
Efficient Adaptively-Secure IB-KEMs and VRFs
via Near-Collision Resistance?

Tibor Jager1[0000−0002−3205−7699], Rafael Kurek1, and David
Niehues2[0000−0001−9169−7867]

1 Bergische Universität Wuppertal, Wuppertal, Germany,
tibor.jager@uni-wuppertal.de, rafael.kurek@rub.de

2 Paderborn University, Paderborn, Germany, david.niehues@upb.de

Abstract. We construct more efficient cryptosystems with provable se-
curity against adaptive attacks, based on simple and natural hardness
assumptions in the standard model. Concretely, we describe:

– An adaptively-secure variant of the efficient, selectively-secure LWE-
based identity-based encryption (IBE) scheme of Agrawal, Boneh,
and Boyen (EUROCRYPT 2010). In comparison to the previously
most efficient such scheme by Yamada (CRYPTO 2017) we achieve
smaller lattice parameters and shorter public keys of size O(log λ),
where λ is the security parameter.

– Adaptively-secure variants of two efficient selectively-secure pairing-
based IBEs of Boneh and Boyen (EUROCRYPT 2004). One is based
on the DBDH assumption, has the same ciphertext size as the cor-
responding BB04 scheme, and achieves full adaptive security with
public parameters of size only O(log λ). The other is based on a q-
type assumption and has public key size O(λ), but a ciphertext is
only a single group element and the security reduction is quadrat-
ically tighter than the corresponding scheme by Jager and Kurek
(ASIACRYPT 2018).

– A very efficient adaptively-secure verifiable random function where
proofs, public keys, and secret keys have size O(log λ).

As a technical contribution we introduce blockwise partitioning, which
leverages the assumption that a cryptographic hash function is weak
near-collision resistant to prove full adaptive security of cryptosystems.

1 Introduction

A very fundamental question in cryptography is to which extent idealizations like
the random oracle model [7] are necessary to obtain practical constructions of
cryptosystems. By advancing our techniques to prove security of schemes, we may

? This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Centre On-The-Fly Computing (GZ: SFB 901/3)
under the project number 160364472 and the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme, grant
agreement 802823.

eventually be able to obtain standard-model schemes that are about as efficient
as corresponding schemes with security proofs in the ROM. From a practical
perspective, it would be preferable to have security guarantees that are not
based on an uninstantiable model [20]. From a theoretical perspective, it allows
us to understand when a random oracle is necessary, and when not. For some
primitives it is known that a programmable random oracle is indeed inherently
necessary [25,27,31,46]. But for many others, including those considered in this
paper, there are no such impossibility results.

In the context of identity-based encryption the established standard secu-
rity notion [16] considers an adversary which is able to choose the identities for
which it requests secret keys or a challenge ciphertext adaptively in the security
experiment. This yields much stronger security guarantees than so-called selec-
tive security definitions [14], where the adversary has to announce the “target
identity” associated with a challenge ciphertext at the beginning of the security
experiment, even before seeing the public parameters.

“Selective” security is much easier to achieve and therefore yields more effi-
cient constructions. The random oracle model is then a useful tool to generically
convert a selectively-secure scheme into an adaptively-secure one. This has neg-
ligible performance overhead, and thus yields an efficient and adaptively-secure
construction. This generic construction is based on the fact that a random ora-
cle is “programmable”, which essentially means that it is possible to adaptively
modify the mapping of function inputs to outputs in a way that is convenient for
the security proof. While this is very useful to achieve efficient and adaptively-
secure constructions, it is often considered a particularly unnatural property of
the random oracle model, due to the fact that no fixed function can be as freely
adaptively programmed as a random oracle.

There exist techniques to achieve adaptive security in the standard model
by realizing certain properties of a random oracle with a concrete construction
(i.e., in the standard model). This includes admissible hash functions [15], pro-
grammable hash functions [22, 28, 33, 34, 51], and extremely lossy functions [55].
However, these typically yield significantly less efficient constructions and are
therefore less interesting for practical applications than corresponding construc-
tions in the random oracle model.

A recent, quite different approach that addresses this issue is to use trunca-
tion collision resistance [37] of a cryptographic hash function to achieve adaptive
security. In contrast to the aforementioned approaches, this does not introduce
a new “algebraic” construction of a hash function. Instead, their idea is to for-
mulate a concrete hardness assumption that on the one hand is “weak enough”
to appear reasonable for standard cryptographic hash functions, such as SHA-3,
but which at the same time is “strong enough” to be used to achieve adaptive
security. It is shown that this indeed yields very efficient and adaptively-secure
constructions, such as identity-based encryption with a single group element
overhead and digital signatures that consist of a single group element. Notably,
truncation collision resistance is also achieved by a non-programmable random
oracle, even though this security notions is considered as a (non-standard, but

2

seemingly reasonable) security notion for standard-model cryptographic hash
functions. However, the main disadvantages of the constructions in [37] are that
very strong computational hardness assumptions (so-called q-type assumptions
with very large q) are required, and that the reductions are extremely non-tight.

Our contributions. We introduce blockwise partitioning as a new approach
to leverage the assumption that a cryptographic hash function is weak near-
collision resistant. We informally say that a hash functions is weak near-collision
resistant if the generic birthday attack is the fastest algorithm to find collisions
on a subset of the output bits, where the subset has to be stated in advance. We
formally introduce weak near-collision resistance in Definition 1. It can be seen
as a new variant of truncation collision resistance [37], which essentially captures
the same intuition and therefore can be considered equally reasonable. However,
we will show that our technique yields more efficient and tighter constructions
of identity-based encryption, based on lattices and on pairings, and a highly
efficient new verifiable random function. We give a more detailed comparison
between blockwise partitioning based on weak near-collision resistance and the
results from [37] in Section 2.

Near-collision resistance of standardized hash functions. The near-collision re-
sistance of hash functions has been studied in several works and has been shown
to be an important property of hash functions [10, 11, 48]. Further, the Hand-
book of Applied Cryptography [44, Remark 9.22] lists near-collision resistance
as a desired property of hash functions and a potential certificational property.
Moreover, the sponge construction for hash functions, which SHA-3 is based on,
has been shown to be indifferentiable from a random oracle [9], in a slightly ideal-
ized model. This immediately implies the near-collision resistance of the sponge
construction in this model. Since weak near-collision resistance is an even weaker
property, we view it as a natural property of modern hash functions.

Lattice-based IB-KEM. We apply our approach to construct a lattice-based IB-
KEM with constant size ciphertexts and public keys of size O(log λ). This scheme
has efficiency close to existing selectively-secure ones, which makes progress to-
wards answering an open problem posed in Peikert’s survey on lattice cryptog-
raphy [47] on the existence of adaptively-secure schemes whose efficiency is com-
parable to selectively-secure ones. We compare the efficiency of existing schemes
in Table 1, which is based on the respective table by Yamada [53], and discuss
the used techniques in the full version [38].

Pairing-based IB-KEM. We also construct two new variants of the pairing-based
identity-based encryption schemes of Boneh and Boyen [14] and Waters [51]. In
comparison to [14] we achieve adaptive security instead of selective security. In
comparison to [51] we have public parameters of size O(log λ) instead of O(λ).
Security is based on the same algebraic complexity assumption as the original
schemes plus weak near-collision resistance. The security analysis is also much

3

Schemes

|mpk|
of
Zn×mq

matr.

|usk|, |ct|
of
Zmq vec.

LWE
param

1/α

Reduction
Cost

Remarks

[21] O(λ) O(λ) Õ(n1.5) O(εν+1/Qν)‡

[2]+ [18] O(λ) O(1) Õ(n5.5) O(ε2/qQ)

[52] O(λ1/µ)† O(1) nω(1) O(εµ+1/kQµ)†

[56] O(logQ) O(1) Õ(Q2n6.5) O(ε/kQ2) Q-bounded

[4]∗ O(λ/ log2 λ) O(1) Õ(n6) O(ε2/qQ)

[19] O(λ) O(1) superpoly(n) O(λ)

[41] O(λ1/µ)† O(1) O(n2.5+2µ)† O((λµ−1εµ/Qµ)µ+1)† Ring-based

[53] + FMAH § O(log3 λ) O(1) Õ(n11) O(εν+1/Qν)‡

[53] + FAFF § O(log2 λ) O(1) poly(λ) O(ε2/k2Q)
Expensive

offline phase

Sec. 3 O(log λ) O(1) Õ(n6) O(ε2/t2)

Table 1. Comparison of Adaptively Secure IBEs based on LWE in the standard model

We compare adaptively secure IBE schemes under the LWE assumption that do not
use random oracles. We measure the size of ct and usk in the number of Zmq vectors
and the size of mpk in the number of Zn×mq matrices. Q, ε and t, respectively, denote
the number of queries, the advantage against the security of the respective IBE, and
the runtime of an adversary. We measure the reduction cost by the advantage of the
algorithm solving the LWE problem that is constructed from the adversary against
the IBE scheme. All reduction costs were computed using the technique of Bellare and
Ristenpart [6].

† The constant µ ∈ N can be chosen arbitrarily. However, the reduction cost degrades
exponentially in µ and hence it should be chosen rather small.
‡ ν > 1 is the constant satisfying c = 1 − 2−1/ν , where c is the relative distance of

an underlying error correcting code. ν can be chosen arbitrarily close to one by
choosing c closer to 1/2 [30]. However, this comes with larger public keys as shown
in [39].

∗ The authors also propose an additional scheme that we do not include, because it
relies on much stronger complexity assumptions.

§ Yamada [53] provides two instantiations of his IBE, one based on a modified ad-
missible hash function (FMAH) and one based on affine functions (FAFF). When
Yamada’s scheme is used with the second instantiation, the key generation and en-
cryption need to compute the description of a branching program that computes
the division. This makes the construction less efficient.

4

simpler than in [51] or the simplified proof by Bellare and Ristenpart [6] and
does not require an “artificial abort” [51]. To our best knowledge, this is the first
adaptively-secure IBE scheme where ciphertexts consist only of two elements of a
prime order algebraic group with logarithmic-size public parameters. The scheme
also gives rise to an adaptively-secure (EUF-CMA) CDH-based digital signature
scheme with logarithmic-size keys. See Table 2.

We also describe a new adaptively-secure variant of a scheme by Boneh and
Boyen [14] based on a q-type assumption where a ciphertext consists only of
a single group element. In comparison to the corresponding construction from
[37], the q of the required q-type assumption is reduced quadratically, while the
tightness of the reduction is improved quadratically, too. This scheme also gives
rise to a signature scheme with adaptive security in the standard model, where
a signature is only a single element from a prime-order group, which achieves
the same quadratic improvement over a construction from [37].

Scheme |mpk| |usk| |ct| Security Assumption ROM Security Loss

[16] 2 1 1 adap. DBDH Yes O(qkey)
[51] O(λ) 2 2 adap. DBDH No O(t2 + (λ · qkey · ε−1)2)
[50] 13 9 10 adap. DLIN+DBDH No O(qkey)
[43] 25 6 6 adap. DLIN No O(qkey)
[23] 9 4 4 adap. SXDH No O(qkey)
[5] O(λ) 8 8 adap. DLIN No O(log(λ))

Sec. 4.1 O(log λ) 2 2 adap. DBDH No O(t2A/εA)

[14] 4 2 2 selec. qDBDHI No O(1)
[29] 3 2 3 adap. qABDHE No 1 +O(q2key)/tA
[37] O(λ) 1 1 adap. qDBDHI No O(t7A/ε

4
A)

Sec. 4.2 O(λ) 1 1 adap. qDBDHI No O(t3A/ε
2
A)

Table 2. Comparison of IB-KEMs based on pairings with prime order groups and
short ciphertexts. |mpk| is the number of group elements in public keys (descriptions
of groups and hash functions not included), λ the security parameter. All public keys
include at least one element from the target group of the pairing, except for [16].
|usk| and |ct| are the respective numbers of group elements in the user secret keys and
ciphertexts when viewed as a KEM. “adap.” means adaptive IND-ID-CPA security as
defined below, “selec.” is selective security in the sense of [14]. The security loss is
defined as the value L that satisfies tB/εB = L · tA/εA, where tA,εA and tB,εB are the
respective running time and advantage of the adversary and reduction, and we ignored
negligible terms in the security loss. qkey is the number of identity key queries.

Pairing-based VRF. As our last contribution, we construct a new VRF based
on the q-DBDHI assumption by using blockwise partitioning and techniques of
Yamada’s VRF [53]. Our VRF is the first to achieve both small public keys and
small proofs at the same time. Furthermore, the size of the keys and proofs is
not only asymptotically small but also concretely: for λ = 128, public keys of

5

Schemes |vk| |π| Assumption Security loss

[35] O(λ) O(λ) O(λ ·Q)-DDHE O(λQ/ε)
[17] O(λ) O(λ) O(λ)-DDH O(λ)
[36] O(λ) O(λ) O(log(Q/ε))-DDH O(Qν/εν+1)

[32] O(λ) O(λ) DLIN O(λ log(λ)Q2/c/ε3)

[53] Sec. 6.1 ω(λ log2 λ)† ω(log2 λ)† Õ(λ)-DDH O(Qν/εν+1)

[53] Sec. 6.2 ω(log2 λ)† ω(
√
λ log2 λ)† Õ(λ)-DDH O(Qν/εν+1)

[54] App. C. ω(log2 λ)† poly(λ) poly(λ)-DDH O(λ2Q/ε2)

[40] Sec. 5.1 ω(log2 λ)† ω(λ log2 λ)† ω(log2 λ)†-DDH O(Qν/εν+1)

[40] Sec. 5.3 ω(
√
λ log λ)† ω(log λ)† ω(log2 λ)†-DDH O(Qν/εν+1)

[49] O(λ) O(λ) DLIN O(λ log(λ)Q2/c/ε3)

[42] ω(λ log λ)† ω(log λ)† DLIN O(|π| log(λ)Q2/ν/ε3)

[42] ω(λ2+2η) ω(1)† DLIN O(|π| log(λ)Q2+2/ν/ε3)
[39] O(λ) O(λ) O(t2/ε)-DDH O(t3/ε2)

Sec. 5 O(log λ) O(log λ) O(t2/ε)-DDH O(t2/ε2)

Table 3. Comparison of Adaptively Secure VRFs in the standard model

We compare adaptively secure VRF schemes in the standard model. We measure the
size of vk and π in the number of the respective group. Q, ε and t respectively denote the
number of queries an adversary makes, the adversaries advantage against the security
of the respective VRF and the adversaries runtime. Most of the constructions use an
error correcting code C : {0, 1}λ → {0, 1}n with constant relative minimal distance
c ≤ 1/2, where n,ν > 1 can be chosen arbitrarily close to 1 by choosing c arbitrarily
close to 1/2 [30, Appendix E.1]. However, this leads to larger n and by that to larger
public keys and/or proofs as shown in [39].

† Note that these terms only hold for “λ large enough” and therefore, key and proof
sizes might have to be adapted with larger constants in order to guarantee adequate
security.

6

our VRF consist of only 10 group elements and proofs of only 9 group elements.
We compare the efficiency of existing schemes in Table 3, which is based on
the respective table by Kohl [42], and discuss the used techniques in the full
version [38].

2 Blockwise Partitioning via Near-Collision Resistance

High-level approach. Confined guessing [12,13] is a semi-generic technique to
construct efficient and adaptively-secure digital signature schemes. It has been
used for instance in [3, 24]. Unfortunately, it is only applicable to signatures,
but neither to identity-based schemes such as identity-based key encapsulation
mechanisms (IB-KEMs), nor to verifiable random functions (VRFs).

We propose blockwise partitioning as a new semi-generic technique, and show
how it can be used to construct efficient IB-KEMs and VRFs with adaptive
security. It is based on the near-collision resistance of a cryptographic hash
function and similar in spirit to the closely related notion of truncation collision
resistance [37].

Explained on an informal level using IB-KEMs as example, our approach
is to let the reduction guess n′ = O(log λ), many bits of H(id∗), where λ is
the security parameter, H is a collision resistant hash function and id∗ is the
challenge identity chosen by the adversary. Then, the reduction is successful if
the guess matches H(id∗) on all n′ guessed bits and the hash of every identity
queried by the adversary differs in at least one bit from the guess. For this ap-
proach to yield a reduction with non-negligible loss, we have to choose n′ such
that it fulfills the following two conflicting goals: n′ has to be small enough for
the probability of guessing n′ bits of H(id∗) correctly to be non-negligible, but
we also have to choose n′ large enough to ensure that it is unlikely, relative to
the adversaries advantage, for the adversary to make a query id whose hash also
matches on the n′ guessed bits. Like [12, 13, 37], we balance these two goals by
choosing n′ depending on the runtime and advantage of the adversary. Following
this approach thus yields an ideal choice of n′ for each adversary. Constructions
like [12,13,37], however, do not use this ideal choice but the next largest power of
two as n′ and then guess the first n′ bits of H(id∗). This has the advantage that
it leaves only O(log λ) many possibilities for n′ and hence yields small key sizes.
Unfortunately, this comes at the cost of a larger security loss in the reduction
because n′ can be almost double the size of the ideal choice. Furthermore, choos-
ing n′ in this sub-optimal manner also requires stronger q-type assumptions and
a hash function with longer outputs.

We address this issue by viewing the output of the hash function as the
concatenation of blocks of exponentially growing length, i.e. the first bit is the
first block, bits two and three are the second block, bits four, five, six and seven
are the third block and so on. Our reduction then uses the ideal choice for
n′ and guesses the bits in the blocks whose lengths sum up to exactly n′. This
more fine-grained guessing yields constructions with tighter security from weaker
assumptions. Furthermore, it reduces the required output length of the hash

7

function from 4(λ+1) bits in [37] to only 2λ+3 bits. Note that this is essentially
optimal for a collision-resistant hash function. In particular, for many practical
constructions one would probably use a collision resistant hash function, anyway,
to map long identities to short strings. We compare our techniques to the ones
of [37] in more detail after formally introducing blockwise partitioning.

In the remainder of this section we will describe the framework and assump-
tions for blockwise partitioning, give some more technical intuition, and state
and prove a technical lemma that will be useful to use blockwise partitioning as
modular as possible in security proofs.

Blockwise partitioning. Let H : {0, 1}∗ → {0, 1}n be a hash function. We

will assume in the sequel that n =
∑`
i=0 2i for simplicity and ease of exposition.

One can generalize this to arbitrary n, but this would make the notation rather
cumbersome without providing additional insight or clarity. Then we can view
the output space {0, 1}n of the hash function as a direct product of sets of
exponentially-increasing size

{0, 1}n = {0, 1}2
0

× · · · × {0, 1}2
`

.

For a hash function H we define functions H0, . . . ,H` such that

Hi : {0, 1}∗ → {0, 1}2
i

and H(x) = H0(x)|| · · · ||H`(x).

One can consider each Hi(x) as one “block” of H(x). Note that blocks have
exponentially increasing size and there are blog nc+ 1 blocks in total.

Using blockwise partitioning. Let t = t(λ) be a polynomial and let ε = ε(λ) be
a non-negligible function such that ε > 0 and t/ε < 2λ for all λ. Think of t and
ε as (approximations of) the running time and advantage of an adversary in a
security experiment. We define an integer n′ depending on (t, ε) as

n′ := dlog(4t · (2t− 1)/ε)e. (1)

Note that if n ≥ 2λ+ 3, then we have 0 ≤ n′ ≤ n as we show in Lemma 2 below.
The value n′ uniquely determines an index set I = {i1, . . . , iω} ⊆ {0, . . . , `}

such that n′ =
∑
i∈I 2i, where ` := blog nc. The key point in defining n′ as in

Equation (1) is that it provides the following two properties simultaneously:

Guessing from a polynomially-bounded range. In order to enable a re-
duction from adaptive to selective security, we will later have to “predict”
a certain hash values H(x∗). Think of x∗ as the challenge identity in an
IB-KEM security experiment, or the message from the forgery in a signature
security experiment. Blockwise partitioning enables this as follows.
Consider the following probabilistic algorithm BPSmp, which takes as input

λ, t, and ε, computes n′ as in Equation (1), chooses Ki
$← {0, 1}2i uniformly

random for i ∈ I and defines Ki = ⊥ for all i 6∈ I. Then it outputs

(K0, . . . ,K`)
$← BPSmp(1λ, t, ε).

8

The joint range of all hash functions Hi with i ∈ I is {0, 1}2i1 × · · · ×
{0, 1}2

i|I|
, which has size

2n
′

= 2
∑
i∈I 2i .

Hence, we have that

Pr [Hi(x
∗) = Ki for all i ∈ I] = 2−n

′
.

Note that 2n
′

is polynomially bounded, due to the definition of n′ in Equa-
tion (1).

Upper bound on the collision probability. In Lemma 2 below we will show
that near-collision resistance of H guarantees that the probability that an
adversary running in time t outputs any two values x 6= x′ such that

Hi(x) = Hi(x
′) for all i ∈ I (2)

is at most ε/2. Think of x and x′ as values chosen adaptively by an adversary
in a security experiment. In the context of IB-KEMs this would be chosen
identities, in context of digital signatures chosen messages, for instance. Note
that we do not argue that there is a negligible collision probability. This is not
possible, because we consider a polynomially-bounded space, where an ad-
versary will always be able to find collisions with non-negligible probability.
However, we can guarantee that there will be no collision with probability
at least ε/2. This means that an adversary that runs in some time t and
has some advantage ε will sufficiently often be successful without finding a
collision.

Hence, similar to confined guessing [12, 13] and truncation collision resistance
[37], blockwise partitioning enables us to guess challenge identities from a poly-
nomially bounded space. At the same time, it ensures that the space is large
enough such that collisions are sufficiently unlikely, such that any adversary
breaking a considered cryptosystem with some advantage ε must “sufficiently
often” be successful without finding a collision.

Blockwise partitioning via weak near-collision resistance. We will now give a
formal definition of weak near-collision resistance and then provide a technical
lemma, which will be useful for security proofs based on blockwise partitioning of
hash function outputs. Note that weak near-collision resistance is only required
for the security of our constructions and we hence only require this property in
the respective theorems and not in the constructions themselves.

Definition 1 (Weak near-collision resistance). Let H = {H : {0, 1}∗ →
{0, 1}n} be a family of hash functions. For n′ ∈ {1, . . . , n}, we say that an
adversary A = (A1,A2) breaks the weak n′-near-collision resistance of H, if it
runs in time tA, and it holds that

Pr
[
n′-wNCRHA = 1

]
≥ tA(tA − 1)/2n

′+1,

9

n′-wNCRHA

(J , st) $← A1(n′)

H
$← H

(X(1), . . . , X(Q+1))
$← A2(H, st)

If |J | = n′ and ∃x 6= y ∈ {X(1), . . . , X(Q+1)} with H(x)[i] = H(y)[i] for all i ∈ J :

return 1, else 0

Fig. 1. The security experiment for weak near-collision resistance, executed with a
family of hash functions H and adversary A = (A1,A2), where A1 outputs an index
set J ⊆ [n] and H ⊆ {h : {0, 1}∗ → {0, 1}n}. We restrict A1 to only output index sets
J with |J | = n′. Note that H(x)[i] denotes the i-th bit of H(x).

where n′-wNCR is the experiment defined in Figure 1 and the probability is over
the randomness of A and choosing H. We say that H is weak near-collision resis-
tant, if there exists no adversary A breaking the weak n′-near-collision resistance
of H for any n′ ∈ {1, . . . , n}.

The following lemma will be useful to apply blockwise partitioning in security
proofs.

Lemma 2. Let H : {0, 1}∗ → {0, 1}n be a hash function, t be a polynomial,
and let ε be a non-negligible function such that ε > 0 and t/ε < 2λ for all λ.
Let n′ := dlog(4t · (2t− 1)/ε)e as in Equation (1) and define set I such that
n′ =

∑
i∈I 2i. Let A be an algorithm that outputs (X(1), . . . , X(Q), X∗) and runs

in time t and let
(K0, . . . ,K`)

$← BPSmp(1λ, t, ε),

where BPSmp is the algorithm described above. Then, we have that 1 ≤ n′ ≤
2λ+ 3 and the following statements hold.

1.
2. Let coll be the event that there exists x, x′ ∈ {X(1), . . . , X(Q), X∗} such that

Hi(x) = Hi(x
′) for all i ∈ I. (3)

Let badChal be the event that there exists i ∈ I such that Pr [Hi(X
∗) 6= Ki].

If H is drawn uniformly at random from a family of weak near-collision
resistant hash functions in the sense of Definition 1, then we have

(ε− Pr [coll]) · Pr [¬badChal] ≥ ε2/(32t2 − 16t).

Moreover, coll and badChal are independent of each other.
3. Let badEval be the event that there exists x ∈ {X(1), . . . , X(Q)} with x 6= X∗

such that Hi(x) = Ki for all i ∈ I. Then we have

badEval =⇒ coll∨ badChal.

10

Proof. The proof uses the following inequalities and identities from [37, 39] and
we therefore refer to [37,39] and the full version [38] for the proof.

n′ ∈ {1, . . . , 2λ+ 3}, 2t(2t− 1)

2n′
≤ ε

2
, and

1

2n′
≥ ε

16t2 − 8t
(4)

The statement that 1 ≤ n′ ≤ 2λ+ 3 holds immediately follows from the first of
the above equations. We start to prove Property 1 by showing Pr[coll] < ε/2.
Assume an algorithm A running in time tA that outputs (X(1), . . . , X(Q), X∗)
such that there exist x, x′ ∈ {X(1), . . . , X(Q), X∗} such that Equation (3) holds
with probability at least ε/2. By the definition of I and the functions Hi, this
yields that H(x) and H(x′) agree on at least n′ positions. We construct an
algorithm B = (B1,B2) that uses A to break the weak n′-near-collision resistance
ofH. Note that the choice of I is independent ofH ∈ H. B1 therefore just encodes
K = (K0, . . . ,K`) to J ⊆ {1, . . . , n} with |J | = n′. B2 simply relays A’s output
(X(1), . . . , X(Q), X∗). The runtime tB of B is at most 2tA, since B does nothing
more than executing A and relaying its outputs. Therefore, we get

Pr[coll] > εA/2 ≥
2tA(2tA − 1)

2n′
≥ tB(tB − 1)

2n′+1
,

where the second inequality follows from Equation (4). This contradicts the weak
near-collision resistance of H. Next, we determine Pr [¬badChal]. We have that
the events coll and badChal are independent of each other because (K0, . . . ,K`)
is chosen independently of (X(1), . . . , X(Q), X∗). Moreover, each Ki with i ∈ I
is chosen uniformly at random from {0, 1}22

i

and thus we have

Pr [¬badChal] = Pr [Hi(X
∗) = Ki for all i ∈ I] =

1

2
∑
i∈I 2i

= 2−n
′
,

where the last equation follows by definition of n′. To prove Property 1, we then
calculate

(εA − Pr[coll])2−n
′
≥
(
εA −

εA
2

) εA
16t2A − 8tA

=
ε2A

32t2A − 16tA
,

where the first inequality follows from Equation (4). Finally, to show Property
2, we explain that if badEval occurs, then either badChal or coll must occur. This
is because if there exists x ∈ {X(1), . . . , X(Q)} with x 6= X∗ and Hi(x) = Ki for
all i ∈ I, then we have either that also Hi(X

∗) = Ki for all i ∈ I and then coll
occurs, or we have that there exists an index i ∈ I such that Hi(X

∗) 6= Ki and
then badChal occurs. This concludes the proof.

Near-collision resistance and the non-programmable random oracle model. Near-
collision resistance holds unconditionally in the non-programmable random or-
acle model [27]. Hence, all our results can also be viewed as a generic technique
to obtain adaptively-secure cryptosystems in the non-programmable random or-
acle model without any additional assumptions. In this sense, our paper is in
line with recent works that aim to avoid programmability, such as [26].

11

Relation to ELFs. Extremely lossy functions (ELFs), which were introduced by
Zhandry in [55], are hash functions that allow the reductions to choose the hash
function’s image size depending on the adversary. For the adversary, the func-
tion with a small image is indistinguishable from the injective version. Blockwise
partitioning uses the weak near-collision resistance of standard hash functions
similarly by selecting the blocks the guess in depending on the adversaries run-
time and advantage. Hence, ELFs might potentially enable constructions similar
to ours. However, the known ELF construction from [55] relies on (exponential
hardness of) DDH, and thus seems tied to a group based setting. Also, our
approach can be seen as partially addressing the open problem from [55] of
constructing ELFs based on symmetric key techniques.

Comparison to confined guessing and truncation collision resistance. Note that
the index set I defined above may contain multiple indices. This is a major dif-
ference of our approach to confined guessing and truncation collision resistance,
where always only single blocks are guessed.

The advantage of being able to guess multiple blocks is that we are now able
to define n′ in a much more fine-grained way, as any integer between 0 and n.
In contrast, [12, 13] and [37] were only able to pick values n′ of exponentially

increasing size, such that n′ = 22
j

for some j, which is the reason why our
reductions can improve tightness and the strength of the required assumptions
quadratically.

However, we cannot replace the approach of [12, 13] and [37] with blockwise
partitioning in a black-box manner. Instead, we have to provide a new secu-
rity analysis for cryptosystems, and show that there are reductions which are
compatible with guessing multiple blocks.

3 Lattice-Based IB-KEM

We describe how blockwise partitioning can be applied in the context of lat-
tice based cryptography, using an Identity-Based Key-Encapsulation-Mechanism
(IB-KEM) based on LWE as example. We build our IB-KEM from Yamada’s
IBE [53], for which we describe how blockwise partitioning can be embedded
into lattice trapdoors by describing “compatible algorithms” for blockwise par-
titioning in the lattice context. The notion is inspired by [53] and we use it
as a generic building block to instantiate the IB-KEM. The instantiation then
has ciphertexts and secret keys consisting of a constant number of matrices and
vectors and public keys consisting of only O(log(λ)) many matrices and vec-
tors. Furthermore, we are able to achieve better LWE-parameters. We provide
preliminaries on lattices in the full version [38].

Definition 3. An IB-KEM consists of the following four PPT algorithms:

– (mpk,msk)
$← Setup(1λ) takes as input the security parameter and outputs

the public parameters mpk and the master secret key msk.

12

IND-ID-CPAΠA(λ)

b
$← {0, 1}

(mpk,msk)
$← Setup(1λ)

(id∗, st)← AKeyGen(mpk,msk,·)
1 (1k,mpk)

K0
$← K; (ct,K1)

$← Encap(mpk, id∗)

b′ ← AKeyGen(mpk,msk,·)
2 (st, ct,Kb)

If (b′ == b) return 1, else 0

Fig. 2. The security experiment for IB-KEMs, executed with scheme Π =
(Setup,KeyGen,Encap,Decap) and adversary A = (A1,A2). The oracle KeyGen(msk, id)

returns uskid
$← KeyGen(msk, id) with the restriction that A is not allowed to query or-

acle KeyGen(msk, ·) for the target identity id∗.

– uskid
$← KeyGen(msk, id) returns the user secret key uskid for identity id ∈

{0, 1}∗.
– (ct,K)

$← Encap(mpk, id) returns a tuple (ct,K), where ct is ciphertext en-
capsulating K with respect to identity id.

– K = Decap(uskid, ct, id) returns the decapsulated key K or an error symbol
⊥.

For correctness we require that for all λ ∈ N, all pairs (mpk,msk) generated by
Setup(1λ), all identities id ∈ {0, 1}∗, all (K, ct) output by Encap(mpk, id) and all
uskid generated by KeyGen(msk, id):

Pr[Decap(uskid, ct, id) = K] ≥ 1− negl(λ).

We use the standard IND-CPA-security notion for IB-KEMs from [8].

Definition 4. Consider an adversary A with access (via oracle queries) to the
procedures defined Figure 2. We say that A is legitimate, if A never queries
KeyGen(msk, id∗), where id∗ is the output of A1. We define the advantage of A
in breaking the IND-ID-CPA security of IB-KEM Π as

AdvIND-ID-CPA
A (λ) :=

∣∣∣Pr[IND-ID-CPAΠA(λ) = 1]− 1/2
∣∣∣

We include the running time of the security experiment into the running time tA
of A. This will later allow us to simplify our security analysis and the statement
of theorems.

Our construction is based on dLWEn,m+1,q,α. The construction follows Ya-
mada’s construction of a lattice IBE [53] and requires “compatible algorithms”
to be instantiated. We first define properties required from these compatible al-
gorithms and then define our IB-KEM. We provide a concrete instantiation of
compatible algorithms based on blockwise partitioning in Section 3.2.

13

Compatible Algorithms. Let G ∈ Zn×mq be the gadget matrix as introduced
in [45, Theorem 1]. That is, G is a full rank matrix for which there is an efficient
algorithm G−1 that on input U ∈ Zn×mq outputs a matrix V ∈ {−1, 1}m×m
such that GV = U. We do not provide a formal definition of G due to space
limitations and instead refer to [45] or the full version [38] for a formal defini-
tion. We then say that the algorithms Encode,PubEval and TrapEval are com-
patible with blockwise partitioning if they combine the vanishing trapdoors tech-
nique from [1, 18] with blockwise partitioning. That is, that Encode encodes

(K0, . . . ,K`)
$← BPSmp(1λ, t(λ), ε(λ)) into matrices B, (Bi)0≤i≤` and trapdoors

R, (R)0≤i≤`
such that PubEval(H, id,B, (Bi)0≤i≤`) computes Bid with

Bid =

{
ARid + HidG if Hi(id) = Ki for all i ∈ I
ARid otherwise,

where Rid is a matrix of small maximum norm that can be computed from the
trapdoors using TrapEval and Hid is a invertible matrix that depends on id. Note
that we denote the infinity norm of a matrix R by ‖R‖∞.

Given these properties, the reduction can generate user secret keys for all
identities id with Hi(id) 6= Ki for some i ∈ I by using a gadget trapdoor de-
scribed in the full version [38]. At the same time, if id∗ is such that Hi(id∗) = Ki

for all i ∈ I, then the reduction can extract a solution to its LWE instance using
the adversary. By this, compatible algorithms allow us to apply blockwise parti-
tioning in the context of lattices. We formally define these conditions as follows.

Definition 5. We say that the algorithms (Encode,PubEval,TrapEval) are δ-
compatible with blockwise partitioning using a family of hash functions H, if
they are efficient and for all λ ∈ N, t = t(λ) = poly(λ) and ε = ε(λ) non-
negligible in λ with t(λ)/ε(λ) ≤ 2λ, they satisfy the following properties:

– For some matrix A ∈ Zn×mq , (Ki)0≤i≤`
$← BPSmp(1λ, t(λ), ε(λ)) we have

that Encode(A, (Ki)0≤i≤`) = ((B,R), (Bi,Ri)0≤i≤`) with B,Bi ∈ Zn×mq

and R,Ri ∈ {−1, 1}m×m for all 1 ≤ i ≤ `.
– For H ∈ H, id ∈ {0, 1}∗ and (B, (Bi)0≤i≤`) with Bi ∈ Zn×mq for all 0 ≤ i ≤ `

it holds that PubEval(H, id,B, (Bi)0≤i≤`) = Bid ∈ Zn×mq .
– For H ∈ H,A ∈ Zn×mq , Ri ∈ Zm×mq for all 0 ≤ i ≤ `, and all id ∈ {0, 1}∗ it

holds that TrapEval(H, id,R, (Ri)0≤i≤`) = Rid ∈ Zm×m.

We require that for all id ∈ {0, 1}∗,A ∈ Zn×mq and H ∈ H it holds that

PubEval(H, id, (Bi)0≤i≤`)

{
ARid if Hi(id) = Ki for all i ∈ I
ARid + HidG otherwise

for some invertible matrix Hid ∈ Zn×nq and that

‖Rid‖∞ ≤ δ,

14

where (Ki)0≤i≤` is sampled as (Ki)0≤i≤`
$← BPSmp(1λ, t, ε) and we have that

Encode(A, (Ki)0≤i≤`) = ((B,R), (Bi,Ri)0≤i≤`). Further Rid is computed as

Rid = TrapEval(H, id,R, (Ri)0≤i≤`). Finally, we require, that for A,A′
$← Zn×mq

and all 0 ≤ i ≤ ` the distributions (A,A′) and (A,Bi) and the distributions
(A,A′) and (A,B) have only negligible statistical difference in λ.

The construction. Let H = {H : {0, 1}∗ → {0, 1}2λ+3} be a family of hash
functions, let ` = blog(n)c. Further, let DZm,σ be the Gaussian distribution over
Zm with parameter σ > 0. Moreover, let GenTrap(1n, 1m, q) be an algorithm that
outputs a matrix A ∈ Zn×mq that is indistinguishable from a random matrix and
a trapdoor A−1σ0

for σ0 = ω(n log q logm). Note that for arbitrary m′ ≥ m,

u ∈ Znq and B ∈ Zn×(m
′−m)

q , the trapdoor A−1σ0
allows sampling vectors v ∈ Zm′q

from DZm′ ,σ conditioned on [A | B]v = u for σ′ > σ0. We denote this as

sampling from [A | B]−1σ (u) and formalize it in the full version [38].

We now construct our IB-KEM scheme Π = (Setup,KeyGen,Encap,Decap)
similar to [53] and based on LWE as follows.

Setup. Setup(1λ) chooses parameters n,m, q, `, σ, α and α′ as specified in Re-

mark 6, where q is a prime. It runs (A,A−1σ0
)

$← GenTrap(1n, 1m, q) such

that A ∈ Zn×mq and σ0 = ω(
√
n log(q) log(m)) and then samples u

$← Znq .

Finally, it samples H
$← H and B, (Bi)0,≤i≤`,C

$← Zm×mq and then outputs

mpk = (H,A,B, (Bi)0≤i≤`,C,u)and msk := A−1σ0
.

Key Generation. The algorithm KeyGen receives (mpk,msk, id) as input and
computes Bid := PubEval(H, id,B, (Bi)0≤i≤`) such that B ∈ Zm×mq . It then

computes [A | C + Bid]−1σ from A−1σ0
and samples e

$← [A | C + Bid]−1σ (u).
It then outputs uskid := e ∈ Z2m.

Encapsulation. The Encap algorithm receives an identity id ∈ {0, 1}∗ and mpk
as input. It computes Bid := PubEval(H, id,B, (Bi)0≤i≤`) such that Bid ∈
Zn×mq . It then samples s

$← Znq , x0
$← DZ,αq,x1,x2

$← DZm,α′q and K
$←

{0, 1} and computes

c0 = sTu + x0 +K · dq/2e ∈ Zq, cT
1 = sT[A | C + Bid] + [xT

1 | xT
2] ∈ Z2m

q .

It then returns (ct = (c0, c1),K).

Decapsulation. In order to decapsulate a ciphertext ct = (c0, c1), the algo-
rithm Decap receives the user secret key uskid = e and computes w =
c0 − cT

1 · e ∈ Zq. It then returns K := 1 if |w − dq/2e | < dq/4e and K := 0
otherwise.

Error term. We deduce the error term as Yamada in [54]. We have

w = c0 − cT
1 · e = K · dq/2e+ x0 −

[
xT
1 | xT

2

]
· e,

15

where x0 −
[
xT
1 | xT

2

]
· e is the error term. Assuming α′ ≥ α, the error term is

then bounded as follows∣∣x0 − [xT
1 | xT

2

]
e
∣∣ ≤ |x0|+ ∣∣[xT

1 | xT
2

]
· e
∣∣

≤ |x0|+
∥∥[xT

1 | xT
2

]∥∥
2
· ‖e‖2

≤ αq
√
m+ (α′

√
2m) · σ

√
2m

= O(α′σmq)

with overwhelming probability, where the first inequality follows from the tri-
angle inequality, the second one follows from the Cauchy-Schwartz inequality,
and the third follows from properties of the algorithm GenTrap and the fact that

for x0
$← DZ,αq it holds that |x0| ≤ αq

√
m with overwhelming probability. We

provide formal theorems for both of these claims in the full version [38]. This
then implies the correctness of the scheme.

Remark 6. We select the parameters as described by Yamada (only in the full
version [54]) with the additional constraint of n to be large enough to allow for
blockwise partitioning. That is, we require

– that n′ as chosen in Lemma 2 is at most n, that is n ≥ 2λ+ 3 as explained
in Section 2,

– ` = blog(n)c in order to use blockwise partitioning.
– the error term is less than q/5 with overwhelming probability, that is q >
Ω(α′σmq),

– that GenTrap can operate, that is m > 6n dlog qe,
– that the leftover hash lemma can be applied, meaning m ≥ (n+ 1) log(q) +
ω(log(n)) (we provide a formal definition of the leftover hash lemma in the
full version [38]),

– σ has to be large enough such that the distribution of private keys in
the actual scheme and in the reduction is the same, that is σ > σ0 =
ω(
√
n log(q) log(m)) and σ > m(1 + δ)ω(

√
log(m)),

– that the ReRand algorithm can operate in the reduction, that is α′/2α >√
2·m(δ+1) and αq > ω(

√
log(m)). We formally define the ReRand algorithm

and the requirements for its application in the full version [38].
– that the worst to average case reduction works, that is αq > 2

√
2n.

To satisfy the above requirements, we set the parameters as follows:

n = 2λ+ 3, m = O(n log(q)), q = n7/2 · δ2ω(log7/2(n))

σ = m · δ · ω(
√

log(m)) αq = 3
√
n, α′q = 5

√
n ·m · δ

Note that our compatible algorithms have δ = 1 + (` + 1)m compared to δ′ =
m3O(log2(λ))(O(λ) + 1) for Yamada’s compatible algorithms for the modified
admissible hash function and δ′′ = poly(λ) for his partitioning based on affine
functions. This allows us to use much smaller q and σ.

16

3.1 Security of the IB-KEM

Our construction is secure when used in conjunction with the compatible algo-
rithms we describe below in Section 3.2 under the dLWEn,m+1,q,α assumption.

Theorem 7. If Π := (Setup,KeyGen,Encap,Decap) from above is instantiated
with a family H of weak near-collision resistant hash functions in the sense of
Definition 1, then for any legitimate attacker A that breaks the IND-ID-CPA
security of Π in time tA with advantage εA := AdvΠA(λ), there exists an algo-
rithm B that, given (sufficiently close approximations of) tA and εA, breaks the
dLWEn,m+1,q,α assumption in time tB ≈ tA and with

Adv
dLWEn,m+1,q,α

B (λ) ≥ ε2A/(32t2A − 16tA)− negl(λ),

for some negligible term negl.

The proof of Theorem 7 mostly follows the proof from [54]. We therefore only
provide it in the full version [38] for completeness.

3.2 Compatibility of Blockwise Partitioning and Lattice IBE

In this section we describe the main technical novelty of our lattice based con-
struction: how blockwise partitioning can be applied in the context of lattices.
We first discuss how a hash function output Hi(X) is encoded as a matrix us-
ing the full-rank-difference encoding from Agrawal et al. [1] and adapt it to our
needs. We then proceed to describe compatible algorithms using this encoding
that fulfill all requirements of Definition 5 and can thus be used to instantiate
our IB-KEM.

Encoding identities as full rank difference matrices. In our construction, we will
first hash each id ∈ {0, 1}∗ with a weak near-collision resistant hash function

H
$← H and then encode each Hi(id) as an invertible matrix as described by

Agrawal et al. [1]. In the following, we define the full rank difference encoding
function of [1] and show how it can be adopted to fit blockwise partitioning.

Informally, for a binary string a ∈ {0, 1}2i , meaning a is a potential output of

Hi, we pad a with zeros to be of length n by first padding it
∑i−1
j=0 2j zeros in

the front and with
∑`
j=i+1 2j zeros in the end. We then canonically interpret it

as a vector in Znq and encode it with the full-rank difference encoding of [1]. We
formalize this process in the following definition.

Definition 8. Let f(Z) be an irreducible polynomial of degree n in Znq [Z] and

for a ∈ Znq , let ga(Z) :=
∑n−1
k=0 ak+1Zk ∈ Znq [Z]. Then the function FRD(a) :

17

Znq → Zn×nq from [1] is defined as

FRD(a) :=

coeffs(ga mod f)
coeffs(Z · ga mod f)
coeffs(Z2 · ga mod f)
...
coeffs(Zn−1 · ga mod f)

 ∈ Zn×nq ,

where coeffs denotes the coefficients of a polynomial in Znq [Z]. For all 0 ≤ i ≤ `

we define FRDi : {0, 1}2i → Zn×nq to be the function that behaves as follows.

1. For an input (a1, . . . , a2i) ∈ {0, 1}2
i

, FRDi lets offseti :=
∑i−1
j=0 2j and sets

bT := [b1, . . . , bn] ∈ Znq , where

bk :=

{
ak−offseti if offseti < k ≤ offseti + 2i

0 otherwise

for all 1 ≤ k ≤ n.
2. It then outputs FRDi(a) := FRD(b).

Agrawal et al. [1] prove some properties of FRD that immediately imply the
following properties of FRDi.

Lemma 9 (Section 5 in [1]). Let FRDi : {0, 1}2i → Zn×nq be as defined in
Definition 8, then the following holds:

1. FRDi is injective.
2. There is an additive group G ⊂ Zn×nq such that each H ∈ G\{0} is invertible

and the range of FRDi is a subset of G for all 1 ≤ i ≤ `.

We refer to [1, Section 5] for the proofs of the underlying facts used in Lemma 9.
Our definition of FRDi serves some further purposes that allows us to use it
in conjunction with blockwise partitioning. We detail these properties in the
following lemma.

Lemma 10. Let BPSmp be as defined in Section 2 and let t ∈ N, ε ∈ (0, 1]

with t/ε < 2λ. Then for (K0, . . . ,K`)
$← BPSmp(1λ, t, ε), I = {i : Ki 6= ⊥} ⊆

{0, . . . , `} and X ∈ {0, 1}∗ it holds that

−

(∑
i∈I

FRDi(Ki)

)
+

(∑
i∈I

FRDi(Hi(X))

)
= 0⇔ Ki = Hi(X) for all i ∈ I.

We do not present the proof here due to space limitations. However, we present
it in the full version [38]. Next, we describe the algorithms (Encode,PubEval,
TrapEval) and how they use FRDi. Afterwards, we prove that the algorithms
are compatible and can thus be used in our IB-KEM. The algorithms behave as
follows:

18

Encode(A,K0, . . . ,K`): The algorithm samples R,Ri
$← {−1, 1}m×m for all

0 ≤ i ≤ ` and sets

Bi :=

{
ARi + G if Ki 6= ⊥
ARi if Ki = ⊥

and B := AR−
(∑

i∈I FRDi(Ki)G
)
. It then outputs the matrices ((B,R),

(Bi,Ri)0≤i≤`).
PubEval(H, id,B, (Bi)0,≤i≤`): The algorithm computes Hi := FRDi(Hi(id)) for

all 0 ≤ i ≤ ` and sets B′i := BiG
−1(HiG). It then outputs Bid := B +∑`

i=0 B′i.
TrapEval(H, id,R, (Ri)0≤i≤`): The algorithm computes Hi := FRDi(Hi(id)) for

all 0 ≤ i ≤ ` and sets R′i := RiG
−1(HiG). It then outputs Rid := R +∑`

i=0 R′i.

Lemma 11. The algorithms (Encode,PubEval,TrapEval) above are δ = 1 +
(` + 1)m-compatible with blockwise partitioning using the family of weak near-
collision resistant hash functions H described in Section 2.

Proof. We first observe that the algorithms described above fulfill the syntactical
requirements. We next show that

PubEval(H, id, (Bi)0≤i≤`)

{
ARid if Hi(id) = Ki for all i ∈ I
ARid + HidG otherwise

for some invertible matrix Hid ∈ Zn×nq . For Hi := FRDi(Hi(id)) and Bi =
ARi + xiHG, where xi = 1 if i ∈ I and 0 otherwise, we observe that B′i =
BiG

−1(HiG) = ARiG
−1(HiG) + xi ·HiG = AR′i + xiHiG, where R′i is as

defined by TrapEval. We then have that

Bid = B +
∑̀
i=0

B′i = AR−

(∑
i∈I

FRDi(Ki)G

)
+

(∑̀
i=0

AR′i + xiHiG

)

= A

(
R +

∑̀
i=0

R′i

)
−

(∑
i∈I

FRDi(Ki)G

)
+

(∑
i∈I

FRDi(Hi(id))G

)
= ARid −HidG,

where Rid is as in the description of TrapEval and Hid = −
(∑

i∈I FRDi(Ki)
)

+(∑
i∈IHi

)
. Observe that Hid = 0 is equivalent to Ki = Hi(id) for all i ∈

I by Lemma 10. Furthermore, we have by Lemma 9 that if Hid 6= 0, then
Hid is invertible. We proceed by proving the upper bound on ‖Rid‖∞. First,
observe ‖R′i‖∞ = ‖RiG

−1(HiG)‖∞ ≤ m since Ri,G
−1(HiG) ∈ {−1, 1}m×m

and therefore their product R′i ∈ Zm×mq can not contain any element of absolute
value larger than m. We then have

‖Rid‖∞ =

∥∥∥∥∥R +
∑̀
i=0

R′i

∥∥∥∥∥
∞

≤ ‖R‖∞ +
∑̀
i=0

‖R′i‖∞ ≤ 1 + (`+ 1)m = δ,

19

where the last inequality follows from R ∈ {−1, 1}m×m and ‖R′i‖∞ ≤ m. Finally,

we have that for A,A′
$← Zn×mq it holds that for all 0 ≤ i ≤ ` the distributions

(A,A′) and (A,Bi) have only negligible statistical difference by the leftover
hash lemma, which we formally provide in the full version [38]. The same holds
for the distributions (A,A′) and (A,B).

4 IB-KEMs from Pairings

In this section, we show how to use blockwise partitioning to create two vari-
ants of the IB-KEMs of Boneh and Boyen [14] and Waters [51], respectively.
In comparison to [14], we achieve adaptive security instead of selective security.
Additionally, we get ciphertexts of only a single element. In comparison to the
corresponding construction from [37], the q of the required q-type assumption is
reduced quadratically, while the tightness of the reduction is improved quadrat-
ically. In comparison to [51], we have public parameters of size O(log λ) instead
of O(λ). The security analysis is also much simpler than in [51] or the simpli-
fied proof by Bellare and Ristenpart [6]. To our best knowledge, this is the first
adaptively-secure IBE scheme where ciphertexts consist only of two elements
of a prime order algebraic group with logarithmic-size public parameters. For a
better understanding we instantiate both constructions with symmetric pairings.
However, asymmetric pairings work as well as it can be seen in [37].

Definition 12 (Definition 1 from [32]). A Bilinear Group Generator is
a probabilistic polynomial-time algorithm GrpGen that takes as input a security

parameter λ (in unary) and outputs BG = (p,G,GT , ◦, ◦T , e, φ(1))
$← GrpGen(1λ)

such that the following requirements are satisfied.

1. p is a prime and log(p) ∈ Ω(λ)
2. G and GT are subsets of {0, 1}∗, defined by algorithmic descriptions of maps

φ : Zp → G and φT : Zp → GT .
3. ◦ and ◦T are algorithmic descriptions of efficiently computable (in the se-

curity parameter) maps ◦ : G × G → G and ◦T : GT × GT → GT , such
that
a) (G, ◦) and (GT , ◦T) form algebraic groups,
b) φ is a group isomorphism from (Zp,+) to (G, ◦) and
c) φT is a group isomorphism from (Zp,+) to (GT , ◦T).

4. e is an algorithmic description of an efficiently computable (in the secu-
rity parameter) bilinear map e : G × G → GT . We require that e is non-
degenerate, that is,

x 6= 0⇒ e(φ(x), φ(x)) 6= φT (0).

Encoding elements of {0, 1}2λ+3 as Zp-elements. Furthermore, in order to sim-
plify the notation and description of the construction and its security analysis,
we assume that elements of {0, 1}2λ+3 can be injectively encoded as elements of
Zp.

20

4.1 Compact IB-KEM from Decisional Bilinear Diffie-Hellman

In this section we describe a variant of the IBE scheme of Waters [51], which
has public parameters of size O(log λ) instead of O(λ).

The construction. Let H = {H : {0, 1}∗ → {0, 1}2λ+3} be a family of hash
functions, let ` = blog(2λ+ 3)c, and let GrpGen be a bilinear group generator.
We construct IB-KEM scheme Π = (Setup,KeyGen,Encap,Decap) as follows.

Setup. Choose a group description BG $← GrpGen(1λ), a random hash func-

tion H
$← H, random generators [1], [h] ∈ G, ` + 2 random group elements

[u′], [u0], . . . , [u`], and x
$← Zp. Compute e([1], [hx]) = [hx]T The master

secret key is msk := [hx]. The public parameters are defined as

mpk = ([1], [u′], [u0], . . . , [u`], [hx]T).

Key Generation. Let

[u(id)] := [u′]
∏̀
i=0

[ui]
Hi(id) =

[
u′ +

∑̀
i=0

uiHi(id)

]

To compute the private key for identity id, choose s
$← Zp and compute and

return

uskid = ([s], [hx] · [u(id)]s = [hx+ u(id)s])

Encapsulation. To encapsulate a key, choose r
$← Zp and compute and return

ct := ([r], [u(id)]r = [u(id)r]) ∈ G2 and K := [hx]rT = [hxr]T

Decapsulation. To recoverK from a ciphertext ct = ([r], [u(id)r]) and a match-
ing user secret key ([s], [hx+ u(id)s]), compute and output

e([hx+ u(id)s] , [r])

e([u(id)r], [s])
=

[hxr + u(id)sr]T
[u(id)sr]T

= [hxr]T

Security Analysis. The security of this construction is based on the Decisional
Bilinear Diffie-Hellman assumption, which is the same assumption as for schemes
of [14,51]. In addition, we assume that the hash function H is weak near-collision
resistant.

Definition 13 (Decisional Bilinear Diffie-Hellman [14]). The advantage
of an adversary A in solving the Decisional Bilinear Diffie-Hellman Problem
(DBDH) with respect to a Bilinear Group Generator GrpGen is

AdvDBDH
A,BG (λ) := |Pr [A ([α], [β], [γ], V0) = 1]− Pr [A ([α], [β], [γ], V1) = 1]| ,

where BG $← GrpGen(1λ), α, β, γ
$← Zp, V0 = [αβγ]T and V1

$← GT . We say that

the DBDH assumption holds with respect to GrpGen, if AdvDBDH
A (λ) is negligible

for every PPT A.

21

Theorem 14. If Π is instantiated with a family H of weak near-collision re-
sistant hash functions in the sense of Definition 1, then for any legitimate at-
tacker A that breaks the IND-ID-CPA security of Π in time tA with advantage
εA := AdvΠA(λ), there exists an algorithm B that, given (sufficiently close ap-
proximations of) tA and εA, breaks the DBDH assumption in time tB ≈ tA and
with

AdvDBDH
B (λ) ≥ `

`+ 1
· ε2A

32t2A − 16tA
− negl(λ)

for some negligible term negl.

Proof. Consider the following sequence of games, where we denote with Gi the

event that Game i outputs 1 and with Ei = Pr
[
1

$← Gi

]
− 1/2 the advantage of

A in Game i.

Game 0. This is the original IND-ID-CPAΠA(λ) security experiment. By definition,
we have

E0 = Pr[IND-ID-CPAΠA(λ) = 1]− 1/2 = εA

Game 1. In this game, we additionally run algorithm

(K0, . . . ,K`)
$← BPSmp(1λ, tA, εA)

at the beginning of the experiment, where algorithm BPSmp is from Lemma 2.
Furthermore, we define I := {i : Ki 6= ⊥}. Let Q be the set of all identities

that the adversary queries to KeyGen(mpk,msk, ·), and let Q∗ := Q ∪ {id∗},
where id∗ is the identity of the challenge ciphertext. We raise event coll, abort
the experiment, and output a random bit, if there exists i ∈ I and id, id′ ∈ Q∗
such that id 6= id′, but Hi(id) = Hi(id′) for all i ∈ I. Note that coll is defined
exactly as in Lemma 2 and that we have

E1 ≥ E0 − Pr [coll] = εA − Pr [coll] .

Game 2. We raise event badChal, output a random bit, and abort the game, if
there exist i ∈ I such that Ki 6= H(id∗). Note that badChal is defined exactly as
in Lemma 2 and that we have

E2 = E1 · Pr [¬badChal] = (εA − Pr [coll]) · Pr [¬badChal] ≥ ε2A/(32t2A − 16tA)

where the last inequality is from Property 1 of Lemma 2.

Game 3. This game deviates from the security proofs of other constructions in
this paper. We need to deal with an event dlog, which is defined below, in order
to apply blockwise partitioning to the Boneh-Boyen/Waters scheme.

First, we modify the way how the experiment samples the group elements
that determine the function [u(id)]. The experiment first chooses a generator

22

[α]
$← G and r′, r1, . . . , r`

$← Zp uniformly random. Then it sets

[ui] :=

{
[αri] if Ki 6= ⊥
[ri] if Ki = ⊥

and [u′] :=

[
r′ −

∑
i∈I

αriKi

]
(5)

Note that the distribution of these values is still uniform, and therefore identical
to Game 2. Game 3 now raises event dlog and aborts, if there exists id ∈ Q such
that ∑

i∈I
αriKi =

∑
i∈I

αriHi(id) ⇐⇒
∑
i∈I

ri(Ki −Hi(id)) = 0 (6)

We claim that there exists an algorithm B1 that breaks the Decisional Bilinear
Diffie-Hellman assumption with success probability Pr [dlog] /|I|. B1 receives as
input (BG, [r], [β], [γ], V). It will compute the discrete logarithm r and use this
to break the DBDH assumption.3

B1 picks j
$← I at random and defines [rj] := [r]. Then it proceeds exactly

like Game 3. If dlog occurs, then Equation (6) holds. Due to Game 2 we can
be certain that Ki = Hi(id∗) holds for all i ∈ I, and due to Game 1 we know
that for any id ∈ Q there must be at least one i ∈ I such that Hi(id) 6= Hi(id∗).
These two together yield that for any id ∈ Q there must exist at least one i ∈ I
such that Hi(id) 6= Ki.

Let id be the first identity for which Equation (6) holds. With probability at
least 1/|I| we have j = i. In this case B1 is able to compute

r = rj =

∑
i∈I\{j} ri(Ki −Hi(id))

Hj(id)−Kj

which immediately enables B1 to test whether V = e([β], [γ])r holds. With |I| ≤ `
we thus get

E3 ≥ E2 − AdvDBDH
B1

(λ)/`

Reduction. Now we are able to describe our final reduction B2 to the Deci-
sional Bilinear Diffie-Hellman assumption. B2 that receives (BG, [α], [β], [γ], V)
and simulates the IND-ID-CPA experiment as follows.

Setup. B2 defines [x] := [α], [h] := [β], and uses [α] to compute [u′], [u0], . . . , [u`]
exactly as in Game 3, Equation (5). The master public parameters are de-
fined as

mpk = ([1], [u′], [u0], . . . , [u`], e([α], [β]))

note that this is a correctly distributed master public key. The secret key is
implicitly defined as [αβ].

3 We could alternatively reduce to the weaker discrete logarithm problem, but we will
later reduce to DBDH anyway, so omitting the additional definition saves trees.

23

Key Generation. In the sequel let us write

a(id) :=
∑
i∈I

ri(Hi(id)−Ki) and b(id) := r′ +
∑
i 6∈I

riHi(id)

such that we have [u(id)] = [αa(id) + b(id)].
B2 needs to compute a secret key of the form

[s], [αβ + u(id)s]

such that s is uniform over Zp. To this end, it picks s′
$← Zp and computes

[s] := [β]−1/a(id) · [s′],

which is correctly distributed and implicitly defines s := −β/a(id)+s′. Then
it computes

[z] := [β]−b(id)/a(id) · [α]a(id)s′ · [b(id)s′]

= [αβ − αβ − βb(id)/a(id) + αa(id)s′ + b(id)s′]

= [αβ + (αa(id) + b(id))(−β/a(id) + s′)]

= [αβ + u(id)s]

Note here that we have a(id) 6= 0 for all id ∈ Q, as otherwise we raise event
dlog and abort due to Game 3, Equation (6). Then it returns ([s], [z]).

Encapsulation. Given a challenge identity id∗, B2 has to create a challenge
ciphertext of the form

ct := ([r], [u(id∗)r])

B2 sets [r] := [γ], where [γ] is from the DBDH challenge. Note that we have
a(id∗) = 0, as otherwise we raise event guess and abort due to Game 2, and
thus

[u(id∗)γ] = [b(id∗)γ] = [γ]b(id∗)

such that ct∗ = ([γ], [γ]b(id∗)) is a consistent ciphertext.
Finally, it sets K∗ := T and returns (ct∗,K∗).

Note that if T = [αβγ]T , then this is a correct key, since for any valid user key
([s], [hx+ u(id∗)s]) for the challenge identity id∗ we have

e([αβ + u(id)s] , [γ])

e([u(id)γ], [s])
=

[αβγ + u(id)sγ]T
[u(id)sγ]T

= [αβγ]T

while if T is random, then so is K∗. Hence, B2 provides a perfect simulation of
Game 3. It returns whatever A returns, and thus we have that

AdvDBDH
B2

(λ) ≥ E3.

By collecting probability across all games, we get

AdvDBDH
B1

(λ)

`
+ AdvDBDH

B2
(λ) ≥ ε2A

32t2A − 16tA
.

24

4.2 IB-KEM with Short Ciphertexts

In this section, we present a new IB-KEM that is adaptively secure and where
the ciphertext consists of only a single element. Compared to the only other con-
struction with these properties ([37]), the q of the required q-type assumption is
reduced quadratically, while the tightness of the reduction is improved quadrati-
cally, as well. Due to weak near-collision resistance, we are also able to reduce the
output length of the hash function to roughly half of the output length required
in [37], which reduces computational costs while guaranteeing the same level of
security. The construction. Let H = {H : {0, 1}∗ → {0, 1}2λ+3} be a family
of hash functions, let ` = blog(2λ+ 3)c, and let GrpGen be a bilinear group gen-
erator. We construct the IB-KEM scheme Π = (Setup,KeyGen,Encap,Decap) as
follows.

Setup. Choose a group description BG $← GrpGen(1λ), a random hash function

H
$← H, a random generator [1] ∈ G1, and random elements x0, . . . , x` ∈ Z∗p.

Define the master secret key msk as

msk = (x0, . . . , x`) ∈ Z`+1
p .

For i ∈ N and m ∈ N0 define bi(m) as the function that, on input of inte-
ger m, outputs the i-th bit of the binary representation of m. For msk =
(x0, . . . , x`) and m = 0, . . . , 2`+1 − 1 define

F (msk,m) :=
∏̀
i=0

x
bi(m)
i . (7)

The public parameters are defined as

mpk = ([F (msk, 0)], . . . , [F (msk, 2`+1 − 1]).

Key Generation. Let

u(id) =
∏̀
i=0

(Hi(id) + xi) ∈ Zp. (8)

Then the private key for identity id is computed as uskid = [1/u(id)].
Encapsulation. Observe that

u(id) =
∏̀
i=0

(Hi(id) + xi) = d0 +

2`−1∑
m=1

(
dm
∏̀
i=0

x
bi(n)
i

)
,

where the constants di are efficiently computable from H(id). Using H(id)
and mpk first [u(id)] is computed as

[u(id)] =

d0 +

2`−1∑
m=1

(
dm
∏̀
i=0

x
bi(n)
i

) = [d0] ·
2`−1∏
m=1

[F (msk,m)]dm .

25

Note that this does not require knowledge of x0, . . . , x` explicitly.
Finally, the ciphertext and key are computed as

(ct,K) = ([u(id)]r, e([1], [1])r) ∈ G1 ×GT .

for a uniformly random r
$← Zp.

Decapsulation. To recover K from a ciphertext ct for identity id and a match-
ing user secret key [1/(u(id))], compute and output e(C, uskid).

Security Analysis. The security of this construction is based on the q-DBDHI
assumption, which is the same assumption as for the scheme of [14]. In addition,
we assume that the hash function H is weak near-collision resistant.

Definition 15 (q-Decision Bilinear Diffie-Hellman Inversion Assump-
tion [14]). For a PPT algorithm A, the advantage of A in solving the q-Decision
Bilinear Diffie-Hellman Inversion Problem (q-DBDHI) with respect to a Bilinear
Group Generator GrpGen is

Advq-DBDHI
A (λ) :=

∣∣Pr
[
A
(
BG, [y], [yα], [yα2], . . . , [yαq], V0

)
= 1
]
−

Pr
[
A
(
BG, [y], [yα], [yα2], . . . , [yαq], V1

)
= 1
]∣∣ ,

where BG $← GrpGen(1λ), α
$← Z∗p, [y]

$← G, V0 = e([y], [y])1/α and V1
$← GT . The

probability is over the randomness of A,GrpGen and sampling α, g̃, h and V1. We
say that the q-DBDHI assumption holds with respect to GrpGen if Advq-DBDHI

A (λ)
is negligible for every PPT A.

We start by defining the strength of the q-DBDHI assumption and set q := 4λ+

7 + j+ 2
∑
i∈[blog(2λ+3)c]0

Ki 6=⊥

(
22
i − 1

)
. Using the following lemma, we immediately

obtain q ≤ 4λ+ 8 + blog(2λ+ 3)c+ 32t2A/εA because j ≤ blog(2λ+ 3)c+ 1.

Lemma 16. Let I = {i : Ki 6= ⊥} be as above, then

2 ·
∑

i∈[blog(2λ+3)c]0
i∈I

(
22
i

− 1
)
≤ 32t2A

εA
.

The proof of Lemma 16 consists only of simple arithmetic and we therefore
provide it in the full version [38].

Theorem 17. If Π is instantiated with a family H of weak near-collision re-
sistant hash functions in the sense of Definition 1, then for any legitimate at-
tacker A that breaks the IND-ID-CPA security of Π in time tA with advantage
εA := AdvΠA(λ), there exists an algorithm B that, given (sufficiently close ap-
proximations of) tA and εA, breaks the q-DBDHI assumption with q ≤ 4λ+ 9 +
blog(2λ+ 3)c+ 32t2A/εA in time tB = O(32t2A/εA) and with

Advq-DBDHI
B (λ) ≥ ε2A/(32t2A − 16tA)− negl(λ),

for some negligible term negl.

26

The proof of Theorem 17 adapts the techniques from the poof of Theorem 14 to
the q-DBDHI assumption. For a complete overview, we provide the proof in the
full version [38].

5 Verifiable Random Functions from Pairings

In this section, we use blockwise partitioning in order to construct the first ver-
ifiable random function without random oracles that has both, short proofs and
short public keys. Compared to previous VRF constructions that also achieve
small proof sizes, like [40, 42], we achieve much better concrete proof sizes or
much smaller public keys. We provide preliminaries to VRFs in the full ver-
sion [38]. The construction of the VRF roughly follows the construction of the
IB-KEM. The major difference is that including group elements in the proof of
the VRF allows us to only include the group elements [xi] instead of all possible
combinations F (msk,m), as in the IB-KEM, in the public keys. Instead of view-
ing the VRF as an adaptation of our previous IB-KEM in Section 4.2, it can also
be viewed as an adaptation of Yamada’s VRF [53] to blockwise partitioning.

The construction. LetHλ = {H : {0, 1}∗ → {0, 1}2λ+3} be a family of hash func-
tions, let ` = blog(2λ+ 3)c, let GrpGen be a certified bilinear group generator,
and let VRF = (Gen,Eval,Vfy) be the following algorithms.

Key generation. Gen(1λ) chooses a group description BG $← GrpGen(1λ), a

random hash function H
$← Hλ, a random generator [1]

$← G∗. Then it

samples wi
$← Z∗p and sets Wi := [wi] for all i = 0, . . . , ` . It returns

vk := ([1],BG,W0, . . . ,W`, H) and sk := (w0, . . . , w`).

Evaluation. Eval(sk, X) computes for i = 0, . . . , `

Θi(X) :=

i∏
i′=0

(wi′ +Hi′(X)).

If there is an index 0 ≤ i ≤ ` such that Θi(X) ≡ 0 mod p it sets Y := 1GT
and πi = 1G for all i = 0, . . . , `. Otherwise, it computes

Y := e([1], [1])1/Θ`(X) and πi := g1/Θi(X)

for all i = 0, . . . , `. It outputs (Y, π = (π0, . . . , π`)).
Verification. Vfy(vk, X, Y, π) checks if the following conditions are met and

outputs 0 if not, otherwise it outputs 1.
1. We have that X ∈ {0, 1}∗.
2. vk has the form ([1],BG,W0, . . . ,W`, H) and sk = (w0, . . . , w`).
3. BG is a certified encoding of a bilinear group: GrpVfy(1λ,BG) = 1 Fur-

ther, all group elements can be verified GrpElemVfy(1λ,BG, [1]) = 1,
GrpElemVfy(1λ,BG, h) = 1, GrpElemVfy(1λ,BG,Wi) = 1 and also
GrpElemVfy(1λ,BG, πi) = 1 for all 0 ≤ i ≤ `.

27

4. If there is an index ≤ i ≤ ` such that Wi · [Hi(X)] = 1G, then it holds
that Y = 1GT and πi = 1G for all i = 0, . . . , `.

5. If we have Wi · [Hi(X)] 6= 1G for all i = 0, . . . , `, then for all of these i it
holds that e(πi,Wi · [Hi(X)]) = e([1], πi−1).

6. It holds that e(π`, [1]) = Y .

VRF as specified above is correct and fulfills the unique provability requirements
as can be proven with standard arguments. Also note that using a hash function
does not affect unique provability because the hash function deterministically
maps each input to an output. Like the IB-KEM we present in Section 4.2,
our VRF is based on the q-DBDHI assumption. We set q := log(2λ + 3) +

2 + 2
∑
i∈[blog(2λ+3)c]0

Ki 6=⊥

(
22
i − 1

)
which is at most log(2λ + 3) + 2 + 32t−A2

εA
by

Lemma 16.

Theorem 18. If VRF is instantiated with a family H = {H : {0, 1}∗ →
{0, 1}2λ+3} of weak near-collision resistant hash functions from Definition 1,
then for any legitimate attacker A that breaks the pseudorandomness of VRF
in time tA with advantage εA := AdvRoR

A (λ), there exists an algorithm B that,
given (sufficiently close approximations of) tA and εA, breaks the q-DBDHI as-
sumption with q ≤ blog(2λ+ 3)c + 2 + 32t2A/εA in time tB = O(t2A/εA) and
with

Advq-DBDHI
A (λ) ≥ ε2A/(32t2A − 16tA)− negl(λ),

for some negligible term negl.

The proof of Theorem 18 follows the proof of Theorem 17 and we thus provide
it in the full version [38].

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: EUROCRYPT 2010 3, 3.2, 3.2, 8, 3.2, 9, 3.2

2. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: CRYPTO 2010 1

3. Alperin-Sheriff, J.: Short signatures with short public keys from homomorphic
trapdoor functions. In: PKC 2015 2

4. Apon, D., Fan, X., Liu, F.H.: Compact identity based encryption from LWE. Cryp-
tology ePrint Archive, Report 2016/125, http://eprint.iacr.org/2016/125 1

5. Attrapadung, N., Hanaoka, G., Yamada, S.: A framework for identity-based en-
cryption with almost tight security. In: ASIACRYPT 2015, Part I 1

6. Bellare, M., Ristenpart, T.: Simulation without the artificial abort: Simplified proof
and improved concrete security for Waters’ IBE scheme. In: EUROCRYPT 2009
1, 1, 4

7. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM CCS 93 1

8. Bentahar, K., Farshim, P., Malone-Lee, J., Smart, N.P.: Generic constructions of
identity-based and certificateless KEMs. Journal of Cryptology 3

28

http://eprint.iacr.org/2016/125

9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability of
the sponge construction. In: EUROCRYPT 2008 1

10. Biham, E., Chen, R.: Near-collisions of SHA-0. In: CRYPTO 2004 1
11. Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions of

SHA-0 and reduced SHA-1. In: EUROCRYPT 2005 1
12. Böhl, F., Hofheinz, D., Jager, T., Koch, J., Seo, J.H., Striecks, C.: Practical signa-

tures from standard assumptions. In: EUROCRYPT 2013 2, 2, 2
13. Böhl, F., Hofheinz, D., Jager, T., Koch, J., Striecks, C.: Confined guessing: New

signatures from standard assumptions. Journal of Cryptology 2, 2, 2
14. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption with-

out random oracles. In: EUROCRYPT 2004 1, 1, 2, 4, 4.1, 13, 4.2, 15
15. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.

In: CRYPTO 2004 1
16. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:

CRYPTO 2001 1, 1, 2
17. Boneh, D., Montgomery, H.W., Raghunathan, A.: Algebraic pseudorandom func-

tions with improved efficiency from the augmented cascade. In: ACM CCS 2010
1

18. Boyen, X.: Lattice mixing and vanishing trapdoors: A framework for fully secure
short signatures and more. In: PKC 2010 1, 3

19. Boyen, X., Li, Q.: Towards tightly secure lattice short signature and id-based en-
cryption. In: ASIACRYPT 2016, Part II 1

20. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: 30th ACM STOC 1

21. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: EUROCRYPT 2010 1

22. Catalano, D., Fiore, D., Nizzardo, L.: Programmable hash functions go private:
Constructions and applications to (homomorphic) signatures with shorter public
keys. In: CRYPTO 2015, Part II 1

23. Chen, J., Lim, H.W., Ling, S., Wang, H., Wee, H.: Shorter ibe and signatures via
asymmetric pairings. In: Pairing-Based Cryptography – Pairing 2012 1

24. Ducas, L., Micciancio, D.: Improved short lattice signatures in the standard model.
In: CRYPTO 2014, Part I 2

25. Fischlin, M., Fleischhacker, N.: Limitations of the meta-reduction technique: The
case of Schnorr signatures. In: EUROCRYPT 2013 1

26. Fischlin, M., Harasser, P., Janson, C.: Signatures from sequential-OR proofs. In:
EUROCRYPT 2020, Part III 2

27. Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tessaro, S.:
Random oracles with(out) programmability. In: ASIACRYPT 2010 1, 2

28. Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash func-
tions in the multilinear setting. In: CRYPTO 2013, Part I 1

29. Gentry, C.: Practical identity-based encryption without random oracles. In: EU-
ROCRYPT 2006 1

30. Goldreich, O.: Computational complexity - a conceptual perspective 1, 3
31. Hanaoka, G., Matsuda, T., Schuldt, J.C.N.: On the impossibility of constructing

efficient key encapsulation and programmable hash functions in prime order groups.
In: CRYPTO 2012 1

32. Hofheinz, D., Jager, T.: Verifiable random functions from standard assumptions.
In: TCC 2016-A, Part I 1, 12

33. Hofheinz, D., Jager, T., Kiltz, E.: Short signatures from weaker assumptions. In:
ASIACRYPT 2011 1

29

34. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In:
CRYPTO 2008 1

35. Hohenberger, S., Waters, B.: Constructing verifiable random functions with large
input spaces. In: EUROCRYPT 2010 1

36. Jager, T.: Verifiable random functions from weaker assumptions. In: TCC 2015,
Part II 1

37. Jager, T., Kurek, R.: Short digital signatures and ID-KEMs via truncation collision
resistance. In: ASIACRYPT 2018, Part II 1, 1, 1, 2, 2, 2, 2, 4, 4.2

38. Jager, T., Kurek, R., Niehues, D.: Efficient adaptively-secure ib-kems and vrfs
via near-collision resistance (full version of this publication). Cryptology ePrint
Archive, Report 2021/160, https://eprint.iacr.org/2021/160 1, 1, 2, 3, 3, 3,
3, 6, 3.1, 3.2, 3.2, 4.2, 4.2, 5, 5

39. Jager, T., Niehues, D.: On the real-world instantiability of admissible hash func-
tions and efficient verifiable random functions. In: SAC 2019 1, 1, 3, 2

40. Katsumata, S.: On the untapped potential of encoding predicates by arithmetic
circuits and their applications. In: ASIACRYPT 2017, Part III 1, 5

41. Katsumata, S., Yamada, S.: Partitioning via non-linear polynomial functions: More
compact IBEs from ideal lattices and bilinear maps. In: ASIACRYPT 2016, Part II
1

42. Kohl, L.: Hunting and gathering - verifiable random functions from standard as-
sumptions with short proofs. In: PKC 2019, Part II 1, 1, 5

43. Lewko, A.B.: Tools for simulating features of composite order bilinear groups in
the prime order setting. In: EUROCRYPT 2012 1

44. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. 5th edn. 1

45. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: EUROCRYPT 2012 3

46. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In: CRYPTO 2002 1

47. Peikert, C.: A decade of lattice cryptography. Cryptology ePrint Archive, Report
2015/939, http://eprint.iacr.org/2015/939 1

48. Polak, I., Shamir, A.: Using random error correcting codes in near-collision attacks
on generic hash-functions. In: INDOCRYPT 2014 1

49. Rosie, R.: Adaptive-secure VRFs with shorter keys from static assumptions. In:
CANS 18 1

50. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In: CRYPTO 2009 1

51. Waters, B.R.: Efficient identity-based encryption without random oracles. In: EU-
ROCRYPT 2005 1, 1, 4, 4.1, 4.1

52. Yamada, S.: Adaptively secure identity-based encryption from lattices with asymp-
totically shorter public parameters. In: EUROCRYPT 2016, Part II 1

53. Yamada, S.: Asymptotically compact adaptively secure lattice IBEs and verifi-
able random functions via generalized partitioning techniques. In: CRYPTO 2017,
Part III 1, 1, 1, 1, 1, 3, 3, 3, 5

54. Yamada, S.: Asymptotically compact adaptively secure lattice IBEs and verifi-
able random functions via generalized partitioning techniques. Cryptology ePrint
Archive, Report 2017/096, http://eprint.iacr.org/2017/096 1, 3, 6, 3.1

55. Zhandry, M.: The magic of ELFs. In: CRYPTO 2016, Part I 1, 2
56. Zhang, J., Chen, Y., Zhang, Z.: Programmable hash functions from lattices: Short

signatures and IBEs with small key sizes. In: CRYPTO 2016, Part III 1

30

https://eprint.iacr.org/2021/160
http://eprint.iacr.org/2015/939
http://eprint.iacr.org/2017/096

	Efficient Adaptively-Secure IB-KEMs and VRFs via Near-Collision Resistance
	Introduction
	Blockwise Partitioning via Near-Collision Resistance
	Lattice-Based IB-KEM
	Security of the IB-KEM
	Compatibility of Blockwise Partitioning and Lattice IBE

	IB-KEMs from Pairings
	Compact IB-KEM from Decisional Bilinear Diffie-Hellman
	IB-KEM with Short Ciphertexts

	Verifiable Random Functions from Pairings

