
Publicly Verifiable Zero Knowledge
from (Collapsing) Blockchains

Alessandra Scafuro1, Luisa Siniscalchi2, and Ivan Visconti3

1 North Carolina State University, Raleigh, USA
ascafur@ncsu.edu

2 Concordium Blockchain Research Center, Aarhus University, Aarhus, Denmark
lsiniscalchi@cs.au.dk

3 DIEM, University of Salerno, Fisciano, Italy
visconti@unisa.it

Abstract. Publicly Verifiable Zero-Knowledge proofs are known to exist
only from setup assumptions such as a trusted common reference string
or a random oracle. Unfortunately, the former requires a trusted party
while the latter does not exist.
Blockchains are distributed systems that already exist and provide cer-
tain security properties (under some honest majority assumption), hence,
a natural recent research direction has been to use a blockchain as an
alternative setup assumption.
In TCC 2017 Goyal and Goyal proposed a construction of a publicly
verifiable zero-knowledge (pvZK) proof system for some proof-of-stake
blockchains. The zero-knowledge property of their construction however
relies on some additional and not fully specified assumptions about the
current and future behavior of honest blockchain players.
In this paper we provide several contributions. First, we show that when
using a blockchain to design a provably secure protocol, it is danger-
ous to rely on demanding additional requirements on behaviors of the
blockchain players. We do so by showing an “attack of the clones” whereby
a malicious verifier can use a smart contract to slyly (not through brib-
ing) clone capabilities of honest stakeholders and use those to invalidate
the zero-knowledge property of the proof system by Goyal and Goyal.
Second, we propose a new publicly verifiable zero-knowledge proof system
that relies on non-interactive commitments and on an assumption on the
min-entropy of some blocks appearing on the blockchain.
Third, motivated by the fact that blockchains are a recent innovation
and their resilience in the long run is still controversial, we introduce the
concept of collapsing blockchain, and we prove that the zero-knowledge
property of our scheme holds even if the blockchain eventually becomes
insecure and all blockchain players eventually become dishonest.

Keywords: publicly verifiable zero knowledge, (collapsing) blockchain.

1 Introduction

Following the success of Bitcoin many other cryptocurrencies based on blockchain
technology have been proposed and, despite a few security issues, they are still

2 Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti

expanding their networks with gigantic market capitalizations. What is so ap-
pealing in decentralized blockchains?

Public verifiability. One of the most supported answers is the paradigm shift
from trust in some entity to “public verifiability”. This property allows every
one to check that the system works consistently with the pre-specified rules
of the game. This makes users willing to be involved in transactions recorded
in a blockchain therefore investing their real-world money. In many blockchain
applications both anonymity and public verifiability are required, calling for
advanced cryptographic primitives such as publicly verifiable zero-knowledge
proofs. For example, when the blockchain is used to record payments, confidential
transactions are indeed implemented using publicly verifiable zero-knowledge
proofs called zk-SNARKs [9, 20].

Publicly verifiable zero-knowledge proofs. Known constructions of publicly veri-
fiable zero-knowledge (pvZK) proofs are instantiated with non-interactive zero-
knowledge proofs (NIZK) and, as such, require setup assumptions. Indeed, de-
spite a significant effort of the research community, constructions of NIZK proofs
either rely on the existence of a trusted common reference string (CRS) com-
puted by a trusted entity or are based on heuristic assumptions (e.g., random
oracles). Recent existing work has shown mechanisms to relax the trust assump-
tions required to generate the CRS [14] or to mitigate the effect of a malicious
CRS [26, 30]. While this line of work is very promising, it still requires the
employment of third entities that help computing the CRS.

Publicly verifiable zero-knowledge proofs from a “Blockchain Assumption”. Since
its introduction in 2008 with Nakamoto’s protocol [31], blockchain protocols have
been scrutinized by many communities, and currently, we have a good under-
standing of the security properties they provide and the class of adversaries they
withstand. In particular, several works from the cryptographic community pro-
vided a formalization of the Bitcoin security guarantees [19, 32], a formalization
of the ideal functionality it implements [5] as well as game-theoretic analysis [3].
Furthermore, new blockchain designs have been proposed, based on different as-
sumptions on the collective power of the adversary. Some prominent examples
that are also implemented in practice are Ouroboros [4] and Algorand [22].

Given that blockchains have been formally analyzed and are up and running
in practice, a natural question to ask is whether we can use a blockchain as a
setup assumption to replace trusted setups required for certain cryptographic
tasks, particularly, for publicly verifiable zero-knowledge proof systems that are
needed the most in blockchain applications.

This question was first investigated by Goyal and Goyal in [23], where they
aimed to construct NIZK using as setup the existence of a proof-of-stake (PoS)
blockchain. The security of the NIZK proof provided in [23] – that we will denote
by GG-NIZK– however is analyzed in a threat model that does not faithfully
match the threat model of PoS blockchains, since it considers only static adver-
saries and additionally requires that honest stakeholder never reveal their secret

Publicly Verifiable Zero Knowledge from (Collapsing) Blockchains 3

keys. Specifically, the zero-knowledge property of GG-NIZK is proved in the pres-
ence of a static adversary who decides in advance which stakeholder will corrupt
in its entire attack. This does not match the widely accepted threat model for
proof-of-stake blockchains where an adversary is allowed to corrupt stakeholders
at any time, and the only restriction is that, at any point, the total amount
of stake held by the adversary is a minority of the total stake of the system.
Moreover, in the GG-NIZK security analysis, the zero-knowledge property holds
under the additional assumption that honest stakeholders will never leak their
stakeholder keys, not even when such keys become irrelevant for the blockchain
protocol (for example, because there is zero stake associated to them).

It was observed in [34] that the assumption on stakeholder keys further limits
the generality of GG-NIZK since it cannot be used in conjunction with any proof-
of-stake (PoS) blockchain. In particular [34] observes that one could design a PoS
blockchain where stakeholders are required to often refresh their stakeholder
keys, by regularly publishing new public keys and voiding old keys by posting
their secret keys on the blockchain. Such blockchain protocol, while being a
potentially valid PoS blockchain protocol, cannot be used to instantiate GG-
NIZK.

The full version of [23] has been recently updated [24] adding a section in
the appendix where the authors confirm the security of their construction even
in light of the counter-example of [34] by stressing that they expect honest
stakeholders to delete keys when they lose significance.

In light of the observations of [34] and of the counter-argument of [24], a
natural question to ask is whether such additional assumptions/expectations on
the behavior of honest stakeholders required in [23, 24] could be symptomatic
of unexpected security flaws that would manifest when GG-NIZK is executed
with a real blockchain environment, even one that complies with all GG-NIZK
assumptions/expectations. In other words, assuming that the additional restric-
tions on the power of the adversary and the behavior of honest stakeholders are
met, would GG-NIZK be actually secure when executed in the presence of a PoS
blockchain that complies with them?

A negative answer to the above question would signify that constructing a
publicly verifiable zero-knowledge proof that leverages any blockchain assump-
tion is still an open question.

1.1 Our Contribution

In this paper we target the problem of constructing publicly verifiable zero-
knowledge proofs leveraging a blockchain assumption and provide the following
contributions.

A More Realistic Blockchain Threat Model. We consider a model where
the blockchain can potentially be used to post and fulfill arbitrary smart con-
tracts. Since all existent blockchain protocols either already support or aim to
support smart contracts capabilities (e.g., Ethereum Casper, Cardano) and, since

4 Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti

smart contracts are among the most appealing feature of blockchains, this model
is arguably realistic. Within this model, an adversary can consequently also
leverage her ability to publish smart contracts just like any party who uses the
blockchain.

Within this threat model, we show that the zero-knowledge property of GG-
NIZK is easily violated even assuming that all restrictions required by the secu-
rity analysis of GG-NIZK are satisfied, that is, even assuming that the adversary
can only perform static corruption and that honest stakeholders will never re-
veal their keys. Specifically, we present an adversarial strategy that leverages
legitimate smart contracts to collect information that are useful to disturb the
security of the external cryptographic protocols that use the blockchain as a
building block. We name this type of attacks “attack of the clones” to high-
light the adversary’s aim to clone the capability of a honest player to perform
computations using her secret key. However, the smart contract posted by the
adversary is completely harmless for a honest stakeholder. Indeed, it does not
ask the stakeholder to do anything that will make her lose her stake, or perform
any operation against the consensus protocol. Yet, it allows the adversary to
break the zero knowledge of the GG-NIZK proof. Our attack leverages a specific
dangerous use of stakeholder identifiers in the GG-NIZK. The starting point is
that the NIZK proof of [23] includes encryptions of shares of the witness un-
der the public keys inferred by the identifiers of the stakeholders. To break the
zero-knowledge property of the NIZK of [23] our attack is rather simple: after
the NIZK proof π is received, the adversarial verifier posts a smart contract
containing ciphertexts (these are the ciphertext contained in π) and a promised
reward (e.g., money, raffle tickets for a vacation in Barbados, etc) in exchange
for decryptions.

Notice that an honest stakeholder participating in this smart contract re-
mains fully honest, does not subtract any resource (unlike in bribing attacks
against proof-of-work blockchains) from the participation to the consensus pro-
tocol and does not reveal her secret keys to anyone. She just plays with smart
contracts as contemplated by the blockchain rules and uses her stake for some
harmless entertainment. Indeed, the crux of this attack is that a stakeholder is
not aware that an external cryptographic protocol is basing its zero-knowledge
property on the assumption that stakeholders would not entertain in smart con-
tracts that are harmless for the underlying blockchain protocol.

One might object that it is plausible that a PoS blockchain would simply
forbid the execution of such “weird” smart contracts. However, it is not clear
what a “weird” smart contract is, and whether the above smart contract could be
redesigned in order to look innocent and harmless (furthermore, the well known
DAO attack inflicted to Ethereum suggests that it is unclear whether we are
able to identify and stop an harmful smart contract too much in advance).

Our attack is obviously a simple example and after-the-fact can possibly
be mitigated, for instance by adding specific further restrictions on how the
stakeholder should use her secret keys. However, the point of our attack is not
prove that there is no blockchain for which GG-NIZK can be secure. Instead,

Publicly Verifiable Zero Knowledge from (Collapsing) Blockchains 5

we want to highlight the vulnerabilities arising when the long-term security of a
cryptographic protocol relies on the behavior of blockchain players.

The main lesson of our attack is the following: when designing protocols that
leverage a blockchain assumption, one has to consider a threat model where
the adversary is allowed to perform the same actions that are allowed on the
blockchain (e.g., run smart contracts4). Note that this should be true even when
analyzing the consensus protocol itself. However, since this is out of the scope
of this paper, we assume that the underlying blockchain consensus protocol is
secure in the presence of smart contracts.

Another lesson to be drawn by our attack is that, when using the blockchain
as an underlying assumption, one should take into account the unstable and
evolving nature of blockchains. Unlike a common reference string, blockchains
evolve over time – due to software updates for example, or governance decisions–
stake is transferred among players, new smart contracts are installed etc. Last
but not least one might take into account the possibility that a blockchain that
todays is reliable tomorrow could collapse and could then be completely con-
trolled by an adversary.

The above attack on the ZK of GG-NIZK leaves open the following natural
question.

Can we design a pvZK proof leveraging the existence of blockchains,
that makes no particular assumption on the underlying consensus mech-
anism neither on the way honest keys must be used (for instance, they
can still be used in smart contracts)?

Publicly Verifiable Zero Knowledge from a Generic Blockchain in Our
Threat Model. As a second contribution we provide a new protocol for pvZK
that is secure in the blockchain threat model discussed above even in the presence
of adaptive adversaries. To show this security guarantee, we will prove that once
the proof (computed using our protocol) is published, it will preserve its security
even if the blockchain collapses, that is, even if the adversary corrupts all the
players of the blockchain (and gets all the secrets). We now proceed describing
our protocol and our blockchain assumption.

A recent work by Choudhuri et al. [16] shows that using a blockchain as a
black-box object that provides only a global ledger does not allow to overcome
some impossibility results in the plain model and in particular it does not allow
to construct NIZK proofs. We notice that their argument can be extended also
to pvZK proofs (see Section 5 for more details). Therefore, in order to build a
publicly verifiable zero-knowledge proof system from a blockchain, it seems that
one needs to provide more power to the simulator besides black-box access to

4 We note that this threat model was never considered before. [34] only made ob-
servations about additional limitations that GG-NIZK imposes on their underlying
blockchain. Instead, in this work we are showing an attack that works for any PoS
blockchain (even the ones that comply with GG-NIZK pre-requirement) allowing the
execution of such smart contracts.

6 Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti

a global ledger. Thus, following [23] we will assume that the simulator has the
power of controlling the honest players. However, unlike [23] we assume that the
adversary can adaptively corrupt players and moreover we want our pvZK proof
to remain zero knowledge even in case of blockchain failure, in the sense that in
the future the adversary might take full control over the blockchain.

To leverage this simulation power while making no assumption on the con-
sensus protocol underlying the blockchain (i.e., we do not assume that the
blockchain is based on proof-of-work, proof-of-stake, etc), we require that the
blockchain satisfies a more nuanced notion of chain quality. Very informally (a
formal definition is provided in Assumption 1) we assume the blockchain has the
following mild structure. First, every block contains a distinguished field v. For
concreteness, the reader can assume that this field is the same as the “coinbase”
value of any Bitcoin block, and to ease the discussion, in the text that follows, we
will call this field wallet. Our blockchain assumption, very roughly, is that there
exists a parameter d, such that, for any sequence of d blocks, considering the
new wallets5 observed in the sequence, we have that a majority of those wallets
has been generated by honest players using independent randomnesses. Essen-
tially our blockchain assumption builds on top of the standard chain quality
assumption, requiring that the adversary will be the “winning” node that de-
cides the next block using a fresh wallet less often than honest players. Similar
assumptions have been leveraged in the literature. For example [33, 25] use the
assumption that the majority of mined blocks are honest, to select a committee
for secure computation. The difference between our blockchain assumption and
the standard chain quality property is mainly that we additionally require that
many of the honest blocks will additionally have an high-min entropy field. We
discuss more extensively our blockchain assumption Section 3.1.

We will leverage this blockchain assumption and the simulator’s control of
the honest majority to build a pvZK proof as follows. The high-level idea is to
follow the FLS approach [17] and prove the OR of two statements: either “x in
L” or “Previously I have predicted the majority of fresh wallets appeared in the
last d blocks”. In particular our idea reminds the implementation of the FLS
approach proposed by Barak [7] where the trapdoor theorem consists of some
unpredictable information that becomes predictable during the straight-line sim-
ulation. The soundness of our construction will follow from similar arguments
and will actually be simpler. The reason is that we implement the prediction step
with perfectly binding commitments and thus, unlike Barak, we will not have to
worry about a prover finding collisions in a collision-resistant hash function.

To implement this approach we need two ingredients: a non-interactive com-
mitment scheme (that can be constructed from 1-1 one-way functions) and a
publicly verifiable witness indistinguishable proof system pvWI. We use the
pvWI proof system recently constructed in [34] which is the first pvWI proof
system from a blockchain assumption. Our blockchain assumption implies the
one of [34]. The pvWI proof system of [34] leverages the underlying blockchain

5 Here we refer to wallets identifying the block leader cashing the reward and not to
wallets involved in transactions.

Publicly Verifiable Zero Knowledge from (Collapsing) Blockchains 7

assumption by providing an interactive prover and a non-interactive verification
function. Concretely, the pvWI proof of [34] builds on a classic 3-round WI proof
system where the first two rounds are played by the prover and blockchain: the
prover posts the first round of the classic WI proof on the blockchain, then she
waits for a few blocks extending the block containing the first message and from
those extracts a challenge that corresponds to the second round of a classic 3-
round WI proof. The third round of the classic WI proof is then sent to the actual
verifier, who can use the blockchain to validate all 3 rounds, non-interactively.
If the third round is posted on the blockchain then all verifiers can validate the
proof. We need the following 3 properties from the pvWI proof: (1) delayed-
input completeness, which means that the prover will use the theorem and the
witness only for computing the last message of the protocol, which implies that
all other messages of the pvWI proof are independent from the witness; (2) WI
in the presence of blockchain failure, that is, (2.1) the WI property holds even
when the prover is the only honest player and therefore the blockchain could be
completely controlled by the adversary; (2.2) the WI property is preserved even
when, after a pvWI proof is computed, the adversary could corrupt the prover;
(3) unconditional soundness6 in the presence of our blockchain assumption (i.e.,
Assumption 1). Since such properties were not explicitly claimed in [34] we show
in the full version of this paper [35] that through minor updates to their proto-
col those 3 properties are satisfied. The reason why we need the above 3 special
properties will be explained later when we will highlight the security proof.

With the above ingredients in hands, our pvZK proof system works as follows.
First, the prover, using a non-interactive commitment scheme, commits to u · d
strings com1, . . . , comu·d (u is the blockchain parameters associated to our chain-
quality assumption (Assumption 1), more details about u will be provided later)
and posts the commitments on the blockchain. Note that the prover securely
erases the decommitment information of com1, . . . , comu·d. Then, she waits until
the blockchain is extended by a sequence of d blocks B1, . . . , Bd, that include n
blocks B1, . . . , Bn with fresh wallets (that is, with wallets that were not observed
before). Let v1, . . . , vn be such fresh wallets observed on the blockchain. In the
final step, the prover computes the pvWI proof, for the theorem:“x ∈ L or
(com1, . . . , comu·d) are commitments of at least n/2+1 of the wallets (v1, . . . , vn)”.

The simulator SpvZK uses the same power of the simulator of [23] controlling
the honest players in the simulated experiment (in particular, the simulator
adds the blocks in the blockchain on behalf of honest players). Therefore SpvZK
can predict the majority of the unpredictable new wallets associated with a
sequence of d future blocks, and can use this knowledge as a trapdoor theorem
when computing the messages of the pvWI proof. Notice that the simulator can
not tightly predict the future wallets that will be permanently added to the
blockchain since there will be several other honest blocks to simulate that will
circulate in the network, they might even appear in some forks but eventually
will not be part of the blockchain. Since the simulator has no direct power to
decide which branch of a fork will remain in the blockchain, we require way more

6 See the paragraph below about the power of the adversary.

8 Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti

than just d commitments. Indeed we consider the parameter u that measures
the upper bound on the amount of valid blocks that honest players propose for
each index of the sequence of blocks of the blockchain.

The pvZK that we construct preserves zero knowledge even in case of adaptive
corruption during the protocol execution and in case the blockchain completely
collapses and the adversary gets the state of all players. To achieve this strong
form of zero knowledge, we use secure erasure so that differences in the com-
mitted values are not detected. Moreover we rely on the delayed-input pvWI
so that the simulator can run the prover procedure of the pvWI except that a
different witness is used in last message. Therefore before the last message is
played, adaptive corruption is not harmful since the simulator played exactly
like a prover of the pvWI. Assuming that the underlying pvWI is secure in case
the blockchain collapses (fact that we prove), the proof remains zero-knowledge
forever.

A crucial aspect of our construction is that the security of the prover is in the
hands of the prover only and does not depend on the behavior of the stakeholders.
To achieve adaptive security we rely on secure erasure. In contrast, even if the
prover of GG-NIZK would erase its randomness, the proof would still suffer of
our attack.

For the soundness proof, the main observation is that, as long as our blockchain
assumption holds, even an unbounded malicious prover cannot break soundness
since it cannot predict enough future wallets. This together with the perfect
binding property of the commitment scheme and the unconditional soundness
of the pvWI guarantees the soundness of our pvZK.

An additional property of our construction is that all messages except the
last one can be computed even before knowing the statement to prove (i.e.,
it satisfies delayed-input completeness and adaptive-input zero knowledge and
soundness).

Finally, we remark that even though messages of our pvZK proof can be very
long, therefore exceeding some rule of the blockchain, one can anyway resort to
techniques (and assumptions) like IPFS that allow to keep off-chain long message
but still accessible by everyone and succinctly notarized on chain.

On the computational power of the adversary and rationality of players. In a
publicly verifiable proof assuming that an adversarial prover is PPT does not
really say much about his limits with respect to the security of the blockchain.
Indeed in case of proof-of-work blockchains the limitation of the adversary should
be compared to the overall computational capabilities of the network rather
than compared to a generic polynomial on input the security parameter. In our
definition of soundness we will therefore consider an unbounded prover. When
proving the security of our construction we will state explicitly our blockchain
assumption and implicitly we will assume that the constraints on the adversary
(see Section 3.2) required by the underlying blockchain are maintained.

We remark that this work following [23, 24, 34] considers either honest or
corrupted players, without exploring the game-theoretic scenario where players
are instead rational.

Publicly Verifiable Zero Knowledge from (Collapsing) Blockchains 9

1.2 Related Work

The idea of using a blockchain as a trusted setup has been explored already (e.g.,
fair multi-party computation [12], extraction of week randomness [2]). In [11] a
randomness beacon is obtained assuming players to be somehow rational (i.e.,
they assume that the adversary that will prefer to be honest cashing mining
rewards rather than misbehaving compromising the beacon). In our work, as
well as the one of [23], we consider zero-knowledge proofs with public verifiabil-
ity sticking with the traditional setting where security holds against malicious
players.

In [16] a blockchain is used as a global setup assumption to obtain concurrent
self-composable secure computation protocol, which is impossible in the standard
model. We stress that [16] does not provide public verifiability (for the interested
reader we expand this discussion in Section 5). Recently in [25, 10] a blockchain is
used to maintain a secret via proactive secrete sharing. As mentioned above[25]
requires some chain quality parameters (n2 + 1, n) which means that for any
sequence of n blocks, the majority of them n

2 +1 are computed by honest parties.
In [10] the adversary controls up to 25% of the stake. However using the technique
discussed in [21] one could lift up this requirement to less than 50%.

In [6] the notion of Crowd verifiable zero-knowledge (CVZK) is introduced7.
In CVZK a prover wants to convince a set of n verifiers of the validity of a certain
statement. In more detail, a CVZK is a 3-round protocol where first the prover
speaks, then n verifiers compute a private state and send as a second-round a
string that may contain some entropy, finally, the prover finishes the proof π. The
verification procedure takes as input π the corresponding statement and also the
states of the n verifiers. Instead we consider a different notion requiring a zero-
knowledge proof that is publicly verifiable (i.e., any verifier with no additional
information could check the veracity of the statement). Moreover, the definition
of CVZK does not require any setup at the price of allowing the simulator to run
in super-polynomial time. Our goal is also to diminish the trust in the setups,
however, instead of requiring super-polynomial time simulation, we exploit more
realistic setups like the blockchains.

2 The Attack of the Clones to GG-NIZK [23]

A high-level overview of the NIZK presented in [23] was provided in the Intro-
duction. In this section we describe an attack of clones with which a malicious
verifier, using a smart contract, is able to break the zero-knowledge property of
GG-NIZK without corrupting any player.

Our attack leverages the fact that, if a blockchain is used as setup assumption
for a protocol Π, the security proof of Π must take into account the fact that
a player of Π is also a legitimate player of the blockchain protocol. As such,

7 Our results were publicly announced in [1] way before we have noticed CVZK, there-
fore the two works are independent.

10 Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti

legitimate blockchain activities – such as smart contracts – can be performed by
her.

Before describing the attack, we provide a formal description of the GG-
NIZK.

Notation for GG-NIZK

- Blockchain B: this is the latest version blockchain which might contain un-
confirmed blocks.

- Stable Blockchain B
′
: this is defined as Bd`1 , which is the blockchain B

pruned of `1 blocks (that are possibly unconfirmed blocks).

- Parameter `2: number of last blocks taken into consideration in B
′
.

- StakeholdersM: set of public keys associated to the player that have added

at least one block in the last `2 blocks of B
′
. In [23], such public keys are

crucially used for both encryption and signature.
- Chain quality parameters: `3, `4 used in the soundness proof.
- params:= (1`1 , 1`2 , 1`3 , 1`4).

GG-NIZK: The proof. A proof π for theorem x is computed as follows. Let w
be the witness s.t. (x,w) ∈ R.

1. Secret share the witness w using a weighted secret sharing scheme, using as
weights the stake of the public keys appearing in M. Do the same with the
zero-string.
Namely, produce the following two sets8:

{sh1,i}i∈M = Share(w, {stakei}i∈M, β · staketotal, s1)

{sh2,i}i∈M = Share(0, {stakei}i∈M, β · staketotal, s2)

2. Encrypt each weighted share using the public key of the corresponding
player. Namely for all i such that PKi ∈M, sample random strings r1,i, r2,i
and compute: ctx1,i = Enc(PKi, sh1,i, r1,i) ctx2,i = Enc(PKi, sh2,i, r2,i).

3. Compute a non-interactive witness indistinguishable proof (NIWI) πniwi for
the theorem: (1) either the first set of ciphertexts are correct encryptions
under the public keys in M of shares of the witness w or (2) (trapdoor
witness) the second set of ciphertexts is a collection of correct encryptions
under the public keys in M of shares of a valid fork of length `3 + `4.

Hence, a proof π for theorem x ∈ L consists of the tuple:

π = (B, {ctx1,i, ctx2,i}i∈M, πniwi, params)

Note that the proof π is not published on the blockchain and it is only sent
to the verifier.

8 The role of s1, s2 and β is not relevant for our discussion and therefore they can be
ignored.

Publicly Verifiable Zero Knowledge from (Collapsing) Blockchains 11

Security of GG-NIZK: Intuition. Zero knowledge follows from the assumption of
honest majority of stake. Under such assumption, the simulator –controlling all
honest players– is able to compute a valid fork that constitutes a valid trapdoor
witness for the NIWI. Even if the trapdoor witness is encrypted in (ctx2,i)PKi∈M,
a malicious verifier cannot detect that the trapdoor witness was used, since it
does not control enough secret keys (associated to the public keys in M) that
would allow for collection of enough shares.

Soundness is proved by witness extraction: the extractor controls a sufficient
fraction of honest secret keys (associated to the public keys inM) and this allows
the decryption of enough ciphertexts, that leads to enough shares to reconstruct
the witness.

Clearly by obtaining in the future (e.g., when those keys will correspond
to a reduced amount of stake) the secrets of the involved stakeholders (through
adaptive corruptions or by naturally receiving the keys from honest stakeholders)
the adversary would be able to decrypt those ciphertexts therefore breaking the
zero knowledge property and without violating the proof-of-stake assumption.
This problem imposes the assumptions/limitations of the GG-NIZK discussed
previously.

A Simple Smart Contract that Breaks the ZK Property of GG-NIZK.
The zero-knowledge property of GG-NIZK crucially relies on the assumption that
the malicious verifier – controlling only a minority of stake– does not have enough
secret keys for the public keys in M to be able to decrypt enough ciphertexts
and thus reconstruct the witness.

Our main observation is that in order to obtain decryptions of enough ci-
phertexts, a malicious verifier, does not necessarily need to own enough of the
stake/secret keys of the honest players. Instead, the malicious verifier can upload
a smart contract – that we called DecryptionForBarbados– where she promises
a reward for a valid decryption of a certain ciphertext ctx under a certain public
key PK. Notice that to run such smart contract the adversary does not need to
corrupt the stakeholders, or get a stake transfer. So, the attack to works even
if no-one is corrupted and even if no-stake is transferred. Obviously, when con-
sidering a blockchain with additional restrictions the our attack based on the
above smart contract might not work, but still, the potential existence of other
attacks should not be overlooked.

In more details, once the malicious verifier obtains π = (B, {ctx1,i, ctx2,i}i∈M,
πniwi,params) from an honest prover she can publish a DecryptionForBarbados

for some of (they could also be rerandomized if useful) the ciphertexts ctx1,i
for which she does not possess the secret key. The malicious verifier using
DecryptionForBarbados is able to collect enough shares and reconstruct the
witness that is encrypted in {ctx1,i, ctx2,i}i∈M, thus directly invalidating the ZK
property of [23].

In Figure 1 we give a more detailed description of DecryptionForBarbados.
In order to keep the smart contract simple we assume that the decryption pro-
cedure of the underlying encryption scheme gives in output a pair (m, r) where
r is the randomness used to encrypt and m is the message encrypted (see for

12 Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti

instance [8]). For the same reason, we also assume that (m, r) are unique (for a
public key PK).

Notation (borrowed from [27]).
- Ledger: the blockchain.
- Ledger[Pti] denotes the amount of money possessed by the secret key of party Pti.

DecryptionForBarbados

1. Init: Upon receiving (init, $reward, ctx,PKi) from a contractor C:
- Assert Ledger[C] > $reward.
- Ledger[C] := Ledger[C]− $reward.
- Set state := init.

2. Claim: On input (claim, v) from a player Pti:
- Parse v = (m, r).
- If ctx = EncPKi(m, r) then set rewards Ledger[Pt] := Ledger[Pt] + $reward.
- Set state := claimed.

Fig. 1: Description of DecryptionForBarbados.

Observations on the Smart Contract. We note that a player that uses her secret
key to trigger DecryptionForBarbados in order to win the reward is not vio-
lating any assumption of the underlying PoS protocol or of GG-NIZK. Indeed,
he is not exposing his secret key but simply providing a valid decryption of a
certain ciphertext. Thus this is legitimate behavior of a honest player, she is
simply executing an other application that runs on top of the blockchain.

Our smart contract is not a “bribing attack”. Bribing assumes that one is
paying somebody to do something wrong/break the rules. Instead in this context
an honest player is still behaving honestly and he is not breaking any rule of the
underlying PoS protocol.

We also note that since the proof π is not published on the blockchain (and
is not required to be), honest players could be not aware that they are helping
a malicious verifier to break the security of π.

3 Definitions

Preliminary. We denote the security parameter by λ and use “||” as concate-
nation operator (i.e., if a and b are two strings then by a||b we denote the
concatenation of a and b). We use the abbreviation ppt that stays for probabilis-
tic polynomial time. We use poly(·) to indicate a generic polynomial function.
A polynomial-time relation R (or polynomial relation, in short) is a subset of
{0, 1}∗ × {0, 1}∗ such that membership of (x,w) in R can be decided in time
polynomial in |x|. For (x,w) ∈ R, we call x the instance and w a witness for x.
For a polynomial-time relation R, we define the NP-language LR as LR = {x

Publicly Verifiable Zero Knowledge from (Collapsing) Blockchains 13

s.t. ∃ w : (x,w) ∈ R}. Analogously, unless otherwise specified, for an NP-
language L we denote by R the corresponding polynomial-time relation (that
is, R is such that L = LR). We will denote by Pst a stateful algorithm P with
state st. We will use the notation r ∈R {0, 1}λ to indicate that r is sampled at
random from {0, 1}λ. When we want to specify the randomness r used by an
algorithm Al we use the following notation Al(·; r).

3.1 Blockchain Protocols

In the next two sections we borrow the description of a blockchain protocol of
[32, 23], moreover we explicitly define the procedure executed by an honest player
in order to add a block. A blockchain protocol Γ is parameterized by a validity
predicate V that captures the semantics and rules of the blockchain. Γ consists
of 4 polynomial-time algorithms (UpdateState, GetRecords, Broadcast,GenBlock)
with the following syntax.

- UpdateState(1λ, st): It takes as input the security parameter λ, state st and
outputs the updated state st.

- GetRecords(1λ, st): It takes as input the security parameter λ and state st. It
outputs the longest ordered sequence of valid blocks B (or simply blockchain)
contained in the state variable, where each block in the chain itself contains
an unordered sequence of records messages.

- Broadcast(1λ,m): It takes as input the security parameter λ and a message
m, and broadcasts the message over the network to all nodes executing the
blockchain protocol. It does not give any output.

- GenBlock(st,B, x): It takes as input a state st, a blockchain B9, x ∈ {0, 1}∗
and outputs a candidate block B that contains a string v computed running a
function fID that is defined as follows. The function fID(1λ; r) takes as input
the security parameter λ and running with poly(λ) bits of randomness r
outputs a q bit string v, where q = poly(λ). Moreover every time that fID runs
on input a freshly generated randomness it holds that H∞(fID(1λ; ·)) ≥ λ10.
The generated block B could satisfy or not the validity predicate V.
We will denote by Bv a block B that contains the string v computed using
fID.

Blockchain notation. With the notation B ≤ B′ we will denote that the
blockchain B is a prefix of the blockchain B′. We denote by Bdn the chain result-
ing from “pruning” the last n blocks in B. We will denote by ΓV a blockchain
protocol Γ that has validate predicate V. A blockchain B generated by the execu-
tion of ΓV is the blockchain obtained by an honest player after calling GetRecords
during an execution of ΓV. An honest execution of GenBlock is an execution of

9 In order to simplify the notation we make an abuse of notation and we explicitly add
the blockchain as input of GenBlock even though the blockchain can be computed
running GetRecords on input st.

10 In the existing blockchains the value v could be an identifier of a wallet and fID is
the randomized function that generates it.

14 Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti

GenBlock computed by an honest player. A blockchain protocol Γ can satisfy the
property of chain-consistency, chain-growth and chain-quality defined in previ-
ous works [19, 32]. In the rest of the paper we will denote by η(·) the chain
consistency parameter of ΓV.

Definition 1 (Block Trim Function). Let Bv be a block generated using
GenBlock that satisfies the validate predicate V. We define a block trim func-
tion as a deterministic function trim that on input Bv outputs v.

Note that for two blocks B, B′ that satisfy V and are generated by an honest
execution of GenBlock it could happen that trim(B) = trim(B′). For instance
this is the case when a honest player Pt runs GenBlock twice and both executions
run fID on input the same randomness stored in the state of Pt.

Definition 2 (Good Execution of GenBlock). Let B be a blockchain gener-
ated by an execution of ΓV. An execution of GenBlock is good w.r.t. a blockchain

B if it holds that GenBlock runs on input B s.t. B ≤ B
dη(λ)

, moreover GenBlock
runs fID on input fresh randomness and outputs a block that satisfies the validity
predicate V.

Definition 3 (Pristine Block). Let trim be the block trim function defined
in Definition 1. Let B be a blockchain composed of k blocks generated by an
execution of ΓV. The j-th block Bj of B is pristine if for each Bi of B with
0 < i < j it holds that v 6= vi where v = trim(Bj) and vi = trim(Bi).

Assumption 1 Let B be a blockchain generated during an execution of ΓV.
There exists d = poly(λ) and u = poly(λ) such that for any sequence of d con-
secutive blocks Bi+1, . . . , Bi+d added to B during the execution of ΓV, let n be
the number of pristine blocks in Bi+1, . . . , Bi+d, it holds that:

1. At least bn/2 + 1c of the pristine blocks in the sequence Bi+1, . . . , Bi+d have
been generated by honest players through good executions of GenBlock w.r.t.
B;

2. For each j ∈ {1, . . . d}, the probability that honest players obtain through
honest executions of GenBlock w.r.t. B u′ > u different blocks satisfying the
validity predicate for the position i+ j in the blockchain is negligible in λ.

We refer to d as the pristine parameter and to u as the attempts parameter.

Notice that n is a non-constant value that depends on the content of the
specific d consecutive blocks taken into account. For the sake of simplifying the
description of our construction we will assume wlog that n is also a pristine
parameter.

On the applicability of our assumption. It is well known that blockchains need
an incentive mechanism and this is typically implemented by assigning a reward
each time a block is added to the chain. This process is often implemented as a
lottery and some coins are generated and assigned to the winner of the lottery

Publicly Verifiable Zero Knowledge from (Collapsing) Blockchains 15

that is also the player that generated the new block added to the chain. In order
to get the coin assigned, the winner also includes an identifier of her wallet to
the block. Such identifiers usually correspond to public keys of signature schemes
and as such they have a significant amount of min-entropy. Therefore, whenever
such identifier is selected by a honest blockchain player and has never circulated
in the network, it represents an unpredictable string. More concretely one could
think in the case of Bitcoin to the coinbase transaction, since sometimes the
rewards is cashed on a new wallet.

Our blockchain assumption assumes that given a sufficiently long sequence
of blocks, if we restrict to identifiers that appear for the first time on the chain,
then a majority of them was unpredictable before the long sequence of blocks
started. Obviously an adversary can sometimes be the winner and therefore can
use an identifier that is “fresh” in the eyes of others but that she knew already
before the long sequence of blocks started. Therefore our assumption requires
the adversary to have limited resources so that she places in the chain less blocks
than what honest players using fresh identifiers do.

For concreteness, one can consider the current modus operandi of Bitcoin
blockchain. To avoid double spending it is in general recommended to wait for
6 more blocks after the block including the spending transaction, this is called
confirmation time. The choice of 6 blocks for a confirmation time suggests that it
is believed that it would be very unlikely that the adversary could have produced
in the meanwhile 7 blocks that cancel the spending transaction. If for instance
we quantify “very unlikely” with something less than 2−70 then as a consequence
the adversary must have probability of being the winner (therefore deciding the
next block) less than 2−10 . Following this example, if an honest block includes
a “fresh” wallet with probability at least 2−9 (which is very reasonable), then
our assumption clearly holds for a sufficiently large sequence of blocks (i.e.,
considering a sufficiently large d).

We have considered Bitcoin and the 6-block confirmation rule just because it
is the most popular example of blockchain and thus it is a natural target to check
the concreteness of our assumption. Indeed, also coinbase transaction is just an
example of a field with min-entropy that could be find in the blockchain (see
also the examples mentioned in [13]). One could consider, for instance, privacy-
preserving blockchains (e.g., [18, 28] for the case of PoS blockchains), observing
that the cryptographic material used to ensure privacy might imply the presence
of fields with high min-entropy in a block.

Our construction is a mere feasibility result aiming at showing that publicly
verifiable zero knowledge is possible with generic11 blockchains.

3.2 Execution of Γ V in an Environment

At a very high level, the execution of the protocol ΓV proceeds in rounds
that model time steps. Each participant in the protocol runs the UpdateState

11 In the sense of the underlying consensus mechanism.

16 Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti

algorithm to keep track of the current (latest) blockchain state. This corre-
sponds to listening on the broadcast network for messages from other nodes.
The GetRecords algorithm is used to extract an ordered sequence of blocks en-
coded in the blockchain state variable. The Broadcast algorithm is used by a
player when she wants to post a new message m on the blockchain. Note that
the message m is accepted by the blockchain protocol only if it satisfies the va-
lidity predicate V given the current state, (i.e., the current sequence of blocks).

Following prior works [19, 29, 32], we define the protocol execution following
the activation model of the Universal Composability framework of [15] (though
like [23] we will not prove UC-security of our results). For any blockchain pro-
tocol ΓV(UpdateState, GetRecords, Broadcast,GenBlock), the protocol execution
is directed by the environment Z(1λ). The environment Z activates the players
as either honest or corrupt and is also responsible for providing inputs/records
to all players in each round.

All the corrupt players are controlled by the adversary A that can corrupt
players adaptively during the execution of ΓV.

Specifically A can send a corruption request 〈corr,Pti〉 to player Pti at
any point during the execution of ΓV. The adversary is also responsible for the
delivery of all network messages. Honest players start by executing UpdateState
on input 1λ with an empty state st = ε.

- In round r, each honest player Pti potentially receives a message(s) m from
Z and potentially receives incoming network messages (delivered by A). It
may then perform any computation, broadcast a message (using Broadcast
algorithm) to all other players (which will be delivered by the adversary;
see below) and update its state sti. It could also attempt to “add” a new
block to its chain: Pti will run the procedure GenBlock, and this execution of
GenBlock could use fresh randomness for the function fID(1λ; ·) if requested
by Z.

- A is responsible for delivering all messages sent by players (honest or cor-
rupted) to all other players. A cannot modify the content of messages broad-
cast by honest players, but it may delay or reorder the delivery of a message
as long as it eventually delivers all messages within a certain time limit.

- At any point Z can communicate with adversary A.

Constraints on the adversary. In order to show that a blockchain enjoys
some useful properties (e.g., chain consistency) prior works [32, 19] restrict their
analysis to compliant executions of ΓV where some specific restrictions12 are im-
posed to Z and A. Those works showed that certain desirable security properties
are respected except with negligible probability in any compliant execution. Ob-
viously, when in our work we claim results assuming some properties of the
blockchain, we are taking into account compliant executions of the underlying
blockchain protocol only. The same is done by [23].

12 For instance, they require that any broadcasted message is delivered in a maximum
number of time steps.

Publicly Verifiable Zero Knowledge from (Collapsing) Blockchains 17

3.3 Publicly Verifiable ZK Proof System from Blockchains

Here we define delayed-input publicly verifiable zero knowledge w.r.t. blockchain
failure over a blockchain protocol ΓV = (UpdateState,GetRecords, Broadcast,GenBlock).
We will make use of the following notation.

The view of a blockchain player Pt consists of the messages received during an

execution of ΓV, along with its randomness and its inputs. Let ExecΓ
V

(A,H,Z, 1λ)
be the random variable denoting the joint view of all players in the execution
ΓV, with adversary A and set of honest players H in environment Z, such a joint
view fully determines the execution. Let ΓV

view(A,H,Z, 1λ) denote an execution
of ΓV(A,H,Z, 1λ) producing view as joint view.

Definition 4 (Publicly Verifiable Proof System from Blockchain). A
pair of stateful ppt algorithms Π = (P,V) over a blockchain protocol ΓV is a
publicly verifiable proof system for the NP-language L with witness relation R
if it satisfies the following properties:

Completeness. ∀ x,w s.t. (x,w) ∈ R, ∀ ppt adversary A any ppt Ptj ∈ H
where H is the set of honest parties, and for any environment Z, assuming
that P ∈ H, there exist negligible functions ν1(·), ν2(·) such that:

Pr

view← ExecΓ

V

(A,H,Z, 1λ)

V(x, π,B) = 1 : π ← PstP (x,w)

B = GetRecords(1λ, stj)

 ≥ 1− ν1(|x|)− ν2(λ)

where stP denotes the state of P during the execution ΓV
view(A,H,Z, 1λ).

The running time of P is polynomial in the size of the blockchain B =
GetRecords(1λ, stj) where stj is the state of Ptj at the end of the execution
ΓV
view(A,H,Z, 1λ).13

Soundness. ∀ x /∈ L, ∀ stateful adversary A and ppt honest player Ptj ∈ H
where H is the set of honest players and for any environment Z, there exist
negligible functions ν1(·), ν2(·) such that:

Pr

view← ExecΓ

V

(A,H,Z, 1λ)

V(x, π,B) = 1 : π, x← AstA

B = GetRecords(1λ, stj)

 ≤ ν1(|x|) + ν2(λ)

where stA denotes the state of A during the execution ΓV
view(A,H,Z, 1λ). Fur-

thermore stj is the state of Ptj at the end of the execution ΓV
view(A,H,Z, 1λ).

The proof π might consist of multiple messages, i.e., π = (π1, . . . , πm), in
this case, we will say that Π is an m-messages proof system. Moreover if π
is composed of m-messages π = (π1, . . . , πm), A is allowed to choose x just
before computing the last message πm of the proof π = (π1, . . . , πm).

13 Note that the execution of Γ V
view(A,H,Z, 1λ) could continue even after π is provided

by P.

18 Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti

Definition 5 (Delayed-Input Completeness from Blockchain). An m-
messages proof system Π over a blockchain protocol ΓV is delayed-input, if
x,w are not involved before the computation of the last message πm of the proof
π = (π1, . . . , πm).

Definition 6 (Witness Indistinguishability w.r.t. Blockchain Failure).
A publicly verifiable proof system Π = (P,V) over a blockchain protocol ΓV for
the NP-language L with witness relation R is witness indistinguishable (WI)
w.r.t. blockchain failure if it satisfies the following property:
∀ x,w0, w1 such that (x,w0) ∈ R and (x,w1) ∈ R, ∀ ppt adversary A and

set of ppt honest players H and any ppt environment Z, where P ∈ H it holds
that:

{
viewA : viewA ← Exp0A,Π,Γ V(λ)

}
≈
{
viewA : viewA ← Exp1A,Π,Γ V(λ)

}
where ExpbA,Π,Γ V(λ) is defined below, for b ∈ {0, 1}.

ExpbA,Π,Γ V(λ, x, wb):

- P runs on input 1λ.
- An execution of ΓV(A,Z,H, 1λ) starts.

- PstP outputs messages π1, . . . , πm−1, where stP is the state of P
in the execution ΓV(A,Z,H, 1λ).

- Upon receiving (x,w0) ∈ R, (x,w1) ∈ R from A.
- PstP computes πm on input πm−1, x, wb and outputs
π = (π1, . . . , πm).

- A can send a collapse request 〈corr, all〉 obtaining:
The state sti from the honest player Pti ∈ H, for i = 1, . . . , |H|;
The state stP from P.

-The execution of ΓV(A,Z,H, 1λ) terminates and A outputs her view
viewA and this is the output of the experiment.

Remark 1. The above definition does not assume that the blockchain satisfies the
predicate V, even when P is the only honest player of ΓV, and thus the blockchain
could be completely controlled by the adversary. In this scenario we will say that
Π = (P,V) enjoys WI w.r.t. blockchain failure over any blockchain protocol.

Definition 7 (Zero Knowledge w.r.t. Blockchain Failure). A publicly ver-
ifiable proof system Π = (P,V) over a blockchain protocol ΓV for the NP-
language L with witness relation R is Zero Knowledge (ZK) w.r.t. blockchain
failure if there is a stateful ppt algorithm S such that ∀ x,w s.t. (x,w) ∈ R, ∀
ppt adversary A and set of ppt honest players H and for any ppt environment
Z, where P ∈ H it holds that:

{
viewA : viewA ← Exp0A,Π,Γ V(λ)

}
≈
{
viewA : viewA ← Exp1A,Π,S,Γ V(λ)

}

Publicly Verifiable Zero Knowledge from (Collapsing) Blockchains 19

where Exp0A,Π,Γ V(λ) and Exp1A,Π,S,Γ V(λ) are defined below.

Exp0A,Π,Γ V(λ):

- P runs on input 1λ.
- An execution of ΓV(A,H,Z, 1λ) starts.

1. At any point A can send a corruption request 〈ZKcorr(x,w)〉 (s.t.
(x,w) ∈ R) to P obtaining from P her state stP .

2. PstP outputs messages π1, . . . , πm−1.
3. If A did not compute Step 1 P receives (x,w′) ∈ R from A.
4. PstP outputs π = (π1, . . . , πm).
5. If A sends a collapse request 〈corr, all〉 obtains:

The state sti from honest player Pti ∈ H, for i = 1, . . . , |H|;
The state stP from P, if A did not compute Step 1.

-The execution of ΓV(A,Z,H, 1λ) terminates and A outputs her view
viewA and this is the output of the experiment.

Exp1A,Π,S,Γ V(λ):

- S runs on input 1λ.
- An execution of ΓV(A,S,Z, 1λ) starts.

1. At any point A can send a corruption request 〈ZKcorr(x,w)〉 (s.t.
(x,w) ∈ R) to S obtaining from S a state stP .

2. S outputs messages π1, . . . , πm−1.
3. If A did not compute Step 1: S receives (x,w′) ∈ R from A, S ignores

w′.
4. S outputs π = (π1, . . . , πm).
5. If A sends a collapse request 〈corr, all〉 obtains from S:

The state sti for each honest player Pti ∈ H, for i = 1, . . . , |H|;
The state stP for the honest prover of Π, if A did not compute
Step 1.

-The execution of ΓV(A,Z,H, 1λ) terminates and A outputs her view
viewA and this is the output of the experiment.

4 Publicly Verifiable ZK w.r.t. Blockchain Failure

We construct a delayed-input publicly verifiable zero-knowledge proof system
w.r.t. blockchain failure ΠpvZK = (PpvZK,VpvZK) over any blockchain protocol
ΓV = (UpdateState, GetRecords, Broadcast,GenBlock) satisfying chain-consistency
property, chain-growth property and Assumption 1. The parameters of ΠpvZK are
reported in Table 4. We assume wlog that in a sequence of d blocks, n of them
are pristine, where n is an even non-negative integer. ΠpvZK for the NP-language
L makes use of the following tools:

- The block trim function trim defined in Definition 1, that on input a block
B outputs a q-bits long string v.

20 Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti

- A non-interactive statistically binding commitment schemeΠCom = (Com,VrfyOpen).
- A delayed-input publicly verifiable proof system ΠpvWI = (PpvWI,VpvWI) over

any blockchain protocol ΓV = (UpdateState, GetRecords, Broadcast,GenBlock)
that satisfies chain-consistency property, chain-growth property and As-
sumption 1. Moreover ΠpvWI enjoys WI w.r.t. blockchain failure over any
blockchain protocol. ΠpvWI is for NP-language LpvWI which is associated to
the relationRpvWI =

{
((x, xcom), w) : (x,w) ∈ R ∨ (xcom, w) ∈ Rcom

}
, where

R is the relation associated to the NP-language L and Rcom is the relation
associated to the following NP-language:

Lcom =
{
{comj}u·dj=1, {vi}ni=1 : ∃ 1 ≤ j1 < · · · < jn/2+1 ≤ n, {openjk}

n/2+1
k=1

s.t. VrfyOpen(comjk , openjk , vjk) = 1 ∀k = 1, . . . , n/2 + 1
}

Loosely speaking the relation Rcom is satisfied if the message committed in
comjk is vjk for at least n/2 + 1 distinct values of jk. The instance length of
LpvWI is ` and the size of the proof generated by PpvWI is of m messages.

Our delayed-input publicly verifiable zero-knowledge proof system w.r.t. blockchain
failure ΠpvZK = (PpvZK,VpvZK) is described in Figure 2.

Table of Notation

` Size of the theorem for LpvWI.
m Number of messages of ΠpvWI.
q Output-length of the block trim function trim. See Definition 1.

η Chain consistency parameter of Γ V.

d, n Pristine parameters of Γ V. See Assumption 1.

u Attempts parameter of Γ V. See Assumption 1.

Table 1: Parameters of ΠpvZK.

Theorem 1. Let ΓV = (UpdateState, GetRecords, Broadcast,GenBlock) be any
blockchain protocol that satisfies chain-consistency property, chain-growth prop-
erty and Assumption 1. Let ΠCom = (Com,VrfyOpen) be a non-interactive sta-
tistically binding commitment scheme. Let ΠpvWI = (PpvWI,VpvWI) be a delayed-
input publicly verifiable proof system over ΓV for NP-language LpvWI. Moreover
ΠpvWI enjoys WI w.r.t. blockchain failure over any blockchain protocol. Assuming
secure erasure, ΠpvZK = (PpvZK,VpvZK) (described in Figure 2) is a delayed-input
publicly verifiable zero-knowledge proof system w.r.t. blockchain failure over ΓV

for NP.

We note that a pvWI proof system that satisfies delayed-input completeness
can be instantiated from OWPs using the work of [34]. In the full version [35]
we prove that ΠpvWI satisfies Definitions 4, 6. Therefore we have the following
corollary.

Publicly Verifiable Zero Knowledge from (Collapsing) Blockchains 21

Publicly Verifiable ZK proof system w.r.t. blockchain failure ΠpvZK = (PpvZK,VpvZK)
Parameters are defined in Table 4.

Prover Procedure: PpvZK. Input: instance x, witness w s.t. (x,w) ∈ R.

— First step.
1. Compute (comj , openj)← Com(0q) and erase openj for j = 1, . . . , d · u.
— Blockchain Interaction.
2. Set st = ε. Post com1, . . . , comu·d on the blockchain by running

Broadcast(1λ, com1, . . . , comu·d) and then monitor the blockchain by running
st = UpdateState(1λ, st), B = GetRecords(1λ, st), until com1, . . . , comu·d fol-
lowed by d additional blocks B1, . . . , Bd are posted on the blockchain Bdη (i.e.,
we consider the blockchain B pruned of the last η blocks). Let B1, . . . , Bn be
the n pristine blocks in the sequence B1, . . . , Bd.

— Second step.
3. Compute vj = trim(Bj) for j = 1, . . . , n and set com = {comj}u·dj=1, val =
{vj}nj=1, xcom = (com, val), xpvWI = (x, xcom).

4. Obtain π1
pvWI with randomness r1 executing PpvWI on input 1λ, `

and interacting with the blockchain if it is required by PpvWI.
5. For i = 2, . . . ,m− 1 :

Obtain πipvWI with randomness ri executing PpvWI on input πi−1
pvWI

and interacting with the blockchain if it is required by PpvWI.
6. Obtain πmpvWI executing PpvWI on input πm−1

pvWI , xpvWI, w and interacting with the
blockchain if it is required by PpvWI.

7. Set πpvWI = (π1
pvWI, . . . , π

m
pvWI) and π = (xpvWI, {comj}u·dj=1, πpvWI) erase any ran-

domness that PpvWI requests to erase and output π.

Verifier Procedure: VpvZK. Input: x, π = (xpvWI, {comj}u·dj=1, πpvWI), and a blockchain

B̃ s.t. Bdη ≤ B̃ works as follows.

— Check Blockchain. If the messages {comj}u·dj=1 are not posted on the

blockchain B̃
dη

then VpvZK outputs 0. Otherwise, let B∗ be the block of the

blockchain B̃
dη

where the messages {comj}u·dj=1 are posted. Let B1, . . . , Bn

be the n pristine blocks of the blockchain B̃
dη

after B∗. VpvZK computes
v′j = trim(Bj) for j = 1, . . . , n and parses xpvWI as instance x, commitments
{comj}u·dj=1, and strings {vj}nj=1.

— Check Proof. Accept if all the following conditions are satisfied.
- v′j = vj for all j ∈ {1, . . . , n};
- VpvWI(xpvWI, πpvWI, B̃) = 1.

Execution of Γ V by honest player Ptj :

Ptj acts as described in Section 3.2, in particular, upon receiving a request of
an execution of GenBlock using fresh randomness for the function fID(1λ; ·) by
Z:

Ptj picks r at random from {0, 1}poly(λ);
Ptj runs GenBlock and uses the randomness r to execute fID.

If A sends a collapse request 〈corr, all〉, A obtains stPti from honest player
Pti, for all i = 1, . . . , |H|, moreover A obtains the state stPpvZK of PpvZK (if A
did not send a corruption request to PpvZK before).

Fig. 2: Description of ΠpvZK = (PpvZK,VpvZK).

22 Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti

Corollary 1. Let ΓV = (UpdateState, GetRecords, Broadcast,GenBlock) be a
blockchain protocol that satisfies chain-consistency property, chain-growth prop-
erty and Assumption 1. Assuming secure erasure, if one-way permutations exists,
then ΠpvZK = (PpvZK,VpvZK) is a delayed-input publicly verifiable zero-knowledge
proof system w.r.t. blockchain failure over ΓV for NP.

The proof of the Theorem 1 and the description of the simulator SpvZK for ΠpvZK

can be found in the next subsections.
Note that the inputs of ΠpvZK (i.e., the statement x and the witness w) are

used only in the last message of the protocol. Therefore the prover can pre-process
all the other messages ahead of time (even without knowing the statement) and
complete the last message whenever the statement becomes available.

4.1 Delayed-Input Completeness (Definition 5)

Let st and stPti be respectively the states of P and of an honest player Pti after
Step 7 of ΠpvZK (that is, after the proof has been computed). Since both P and
V are running the protocol honestly, from the chain-consistency property follows
that Bdη ≤ B̃ (with overwhelming probability), where B = GetRecords(st) and
B̃ = GetRecords(stPti). Therefore V performs all the blockchain checks on B̃
successfully. After that P posts the commitments {comj}u·dj=1 in the blockchain

B we are guaranteed by the chain growth property of ΓV and by Assumption
1 that new d blocks will be added to B and among them n will be pristine.
Therefore P can construct the instance xcom (as defined in Step 3 of Figure 2)
in order to complete her execution running ΠpvWI.

Finally the completeness of ΠpvZK follows from the completeness of ΠpvWI

and the correctness of ΠCom.

4.2 Soundness (Definition 4)

Claim 1 If Assumption 1 holds for ΓV then ΠpvZK is sound.

Proof. Let P?pvZK be a successful adversary. Recall that P?pvZK is successful if it
produces with non-negligible probability an accepting π of ΠpvZK w.r.t. x /∈ L,
where x is adaptively chosen by P?pvZK before the last message of π.

Let B∗ be the block in the blockchain B where the last commitment of the
set of the commitments com1, . . . , comu·d is posted by P?pvZK, and let B1, . . . , Bn
be the n pristine blocks (in a sequence of d blocks) appeared in B after the block
B∗.

From Assumption 1 it follows that in a sequence of n pristine blocksB1, . . . , Bn
at least n/2 + 1 are generated by honest players through good executions of
GenBlock w.r.t. B. Let B1, . . . , Bn/2+1 be the n/2 + 1 blocks generated by honest
players through good executions of GenBlock w.r.t. B in the sequence of pristine
blocks B1, . . . , Bn, and the value vj be s.t. vj = trim(Bj), for j = 1, . . . , n/2+1.
When P?pvZK posts com1, . . . , comu·d, it has no information about the values
v1, . . . , vn/2+1, because when P?pvZK posts com1, . . . , comu·d each value vj (for

Publicly Verifiable Zero Knowledge from (Collapsing) Blockchains 23

j = 1, . . . , n/2 + 1) can be guessed with probability 2−λ (since Assumption 1
holds and each vj has at least λ bits of min-entropy). Moreover, since ΠCom

is a perfectly binding commitment scheme, the committed message is uniquely
identified in the commitment phase. Therefore the probability that P?pvZK cor-
rectly commits the values v1, . . . , vn/2+1 is negligible. It follows that the val-
ues v1, . . . , vn/2+1 are committed in com1, . . . , comu·d only with negligible prob-
ability, therefore xcom /∈ Lcom. Since by contradiction we are assuming that
P?pvZK is successful w.r.t. x /∈ L, it follows that with non-negligible probabil-
ity xpvWI = (xcom, x) /∈ LpvWI. This contradicts the soundness property of ΠpvWI

4.3 Zero Knowledge w.r.t. Blockchain Failure (Definition 7)

Simulator SpvZK. The simulator SpvZK is presented in Figure 3, the red steps
denote the steps of SpvZK that are different from the one of PpvZK.

Zero Knowledge w.r.t. Blockchain Failure. Let A be the adversary as de-
fined in Definitions 7. Intuitively, we want to prove that even if the blockchain
collapses, the zero-knowledge property of ΠpvZK is still preserved.

In order to show that ΠpvZK satisfies zero knowledge w.r.t. blockchain failure
we will consider the following hybrid experiments.

- Hybrid H0. In hybrid experiment H0(λ) the simulator S′pvZK follows the hon-
est prover procedure of PpvZK.

- Hybrid H1. Experiment H1(λ) is described as H0(λ) except that the simula-
tor S′pvZK emulates the honest players in the execution of ΓV, more precisely
S′pvZK follows Step 3 and Steps 14-15 of Figure 3.
Note that after that the commitments are posted in the blockchain in H0(λ)
when an honest player Ptj ∈ H receives a request from Z of an execution of
GenBlock using fresh randomness for fID(1λ; ·) Ptj runs fID on input freshly
generated randomness obtaining a freshly generated value v. It easy to see
that in H1(λ) the value v is generated in the same way as Ptj ∈ H does in
H0(λ) except that v is computed at the start of ΠpvZK. Since (1) the values
vj ← fID(1λ; rj) for j = 1, . . . , d · u are identically distributed in the two
hybrid experiments and (2) S′pvZK is behaving in the same way of the honest

players in an execution of ΓV, we have that H1 ≡ H0.
- Hybrid H2. If a corruption of the form 〈ZKcorr(x,w)〉 occurs when ΠpvZK

starts, H2(λ) corresponds to H1(λ), otherwise we consider a series of hy-
brid experiments H0

2 (λ), . . . , Hu·d
2 (λ) where H0

2 (λ) = H1(λ) and H2(λ) =
Hu·d

2 (λ) and they are described as follows.
Hybrid Hk

2 with k ∈ {1, . . . , u · d}. The hybrid experiment Hk
2 (λ) is

describe ad Hk−1
2 (λ) except that S′pvZK computes the k-th commitment

following Steps 2-4 of Figure 3. Indeed, S′pvZK computes (comj , openj)←
Com(vj) for j = 1, . . . , k (where vj ← fID(1λ; rj)) and it computes
(comj , openj)← Com(0q) for j = k + 1, . . . , u · d.

Assuming secure erasure, from Claim 2 it holds that Hk−1
2 ≈ Hk

2 for all
k = 1, . . . , u·d, therefore since H1 corresponds to H0

2 and H2 corresponds
to Hu·d

2 we conclude that H1(λ) ≈ H2(λ).

24 Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti

Simulator Procedure: SpvZK. Parameters are defined in Table 4.

— First step.
1. If a corruption request 〈ZKcorr(x,w)〉 is received, then execute the steps of PpvZK

on input x,w. Else continue with the following steps.
2. For j = 1, . . . , u · d :
3. Pick rj randomly in {0, 1}poly(λ) compute vj ← fID(1λ; rj) and set R = R||rj .
4. Compute (comj , openj)← Com(vj).
— Blockchain Interaction.
5. Set st = ε. Post com1, . . . , comu·d on the blockchain by running

Broadcast(1λ, com1, . . . , comu·d) and then monitor the blockchain by running
st = UpdateState(1λ, st), B = GetRecords(1λ, st), until com1, . . . , comu·d followed by
d additional blocks B1, . . . , Bd are posted on the blockchain Bdη. Let B1, . . . , Bn
be the n pristine blocks in the sequence B1, . . . , Bd.

— Second step.
6. Compute vj = trim(Bj) for j = 1, . . . , n and set com = {comj}u·dj=1, val = {vj}nj=1,

xcom = (com, val), π0
pvWI = (1λ, `).

7. Let Bj1 , . . . , Bjk be the pristine blocks generated by honest players in the sequence
B1, . . . , Bd set wcom = openj1 , . . . , openjk (where k ≥ n/2 + 1 by Assumption 1).

8. Obtain π1
pvWI with randomness r1 executing PpvWI on input 1λ, `

and interacting with the blockchain if it is required by PpvWI.
If a corruption request 〈ZKcorr(x,w)〉 is received: erase the values {openj}

u·d
j=1 and

output stPpvZK = r1 and π1.
9. For i = 2, . . . ,m− 1 :

Obtain ri, πipvWI executing PpvWI on input ri−1, and πi−1
pvWI

interacting with the blockchain if it is required by PpvWI.
If a corruption request 〈ZKcorr(x,w)〉 is received.
Erase the values {openj}

u·d
j=1. Output stPpvZK = r′||ri and π1, . . . , πi.

10. If a corruption request 〈ZKcorr(x,w)〉 was not received, then:
11. Upon receiving x from A, set xpvWI = (x, xcom)

Obtain πmpvWI executing PpvWI with randomness on input πm−1
pvWI , xpvWI, wcom

and interacting with the blockchain if it is required by PpvWI.
Set πpvWI = (π1

pvWI, . . . , π
m
pvWI) and π = (xpvWI, {comj}nj=1, πpvWI).

Obtain stPpvWI from PpvWI set stPpvZK = stpvWI and erase {open}u·di=1. Output π.
12. If a corruption request 〈ZKcorr(x,w)〉 is received: output stPpvZK .

— Execution of Γ V simulating honest player Ptj . Act on behalf of Ptj as described
in Section 3.2, in particular, upon receiving a request of an execution of GenBlock
using fresh randomness for the function fID(1λ; ·):

13. Run B = GetRecords(1λ, stj), let np be number of pristine blocks posted after
com1, . . . , comu·d in the blockchain Bdη. Let K be the number of blocks added in
the blockchain Bdη. Let nb be the number of honest executions of GenBlock already
executed for the block BK+1.

14. If 0 ≤ np < n: Parse R as r1, . . . , ru·d and run an execution of GenBlock on behalf
of honest player Ptj with randomness rnp+nb to execute fID.

15. Else: Pick r at random from {0, 1}poly(λ) and GenBlock on behalf of honest player
Ptj with randomness r to execute fID.

16. If A sends a collapse request 〈corr, all〉 compute the following steps: Disclose state
stPti of honest player Pti, for all i = 1, . . . , |H|. If a corruption request 〈ZKcorr(x,w)〉
did not occur obtain stPpvWI from PpvWI set stPpvZK = stpvWI and disclose stPpvZK .

Fig. 3: Simulator SpvZK of ΠpvZK.

Publicly Verifiable Zero Knowledge from (Collapsing) Blockchains 25

- Hybrid H3. If a corruption of the form 〈ZKcorr(x,w)〉 occurs during the com-
putation of the first m − 1 messages of ΠpvWI, we have that H2(λ) corre-
sponds to H3(λ). Indeed due to the delayed-input property of ΠpvWI, S

′
pvZK

computes the first m − 1 messages of ΠpvWI as PpvZK does. Note that the
decommitment information {openj}u·dj=1 are securely erased by PpvZK, there-
fore if S′pvZK receives a corruption request during the computation of the first
m−1 messages of ΠpvWI she is able to exhibit randomness that is identically
distributed to the one that PpvZK would have in her state.
If a corruption of the form 〈ZKcorr(x,w)〉 does not occur during the compu-
tation of the first m− 1 messages of ΠpvWI, then H3 is defined as follow.

The hybrid experimentH3(λ) is described exactly asH2(λ) except for the
witness used to compute the last message πmpvWI generated using ΠpvWI,
for which S′pvZK is acting as SpvZK. In more details, for the computation
of the message πmpvWI S

′
pvZK is behaving as described in Steps 11 of Figure

3. Assuming secure erasure, since ΠpvWI satisfies WI w.r.t. blockchain
failure it follows that H2(λ) ≈ H3(λ) (see Claim 3).

H0(λ) corresponds to the experiment where PpvZK is interacting with A and
H3(λ) corresponds to the experiment where SpvZK is interacting with A. Since
H3(λ) ≈ H0(λ) it follows that A distinguishes the two experiments only with
negligible probability.

Claim 2 Assume that Πcom satisfies computationally hiding secure erasure, and
the blockchain protocol ΓV satisfies Assumption 1, then for every pair of messages
m0,m1 ∈ {0, 1}q it holds that Hk−1

2 (λ) ≈ Hk
2 (λ) for k ∈ {1, . . . , u · d}.

Proof. Suppose by contradiction that the above claim does not hold, this implies
that there exists an adversary A that is able to distinguish between Hk−1

2 (λ) and
Hk

2 (λ). Note that A could wait until the protocol ΠpvZK ends and then can send
a collapse request 〈corr, all〉. Using A it is possible to construct a malicious
receiver ACom that breaks the hiding of ΠCom with non-negligible probability.
Let CH be the challenger of the hiding game of ΠCom. ACom computes the fol-
lowing steps:

1. Compute vk running fID(1λ; r) where r is an uniformly chosen randomness
and sends the messages m0 = 0q and m1 = vk to CH.

2. Upon receiving ˜comk from CH, ACom interacts with A computing all the
messages of S′pvZK following the steps described in Hk

2 (λ) (and in Hk−1
2 (λ))

except for the k-th commitment for which she uses ˜comk.
3. Emulation of the state stPpvZK

of PpvZK after π is compute: acts as S′pvZK in

Hk
2 (λ) (and in Hk−1

2 (λ)) and securely erase the decommitment information
{openj}u·dj=1 (except for ˜openk that was never available to ACom), set the state

stPpvZK
as described Hk

2 (λ) (and in Hk−1
2 (λ)) that is as described in Step 12

of Figure 3.
4. execution of ΓV :

4.1. Emulate the honest players acting as the honest player of ΓV (as de-
scribed in Section Hk

2 (λ) (and in Hk−1
2 (λ))).

26 Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti

4.2. After π of ΠpvZK is computed if A sends a collapse request 〈corr, all〉,
disclose the states of all the honest players stPt1 , . . . , stPt|H| and stPpvZK

.
5. When A stops, ACom outputs the outcome of A.

ACom emulates the states of all the honest players stPt1 , . . . , stPt|H| in a perfect

manner, since ACom just acts as the honest players in the execution of ΓV. More-
over, stPpvZK

after π is computed in Step 3 of the above procedure, corresponds to

the state of an honest PpvZK in Hk
2 (λ) (and in Hk−1

2 (λ)). The proof is concluded
observing that if CH uses the message m0 to compute ˜comk then the reduction
is distributed as Hk−1

2 and as Hk
2 otherwise.

Claim 3 Assume that ΠpvWI satisfies WI w.r.t. blockchain failure as in Defini-
tion 6 over any blockchain protocol, secure erasure, and the blockchain protocol
ΓV satisfies Assumption 1, then for every xpvWI, w0, w1 s.t. (xpvWI, w0) ∈ RpvWI

and (xpvWI, w1) ∈ RpvWI it holds that H2(λ) ≈ H3(λ).

Proof. Suppose by contradiction that the above claim does not hold, this implies
that there exists an adversary A that is able to distinguish between H2(λ) and
H3(λ). Note that A could wait until the protocol ΠpvZK ends and then can send
a collapse request 〈corr, all〉. Using A it is possible to construct a malicious
verifier ApvWI that breaks the WI w.r.t. blockchain failure w.r.t. any blockchain
protocol property of ΠpvWI. We remark that ΠpvWI enjoys WI w.r.t. blockchain
failure w.r.t. any blockchain protocol (i.e., even w.r.t. a blockchain protocol
where PpvWI is the only honest player of the blockchain protocol). Let CH be the
challenger of the WI w.r.t. blockchain failure game of ΠpvWI. ApvWI computes
the following steps.

1. ApvWI acts as described in H2(λ) and H3(λ) until Step 6 of Figure 3. In par-
ticular, ApvWI computes the instance xcom and the witness wcom as explained,
respectively, in Step 6 and in Steps 7, 14-15 of Figure 3.

2. ApvWI interacts as a proxy between CH and A for the messages π1
pvWI,

. . . , πm−1pvWI , and interacting with the blockchain as a PpvWI would do upon
request of CH.

3. A chooses (x,w) ∈ R before the last message of ΠpvZK and therefore ApvWI

(that is acting as PpvZK) will obtain w s.t. (x,w) ∈ R and sends xpvWI =
(x, xcom), w, wcom to CH before the message πmpvWI. ApvWI completes the proof
π of ΠpvZK using πmpvWI and interacting with the blockchain as a PpvWI would
do upon request of CH.

3.1. Emulation of the state stPpvZK
of PpvZK after π is computed:

i. ApvWI sends a collapse request 〈corr, all〉 to CH obtaining stPpvWI

from the challenger CH.
ii. ApvWI is acting as S′pvZK in H2(λ) (and in H3(λ)) and securely erases

the decommitment information {openj}u·dj=1, set stPpvZK
= stPpvWI

.

4. execution of ΓV :
4.1. ApvWI emulates the honest players acting as the honest players of ΓV as

described in H3(λ) (and in H2(λ)).

Publicly Verifiable Zero Knowledge from (Collapsing) Blockchains 27

4.2. After π is computed if A sends a collapse request 〈corr, all〉, ApvWI

discloses the states of all the honest players stPt1 , . . . , stPt|H| and stPpvZK
.

5. When A stops, ApvWI outputs the outcome of A.

We note thatApvWI simulates the states of all the honest players stPt1 , . . . , stPt|H|

in a perfect way, this is because in the execution of ΓV, ApvWI is behaving in
the same way of the honest players of an execution of ΓV (as described in H3(λ)
(and in H2(λ))). The proof is concluded observing that if CH uses the witness w
to compute πmpvWI then the reduction is distributed as H2, and as H3 otherwise.

5 On Public Verifiability in [16]

A recent work [16] models the blockchain as a global ledger functionality Gledger
available to all the participants of a cryptographic protocol. [16] constructs con-
current self-composable secure computation protocol for general functionalities
in such global ledger model. The protocols constructed in [16] are not publicly
verifiable, and therefore do not satisfy the main feature that we study and achieve
in this work. Indeed the authors of [16] already notice in their work that non-
interactive zero knowledge for NP is impossible in their model. We remark that
actually the impossibility extends also to publicly verifiable zero knowledge for
languages that are not in BPP and we give now a high-level intuition. First of all,
note that in the model of [16], since the blockchain is modeled as a global ledger,
the simulator S of the zero-knowledge property has the same power of the adver-
sary while accessing Gledger. Suppose now by contradiction that it is possible to
construct a publicly verifiable zero-knowledge argument Π = (P,V) for the NP-
language L in the Gledger model. This means that there exists a simulator S that
having access to Gledger on input any instance x ∈ L outputs an accepting proof
π w.r.t. x that is (computationally) indistinguishable from a proof generated
by a honest prover P. Let us now consider a malicious polynomial-time prover
P∗ that in the Gledger-model wants to prove a false statement x∗ to an honest
verifier V. We will show that P∗ proves a false theorem with non-negligible prob-
ability, P∗ works as follows. P∗ internally runs S on input x∗. Moreover, each
interaction that S wants to do with Gledger is emulated by P∗ and this is possible
since S and P∗ are accessing Gledger in the same way. At the end of the execu-
tion, S outputs π∗ w.r.t. x∗. P∗ forwards π∗ to V. Note that we are guaranteed
by the zero-knowledge property that π∗ is accepting and the view of an honest
verifier that receives π∗ from P∗ is (computationally) indistinguishable from the
view that V has when she receives a proof from an honest prover. Finally we
note that public verifiability guarantees that π∗ can be accepted by any verifier
non-interactively, The only caveat in the above reasoning can concern the fact
that S might refuse to produce an accepting proof when x 6∈ L. However this
immediately shows that the language L is in BPP.

28 Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti

Acknowledgments

Research supported in part by NSF grants #1012798,#1764025, and in part by
the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 780477 (project PRIViLEDGE).

References

1. Pencil - workshop on privacy enhancing cryptography in ledgers (2019), https:
//priviledge-project.eu/pencil

2. Aggarwal, D., Obremski, M., Ribeiro, J.L., Siniscalchi, L., Visconti, I.: How to ex-
tract useful randomness from unreliable sources. In: Canteaut, A., Ishai, Y. (eds.)
Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Zagreb, Croa-
tia, May 10-14, 2020, Proceedings, Part I. Lecture Notes in Computer Science, vol.
12105, pp. 343–372. Springer (2020)

3. Badertscher, C., Garay, J.A., Maurer, U., Tschudi, D., Zikas, V.: But why does it
work? A rational protocol design treatment of bitcoin. In: Advances in Cryptology
- EUROCRYPT 2018 - 37th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018
Proceedings, Part II. pp. 34–65 (2018)

4. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
Composable proof-of-stake blockchains with dynamic availability. In: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018. pp. 913–930 (2018)

5. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
A composable treatment. In: Advances in Cryptology - CRYPTO 2017 - 37th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
20-24, 2017, Proceedings, Part I. pp. 324–356 (2017)

6. Baldimtsi, F., Kiayias, A., Zacharias, T., Zhang, B.: Crowd verifiable zero-
knowledge and end-to-end verifiable multiparty computation. In: Moriai, S., Wang,
H. (eds.) Advances in Cryptology - ASIACRYPT 2020 - 26th International Con-
ference on the Theory and Application of Cryptology and Information Security,
Daejeon, South Korea, December 7-11, 2020, Proceedings, Part III. Lecture Notes
in Computer Science, vol. 12493, pp. 717–748. Springer (2020)

7. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd Annual
Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October 2001,
Las Vegas, Nevada, USA. pp. 106–115. IEEE Computer Society (2001),

8. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: Santis, A.D. (ed.)
Advances in Cryptology - EUROCRYPT ’94, Workshop on the Theory and Appli-
cation of Cryptographic Techniques, Perugia, Italy, May 9-12, 1994, Proceedings.
Lecture Notes in Computer Science, vol. 950, pp. 92–111. Springer (1994)

9. Ben-Sasson, E., Chiesa, A., Gabizon, A., Virza, M.: Quasi-linear size zero knowl-
edge from linear-algebraic pcps. In: Theory of Cryptography - 13th International
Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part
II. pp. 33–64 (2016)

10. Benhamouda, F., Gentry, C., Gorbunov, S., Halevi, S., Krawczyk, H., Lin, C.,
Rabin, T., Reyzin, L.: Can a public blockchain keep a secret? In: Pass, R., Pietrzak,
K. (eds.) Theory of Cryptography - 18th International Conference, TCC 2020,

https://priviledge-project.eu/pencil
https://priviledge-project.eu/pencil

Publicly Verifiable Zero Knowledge from (Collapsing) Blockchains 29

Durham, NC, USA, November 16-19, 2020, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 12550, pp. 260–290. Springer (2020)

11. Bentov, I., Gabizon, A., Zuckerman, D.: Bitcoin beacon. CoRR abs/1605.04559
(2016)

12. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. IACR
Cryptology ePrint Archive 2014, 129 (2014)

13. Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public randomness source.
Cryptology ePrint Archive, Report 2015/1015 (2015), https://eprint.iacr.org/
2015/1015

14. Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for constructing the
public parameters of the pinocchio zk-snark. In: Financial Cryptography Work-
shops. Lecture Notes in Computer Science, vol. 10958, pp. 64–77. Springer (2018)

15. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA. pp. 136–145. IEEE
Computer Society (2001)

16. Choudhuri, A.R., Goyal, V., Jain, A.: Founding secure computation on blockchains.
In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2019 - 38th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part II. Lecture
Notes in Computer Science, vol. 11477, pp. 351–380. Springer (2019)

17. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: 31st Annual Symposium
on Foundations of Computer Science, St. Louis, Missouri, USA, October 22-24,
1990, Volume I. pp. 308–317. IEEE Computer Society (1990)

18. Ganesh, C., Orlandi, C., Tschudi, D.: Proof-of-stake protocols for privacy-aware
blockchains. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology - EURO-
CRYPT 2019 - 38th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 11476, pp. 690–719.
Springer (2019)

19. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis
and applications. In: Advances in Cryptology - EUROCRYPT 2015 - 34th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II. pp. 281–310
(2015)

20. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct nizks without pcps. In: Advances in Cryptology - EUROCRYPT 2013,
32nd Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings. pp. 626–645
(2013)

21. Gentry, C., Halevi, S., Magri, B., Nielsen, J.B., Yakoubov, S.: Random-index pir
with applications to large-scale secure mpc. Cryptology ePrint Archive, Report
2020/1248 (2020), https://eprint.iacr.org/2020/1248

22. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling
byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium
on Operating Systems Principles, Shanghai, China, October 28-31, 2017. pp. 51–68
(2017)

23. Goyal, R., Goyal, V.: Overcoming cryptographic impossibility results using
blockchains. In: Theory of Cryptography - 15th International Conference, TCC

https://eprint.iacr.org/2015/1015
https://eprint.iacr.org/2015/1015
https://eprint.iacr.org/2020/1248

30 Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti

2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part I. pp. 529–
561 (2017)

24. Goyal, R., Goyal, V.: Overcoming cryptographic impossibility results using
blockchains. Cryptology ePrint Archive, Report 2017/935 (2017), https://

eprint.iacr.org/2017/935

25. Goyal, V., Kothapalli, A., Masserova, E., Parno, B., Song, Y.: Storing and retriev-
ing secrets on a blockchain. IACR Cryptol. ePrint Arch. 2020, 504 (2020)

26. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-snarks. In: CRYPTO
(3). Lecture Notes in Computer Science, vol. 10993, pp. 698–728. Springer (2018)

27. Juels, A., Kosba, A.E., Shi, E.: The ring of gyges: Investigating the future of
criminal smart contracts. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, October 24-28, 2016.
pp. 283–295 (2016)

28. Kerber, T., Kiayias, A., Kohlweiss, M., Zikas, V.: Ouroboros crypsinous: Privacy-
preserving proof-of-stake. In: 2019 IEEE Symposium on Security and Privacy, SP
2019, San Francisco, CA, USA, May 19-23, 2019. pp. 157–174. IEEE (2019)

29. Kiayias, A., Panagiotakos, G.: Speed-security tradeoffs in blockchain protocols.
IACR Cryptology ePrint Archive 2015, 1019 (2015), http://eprint.iacr.org/

2015/1019

30. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge snarks
from linear-size universal and updatable structured reference strings. In: Cavallaro,
L., Kinder, J., Wang, X., Katz, J. (eds.) Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2019, London, UK,
November 11-15, 2019. pp. 2111–2128. ACM (2019)

31. Nakamoto, S.: Bitcoin: A peer-to-peer electionic cash system. unpublished, 2008.
(2008)

32. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Advances in Cryptology - EUROCRYPT 2017 - 36th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part II. pp. 643–673
(2017)

33. Pass, R., Shi, E.: The sleepy model of consensus. In: Advances in Cryptology -
ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part II. pp. 380–409 (2017)

34. Scafuro, A., Siniscalchi, L., Visconti, I.: Publicly verifiable proofs from blockchains.
In: Lin, D., Sako, K. (eds.) Public-Key Cryptography - PKC 2019 - 22nd IACR
International Conference on Practice and Theory of Public-Key Cryptography,
Beijing, China, April 14-17, 2019, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 11442, pp. 374–401. Springer (2019)

35. Scafuro, A., Siniscalchi, L., Visconti, I.: Publicly verifiable zero knowledge from
(collapsing) blockchains. Cryptology ePrint Archive, Report 2020/1435, https:

//eprint.iacr.org/2020/1435

https://eprint.iacr.org/2017/935
https://eprint.iacr.org/2017/935
http://eprint.iacr.org/2015/1019
http://eprint.iacr.org/2015/1019
https://eprint.iacr.org/2020/1435
https://eprint.iacr.org/2020/1435

	Publicly Verifiable Zero Knowledge from (Collapsing) Blockchains

