the ideal situation
for the legitimate user, as this maximizes the dimension of M (2,1). Indeed, the
study ofM (2,1) and PM(2,1) will be continued in the following subsections. Before
that, we will generalize the ideas presented so far, arriving at several expressions
that can be used to estimate the number of degree fall polynomials.

Generalised Estimates of Degree Fall Polynomials. Let M (α,β)Syz(F)
denote the module {ms | m ∈ M (α,β), s ∈ Syz(F)} (which is well–defined since
Syz(F) is a B(n)–module), and define

S(F)M(α,β) := [M (α,β)Syz(F)]/T (F).

Instead of considering all the syzygies S(F), we can start with submodules of
the form S(F)M(α,β) . The benefit is that the ideal we need to ‘over saturate’
will now be M (α,β)M (2,1). In section 5 we will see several examples where this

yields a better estimate than N
(0,0)
ν . Following through with this idea, along with

the same considerations discussed prior to eq. (10), we arrive at the following
estimate for α, β ≥ 0:

N (α,β)
ν = dimν(S(F)M(α,β))− dimν(M

(α,β)M (2,1))

+ dimν(PhM(α,β)M(2,1)).
(11)

Recalling the convention that M (0,0) = ⟨1⟩, this is indeed a generalisation of
eq. (10).

We now have several different estimates for degree fall polynomials, varying
with the choice of α, β. Any of these may be dominating, depending on the
parameters of the scheme. The general estimate at degree ν is then taken to be
their maximum:

Nν = max{0, N (α,β)
ν | 0 ≤ α ≤ k and 0 ≤ β ≤ t}. (12)
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Note in particular that if Nν = 0, then all our estimates are non–positive, and
we do not expect any degree fall polynomials at this degree.

Consider now the main assumptions underlying these estimates. Firstly, recall
that we assumed that none of the degree fall polynomials that can be made from
ψP(S(F)M(α,β)) will be reduced to 0 when solving the system P. Secondly, the
formulas implicitly assume that all the polynomials in M (α,β)M (2,1) need to be
reduced before we can observe degree fall polynomials. The third assumption,
concerning Ph

M(α,β)M(2,1) , will be specified in section 3.3.
Finally, we stress that the aim of this section has been to investigate one of

the aspects that can lead to a system exhibiting degree fall polynomials. The
estimates presented should not be used without care to derive arguments about
lower bounds on the first fall degree. Nevertheless, we find that in practice these
estimates and their assumptions seem to be reasonable. With the exception of a
slight deviation in only two cases (see Section 4.3), the estimates lead to formulas
that are able to describe all our experiments for the Dob encryption scheme that
will be investigated in Section 4.

3.2 Dimension of the Modifiers

The estimate given in eq. (11) requires knowledge of the dimension of (products
of) the ideals M (α,β). These will in turn depend on the chosen modifications V α

and Qβ . In this section we collect various results that will be needed to determine
these dimensions. We start with the following elementary properties.

Lemma 2. Consider M (α,β) = (V α +Qβ), and positive integers α0, α, β0, β, ν.
Then the following holds:

(i) V α0V α = V α0+α and Qβ0Qβ = Qβ0+β.
(ii) V α0Qβ0 ⊆ V αQβ if α ≤ α0 and β ≤ β0.
(iii) M (α0,β0)M (α,β) =M (α0+α,β0+β) + V α0Qβ + V αQβ0 .
(iv) dimν(M

(α,β)) = dimν(Q
β) + dimν(V

α)− dimν(Q
β ∩ V α).

(v) dimν(M
(α0,β0)M (α,β)) = dimν(M

(α0+α,β0+β)) + dimν(V
α0Qβ)

+ dimν(V
αQβ0)− dimν(M

(α0+α,β0+β) ∩ V α0Qβ)

− dimν(M
(α0+α,β0+β) ∩ V αQβ0)− dimν(V

α0Qβ ∩ V αQβ0)

+ dimν(M
(α0+α,β0+β) ∩ V α0Qβ ∩ V αQβ0).

Proof. Properties (i) – (iv) follow from the appropriate definitions in a straight-
forward manner; we give a brief sketch of property (v) here. From property (iii)
we know that M (α0,β0)M (α,β) can be written as the sum of the three ideals
M (α0+α,β0+β), V α0Qβ and V αQβ0 . We start by summing the dimension of each
of these three ideals individually. Any polynomial belonging to exactly two of
these subideals is now counted twice, which is why we subtract by the combina-
tions intersecting two of these ideals. Lastly, a polynomial belonging to all three
of the subideals will, at this point, have been counted thrice, and then subtracted
thrice. Hence, we add the dimension of intersecting all three subideals.
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The dimension dimν(V
α) can be further inspected using the following result.

Lemma 3. Suppose that v1, . . . , vk are k linearly independent linear forms in
B(n). Then

dimν(V
α) =

∑
i≥α,j≥0
i+j=ν

(
k

i

)(
n− k

j

)
(13)

holds under the conventions that
(
a
b

)
= 0 if b > a, and

(
a
0

)
= 1.

Proof. As v1, . . . , vk are linearly independent, we can choose n− k linear forms
of B(n), wk+1, . . . , wn, that constitute a change of variables

B(n) ≃ B
′
= F2[v1, . . . , vk, wk+1, . . . wn]/⟨v21 , . . . , w2

n⟩.

For any monomial γ ∈ B
′
, we will define degv(γ) as its degree in the v1, . . . , vk-

variables, and degw(γ) as its degree in the variables wk+1, . . . , wn. The elements

of V α of (total) degree ν, is now generated (in B
′
as an F2–vector space) by all

monomials γ such that degv(γ) ≥ α and degv(γ) + degw(γ) = ν. The number
of all such monomials are counted in eq. (13).

When qh1 , . . . , q
h
t forms a D0–Semi–regular system, we need only be concerned

with the trivial syzygies when counting dimν(Q
1), for ν < D0. For the particular

cases we are interested in, this amounts to dim3(Q
1) = tn, dim4(Q

1) = t
(
n
2

)
−

[
(
t
2

)
+ t] and dim5(Q

1) = t
(
n
3

)
− n[

(
t
2

)
+ t].

Lemma 4. Suppose that (v1, . . . , vk, q1, . . . , qt) is D0–semi–regular, and con-
sider 1 ≤ α ≤ k and 1 ≤ β ≤ t. Then

(V α ∩Qβ)ν = (V αQβ)ν ,

holds for all ν < D0.

Proof. (Sketch) The product of any pair of ideals is contained in their intersec-
tion. For the other direction, consider a non–trivial element e ∈ (V α ∩ Qβ)ν .
Then, for some polynomials fi, gj , we can write e =

∑
fiq

h
i1
· · · qhiβ ∈ Qβν , and

e =
∑
gjvj1 · · · vjα ∈ V αν , which yields the syzygy∑

fi(q
h
i1 · · · q

h
iβ
) +

∑
gj(vj1 · · · vjα)h = 0.

By assumption, all syzygies of degree < D0 of (v1, . . . , vk, q
h
1 , . . . , q

h
t ) will be

generated by the field and Koszul syzygies of the vi– and qhj –polynomials. It

follows that (after possibly reducing by syzygies generated by only qh1 , . . . , q
h
t )

we have fi ∈ V α. Similarly, we have gj ∈ Qβ . In particular, e ∈ V αQβ .

A general characterisation of the ideal V αQβ is trickier. We are content with
discussing some special cases of its dimension, which will be of interest to us.
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Example 1 Suppose that (v1, . . . , vk, q1, . . . , qt) is D0–semi–regular, and let 1 ≤
α ≤ k and 1 ≤ β ≤ t.

(a) The generators of V αQβ are of degree α+2β, hence dimν(V
αQβ) = 0 for all

ν < α+ 2β. (This also holds without the D0–semi–regularity assumption).
(b) Suppose furthermore that D0 > α + 2β + 1. Then dim(α+2β+1)(V

αQβ) =(
t
β

)
dimα+1(V

α). To see this, note that ⟨V αQβ⟩α+2β+1 is generated by el-
ements of the form vl1 . . . vlαqc1 . . . qcβxr, where 1 ≤ l1 < . . . < lα ≤ k,
1 ≤ c1 < . . . < cβ ≤ t and 1 ≤ r ≤ n. The semi–regularity assumption as-
sures that there will be no cancellations (save for the ones already accounted
for in dimα+1(V

α)).
(c) Suppose furthermore that D0 > α + 2β + 2, then dim(α+2β+2)(V

αQβ) =(
t
β

)
dimα+2(V

α) −
(
k
α

)[(
t
β

)
t −

(
t

β+1

)]
. The reasoning is similar to (b), with

the difference that dimα+2(V
α) will now include the polynomials of the form

qhc (vl1 . . . vlα)
h. There are

(
k
α

)[(
t
β

)
t−

(
t

β+1

)]
combinations of these that will

reduce to 0 over B(n) (when multiplied with the combinations qhc1 . . . q
h
cβ
).

3.3 Dimension of PM(α,β)M(2,1)

As noted in section 3.1, we want PM(α,β)M(2,1) to be M (α,β)M (2,1)⟨Ph⟩, modulo

the polynomials of the form ψPh

(ms), for ms ∈ S(F)M(α,β)M(2,1) . Computing
the dimension of (M (α,β)M (2,1)⟨Ph⟩)ν directly might be difficult, seeing that Ph
depends on M (2,1). To tackle this, we start with the assumption that the can-
cellations in M (α,β)M (2,1)⟨Ph⟩ are only generated by the ‘generic’ cancellations,
and cancellations coming from the underlying structure, depending on F . By
‘generic’ cancellations we mean those generated by the Koszul– or field syzygies
in either the phi – or mj–polynomials. The assumption furthermore implies that

the second type of cancellations will lie in the image of ψPh

(S(F)M(α,β)M(2,1)).
Let GSR be a system of homogeneous quadratic polynomials, of the same size
and number of variables as Ph, such that {V 1, Q1,GSR} forms a semi–regular
system. With the assumption outlined above, we have

dimν(PM(α,β)M(2,1)) = dimν(M
(α,β)M (2,1)GSR)− dimν(S(F)M(α,β)M(2,1)). (14)

Indeed, any would–be cancellations that are over–counted in the term
dimν(M

(α,β)M (2,1)GSR) would be subtracted in −dimν(S(F)M(α,β)M(2,1)).
S(F)M(α,β)M(2,1) requires knowledge of the underlying central map, F , and

will be dealt with in the next section. Computing the dimensions of the product
ideal M (α,β)M (2,1)GSR has many similarities with the work that was done in
the previous subsection. In particular, the dimension at degree ν is zero if the
degrees of all of its generators are > ν. We conclude with the following short
example, which covers the other cases that will be the most relevant to us.

Example 2 Let GSR be a system of d homogeneous quadratic polynomials over
B(n), such that {V 1, Q1,GSR} forms a semi–regular system. Then

dimν(M
(2,1)GSR) = n

[
dimν−2(Q

1) + dimν−2(V
2)
]
,

holds for ν = 4, 5.
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4 Number of Degree Fall Polynomials in the Dob
Encryption scheme

There are several ways to construct a central map F : Fd2 → Fd2. For big–field
schemes, the idea is to fix an isomorphism ϕ : Fd2 → F2d between the vector space
over the base field and the extension field, and choose two random invertible
d×d-matrices over F2, called S and T . F is then constructed as the composition
F = S ◦ ϕ−1 ◦ F ◦ ϕ ◦ T , where F (X) ∈ F2d [X], maxw2(F ) = 2, and such that
F (X) = Y is easy to solve for any given Y . In particular, this ensures that F
is a system of d quadratic polynomials, and ciphertexts can easily be decrypted
with the knowledge of the secret S, T and F . There are two main ways in the
literature to construct F with these properties:

1. F (X) = Xe, where w2(e) = 2. This is the case for C∗ [21].
2. F (X) =

∑t
i=0 ciX

ei , where we have w2(ei) ≤ 2 for all i, and each ei is
bounded by a relatively small constant b. This is used in HFE [24].

Indeed, both C∗ and HFE have been suggested with the ip–modification, known
as PMI an ipHFE, respectively [8, 12]. These schemes were broken in [17, 14], by
specialised attacks recovering the kernel of the linear forms of the ip–modification.
Nevertheless, a later version of the C∗ variant, PMI+ [9], also added the “ + ”
modification in order to thwart this attack, and remains unbroken. We note that
ipHFE, PMI and PMI+ all fits into the framework presented in section 3, and
the techniques presented here can be used to understand their resistance against
algebraic attacks (recall that the “+” modification does not increase the security
versus algebraic attacks). A comprehensive study of these schemes are beyond
the scope of this work, as we focus on a newer construction that utilizes both
the ip– and Q+–modification.

4.1 The Dob Encryption Scheme

The Two–Face family, introduced in [20], presents a third way to construct a
function F (X). Writing Y = F (X), we get the polynomial equation

E1(X,Y ) = Y + F (X) = 0.

When F has the Two–Face property, it can be transformed into a different
polynomial E2(X,Y ) = 0, which has low degree in X and have 2–weight at
most 2 for all exponents in X. The degree of E2 in Y can be arbitrary. Given
Y , it is then easy to compute an X that satisfies E2(X,Y ) = 0, or equivalently,
Y = F (X).

For a concrete instantiation, the authors of [20] suggest the polynomial

F (X) = X2m+1 +X3 +X, (15)

where d = 2m−1. Dobbertin showed in [13] that F is a permutation polynomial.
In [20], based on the results of [13], it is further pointed out that

E2(X,Y ) = X9 +X6Y +X5 +X4Y +X3(Y 2m + Y 2) +XY 2 + Y 3 = 0

12



holds for any pair Y = F (X). Note that F itself has high degree in X, but the
highest exponent of X found in E2 is 9 and all exponents have 2–weight at most
2.

The public key F associated with eq. (15) under the composition described
at the beginning of section 4 is called nude Dob, and was observed in [20] to be
weak. More precisely, experiments show that the associated multivariate system
has solving degree three. Indeed, in Appendix D of [33] is is shown that this is
the case for any d.

The (full) Dob encryption scheme is made by extending nude Dob with the
two modifications, Q+ and ip, as described at the beginning of section 3. The
public key is the d quadratic polynomials P, constructed according to eq. (6).
The secret key consists of S, T,Hip and HQ+

. The plaintext space of the scheme
is Fd2 and encryption is done by evaluating y = P(x), producing the ciphertext
y.

To decrypt, the receiver of a ciphertext y guesses on the values of vi(x) and
qj(x) for all 1 ≤ i ≤ k and 1 ≤ j ≤ t, and computes the corresponding values
of the polynomials in Hip and HQ+ . These values are added to y, removing the
effect of the modifiers when the guess is correct. The resulting value y′ is then
the ciphertext of the nude Dob. This can be decrypted by first multiplying y′

with S−1, resulting in Y from the central mapping, which is then inverted using
E2 and multiplied with T−1 to recover the candidate plaintext x0. The initial
guess is then verified by checking if all vi(x0) and qj(x0) indeed evaluate to the
guessed values.

In order for decryption to have an acceptable time complexity, the size of the
modifications, k and t, can not be too large. To decrypt a ciphertext one must
on the average do 2k+t−1 inversions of P before the correct plaintext is found.
In [20] it is suggested to use k = t = 6 for 80–bit security.

For the remainder of this work, we let F and P denote the public keys of
nude Dob and the (full) Dob encryption scheme, respectively.

4.2 Syzygies of the Unmodified Dob Scheme

The goal of this subsection is to estimate the dimension of S(F)ν , for ν = 3, 4, 5.

We start by inspecting F (eq. (15)) over the extension field F2d [X]/⟨X2d +X⟩.
Note that maxw2

(F ) = 2, and consider the following polynomials:

G1 = XF and G2 = (X2m +X2)F. (16)

One finds that G1 and G2 are both products of F and a polynomial of 2–weight
one, but the resulting polynomials still have maxw2

(Gi) = 2. They are then
examples of polynomials satisfying eq. (5) from section 2.1, and will correspond
to 2d degree fall polynomials at degree three, down to quadratic polynomials.
They form all the syzygies we expect at degree three, hence we set

dim3(S(F)) = 2d. (17)
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Recall that it was noted in [20] that experiments of nude Dob had a solving
degree of three, though the authors did not provide a proof that this is always
the case. The presence of G1 and G2 ensures that the first fall degree of nude
Dob is three. A complete proof that the solution of nude Dob can be found by
only considering polynomials of degree three is a little more involved, and is
provided in Appendix D of [33].

Things get more complicated for dimensions ν > 3. While we expect the
two polynomials G1 and G2 to generate a significant part of the syzygies, we
also expect there to be other generators, as well as cancellations to keep track of.
Due to the complexity of fully characterizing the higher degree parts of S(F), we
instead found an expression for its dimension at degrees ν = 4, 5 experimentally.
The experimental setup is further described at the end of this subsection. Note
that the formulas we present in this subsection will be a multiple of d. This
strongly suggests that all the syzygies of the system come from its extension field
structure. These relations could then, in principle, be written out analytically
as was the case for ν = 3. In particular, this makes it reasonable to expect the
formulas to continue to hold for larger values of d (i.e., beyond our experimental
capabilities).

In the subsequent formulas we introduce the following notation, which will
be useful to us later. Whenever counting the syzygies that can be generated from
syzygies of lower degree, we will multiply by n (the number of variables in an
associated multivariate system), as opposed to d. For instance, let (gi,1 . . . , gi,d),
1 ≤ i ≤ d denote the dmultivariate syzygies associated withG1. Then xj(gi,1 . . . , gi,d),
1 ≤ j ≤ n are syzygies at ν = 4, and we will count all of these as5 nd. For the
Dob encryption scheme we of course have n = d, so this distinction may seem
unnecessary at the moment, but later, in section 5, we will also consider the case
n < d as an attacker may fix certain variables.

For ν = 4, we find the following expression:

dim4(S(F)) = (2n− 1)d, (18)

where we note that the term 2nd has been generated by G1 and G2, as described
above.

For ν = 5, we have

dim5(S(F)) =

(
2

(
n

2

)
− n− 2d− 20

)
d. (19)

Once more, some of these terms can be understood from the syzygies of lower
degrees. The contribution from the polynomials G1 and G2 from ν = 3 will now
be the 2

(
n
2

)
d term. The term ‘−d’ from ν = 4 will now cause the ‘−nd’ term.

Experimental Setup. The experiments used to test eq. (18) and eq. (19) have
been done as follows. The public polynomials of nude Dob are first generated,

5 Not all of these will be linearly independent in S(F). For example, the d syzygies
associated with (X2m +X2)G1 will correspond to syzygies in T (Fh). This does not
really matter, as the expressions eq. (18) and eq. (19) corrects for this.
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and we consider their upper homogeneous part, Fh, over B(d). Dimν(S(F)) is
computed as the dimension of the kernel of the homogeneous Macaulay matrix
Mν(Fh), minus dimν(T (Fh)). For ν = 4, 5 we tested all odd d, 25 ≤ d ≤ 41, all
matching the values predicted by eq. (18) and eq. (19).

4.3 Degree Fall Polynomials of the (modified) Dob Scheme

We now have all the tools needed to write out explicit formulas for (variants of)

the estimates N
(α,β)
ν , ν ≤ 5, for the Dob scheme. The approach for the formulas

is as follows. Equation (11) is used as a foundation, and dimν(S(F)) is given
according to section 4.2. For the dimension of the modifiers, and PM(α,β)M(2,1) , we
will combine the results discussed in section 3.2 and section 3.3. In particular,
we will assume that the chosen modifying polynomials {v1, . . . , vk, q1, . . . , qt}
form a (ν + 1)–semi–regular system. The dimensions that are not covered by
combining the results discussed so far, will be commented on separately. For the
convenience of the reader, the non–trivial dimensions have been marked with an
overbrace in the equations. The exceptions are eq. (24) and eq. (25), which are
covered in greater depth in Appendix B of [33]. Recall also our convention that(
a
b

)
= 0, if b > a, and

(
a
0

)
= 1.

ν = 3. At this degree we only consider N (0,0).

N
(0,0)
3 =

dim3(S(F))︷︸︸︷
2d −

dim3(V
2)︷ ︸︸ ︷(

(n− k)

(
k

2

)
+

(
k

3

))
−

dim3(Q
1)︷︸︸︷

nt .
(20)

ν = 4.

N
(0,0)
4 =

dim4(S(F))︷ ︸︸ ︷
(2n− 1)d+

dim4(PM(2,1) )︷ ︸︸ ︷
d

(
t+

(
k

2

))
−

dim4(Q
1)︷ ︸︸ ︷(

t

(
n

2

)
−

(
t

2

)
− t

)

−

dim4(V
2)︷ ︸︸ ︷((

k

2

)(
n− k

2

)
+

(
k

3

)
(n− k) +

(
k

4

))
+

dim4(Q
1∩V 2)︷ ︸︸ ︷

t

(
k

2

)
.

(21)

At ν = 4, we also consider the estimate N
(1,0)
4 , i.e., multiplying everything

with the k linear forms from the ip–modifier. In particular, this means that
(S(F)M(1,0))4 is spanned by the combinations vhj (gi,1 . . . , gi,d), 1 ≤ j ≤ k and
1 ≤ i ≤ 2d, where we recall that (gi,1 . . . , gi,d) denote the 2dmultivariate syzygies
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associated with G1 and G2 (eq. (16))

N
(1,0)
4 =

dim4(S(F)
M(1,0))︷︸︸︷

2kd −

dim4(V
3)︷ ︸︸ ︷((

k

3

)
(n− k) +

(
k

4

))

−

dim4(Q
1V 1)︷ ︸︸ ︷

t

(
k(n− k) +

(
k

2

))
.

(22)

ν = 5. At degree 5, S(F)M(2,1) (in eq. (14)) is no longer trivial. Indeed, it will
now consist of the possible combinations vhj1v

h
j2
(gi,1 . . . , gi,d) and q

h
j (gi,1 . . . , gi,d).

N
(0,0)
5 =

dim5(S(F))︷ ︸︸ ︷(
2

(
n

2

)
− n− 2d− 20

)
d−

dim5(Q
1)︷ ︸︸ ︷(

t

(
n

3

)
− n

(
t

2

)
− tn

)

−

dim5(V
2)︷ ︸︸ ︷((

k

2

)(
n− k

3

)
+

(
k

3

)(
n− k

2

)
+

(
k

4

)
(n− k) +

(
k

5

))

+

dim5(Q
1∩V 2)︷ ︸︸ ︷

t

((
k

2

)
(n− k) +

(
k

3

))

+

dim5(PM(2,1))︷ ︸︸ ︷
ntd+ d

((
k

2

)
(n− k) +

(
k

3

))
− 2dt− 2d

(
k

2

)
.

(23)

As mentioned above, it is a bit more involved to derive N
(1,1)
5 and N

(2,1)
5 ,

and we will refer to Appendix B of [33] for more details. It would also appear
that our assumptions are slightly off for these two estimates, as our experiments
consistently yield 4dmore degree fall polynomials than we are able to predict (see
Remark 3, Appendix B of [33] for more details). We present the experimentally
adjusted versions in Equations (24) and (25):

N
(1,1)
5 = d

(
k(2n− k − 2) + t(2 + k) +

(
k

3

)
+ 4

)
−

(
t

2

)
n−

(
k

3

)(
n− k

2

)

−

(
k

5

)
−

(
k

4

)
(n− k)− t

(
k

(
n− k

2

)
+

(
k

2

)
(n− k)− kt

)
.

(24)

N
(2,1)
5 = 2d

((
k

2

)
+ t+ 2

)
−
((

k

4

)
(n− k) +

(
k

5

))

− t

((
k

2

)
(n− k) +

(
k

3

))
−

(
t

2

)
n.

(25)
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5 Experimental Results on Degree Fall Polynomials

In the previous section we developed the theory on how to estimate the number
of first fall polynomials, ending up with several formulas. This section is focused
on the accuracy of these formulas, and how they can be used by an attacker. Note
that since we are interested in the unique structure of the Dob encryption scheme,
we will always assume that ‘generic’ degree fall polynomials do not interfere.
More specifically, when inspecting a system of d polynomials in n variables at
degree ν, we assume that d and n is chosen such that Dreg(d, n) > ν.

5.1 Fixing Variables

The formulas separate d, the size of the field extension, and n, the number of
variables. While the Dob encryption scheme uses d = n, an attacker can easily
create an overdetermined system with n < d by fixing some variables. This
approach, known as the hybrid method, can be viewed as a trade–off between
exhaustive search and Gröbner basis techniques, and its benefits are well–known
for semi–regular sequences [3]. From eqs. (20) to (25), we find that for the relevant
choices of parameters (d, t, k), a greater difference between n and d can increase
the number of degree fall polynomials. This means that a hybrid method will
have a more intricate effect on a Dob system, than what we would expect from
random systems. To a certain extent, an attacker can “tune” the number of
degree fall polynomials, by choosing the amount of variables to fix. Of course,
if the intent is to find a solution of the polynomial system through a Gröbner
basis, this comes at the added cost of solving the system 2r times, where r is
the number of fixed variables, but in section 6 we will present a different attack
that circumvents this exponential factor.

Finally, one could ask whether it is reasonable to expect eqs. (20) to (25)
to be accurate after fixing a certain number of variables. It is, for instance,
possible that different degree fall polynomials will cancel out, as certain variables
are fixed. However, if past experience with the hybrid method is any indicator,
such cancellations are very rare, and we see no reason that the extension field
structure increases the probability for such cancellations to happen. As we will
see in section 5.3 this is supported by the experiments we have run; the formulas
remain precise, even as n is varied.

5.2 Using the Degree Fall Formulas

We briefly recall how the formulas found in section 4.3 relate to the public poly-
nomials of a Dob encryption scheme. Let P be the polynomial system associated
with a Dob scheme of fixed parameters (d, n, t, k) (where n is as described in
section 5.1). We expect the non–trivial dimension (i.e., the dimension of the
part that is not generated by T (F)) of the kernel of Mν(P) to be given by the

maximal of the formulas N
(α,β)
ν , for ν = 3, 4, 5.

If a step–wise algorithm such as F4 is used, we expect the formulas to predict
the number of degree falls polynomials, but only at the first fall degree. Suppose,
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for instance, that N3 = 0, but N4 > 0. Then this algorithm runs a second step
at degree 4, using the newly found degree fall polynomials. This means that
there are effectively more available polynomials in the system when (if) a step
of degree 5 is performed, and in this case we do not expect the formulas we have
for N5 to be accurate.

Note in particular that if all the formulas we have are non–positive, an at-
tacker is likely required to go up to step degree ≥ 6 in order to observe first fall
polynomials.

5.3 Experimental Results

We have run a number of experiments with the Dob system of varying parameters
(d, n, t, k). A subset of them is presented in table 2, and the rest can be found
in Appendix G of [33]. Gröbner bases of the systems were found using the F4

algorithm implemented in the computational algebra system Magma. The script
used for the experiments is available at [19].

In table 2 we use the following notation. ‘Dff ’ is the experimentally found
first fall degree. ‘N (predicted)’ is the number of first fall polynomials as pre-
dicted by the equations in section 4.3. ‘N (Magma)’ is the number of first
fall polynomials read from the verbose output of Magma, written as ‘degree :
{# degree fall polynomials at this degree}’. The solving degree Dsolv was found
experimentally by Magma. This has been measured as the degree where the most
time consuming step of the algorithm took place. In the instances where the al-
gorithm did not run to completion due to memory constraints, we give Dsolv as
≥ X, where X is the degree of the step where termination occurred. The degree
of regularity for semi–regular systems of the same size, Dreg(d, n), is also given.
‘Step Degrees’ lists the degrees of the steps that are being performed by F4 up
until linear relations are found. Once a sufficient number of linear relations are
found, Magma restarts F4 with the original system, as well as these linear rela-
tions. This restart typically needs a few rounds before the entire basis is found,
but its impact on the running time of the algorithm is negligible, which is why
we have chosen to exclude it when listing the step degrees. For convenience, the
step where first fall polynomials are found is marked in blue and the solving step
marked in red. Purple is used to mark the steps where these two coincide.

A first observation is that in all experiments we find that ‘N (predicted)’
matches ‘N (Magma)’. We also find that fixing variables affects the cross–over

point between the formulas N
(α,β)
ν , as for instance seen in the rows 6 and 7. We

note that N
(0,0)
ν tend to be dominant when n << d, and that N

(2,1)
5 only seems

to have an impact when k is large and t is small.
For the majority of cases we observe that Dff = Dsolv or Dsolv + 1, but

one should be careful in drawing any conclusions from this, seeing that our
experiments are in practice limited to computations of D < 6. The relation
between n and Dsolv is also noteworthy. For instance, in row 9 we have d = 57
and n = 38; Dff is 5, but Dsolv ≥ 6. In row 10 we fix one more variable, n = 37
(while keeping everything else as before), and find Dsolv = 5.
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Table 2: Degree fall polynomials for Dob encryption schemes of
various parameters.
d n t k Dff N N Dsolv Step

(+) (ip) (predicted) (Magma) (Dreg(d, n)) Degrees

53 53 0 0 3 N
(0,0)
3 : 106 2:106 3 (9) 2,3,3

53 53 0 3 4 N
(0,0)
4 : 1999 3:1999 4 (9) 2,3,4,4

53 53 3 0 4 N
(0,0)
4 : 1596 3:1596 4 (9) 2,3,4,4

59 29 0 7 4 N
(1,0)
4 : 21 3:21 5 (5) 2,3,4,4,5

37 25 2 3 4 N
(0,0)
4 : 692 3:692 4 (5) 2,3,4,4

31 29 0 8 5 N
(1,1)
5 : 478 4:478 5 (6) 2,3,4,5,5,5

31 30 0 8 5 N
(2,1)
5 : 264 4:264 5 (6) 2,3,4,5,5,5,4

39 37 1 7 5 N
(2,1)
5 : 136 4:136 ≥ 6 (7) 2,3,4,5,5,5,6...

57 38 4 6 5 N
(1,1)
5 : 2086 4:2086 ≥ 6 (6) 2,3,4,5,5,6. . .

57 37 4 6 5 N
(1,1)
5 : 2847 4:2847 5 (6) 2,3,4,5,5

129 50 6 6 5 N
(0,0)
5 : 64024 4:64024 ≥ 5 (6) 2,3,4,5,5...

Impact on Known Attacks. The solving degree of big field schemes are often
estimated using the first fall degree. In cases where Dsolv > Dff , we observed
instances where it is beneficial for an attacker to fix (a few) variables in order to
lower the Dsolv for each guess. Without a better understanding of Dsolv and how
it is affected by fixing variables, it seems that the approximation Dff ≈ Dsolv

is conservative, yet reasonable, when estimating the complexity of direct/hybrid
attacks against Dob system.

Another attack that may greatly benefit from the detailed formulas for degree
fall polynomials obtained in section 3, is an adapted version of the distinguishing
attack that was proposed for HFEv- (Section 5 in [11]). An attacker fixes random
linear forms, and distinguishes between the cases where (some of) the fixed linear
forms are in the span of (v1, . . . , vk), and when none of them are, by the use of
Gröbner basis techniques. Indeed, if one of the fixed linear forms are in this span,
the number of degree fall polynomials will be the same as for a system with k−1
ip linear forms. Hence, a distinguisher based on the formulas presented here will
work even without a drop in first fall degree, making the attack more versatile.

The deeper understanding for how the modifiers work allows for an even more
efficient attack on the Dob scheme, which we now present.

6 A New Attack on the Dob Encryption Scheme

In the previous two sections we have studied how degree fall polynomials can
occur in the Dob scheme, and have verified the accuracy of our resulting for-
mulas through experiments. In this section we will show how all these insights
can be combined to a novel attack. In section 6.1, we shall see that adding an
extra polynomial to the system can leak information about the modification
polynomials. We will see how this information can be used to retrieve (linear
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combinations of) the secret ip linear forms, and the homogeneous quadratic part
of the Q+ modification, in sections 6.2 and 6.3. We investigate how Gröbner
basis algorithms perform with this extra information in section 6.4, and finally
discuss the complexity of the entire attack in section 6.5.

6.1 Adding an Extra Polynomial

In section 3.1 we discussed how products of the modifiers and public polynomials
affect the number of degree fall polynomials, through PM(2,1) . One would also
expect a similar effect to take place when adding a random polynomial to the
system.

Consider a set of parameters for the Dob scheme, where the number of first

fall polynomials is determined by N
(0,0)
ν , for some ν > 3. Let P be the public

key of this scheme, and consider a randomly chosen homogeneous polynomial pR
of degree ν − 2. As it is unlikely that the randomly chosen pR has any distinct
interference with P, we expect (⟨pR⟩ ∩M (2,1))ν to be generated by the possible
combinations pRq

h
i , and pR(vjvl)

h. Furthermore, since the generators of S(F)

have degree at least 3, we do not expect any collision between ψPh

(S(F)) and
⟨pR⟩ at degree ν (cf. section 3.3). From these considerations, we estimate the
number of degree fall polynomials for the system {P, pR} at degree ν to be:

Nν({P, pR}) = N (0,0)
ν (P) + t+

(
k

2

)
. (26)

We ran a few experiments that confirm this intuition, the details are given in
table 3. First, we confirmed that the degree fall polynomials of P were indeed

given byN
(0,0)
ν (P), before applying Magma’s implementation of the F4 algorithm

on the system {P, pR}. Recall also our convention that
(
0
2

)
= 0 when applying

eq. (26).

Table 3: First fall polynomials of Dob encryption
schemes with an added, randomly chosen poly-
nomial pR.
d n deg(pR) t k Dff N N

(Q+) (ip) (predicted) (Magma)

31 29 2 2 2 4 N4 : 705 3:705

45 30 2 6 0 4 N4 : 342 3:342

75 39 3 6 6 5 N5 : 4695 4:4695

39 37 3 6 0 5 N5 : 9036 4:9036

With all this in mind, assume for the moment that d = n, and consider
a homogeneous Macaulay matrix of {Ph, pR} at degree ν, Mν({Ph, pR}). Any
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element in the (left) kernel of this matrix can in general be written as:

hRpR +

d∑
i=1

hip
h
i = 0, (27)

for some homogeneous quadratic polynomials hi ∈ B(d)ν−2, 1 ≤ i ≤ d, and hR ∈
B(d)2. From the discussion above, we expect that the only way pR contributes
to these kernel elements is through the trivial syzygies, multiplications with phi
or pR, and through multiplying with the generators of M (2,1). It follows that
any polynomial hR, from eq. (27), will be in the span of6

H := {ph1 , . . . , phd , pR, qh1 , . . . , qht , (v1v2)h, . . . , (vk−1vk)
h}. (28)

Hence, given enough kernel elements of Mν({Ph, pR}), a set of generators of
Span(H) can be found. In the next subsection we will generalise this observation
to the case where a number of variables are fixed, i.e. n < d.

6.2 Gluing Polynomials

Let Wη denote a non-empty subset of r variables, i.e. Wη = {xη1 , . . . , xηr} for
integers 1 ≤ η1 < . . . < ηr ≤ d. For n = d − r, there is a natural projection
map associated to Wη, πWη : B(d) → B(d)/Wη ≃ B(n), that fixes the variables
in Wη to 0. For any polynomial system R over B(d), we will also write πWη

(R)
to mean the system consisting of all polynomials in R under πWη

. Suppose now

that the number of first fall polynomials of a Dob system P is given by N
(0,0)
ν ,

after fixing r variables to 0, i.e., n = d − r. Let Wη be the set of variables we
fix. Following a similar line of reasoning as in section 6.1, we find that πWη

(hR)
from a kernel element of the Macaulay matrix associated with πWη ({Ph, pR})
will no longer be in the span of H, but rather lie in the span of πWη (H). To ease
notation, we will write Hη = πWη

(H). A natural question is whether we can
recover H, by using different variable sets W1, . . . ,Wρ, and finding generators
for the associated polynomial setsH1, . . . ,Hρ. We answer this question positively
in this subsection.

Let W̃η := {x1, . . . , xd}\Wη denote the complement ofWη, and note that Hη

only contains information about the set of monomials A(Wη) := {xixj | xi, xj ∈
W̃η}. In order to guarantee that the family H1, . . . ,Hρ can give complete infor-
mation about H we need to ensure that for any choice of 1 ≤ i < j ≤ d, we have
xi, xj ∈ W̃η for at least one 1 ≤ η ≤ ρ. In other words, the sets W̃1, . . . , W̃ρ must
cover all possible quadratic monomials.

In practice, both d and the size r of the variable sets will be determined by
the chosen Dob parameters7. This naturally leads to the following problem:

6 If pR has degree ≥ 3, then the syzygy p2R + pR = 0 will be of degree > ν. In this
case pR will not be among the generators of H. We shall see later, in Remark (1),
that the effect of pR can also be removed in the degree 2 case, but at an added cost
to the run time.

7 We will see later that the gluing also requires some overlap between the variable
sets, but this is not a problem for the parameters we are interested in.
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Definition 3 (The (Quadratic) (r,d)–Covering Problem). For integers
1 < r < d − 1, find the smallest number ρ of variable sets, each of size r, such
that

A(W1) ∪ . . . ∪A(Wρ) = {xixj | 1 ≤ i < j ≤ d}.

Appendix E of [33] presents a constructive solution to this problem, which pro-
vides a good upper bound for ρ that is sufficient for our use case. The upper
bound is given by the following lemma

Lemma 5. The (Quadratic) (r,d)–Covering Problem is upper bounded by

ρ ≤
(⌈ d

⌊(d−r)/2⌋

⌉
2

)
.

We illustrate the strategy for recovering H in the simple case when d = 3r. In
this particular case, the method above yields ρ = 3, where W1, W2 and W3 are
pairwise, disjoint variable sets. We may write the following matrix:

W1 ∗W1 W1 ∗W2 W1 ∗W3 W2 ∗W2 W2 ∗W3 W3 ∗W3


H1 0 0 0 ∗ ∗ ∗

H2 ∗ 0 ∗ 0 0 ∗

H3 ∗ ∗ 0 ∗ 0 0

Here Wi ∗ Wj , i, j ∈ {1, 2, 3}, is understood as a list of the monomials xaxb
where xa ∈Wi and xb ∈Wj (under any fixed ordering and a ̸= b), and we write
Hl to mean the rows associated with a fixed set of generators for Hl. A 0 in
the matrix means that the respective submatrix is the zero matrix, whereas ∗
denotes that the submatrix may take non-zero values. By construction, if the
submatrix whose rows are Hl, and columns are Wi ∗Wj , is denoted by ∗, then
it forms a set of generators for H restricted to the monomials in Wi ∗Wj . In
particular, the submatrix with columns W3 ∗W3 and rows H1 spans the same
row-space as the submatrix with columns W3 ∗W3 and rows H2. We will use
this observation to construct a new matrix, denoted H1 ∩W3 H2, that combine
the useful information from H1 and H2 in the following procedure.

1. Since {ph1 , . . . , phd , pR} are known, we start by finding t+
(
k
2

)
vectors in the row

space of H2 that are linearly independent of πW2
({ph1 , . . . , phd , pR}). Denote

the set of these vectors Y2.
2. If |W3 ∗W3| >> d+ t+

(
k
2

)
+ 1, then for each vector yi ∈ Y2, we can expect

a unique vector zi in the row space of H1, such that yi + zi is 0 along the
columns associated with W3 ∗W3. Find such an zi for each yi ∈ Y2 through
Gaussian elimination.

3. We now have t+
(
k
2

)
pairs (yi, zi) that are used to define the (t+

(
k
2

)
)×

(
d
2

)
matrix (H1 ∩W3 H2) over F2 in the following manner. For each row index i0
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and column index j0, we define the entry at [i0, j0] to be

(H1 ∩W3 H2)[i0, j0] =

{
yi0 [j0], if j0 is associated with a monomial in W3 ∗W3

yi0 [j0] + zi0 [j0], otherwise.

The above procedure uses the common information found in the columns of
W3 ∗W3 to combine vectors from H1 and H2. We may think of this as “gluing”
polynomials along W3 ∗W3, hence the name of the technique. Now consider the
following matrix.

W1 ∗W1 W1 ∗W2 W1 ∗W3 W2 ∗W2 W2 ∗W3 W3 ∗W3[ ](H1 ∩W3
H2) ∗ 0 ∗ ∗ ∗ ∗

H3 ∗ ∗ 0 ∗ 0 0

Note in particular that the polynomials associated with (H1 ∩W3 H2) forms
a set of generators for π

W1∗W2
(H). In order to recover the information of the

monomials in W1 ∗ W2, we need only glue the vectors of (H1 ∩W3
H2), with

combinations from the row space of H3, using the same procedure as described
above. Since both (H1 ∩W3 H2) and H3 may take non–zero values at W1 ∗W1

and W2 ∗ W2, we expect the gluing to result in t +
(
k
2

)
unique polynomials

if |(W1 ∗ W1) ∪ (W2 ∗ W2)| >> d + t +
(
k
2

)
+ 1. By construction, all of the

resulting t+
(
k
2

)
polynomials associated with (H1 ∩W3 H2)∩W1 H3 will be in the

span of ⟨ph1 , . . . , phd , pR, qh1 , . . . , qht , . . . (vivj)h . . .⟩, but none of them in the span
of ⟨ph1 , . . . , phd , pR⟩. Hence we define G to be the set consisting of the polynomials
{ph1 , . . . , phd , pR}, as well as the polynomials associated with (H1∩W3

H2)∩W1
H3,

and note that G is, by construction, a system of polynomials that are linearly
equivalent to H.

As a proof of concept, we implemented retrieving G from a toy example of the
Dob scheme, with d = 45, t = 6 and k = 0, using the method described above.
The interested reader can find more details by consulting Example 3, Appendix
C in [33].

The General Case In the case of a general family of variable sets W1, . . . ,Wρ,
we will not be able to set up the straightforward matrices that was shown above.
The gluing process can still be done in a similar, iterative manner. For instance,
the submatrix associated with Hη will have 0 for each monomial xixj where xi
or xj ∈ Wη, and ∗ otherwise. As above, we expect to be able to glue Hη with

Hψ if the number of their common ∗–monomials exceeds d+ t+
(
k
2

)
+ 1.

6.3 Retrieving the Linear Forms from ip

Suppose now that a set of generators G for Span(H) has been found, as described
in section 6.2. The goal is to recover k linear forms that are generators for
⟨v1, . . . , vk⟩. In order to simplify our arguments we will assume k ≥ 5. The
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special cases 2 ≤ k ≤ 4 does not provide more security, and are dealt with in
Remark 1, [33].

Consider the kernel of the homogeneous Macaulay matrix M3(G). From
the definition of H (eq. (28)), we find that Span(H) contains all the homoge-
neous nude Dob–polynomials fh1 , . . . , f

h
d , as well as all the combinations (vivj)

h,
1 ≤ i < j ≤ k. Each polynomial (vivj)

h generates the two kernel elements
vi(vivj)

h and vj(vivj)
h (which are trivial when working over B(d)). The nude

Dob–polynomials will generate the 2d kernel elements associated with the degree
fall polynomials discussed in section 4.2. We would like to separate these two
types of kernel elements. To this end, we suggest constructing a smaller system,
G′, by removing three polynomials from G, that are in the span of {ph1 , . . . , phd}.
Indeed, the idea is that this will work as a self–imposed minus modifier, which
will remove the effect of the Dob–polynomials of G at degree 3.

On the other hand, some kernel elements generated by combinations of the
(vivj)

h–elements can still be observed for G′ at degree 3. More specifically, sup-
pose G′ was created from G by removing ph1 , p

h
2 and ph3 . Then Span(G′) may not

necessarily contain (v1vj)
h itself, for any 2 ≤ j ≤ k, but it will contain the

combination (v1vj)
h + b1,jp

h
1 + b2,jp

h
2 + b3,jp

h
3 , for some b1,j , b2,j , b3,j ∈ F2. By

considering these equations for all j, and eliminating ph1 , p
h
2 and ph3 , we find that

Span(G′) will contain a polynomial z1 =
∑k
j=2 aj(v1vj)

h, where a2, . . . , ak ∈ F2

are not all 0, using the assumption that k ≥ 5. The polynomial v1z1 will subse-
quently be reduced to 0 over B(d). Similarly, we are guaranteed to find polyno-
mials z2, . . . , zk. We assume that these are the only contributors to the kernel.
In particular, this means that each kernel element of M3(G′) can be written as∑
ligi = 0, with gi ∈ G′, and each li a linear form in Span({v1, . . . , vk}). It

follows that an attacker can retrieve a basis v∗1 , . . . , v
∗
k of ⟨v1, . . . , vk⟩, by deter-

mining k linearly independent li’s from these kernel elements.
The retrieval of G and v∗1 , . . . , v

∗
k, as described in this subsection, has been

implemented and verified on the toy example with parameters d = 63, t = 1 and
k = 4. This is further described in Example 4, Appendix C of [33].

6.4 Solving the Extended Dob System

Assume now that an attacker has followed the steps described in the previ-
ous subsections, and has recovered a system G (section 6.2), as well as a basis
{v∗1 , . . . , v∗k} that generates ⟨v1, . . . , vk⟩ (section 6.3). Now fix a set of generators
q∗1 , . . . , q

∗
k for the polynomials that are in Span(G), but not in

Span({ph1 , . . . , phd , pR, (v∗i v∗j )h | 1 ≤ i < j ≤ k }).

With all this information, we consider the associated extended Dob system, PE ,
defined by:

PE := {p1, . . . , pd, pR, q∗1 , . . . , q∗t , v∗1 , . . . , v∗k}. (29)

For any given ciphertext, an attacker with access to an extended Dob system can
guess constant values for the polynomials pR, q

∗
1 , . . . , q

∗
t , v

∗
1 , . . . , v

∗
k, and check the

guess by finding a Gröbner basis for PE .
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Remark 1. A system PE that is independent of the randomly chosen polynomial
pR can be obtained by running the steps described in sections 6.2 and 6.3 for two
different elements pR, and combine the results. More information can be found
by consulting Remark 2 in [33].

In order to get a better understanding of solving extended Dob systems, we
introduce the following modification for multivariate schemes.

Definition 4. For a polynomial system P ′, we define the modification L+ by
choosing l0 linear forms, and appending linear combinations of them to each
polynomial in P ′.

Consider an extended Dob system, PE , where all coefficients have been guessed
correctly. Since q∗i does not contain any information about the linear part of the
qi–polynomials, it follows that Span(PE) will contain a Dob system that is only
modified with the L+–modification, where l0 = t. Moreover, this Dob system has
d equations and d − k variables8. The problem of estimating the complexity of
finding a solution to PE , can then be reduced to that of estimating the complexity
of finding a Gröbner basis for Dob with the L+–modification. While a thorough
analysis of this L+–modification is beyond the scope of this work, we point out
a couple of immediate properties.

Firstly, seeing that the first fall degree only depends on the upper homoge-
neous part of a polynomial system, it is unaffected by the L+–modification. In
particular, we expect 2d degree fall polynomials at degree 3, as in the case for
nude Dob (section 4.2). Secondly, if running an algorithm such as F4, a second
batch of degree fall polynomials will emerge at the first step of degree 4. To see
this, note that Dob with the L+–modification can be written over the quotient

ring F2d [X]/⟨X2d +X⟩ as

FL+
(X) = X(X2m +X2) + L(X) + CE , (30)

where CE is a constant in F2d , and L(X) =
∑m
i=1 ciX

2i , with ci ∈ F2d , is a
polynomial of binary weight one. XFL+

is one of the combinations that induce
degree fall polynomials at degree 3, and X4XFL+

will correspond to cubic9

(multivariate) polynomials found at the second step of degree 3. Upon running
a subsequent step at degree 4, the polynomial L(X)X4XFL+

will correspond
to d multivariate cubic polynomials, and would hence be counted as degree fall
polynomials.

We ran a few experiments for extended Dob systems, PE , the results of which
can be found in Appendix F of [33].

8 Here we implicitly assume that k variables have been eliminated by the linear forms
v∗i .

9 For nude Dob, the polynomial X5F can be used to create linear polynomials (see
Equation (35), Appendix D in [33]). The crucial difference is that in this case, the
linear term X can be cancelled out at degree 3, whereas this is not possible for a
general L(X).
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6.5 Complexity of the Attack

The attack proposed in this section has two main parts. The first step is to
construct an extended Dob system, PE . In the second step, an attacker solves
this system for a particular ciphertext. Suppose an attacker fixes d−n variables
in order to find ρ polynomial systems H1, . . . ,Hρ from the kernel elements of
Macualay matrices of degree D0 ≥ 3. The gluing operations, determining the
linear forms v∗1 , . . . , v

∗
k, and the quadratic forms q∗1 , . . . , q

∗
t only involve Macaulay

matrices of degree at most three. Hence, we expect the first step to be dominated
by recovering generators for the polynomial systemsHi. While the optimal choice
of attack parameters may depend on the parameters of the Dob encryption
scheme, as a rule of thumb it seems best to first minimizeD0, then n, and lastly ρ.
In practice, minimizing n involves choosing the smallest n such that Dreg(d, n) >
D0, for a fixed d. Kernel elements of the resulting sparse, homogeneous Macaulay
matrix can be found using a variant of the Wiedemann algorithm [30] (see also
[6] for an implementation of a version adapted to the XL algorithm). Section VI
of [30] shows that one kernel vector can be retrieved after three iterations with
probability > 0.7, and as a simplification we estimate the complexity of finding
a sufficient number of kernel elements in each of the ρ Macaulay matrices as
3
0.7

(
t+

(
k
2

)) (
n
D0

)2(n
2

)
. Recall from remark 1 that the first step is performed

twice if the attacker wishes to remove the effect of pR from PE ; let δ = 1 denote
if this is the case, and δ = 0 otherwise. It follows that the total attack complexity
can be estimated as

CAttack = max

{
2δρ

3

0.7

(
t+

(
k

2

))(
n

D0

)2(
n

2

)
, CPE ,δ

∣∣∣∣ δ ∈ {0, 1}
}
, (31)

where CPE ,δ denotes the complexity of finding a solution for PE (with or without
pR, depending on δ). While we do not have a general estimate for the complexity
this second step, we discuss how to estimate it in the case of the 80–bit secure
parameter set proposed in Section 2.4 of [20], in the following.

Security of the Suggested Parameters. Let d = 129, and t = k = 6 for
the Dob encryption scheme. Using equations (3) and (21) we find that it is not

possible to choose an n such that N
(0,0)
4 is positive, and Dreg(129, n) > 4. For

degree 5, we find that n = 50 is the smallest number such that N
(0,0)
5 is positive,

and Dreg(129, 50) > 5. Indeed, for this choice of parameters, we get:

N
(0,0)
5 (129, 50, 6, 6) = 64024,

which is exactly the number of degree fall polynomials observed in the last row
of table 2. For this choice of parameters, ρ is upper bounded by 15, due to
lemma 5. In this case we can do even better, and use ρ = 11, as described in
Appendix E of [33]. Choosing δ = 1, we find that the first step requires about 263

operations. For step two, we note from the experiments we ran, provided in Table
4 Appendix F of [33], that the extended Dob system with modifications t = k = 6
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has a solving degree of 4 in all the experiments we can run. Conjecturing that
this behaviour extends to d = 129, we estimate the complexity of step two to
be CPE ,1 = 212

(
123
4

)ω
, where the factor 212 is the cost of finding the correct

constants for q∗1 , . . . , q
∗
6 and v∗1 , . . . , v

∗
6 . We have also used 123 = 129 − 6 as the

number of variables in this system, seeing that 6 variables are eliminated by the
linear forms v∗i .

Using ω = 2.4, step two is estimated at 267. Using Strassen’s algorithm with
ω = 2.8 (a rather pessimistic choice for an attacker as it assumes that it is not
possible to take advantage of the sparse matrix structure of the systems), the
estimate is 277 for step two. Either option leads to a time complexity below the
proposed 80–bit security.

7 Conclusions

We have presented an analysis on the security provided by the Q+ and ip mod-
ifications against algebraic attacks. The theory was then applied to the Dob
encryption scheme, along with a novel attack on this construction. Not only
does the attack break the suggested parameter set, but the effectiveness of how
crucial information regarding the modifications can be retrieved allows us to
conclude that the Dobbertin permutation seems unsuited for use in encryption
schemes. The reader may consult Section 7 in [33] for a more in–depth discussion
on this. We emphasize that this work has not covered the Dob signature scheme,
nor the generalized central maps introduced in [20]; their security remains an
open question.

There are several directions where the ideas presented here may inspire future
work. Firstly, the modifications are treated as ideals, whose dimensions can be
examined. If different types of modifications, such as minus and vinegar, can
be included in this framework, it could lead to a deeper understanding of the
security of an even larger subclass of big–field schemes. Secondly, the attack
introduces new tools for the cryptanalysis of multivariate schemes. The gluing
technique allows an attacker to collect useful information after fixing a number of
variables. As there is no need for correct guesses, the exponential factor usually
associated with hybrid methods is avoided. Furthermore, the technique does not
rely on heuristic assumptions on the relation between the first fall and solving
degrees.

In light of this, we believe that security analyses of big–field multivariate
schemes ought not only focus on the first fall degree directly, but also how this
degree changes when fixing variables. Cryptographers wishing to design encryp-
tion schemes by adding limited modification to an otherwise weak polynomial
system should be particularly aware of the effect presented in this work.
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