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Abstract. Distributed ORAM (DORAM) is a multi-server variant of
Oblivious RAM. Originally proposed to lower bandwidth, DORAM has
recently been of great interest due to its applicability to secure com-
putation in the RAM model, where circuit complexity and rounds of
communication are equally important metrics of efficiency. All prior DO-
RAM constructions either involve linear work per server (e.g., Floram) or
logarithmic rounds of communication between servers (e.g., square root
ORAM). In this work, we construct the first DORAM schemes in the 2-
server, semi-honest setting that simultaneously achieve sublinear server
computation and constant rounds of communication. We provide two
constant-round constructions, one based on square root ORAM that has
O(
√
N logN) local computation and another based on secure computa-

tion of a doubly efficient PIR that achieves local computation of O(N ε)
for any ε > 0 but that allows the servers to distinguish between reads
and writes. As a building block in the latter construction, we provide
secure computation protocols for evaluation and interpolation of multi-
variate polynomials based on the Fast Fourier Transform, which may be
of independent interest.

Keywords: Distributed Oblivious RAM, Square Root ORAM, Doubly
Efficient PIR, Secure Multi-Party Computation, Fast Fourier Transform

1 Introduction

Oblivious RAM (ORAM) has been a vigorous area of study for the last three
decades since it was introduced by Goldreich and Ostrovsky [17]. ORAM fo-
cuses on a client-server model where the server stores an outsourced database
upon which the client wishes to execute a series of reads and writes. ORAM pro-
vides privacy, hiding the contents of the database, as well obliviousness, hiding
the client’s access patterns. In the traditional client-server model the client is as-
sumed to be trusted. Recent efforts in the field have focused on lower bounds [35],
optimal bandwidth [2, 31], and various different settings [15,32].

Distributed ORAM (DORAM) is a variant of the basic client-server ORAM
model in which there are multiple non-colluding servers. Data is duplicated across
the servers and the client interacts with both as part of an access. The client again



2 Ariel Hamlin and Mayank Varia

remains the only trusted party. It was first introduced by Ostrovsky and Shoup
[30], and later formally defined by Lu and Ostrovsky [26]. Lu and Ostrovsky were
motivated by the desire to circumnavigate existing lower bounds in the single-
server setting for bandwidth overhead, and their construction achieved O(logN)
overhead by leveraging two non-communicating servers. Following their seminal
paper there have been a number of works in the DORAM model that further
reduce bandwidth [1,7], reduce blocksize [25], or achieve practical efficiency [37].

Another advantage of the multi-server model of DORAM is its natural ap-
plication to secure computation over databases in the RAM model. Traditional
secure computation relies on a circuit representation that is at least linear in
the size of the data over which it computes. This is prohibitive for any sublinear
computation run on a database, such as binary search. Lu and Ostrovsky observe
in [26] that the application of DORAM in this case is highly advantageous. The
parties in the secure computation can simply emulate the DORAM client for any
database access. In particular, they present a generic transformation from a 2-
server DORAM scheme to a 2-party secure computation. It should be noted that
works applying ORAM to secure computation are not limited to the DORAM
setting, but also include adaptations of single server schemes. For example, there
has been significant work on adapting tree-based ORAM schemes [33, 34] for
secure computation. All of these DORAM constructions can be used in general-
purpose secure computation like garbled RAM schemes [13, 14, 16, 27], or in
special-purpose protocols like dynamic searchable encryption schemes [21].

There are two main approaches to constructing ORAM for secure computa-
tion: the first is to apply a generic MPC compiler, such as Garbled Circuits, to
a ORAM or DORAM client [18, 19, 33, 34], and the second is to design a client
specifically implemented by the two servers [5, 11, 23, 36]. Even if we start with
an ORAM with our desired asymptotics (i.e. square-root ORAM [17]) applying
a generic MPC compilers results in a server computation cost at least linear in
the database size if we are to maintain constant rounds. There are a number of
works that focus directly on the second model, which offers greater flexibility
since the servers are typically afforded much more storage space than the client.

However, in both approaches, the multi-server setting introduces a new set of
challenges apart from those found in the single-server ORAM setting. Wang et
al. [33] also observe that the traditional efforts to optimize bandwidth overhead
are ineffective in a setting where there are other controlling factors, such as the
size of the circuit representation of the ORAM client. This is the motivation
behind their Circuit ORAM construction, which focuses on optimizing circuit
size. Doerner and shelat [11] also show that in many cases, bandwidth is not the
limiting factor but rather the latency between the two servers. This encouraged
them to build a constant round DORAM for secure computation. Previous con-
structions had relied on recursive structures, which incurred a O(logN) rounds
for each access, a prohibitive cost for latency dominated secure computation set-
tings. Subsequent works in the constant round setting worked on improving on
the O(

√
N) overhead of Floram, achieving O(log3N) overhead [23], or O(

√
N) in

a black-box setting [5]. As with the original construction, these subsequent works
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require linear local computation for each server. While for small N , latency costs
may still dominate, for sufficiently large N this linear work is prohibitive. This
leaves us with the following question:

Can we construct a 2-server Distributed ORAM for secure computation
that achieves both constant round and sublinear server work?

In this work, we answer the above question in the affirmative.

1.1 Our contributions

We present the first DORAM constructions in the 2-server, semi-honest secure
computation setting to achieve constant rounds and sublinear local computation
on the servers.

– Our first sublinear DORAM construction achieves constant rounds and amor-
tized local computation and bandwidth cost of O(

√
N logN) per access. It

is based on square-root ORAM and has a modular build, allowing for subse-
quent improvements in the functionalities we rely on to be easily substituted.

– Our second sublinear DORAM construction is based on a secure compu-
tation of Doubly Efficient Private Information Retrieval (DEPIR) where
the distinction between reads and writes is no longer hidden. In this set-
ting, we achieve constant rounds with local computation and bandwidth of
O(N ε · poly(λ)) for any ε > 0.

As an crucial building block toward the second construction, we present a secure
two-party computation protocol for the Fast Fourier Transform (FFT) for mul-
tivariate polynomial evaluation and interpolation in quasilinear time and with
only local computation; this may be of independent interest.

1.2 Technical Overview

In this section, we describe both of our DORAM constructions in more detail.

Sublinear DORAM. We start with describing the original square-root ORAM
(introduced by Goldreich and Ostrovsky [17]) that our construction is based
on. There is a single read-only array of size N , which we call the store, and
a writable stash of

√
N size. Elements in the store are (address, value) pairs;

at initialization, the elements are permuted with a permutation known only to
the client, and all elements are encrypted. To perform a read at a particular
address, the client checks the stash using a linear scan; if not present then it
reads the permuted element from the read-only store, and if present then it is
retrieved from the stash and a random ‘dummy’ element is read from the store
instead. The newly-read element is placed in the stash, in order to maintain the
invariant that each element is read only once from the store. In the case of a
write, a dummy is read from the store and the element is written in the stash.
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After enough queries have been made to fill the stash, a duration that which
we call an epoch, the elements from the stash are reshuffled back into the main
store, with only the newest write at each location being kept.

While the basic square-root ORAM construction achieves constant rounds
with sublinear communication and server computation, it is non-trivial to con-
vert it to a two-party DORAM. There are two major issues incurred by shifting
this to the two party case: (1) representing the permutation over the elements
of the store and (2) merging the elements from the stash back into the store.

We first discuss how to represent the permutation that maps addresses to
physical locations in the store. In [36], which is also based on square root ORAM,
they choose to represent the permutation as a shared array in recursive ORAMs.
This improves computation complexity but leads to O(logN) rounds of commu-
nication. To maintain constant rounds, we must instead find a compact represen-
tation of the permutation. We look for inspiration from the original square-root
scheme. There, they generate a random ‘tag’ for each element in the store using
a random oracle and then sort the elements according to the tag. A lookup then
involves only a random oracle evaluation and a binary search across the sorted
elements. However, because it is a single server scheme, they must use an obliv-
ious sorting network in order to break the correlation between items in different
epochs, which does not run efficiently in constant rounds. We leverage the fact
that we have a two servers to break up the oblivious sort into its two components,
‘oblivious’ + ‘sort’. To prevent the server from mapping items between epochs,
we use a simple constant round functionality to obliviously permute elements
that allows each server to permute the elements in turn. As long as one server
is honest, the data is permuted obliviously. This allows us to generate the tags
using an oblivious pseudorandom function (OPRF), rather than a random ora-
cle, on the newly obliviously permuted elements and then sort the tags locally.
Lookup again is just an OPRF evaluation on the address shares and then a local
binary search on the store.

The second challenge arises during the reshuffling phase of the protocol. In
the original square-root ORAM, elements are simply moved back into their orig-
inal locations (updated elements in the store, dummies back in the stash) by
executing another oblivious shuffle. To solve this in constant rounds, we again
exploit the ability to obliviously permute elements by using our two server ar-
chitecture. In order to do that though, we must ensure that the elements that
we are permuting do not contain any duplicates. For example, if a read was
executed on index i, there would be two copies of element i, one in the stash and
one in the store. To solve this issue, we note that the elements that have been
read in the store is public knowledge to both servers. As long as we maintain
the invariant if an element has been read (or written to), it is in the stash, and
each element only occurs in the stash once, we can simply concatenate elements
in the stash with the unread elements in the store at the end of an epoch. Once
we have concatenated the elements we can obliviously permute them to get our
new store. The stash can then just be filled with new dummy elements.

A more detailed discussion of our construction can be found in Section 3.
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DORAM with Unlimited Reads. Thanks to the modularity of our base
scheme, the components are easily extensible. In the second half of this work, we
improve the performance of the read-only data store while keeping the rest of
the construction (the stash, our periodic shuffling technique at the end of each
epoch, etc) mostly intact.

The separation of our read-only store from a read-and-writable stash suggests
an intriguing tradeoff: if we are willing to leak whether each operation is a read
or a write operation, then it is beneficial to design an efficient read-only store
that supports unlimited reads, and only pay for accessing the stash on (hopefully
infrequent) write operations. This optimization allows us to increase the duration
of each epoch, or in other words to amortize the cost of each shuffle over more
reads. Concretely, in a scenario where the ratio of reads-to-writes is about N -to-
1, then for any constant ε > 0 we can construct a read-only store where whose
amortized cost per query is just Oλ(N ε). Here, the notation Oλ means that we
suppress poly(λ) terms in order to focus on the dependency on the database size.
By reducing the size of the stash to Oλ(N ε), we can support write operations
with this performance as well.

Our strategy to construct a unlimited-reads store might seem counterintuitive
at first: we start from a doubly efficient PIR [4,6] that supports unlimited reads
and convert it into a two-server distributed data store. A doubly efficient private
information retrieval (DEPIR) scheme is a client-server protocol for oblivious
access to a public dataset that only requires sublinear computation for both the
client and server operations and constant rounds of communication between the
two. At first glance, it may seem that a 1-server DEPIR is a strictly stronger
primitive than a 2-server DORAM, so we might expect to construct the latter
generically as a secure computation of the former. However, this intuition isn’t
true because there are three properties that we aim to satisfy with DORAM,
but that (even a doubly efficient) PIR does not:

– Support for writes,

– Hiding the contents of the database, in addition to access patterns, and

– Ensuring that the secure computation is constant rounds when the two par-
ties collectively emulate the (sublinear but not constant time) client, in ad-
dition to the client-server communication.

The main observation underlying this approach is that the SK-DEPIR proto-
col of Canetti et al. [6] is highly amenable to secure computation as operations
mostly involve linear algebra in a finite field that can be done purely locally,
plus bitstring and set operations that are easy to handle in constant rounds.
SK-DEPIR constructions are based on a locally decodable code (LDC) in the
style of a Reed-Muller code, which encodes a dataset as a multivariate poly-
nomial. As a result, the most challenging part of our multiparty computation
protocol involves securely emulating the client’s procedures to evaluate or inter-
polate a multivariate polynomial at O(N) points. The naive methods for poly-
nomial evaluation (via application of the Vandermonde matrix) or polynomial
interpolation (via the Lagrange interpolation polynomial) involve multiplication
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of a public matrix by a secret-shared vector, which can be done non-interactively
but requires O(N2) computation, which is too slow for our purposes.

Given a binary field F = GF(2`) and a subspace Hm ⊂ Fm, we construct
secure computation protocols for evaluating or interpolating an m-variate poly-
nomial p ∈ F[x1, . . . , xm] on all points in Hm in time that is quasilinear (rather
than quadratic) in |Hm|. This protocol may be of independent interest, and in
our protocol it is needed to achieve our goal of sublinear computation for the
overall DORAM scheme. We construct this secure computation scheme in two
stages: first we construct a secure computation protocol for the Additive Fast
Fourier Transform protocol of Gao and Mateer [12] for univariate polynomials
over a binary field, and then we bootstrap this protocol to handle multivariate
polynomials by using recursion on the number of variables in the polynomial as
previously shown by Kedlaya and Umans [24]. All operations in this protocol
reduce to linear combinations of secret variables, so the entire computation can
be done locally by each party on their own boolean secret shares without the
need for any communication.

1.3 Related Work

We focus on schemes that are directly designed for secure computation. A direct
comparison of their local computation, bandwidth, and number of rounds can
be seen in Table 1. The construction of Zahur et al. [36] is very similar to our
basic construction, but instead of implementing the permutation by OPRF eval-
uation, they use Waksman networks and a recursive position map. This allows
for sublinear server work but that the cost of non-constant rounds. Doerner et
al [11] uses function secret sharing to obtain a scheme with very good practical
efficiency, but their need for linear server work limits scalability to large database
lengths N . Gordon et al. [19] is in the more general DORAM model but uses
PIR over tree-based ORAM. They are able to obtain O(logN) bandwidth but
as with Doerner et al. they require linear local computation. Jarecki et al. fo-
cus on decreasing the round complexity and bandwidth of SC-DORAMs while
still maintaining sublinear server computation. They are able to get the best
combined set of parameters, but are still not able to achieve constant rounds of
communication. Finally, Bunn et al. [5] achieve a 3-server DORAM scheme that
achieves constant rounds and sublinear bandwidth, while providing a black-box
construction. However, as with [11,19] they require linear server work.

2 Preliminaries

In this section, we provide several definitions and constructions of existing cryp-
tographic primitives that we leverage in this work. We begin with a brief sum-
mary of our notation.

Given a bitstring x ∈ {0, 1}`, a 2-of-2 boolean secret sharing 〈x〉 denotes the
uniformly selection of two bitstrings x1 for party 1 and x2 for party 2 subject to
the constraint that their boolean-xor x1⊕x2 = x. A binary field F = GF(2`) is a
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Table 1. Comparison of access in DORAM schemes for Secure Computation. Asterisks
indicate schemes where the stash size is assumed to be O(logN) and O(N ε), respec-
tively, and the distinction between read and write is not hidden.

No. Servers Local Comp. Bandwidth Rounds

Zahur et al. [36] 2 O
(√

N log3N
)
O
(√

N log3N
)
O(logN)

Floram [11] 2 O(N) O(
√
N) O(1)

Florom* [11] 2 O(N) O(logN) O(1)

Gordon et al. [19] 2 O(N) O(logN) O(1)

Jarecki et al. [23] 3 O(log3N) O(log3N) O(logN)

Bunn et al. [5] 3 O(N) O(
√
N) O(1)

Sublinear DORAM 2 O(
√
N logN) O(

√
N logN) O(1)

Unlimited Reads DORAM* 2 Oλ(N ε) Oλ(N ε) O(1)

finite field of characteristic 2; there is a canonical bijection F↔ {0, 1}` such that
field addition corresponds to boolean-xor. Hence, we overload the notation 〈f〉
so that it applies to field elements f ∈ F. This secret sharing scheme commutes
with linear algebra in the field, i.e., 〈cf + c′f ′〉 = c〈f〉+ c′〈f ′〉 can be computed
locally by each server from public constants c, c′ ∈ F. and secret shares 〈f〉, 〈f ′〉.

We use the convention of 0-indexing, with [N ] = {0, 1, . . . , N−1} as contain-
ing all whole numbers less than N . Additionally, S × S′ denotes the Cartesian
product of two sets. Bold letters v denote vectors, subscripts vi indicate the
ith element of a vector, and (wi)i∈[N ] constructs a vector from an ordered list
of items w0, w1, . . . , wN−1. The notation ‖ denotes concatenation of bitstrings,
sets, or vectors into a single object of longer length containing the (ordered)
union of all elements.

The notation x ← D indicates taking a sample from a probability distri-
bution D. By abuse of notation, x ← S indicates sampling from the uniform

distribution over set S; we sometimes use x
$← S for emphasis. We use ≈ to

indicate computational indistinguishability of two distributions; that is, D ≈ D′
if no probabilistic polynomial time adversary A has a noticeable difference in
output when given a sample from D or D′.

2.1 Distributed Memory

First introduced by Bunn et al. [5], the ideal functionality Fmem in Figure 1
captures the behavior achieved by a DORAM. The database is initialized on
secret shares of the database, and subsequent accesses are also secret shared,
as is their resulting output. This version of the definition deviates from the
original in that the Init functionality returns shares of the database, and the
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Fig. 1. Functionality Fmem

1. On input of (Init, D̃B), set DB = D̃B, return random additive shares of DBs

to party s.
2. On input additive shares of (op, elem,DB) from two parties do:

(a) if op = read then set o = DB[addr]
(b) if op = write then set o = DB[addr] and DB[addr] = val
(c) Let o1, o2 be random, additive shares of o, and DBs be random additive

shares of DB. Return (os,DBs) to party s.

access protocol takes in those same shares. This syntactic difference is included
only to make our own proofs cleaner and does not fundamentally change the
definition. While Bunn et al. provide a viable 3-server construction that meets
this ideal functionality and provides the necessary performance; we leverage
the construction of Doerner et al. [11] that requires only 2-servers. From their
construction, we obtain Lemma 1.

Lemma 1. There exists a protocol ΠDORAM that implements the functionality
Fmem with the following complexity:

– Access of op = read or op = write results in O(1) rounds of communication,
O(n) local server computation, and O(

√
n) communication bandwidth.

– Initializing the functionality results in O(1) rounds of communication, O(n)
local server computation, and O(n) communication bandwidth.

2.2 Distributed Oblivious Pseudo-random Function

Distributed Oblivious Pseudo-random Function (DOPRF) achieves a distributed
evaluation of a PRF between two parties. Typically one party hold the key, and
the other the input, and only the second party learns the output. We require a
variation of this ideal functionality, presented in Figure 2, in which both the key
and the input are additively secret shared between two the two parties and both
parties receive the output of the evaluation.

We introduce a construction in Figure 3 which meets our new ideal func-
tionality that is effectively the semi-honest version of the DOPRF of Miao et
al. [28], which itself is based on the work of Jarecki and Liu [22]. With only a
small modification that allows the input and key to be secret-shared between
the two servers. The construction leverages the Dodis-Yampolskiy pseudoran-
dom function F (k, x) = g1/(k+x) [10], and it is secure under the q-Diffie Hellman
inversion (q-DHI) assumption using a similar argument as in [28].

2.3 Constant-Round Equality Check

The functionality introduced in Figure 4 allows for two parties to check if the
element for which they both hold shares is present in a database for which
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Fig. 2. Functionality FDOPRF

The functionality is assumed to be initialized with PRF f .

1. Upon receiving (x1, k1) from party 1 and (x2, k2) from party 2, compute
σ = fk1+k2(x1 + x2) .

2. Returns σ to both party 1 and 2

Fig. 3. DOPRF Protocol, using ElGamal encryption (ENC,DEC)

Server 1 input: x1, k1 Common: G, q = |G|, g ← G Server 2 input: x2, k2

choose key pair (sk, pk) pk, C = ENCpk(k1 + x1) choose a← [q], b← [q2λ]

let α = a(k2 + x2) + bq

decrypt β = DECsk(C∗) C∗, h = ga let C∗ = ENCpk(α) · Ca

let γ = β−1 mod q

= a(k + x)

output σ = hγ σ output σ

they also hold shares. In particular it returns shares of a boolean b indicating
the presence of a match, and if so the shares of that address. The database
follows the invariant that there is only a single match within the database for
the element. Both Damgard et al. and Nishide et al. [9, 29] construct solutions
that achieve the computation3 with constant rounds.

2.4 Doubly Efficient Private Information Retrieval

First introduced by Canetti et al. and Boyle et al. [4, 6], Doubly Efficent Pri-
vate Information Retrieval (DEPIR) is a variant of PIR achieving sub-linear
server work by allowing pre-processing of the database. The major building
block DEPIR is locally decodably codes (LDCs). Specifically, an application
of Reed-Muller Codes, which allows for smooth LDCs.

Definition 1 (Smooth LDC). A s-smooth, k-query locally decodable code
with message length N , codeword size M , with alphabet Σ is denoted by (s, k,N,M)Σ-

3 The exact functionality including the indicator bit is not included in their construc-
tions, but they can be easily be extended with an additional round of a conditional
computations.
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Fig. 4. Functionality FEQ−DB

1. Upon receiving additive shares of x ∈ {0, 1}B and DB ∈
(
{0, 1}B

)N
from

both parties 1 and 2, computes DBeq = {xi
?
= x | xi ∈ DB}.

2. Let b =
∨
xi∈DBeq

xi indicate if there was a match. If b is non-zero, let addrs

be random, additive shares of addr such that DBeq[addr] = 1 otherwise, let
addrs be random shares of zero. Return (bs, addrs) to party s.

smooth LDC and consists of a tuple of PPT algorithms (Enc,Query,Dec) with
the following syntax:

– Enc takes a message m ∈ ΣN and outputs a codeword c ∈ ΣM

– Query takes a index i ∈ [N ] and outputs a vector x = (x1, . . . , xk) ∈ [M ]N

– Dec takes in vector codeword symbols c = (cx1
, . . . , cxk) ∈ ΣN and outputs

a symbol y ∈ Σ

And has the following properties:

– Local Decodability: For all messages m ∈ ΣL and every index i ∈ [N ]:

Pr[Dec(Enc(m)x) = mi : x← Query(i)] = 1

– Smoothness: For all indices i ∈ [N ], a LDC is s-smooth if when sampling
(x1, . . . , xk) ← Query(i), (x1, . . . , xk) is uniformly distributed on [N ]s for
every distinct subset of size s.

We now formally introduce DEPIR, in particular the secret key variant, called
SK-DEPIR. Constructions rely on the hidden permutation with noise (HPN)
assumption introduced by [6].4 While it is a new assumption, the validity of the
class of permuted puzzles assumptions has been explored by Boyle et. al [3].

Assumption 1 (Hidden permutation with noise) Let m < t < r < u <
|F| be functions of λ and N such that |F|m = poly(λ) and |F|t = λω(1). Define the
distribution D(π, addr, T ) that executes the Query protocol of Π̃store in the clear
(without secret shares) to retrieve a set of vectors Ỹ = (ỹi)i∈[u] and then outputs
Z = (π(ỹi))i∈[u], when given a randomly-chosen permutation π : Fm � Fm,
integer addr ∈ N , and set T ⊂ [u] as input. The hidden permutation with
noise assumption states that the distribution D(π, addr, T ) is computationally
indistinguishable from the uniform distribution over (Fm)u.

Definition 2 (Doubly Efficient PIR). A Doubly Efficient PIR (DEPIR) for
alphabet Σ consists of a tuple of PPT algorithms (KeyGen,Process,Query,Resp,Dec)
with the following syntax:

4 A concurrent work by Boyle et. al [4] relies on an equivalent assumption called
Oblivious LDC.
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– KeyGen takes the security parameter 1λ and outputs the key k
– Process takes a key k, database DB ∈ ΣN and outputs processed database

D̃B
– Query takes a key k, database index i ∈ [N ] and outputs a query q and

temporary state State
– Resp takes a query q, processed database D̃B and outputs a server response c
– Dec takes a key k, server response c, temporary state State and outputs a

database symbol y ∈ Σ

And has the following properties:

– Correctness: For all DB ∈ ΣN and i ∈ [N ]:

Pr

Dec(k, State, c) = DBi :

k ← KeyGen
(
1λ
)

D̃B← Process (k,DB)

(q,State)← Query (k, i)

c← Resp
(
D̃B, q

)

 = 1

– Double Efficiency: The runtime of KeyGen is poly (λ), the runtime of
Process is poly (N,λ), and the runtime of Query,Dec is o (N)·poly (λ), where
N is the database size.

– Security: Any non-uniform PPT adversary A has only negl (λ) advantage
in the following security game with a challenger C:
1. A sends to C a database DB ∈ ΣN .
2. C picks a random bit b← {0, 1}, and runs k ← KeyGen

(
1λ
)

to obtain a

key k, and then runs D̃B← Process (k,DB) to obtain a processed database
D̃B, which it sends to A.

3. A selects two addresses i0, i1 ∈ [N ], and sends (i0, i1) to C.
4. C samples (q,State)← Query(k, ib), and sends 1 to A.
5. Steps 3 and 4 are repeated an arbitrary (polynomial) number of times.
6. A outputs a bit b′, and his advantage in the game is defined to be Pr[b =

b′]− 1
2 .

As shown in [4, 6] we can achieve SK-DEPIR with sublinear or poly-log pa-
rameters. We will describe one such construction in Section 4.

Lemma 2. There exists SK-DEPIR schemes with the following parameters,
where N is the database size and λ is the security parameter:

– Sublinear SK-DEPIR: For any ε > 0, the running time of Process can be
N1+ε · poly(λ), and the running time of Query and Dec can be N ε · poly(λ).

– Polylog SK-DEPIR: The running time of Process can be poly(λ,N), and
the running time of Query and Dec can be poly(λ, logN).

3 DORAM with Sublinear Computation

In this section we present our construction of Fmem that achieves sublinear server
work and communication with constant rounds.
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3.1 Construction

In this section, we describe how we bootstrap from a linear-work Fmem to a new
protocol ΠDORAM that also instantiates Fmem but with sublinear work and
constant rounds, as desired. The overall architecture of the scheme can be found
in Figure 5. We describe below our implementations of the store and stash.

We implement the stash as an another two-party DORAM (matching the
Fmem functionality). We require a 2-party scheme with constant rounds, this
can be instantiated by FLORAM [11] or Gordon et al. [19]. While they have
linear server work for each access, because our stash is t =

√
N records in size,

this still results in sublinear server work within our protocol.
We implement the store in Figure 9 as a permuted array of elements sorted by

PRF evaluation on the address of the element. Neither server knows the under-
lying permutation because it is created using our oblivious permutation protocol
shown in Figure 8. We perform an FDOPRF evaluation across the shares of the
addresses, which allows us to look up records in constant rounds by computing
the OPRF based on the address of the element being searched for, and then each
party performs a local binary search on their own store to find the shares of the
element.

At the start of an epoch, the stash contains all the dummy elements and
the store contains all the elements of the database concatenated with t dummy
elements. The elements in the store are all permuted and indexed as above.
Note that we consider dummy to be addressed from 1 to t, so valid elements are
indexed started at t. We also have (in the clear) a counter, starting at 1. The
access logic is encapsulated within our access protocol in Figure 7 and proceeds
as follows. When we want to do a read, we check if the element is in the stash
by calling FEQ−DB , which returns a secret shared boolean b indicating if the
element is present, as well as the shares of the address to each party if it is
present. We then use b as a selector bit in a shared conditional computation to
see if we read the element (if the element is present in the stash) or the next
dummy element (addressed at the counter) in the stash. Then we read an element
from the store, using Fstore, again based on the selector bit. If the element is in
the stash, we read the next dummy element at address counter, if it is not in
the stash, we read the element itself. Finally, we write an element back to the
stash, using Fmem, either the dummy element we read (which is just overwriting
the same element) if the element was in the stash, or the element read from
the stash. The element is written back at the ‘counter’ location in the stash.
The protocol then returns random additive shares of the element being read. If
the operation is instead was a write the only variation in the above process is
in the final step writing elements back to the stash, rather that writing to the
‘counter’ location automatically, if the element was previously in the stash, it is
overwritten at that location.

At the end of an epoch (when the counter reaches t), the overarchingΠDORAM

invokes Πshuffle in Figure 10, which resets the state as mentioned above. In
the original square-root ORAM scheme, removing duplicates required a costly
oblivious sort operation, which is not constant round. By contrast, we achieve
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Fig. 5. The overall architecture of the ideal functionalities used in the ΠDORAM con-
struction.

ΠDORAM

Faccess Fshuffle

FEQ−DB Fmem Fstore Fpermute

FDOPRF

a constant-round reshuffling algorithm by leveraging the following invariant of
Faccess: if an element has been read (or written to) it is in the stash, and each
element only occurs in the stash once. This invariant allows us to simply note
which elements in the store have been read during the epoch and eliminate them,
knowing that their most recent copy is represented in the stash. This claim ap-
plies to dummy elements as well: during the shuffle operation, we only need to
insert new dummy elements to replace those that have been overwritten in the
stash by real writes. Once the unread elements and the current stash have been
permuted obliviously by Fpermute, the stash is reinitialized with the dummy val-
ues and counter is reset to 1. We also note that we leverage Fshuffle when we
first initialize the DORAM. We call Fshuffle on the original shares of the secret
shared database, concatenated with the necessary dummy elements. The set of
read elements is empty as is the stash, resulting in a permutation of the original
database and dummies after Fpermute is called.

Our oblivious permutation protocol in Figure 8 does two things: it rerandom-
izes the shares held by each server and applies the same random permutation to
each server’s shares. Beginning with a vector of secret shares 〈M〉, server 2 begins
Πpermute by encrypting her own shares M2 using an additively homomorphic en-
cryption scheme and sending the result to server 1. Next, server 1 applies the
same randomly-chosen permutation to her own shares M1 as well as the cipher-
texts from server 2, and she then rerandomizes each pair of shares by adding
a random value to her own share and subtracting the same value (homomor-
phically) from server 2’s share. She sends encrypted versions of both shares to
server 2, who performs the same permute-and-rerandomize operation and sends
the result to server 1 to complete the constant-round oblivious permutation.
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Fig. 6. ΠDORAM Protocol

On (Init, 〈DB〉):

1. Server 1 computes V = {(i, 0) | i ∈ [t]}
2. Each server calls Fshuffle on (shuffle, I, State)) where I = {} and State =
{DB || V, 0, {}}. Server s receives (Ss,Ms, ks) as output.

3. Let ctr = 1 and I = {}. For Server s its current state is States =
(ctr,Ms, Ss, ks), returns States

On additive shares of (op, elem, State):

1. If ctr = t, call Fshuffle on (shuffle, I, State) and update state for Server s with
(S′s,M′s, k′s). Set ctr = 1 and I = {}.

2. Call Faccess on additive shares (opi, elemi, State), recovering
(iM, 〈elem〉, 〈State〉) and update state for Server s with S′s. Set I = I ∪ iM and
ctr = ctr + 1

3. Return (elems,States) to Server s.

3.2 Complexity Analysis

Now consider the asymptotic complexity of our scheme. We first evaluate the
complexity of the underlying protocols, and then compute the amortized com-
plexity of the overall ΠDORAM protocol. The overall complexity when t =

√
N

is shown in Table 2.

– Πpermute: Each server must perform O(N + t) encryption, decryption and
other local operations. The entire encrypted store is sent, again resulting in
O(N + t) bandwidth. The protocol runs in 3 rounds, or O(1).

– Πstore: Here we consider two separate costs, one for initialization, and one
for performing an access. During initialization, local computation is domi-
nated by the sorting across the OPRF outputs, O ((N + t) log(N + t)), and
bandwidth by the OPRF computation itself, O(N + t). We obtain constant
rounds in initialization by executing all of the OPRF evaluations in par-
allel. On access, local computation is dominated by searching for the tag,
O(log(N+t)), and the only round of interaction and bandwidth is the OPRF
evaluation.

– Πaccess: Finding the element in the stash only takes local computation and
bandwidth linear in the stash size and constant rounds. The two other op-
erations of cost are accessing stash and the store, each of which take O(t)
and O(log(N + t)) local computation and O(

√
t) and O(1) bandwidth re-

spectively. This leaves access dominated by finding the element in the stash,
O(t) local computation and bandwidth5.

5 For any value of t < log(N + t) then the cost of Πstore controls, but in our setting
we consider a t greater than that
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Fig. 7. Πaccess Protocol

1. On additive shares of (op, elemin, State), let elemin = (addrin, valin) and State =
(ctr,Ms, ks,S

s), where S is an array of elem.
2. Find element in stash or read next dummy address:

(a) Compute additive shares of index i by calling FEQ−DB in Figure 4 on
additive shares of (addrin, S), receiving random additive shares (b, i) as
output.

(b) Jointly compute random additive shares of iS such that:

iS =

{
i b = 1, element in stash.

ctr b = 0, element not in stash.

(c) Then recover elemS by calling Fmem on secret shares of (read, (iS, 0), S).
3. Look up either the next dummy element or the original element in the store:

(a) Jointly compute random additive shares of addrM:

addrM =

{
ctr b = 1, element in stash.

addrin b = 0, element not in stash.

(b) Call Fstore on the additive shares of (read, addrM,M, ks), recovering
(iM, 〈elemM〉).

4. Write the read elemM or input elemin back to stash:
(a) If op = read, jointly compute random additive shares of:

(iW, elemW, elem) =

{
(ctr, elemM, elemS) b = 1, element in stash.

(ctr, elemM, elemM) b = 0, element not in stash.

(b) If op = write, jointly compute random additive shares of:

(iW, elemW, elem) =

{
(iS, elemin, elemin) b = 1, element in stash.

(ctr, elemin, elemin) b = 0, element not in stash.

(c) Call Fmem on additive shares of (write, (iW, elemW), S)a.
5. Server s returns (iM, 〈elem〉, 〈State〉).

a Any functionality that returns an updated share of S or M is assumed to update
the held state State, but is elided for notational simplicity.
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Fig. 8. Πpermute Protocol

On input (permute, 〈M〉):

1. Each server runs pks, sks ← KeyGen(1λ) and sends pks to the other server.
2. For s ∈ {1, 2}, and s′ = 3− s

(a) Server s′ encrypts their additive shares of the values Cs
′

=

{ENCpk
s′

(elems
′
i ) | elems

′
i ∈ Ms′} and sends Cs

′
to Server s.

(b) Server s chooses vector of random values {ri ∈ {0, 1}B}i∈[N], and a random permu-
tation π and updates locally {elemsπ(i)+r

s
i | elemsi ∈ Ms}. It then computes permutes

and re-randomizes s′ encrypted shares: Cs
′
r = {cs

′
π(i)s ·ENC

pks
′ (−rsi ) | c

s′
i ∈ Cs

′
} and

sends Cs
′
r to Server s′

(c) Server s′ decrypts Cs
′
r to get Ms′ = {elems

′
π(i) − r

s
i | i ∈ [N ]}.

3. Return (M′s) to Server s.

Fig. 9. Πstore Protocol

On input (Init, 〈M〉):

1. Choose the new random PRF keys for k1 and k2.
2. Server 1 and 2 call on FDOPRF on inputs (k1, addr1i ) and (k2, addr2i ) respectively for all

(addri, vali) ∈ M in parallel. Let σi = fk1+k2
(addr1i + addr2i ), and Σ = {σi | i ∈ [N ]}. Both

servers sort M′s = {σi, elemi}i∈[N] in lexicographic order by σ.

3. Return (Σ,M′s, ks)

On input (read, 〈addri〉, 〈k〉, 〈M〉):

1. Server 1 and Server 2 engage in FDOPRF on inputs (k1, addr1i ) and (k2, addr2i ) respectively.

Both servers obtain the output ˜addr = fk1+k2
(addr1i + addr2i )

2. Each Server s performs a local binary search in Ms for ˜addr and recover its index i and
additive shares of the element elemi. Each server returns (i, elemsi ).

Fig. 10. ΠShuffle Protocol

On input (shuffle, State, I):

1. Let State = (Ms, ks, Ss).
2. Let Ms

r be all unread elements in M1 and M2, i.e. Mr /∈ I. Set Rs = Ms
r || Ss.

3. Let V = {(i, 0) | i ∈ [t]} each server calls Fmem on additive shared input (Init,V). Server
s receives Ss as output.

4. Servers 1 and 2 call Fpermute on (permute, 〈R〉). Server s receives (M′s) as output, which
in turn it calls Fstore on (Init,M′s) and receives (Ms, ks) as output.

5. Server s returns (Ss,Ms, ks).
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Table 2. A evaluation of each of the protocol’s server computation, bandwidth and
rounds of communication where t =

√
N . Note that the numbers for Πmem are taken

from Lemma 1 and ΠDORAM has been amortized where appropriate.

Local Computation Bandwidth Rounds

ΠDORAM (Init) O(N logN) O(N logN) O(1)

ΠDORAM (op) O(
√
N logN) O(

√
N logN) O(1)

Πaccess O(
√
N) O(

√
N) O(1)

Πshuffle O(N logN) O(N logN) O(1)

Πmem(Init) O(
√
N) O(

√
N) O(1)

Πmem(read) O(
√
N) O( 4

√
N) O(1)

Πstore(Init) O(N logN) O(N) O(1)

Πstore(read) O(logN) O(1) O(1)

Πpermute O(N) O(N) O(1)

– Πshuffle: Shuffle is dominated by the initialization of the store, inheriting
the performance and bandwidth complexity directly from Πstore.

We now consider the amortized complexity of the overall local computation of
ΠDORAM during access. We consider the cost of shuffling averaged over an epoch
of t accesses. The cost of accessing a single block, represented by Πaccess, is O(t).
The cost of shuffle is O((N + t) log(N + t)). We can consider the total cost of
local computation during an epoch as:

DLC(N, t) = t(t) + (N + t) log(N + t)

Averaging over t-accesses we get:

DLC(N, t) = t+
N

t
log(N + t) + log(N + t)

If we set t =
√
N we get DLC(n) = O(

√
N logN). For bandwidth, we do a

similar computation and get DB(n) = O(
√
N logN).

3.3 Security

In this section we provide the overall security statement and ideal functionalities.
We refer the reader to the full paper [20] for the proof.

Notation and Valid Inputs.. We define a set of notations and valid inputs
for our various protocols used in the following proofs. We assume op ∈ {0, 1}
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where op = 0 represents a read operation and op = 1 is write. Valid elements
are a tuple of an address and a value where addr ∈ [N ] and val ∈ {0, 1}B . The
input database DB is made up of N valid elements. The store M is represented
as key-value store, where the keys are the output of PRF f with key k and the
values consist of valid elements. The stash S is an array of t valid elements. We
define the set of valid inputs for an DORAM of N elements of block size B and
t dummies as DomN,B,t.

Theorem 1. ΠDORAM (Figure 6) implements functionality Fmem and for each
party there exists a PPT simulator for each Server s ∈ {1, 2} SimD. such that:〈

inputA, output
ΠD. , viewΠD.A

〉
input∈DomN,B,t

≈

〈inputA,Fmem (input) ,Sims
D. (inputA,Fmem (input)A)〉input∈DomN,B,t

where input = {(Init,DB), (opi, elemi, ctr,M,S, k)}, and output = {(ctr,M,S, k),
(elem, ctr,M,S, k)}.

Proof (Theorem 1). See full paper [20] for proof.

Fig. 11. Functionality Faccess

On additive shares of (op, elemin, State) where State = (ctr,M, k, S) and elemin =
(addrin, valin) set iS, addrM, iW, elemW and elem during the protocol according to the
below table (as defined by op and if addr∈ is found in the stash):

op addrin ∈ S iR addrM iW elemW elem

read yes addrin ctr ctr elemM elemS

read no ctr addrin ctr elemM elemM

write yes addrin ctr addrin elemin elemin

write no ctr addrin ctr elemin elemin

1. Recover elemS by calling Fmem on secret shares of (read, (iR, 0), S).
2. Call Fstore on the additive shares of (read, addrM,M, ks), recovering

(iM, 〈elemM〉).
3. Call Fmem on additive shares of (write, (iW, elemW), S)a.
4. Return (iM, 〈elem〉, 〈State〉)

a Any functionality that returns an updated share of S or M is assumed to update
the held state State, but is elided for notational simplicity.
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Fig. 12. Functionality Fpermute

On input of (permute, 〈M̃〉):

1. Choose random permutation π and set M = {M̃π(i) | i ∈ [N ]}.
2. Let Ms be a random additive share of M, and return Ms to Server s.

Fig. 13. Functionality Fstore

1. On input of (Init, 〈M〉): Choose PRF key k and for all elemi ∈ M compute
σi = fk(addri) and let Σ = {σi | i ∈ [N ]}. Set M = {(σi, elemi) | elemi ∈ M}
and sort M in lexicographic order by σ. Let elems

i and ks be random additive
shares of elemi and k respectively, and Ms = {(σi, elems

i ) | elemi ∈ M}. Return
(Σ,Ms, ks) to Server s.

2. On input additive shares of (read, addri, k,M) from two parties return additive
shares of M[iM] where σiM = fk(addri) and iM to each server.

Fig. 14. Functionality Fshuffle

On input (shuffle,State, I):

1. Let State = (M, k, S).
2. Let Mr be all unread elements in M, i.e. Mr /∈ I. Set R = Mr || S.
3. Let V = {(i, 0) | i ∈ [t]} and call Fmem on additive shared input (Init,V),

receiving S′ as output.
4. Call Fpermute on (permute, 〈R〉) receiving M′ as output, which in turn is passed

into Fstore as (Init,M′). Finally, (M′′, k′) is received as output.
5. Server s returns random additive shares (S′s,M′′s, k′s).
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4 Sublinear DORAM with Unlimited Reads

In this section, we introduce an alternative DORAM construction Π̃DORAM that
also implements the Fmem functionality with constant rounds, sublinear server
work, and sublinear communication. This protocol differs from the construction
in Section 3 in that it does not attempt to hide whether a query is a read or
write operation, and in exchange it achieves better performance.

The construction in this section only needs to invoke the shuffle functionality
Fshuffle after t write operations, independent of the number of read operations.
In scenarios where writes are infrequent, the amortized cost per read can have
a small Oλ(N ε) dependency on the database size N for any constant ε > 0.
To build the new DORAM protocol Π̃DORAM, we start from a SK-DEPIR that
supports unlimited reads while hiding access patterns, and we emulate the server
using secure 2-party computation (which hides the database contents as well).

We first describe how we instantiate the new version of store that relies on SK-
DEPIR in Section 4.1, then show how to use the new Fstore in the larger Π̃DORAM

protocol in Section 4.2. Finally we show how to construct secure compuation of
multivariate polynomial evaluation and interpolation using FFT in Section 4.3.

4.1 Instantiating Fstore using secure computation of SK-DEPIR

In this section, we show that a secure 2-party computation (2PC) of the Canetti
et al. construction leads to an instantiation Π̃store of the Fstore functionality.
The construction we present in this section achieves sublinear communication
with a constant number of rounds and quasilinear server work. To do so, we first
construct a 2PC protocol for a locally decodable code, and then we construct
Π̃store as a 2PC of a secret key doubly efficient private information retrieval
(SK-DEPIR) protocol based on an LDC.

We focus on a block size B = `, so that each block can canonically be encoded
as a field element in F = GF(2`). Put another way, all references to the database
size N are enumerated in terms of the number of blocks, but if one desires a
lower block length like B = 1 then N should instead be interpreted in terms of
the number of bits of the database.

2PC for a Locally Decodable Code. First, we construct a secure 2-party
computation protocol Π̃ldc of the locally decodable code used by Canetti et al. [6],
which is a Reed-Muller-based polynomial code. We depict our construction in
Figure 15, in which the two parties maintain boolean secret shares of all input,
intermediate, and output data from the LDC of Canetti et al.

Our 2PC protocol Π̃ldc operates over a binary field F = F2[z]/(ρ(z)) of size
|F| = 2` defined using an irreducible polynomial ρ of degree `. Elements of F can
be represented using bitstrings of length ` in the canonical way, such that the
addition of two elements corresponds to the boolean-xor of their bitstring values.
Furthermore, we consider H ⊂ F to be the subspace of F of size |H| = 2h con-
taining the span of basis elements H = {zh−1, zh−2, . . . , z, 1}; this corresponds



DORAM with Sublinear Computation and Constant Rounds 21

Fig. 15. Π̃ldc protocol for secure 2-party computation of a Reed-Muller-style LDC

Given a binary field F, a subspace H ⊂ F, and an integer m, let N = |H|m and
M = |F|m. Let (xi)i∈[r] be arbitrary, distinct non-zero constants. Finally, define
the bijections ι : [N ]→ Hm and δ : B → F via lexicographic ordering.

On input (Enc, 〈D〉) for database D ∈ BN :

1. For all i ∈ [N ], compute shares of ci = ι(i) ∈ Hm and di = δ(D[i]) ∈ F.
2. Securely interpolate polynomial ψ : Fm → F of degree t from {(ci, di)}i∈[N ].
3. Securely evaluate E = (v, ψ(v))v∈Fm , the truth table of ψ on Fm. Output 〈E〉.

On input (Query, 〈q〉) for an index q ∈ [N ]:

1. Randomly choose a degree-t polynomial φ : F→ Fm such that φ(0) = ι(q).
2. Securely evaluate yi = φ(xi) for all i ∈ [r], and output shares (〈yi〉)i∈[r].

On input (Dec, (〈ai〉)i∈[r]):

1. Securely interpolate polynomial φ̃ : F→ F of degree r− 1 with φ̃(xi) = ai ∀i.
2. Output shares 〈δ−1(φ̃(0))〉 of the block corresponding to field element φ(0).

to bitstrings that have `− h leading 0s. Also, protocol Π̃ldc performs operations
in the vector spaces Hm and Fm of sizes N = |H|m and M = |F|m, respectively.

We claim that this protocol can be securely evaluated efficiently and non-
interactively. Throughout this section, we only consider boolean secret shares
〈·〉, so that field addition and scalar multiplication can be performed locally by
each server, without interaction. Hence, our claim amounts to the statement
that all operations in Π̃ldc involve only linear algebra in the field along with
concatenation/truncation of bitstrings, because all of these operations commute
with boolean-xor.

Theorem 2. Let m < t < r < N < M be parameters of a Reed-Muller locally
decodable code such that N and M are powers of 2. Then, protocol Π̃ldc in
Fig. 15 is a secure two-party computation of an LDC with local decodability and
smoothness. Furthermore, Π̃ldc requires no interaction between parties, and its
computation cost is O(M log2(M)) for Enc and O(r2) for Query and Dec.

Proof. Our 2PC protocol Π̃ldc contains methods for the servers to securely com-
pute each of the 3 methods of an LDC on boolean secret-shared data. Ergo,
the local decodability and smoothness of Π̃ldc follow immediately from the same
properties of its non-secure-computation counterpart [6].

There are four types of operations used throughout Π̃ldc, and we show below
how to compute all of them non-interactively. The first two operations are used
in Enc, and the last two in Query and Dec.

– Computing the lexicographic maps δ and ι: δ is the identity operation on
bitstrings, and thanks to the specific basis we chose for H, computing ι(i)
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Fig. 16. Π̃store protocol, based on secure 2PC of the SK-DEPIR scheme of Canetti
et al., given any integersm < t < r < u < N < M satisfying the HPN assumption.

On input (Init, 〈M〉), run the following steps of the SK-DEPIR:

1. KeyGen: Randomly choose a subset T ⊂ [u] of size r.
2. Process: Run Π̃ldc on input (Enc, 〈M〉) to obtain shares of encoded database
〈E〉. Run u instances of Πpermute on 〈E〉 to form permuted {〈Ei〉}i∈[u]. Run
Πstore on input (Init,∪i∈[u],j∈[M ](i ‖ j, 〈Ei[j]〉) to obtain (Σ, 〈M〉, 〈k〉).

3. Output (Σ, 〈M〉 ∪ 〈T 〉, 〈k〉), the state from KeyGen and Process.

On input (read, 〈addr〉, 〈k〉, 〈M〉 ∪ 〈T 〉), run the following steps of the SK-DEPIR:

1. Query: Run Π̃ldc on input (Query, 〈addr〉) to obtain shares of r elements Y =
((〈yi〉)i∈[r]. Construct a longer vector Ỹ = (〈ỹi〉)i∈[u] such that Ỹ |T = Y and
the remaining elements {ỹi | i ∈ [u] \ T} are chosen uniformly at random.

2. Resp: For i ∈ [u], run Πstore on (read, (i ‖ 〈ỹi〉), 〈k〉, 〈M〉). Construct a list
L = (〈elemi〉)i∈[u] of the shares of elements returned in response.

3. Dec: Truncate the list 〈L|T 〉 to responses of queries in Y . Run Π̃ldc on input
(Dec, 〈L|T 〉) to obtain shares of a field element 〈val〉. Output (〈addr〉, 〈val〉).

merely involves partitioning the bits of i ∈ [N ] into m strings of length h,
padding with 0s in the `− h leftmost bits. These string operations can can
be performed independently in O(N) time on each boolean secret share of i.

– Interpolation and evaluation of multivariate polynomial ψ: this task is chal-
lenging; we show in Section 4.3 a non-interactive secure 2-party protocol that
performs these operations across all of Fm in time O(M log2(M)).

– Random sampling of multivariate polynomial φ: the parties already hold
shares of the constant term φ0 = φ(0), and they can randomly choose all
other t coefficients in O(t) time.

– Evaluation of φ at r points and interpolation of φ̃ from r points: since the
evaluation points (xi)i∈[r] are publicly known, the coefficients for polynomial
evaluation and Lagrange interpolation can also be publicly (pre-)computed.
Ergo, evaluating or interpolating a polynomial of degree ≤ r only involves
linear algebra and takes O(r2) time.

Constructing Π̃store as a secure computation of SK-DEPIR. Next, we
construct a new protocol Π̃store that also instantiates Fstore . It is a secure two-
party computation of the client-server SK-DEPIR protocol of Canetti et al.
[6] in which the two parties jointly emulate the server. In Fig. 16, we show
simultaneously a secure computation of the SK-DEPIR protocol and how its
methods (along with Π̃ldc, Πpermute, and Πstore) combine to instantiate a new

read-only storage protocol Π̃store.
At a high level, the protocol Π̃store operates as follows. During initialization,

the parties collectively construct the LDC encoding of the database, permute it u
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times, and store the concatenation of these u encoded databases E0,E1, . . . ,Eu−1

in an instance of Πstore; the address corresponding to each element Ei[j] is the
concatenation of the the instance number i and the location j within this in-
stance. During a read operation, the parties look up Π̃store at one location within
each permuted database Ei; r of these lookup operations retrieve data that can
collectively be used to decode the desired value, and the remaining u−r lookups
are “decoy” lookups that provide security under the HPN assumption.

Lemma 2 shows two settings of parameters that satisfy the HPN assumption.
Using these parameters, we show that Π̃store is an efficient and secure read-only
data store.

Theorem 3. Under the HPN assumption, the protocol Π̃store in Fig. 16 se-
curely implements functionality Fstore with constant rounds of communication.
Furthermore, given any constant ε > 0, there exist parameters m, t, u, and M
such that the computation and communication cost of Π̃store is:

– Oλ(N1+ε) for Init and Oλ(N ε) for read, or
– Oλ(poly(N)) for Init and Oλ(log(N)) for read.

Proof. Our 2PC protocol Π̃store computes all methods of the Canetti et al.
SK-DEPIR protocol over boolean secret-shared data, In particular, there exist
constant-round secure computation protocols for all set operations in Π̃store.

– Within KeyGen: to choose a subset T ⊂ [u], form a set of r 1s and (u− r) 0s,
then permute this set using Πpermute. The result is a secret-shared indicator
vector 〈T 〉 of length u indicating which elements are in T .

– Within Query: form the set Ỹ by oversampling. Run the LDC Query op-
eration on u values rather than r values (using an LDC protocol with u
constants xi) to compute Y = (〈yi〉)i∈[u], and let Ȳ = (〈ȳ〉)i∈[u] be a secret-

shared set of u random values. Compute Ỹ by multiplexing: in parallel, set
each element 〈ỹi〉 = 〈T [i]∧yi⊕ (T [i]⊕1)∧ ȳi〉. (Since all values are boolean
secret-shared, the bitwise-AND should be performed in 1 round between the
T [i] and each bit of yi in turn, and similarly for the second term.)

– To truncate the list 〈L〉|T within Dec: first form a secret sharing of the index
vector 〈I〉 that equals 0 at decoy values and where I|T = {1, 2, . . . , r} at
real values by bit composing 〈T 〉 to an additive secret sharing [[T ]] [9, 29],

computing [[Ii]] = [[T i ·
∑i
j=0 T j ]] ∀i ∈ [u], and bit decomposing [[I]] into a

boolean secret sharing 〈I〉. Then, concatenate componentwise the elements
of 〈I〉 and 〈L〉, permute this set using Πpermute, open all shares of indices I
in parallel, and locally sort the values of 〈L〉 using the indices.

The computational cost of Query is O(u2) due to oversampling, and the cost of
the set truncation within Dec is O(u log(u)) as shown by Damgard et al. [9].

As a secure two-party computation of an existing SK-DEPIR scheme, Π̃store

inherits the correctness property from Def. 2, which states that the read oper-
ation always returns the correct decoded database entry. Additionally, the use
of Πpermute within the protocol provides the random permutation π as required
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for use of the HPN assumption, so we also inherit the indistinguishability-style
security property from Def. 2. Using these properties, it is straightforward to
prove that Π̃store instantiates Fstore using a similar sequence of hybrids as in the
original proof; we omit the details for brevity.

The claims about computational costs follow from Lemma 2 plus the following
two observations. First, the cost of Init is dominated by the cost of the SK-DEPIR
Process method, since the O(M) cost of Πpermute and the O(u log(u)) cost of the
oblivious search in KeyGen are smaller than the parameters in Lemma 2. Second,
the cost of read is dominated by the cost of the LDC Query and Dec since the call
to Πstore within Resp costs O(log(u ·M)) as per Table 2, which is Oλ(log(N))
since u < N and M = Oλ(N).

4.2 The new DORAM construction Π̃DORAM

In this section, we show how to construct the new DORAM construction Π̃DORAM

using this new instantiation Π̃store of the Fstore functionality, which only needs
to be shuffled and reconstructed after a specified bound t of write operations
have been performed, irrespective of the number of read operations.

The updated Π̃DORAM protocol is shown in the full version. The protocol
now initializes two versions of the store, one to keep track of which elements are
written and leaks access patterns and the other, Π̃access, that supports unlimited
reads and does not leak access patterns. This first store is critical to maintain
invariant used for reshuffling. In order to know what written elements that are
found in the stash, we use this store to keep track of the items ‘written’ into the
store. With the distinction between reads and writes no longer hidden, Π̃DORAM

only increments the epoch counter when a write is performed. Reads do not count
towards the contents of the stash.

The most significant change is within the access protocol, shown in the full
version [20]. It now differentiates between read and write operations. For a read
operation it calls Π̃store and does not write anything back to the stash. The write
operation continues to be unchanged from the original protocol.

Reshuffling is shown in the full version [20] . When it comes time to reshuffle
after t writes, the protocol is similar except in one key difference. Though we
now support two different stores, we perform the concatenation with elements in
the stash only with the original store, not the augmented SK-DEPIR store. The
latter does not keep track of the elements read (the indices iM returned by Π̃store

are simply random values and do not allow for the recovery of the elements).
Instead we have to rely on the unread elements in the original store; namely the
elements that were not written to as part of the store. The unread elements are
identical to the elements found in the augmented store, so concatentation will
result in the correct operation of Π̃shuffle. The only other change is to instantiate
these two stores, rather than the one store used within the original protocol.

We also consider the complexity of these new schemes in Table 3. Recall that
we use Oλ to indicate complexities that only depend on N , ignoring any poly(λ)
terms. The main difference between the complexity of our two schemes is the
blowup incurred by the new implementation of Π̃store. The LDC encoding incurs
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Table 3. A evaluation of each of the protocol’s server computation, bandwidth and
rounds of communication where stash size, t = N ε. Note that we assume N reads for
every 1 write and Π̃DORAM has been amortized where appropriate.

Local Computation Bandwidth Rounds

Π̃DORAM(Init) Oλ(N1+ε log(N1+ε)) Oλ(N1+ε log(N1+ε)) O(1)

Π̃DORAM(op) Oλ(N ε) Oλ(N ε) O(1)

Π̃access Oλ(N ε) Oλ(N ε) O(1)

Π̃shuffle Oλ(N1+ε log(N1+ε)) Oλ(N1+ε log(N1+ε)) O(1)

Π̃store(Init) Oλ(N1+ε) Oλ(N1+ε) O(1)

Π̃store(read) Oλ(N ε) Oλ(N ε) O(1)

a Oλ(N1+ε) overhead for any choice of ε > 0. This means any protocols that
were original dominated by the computation or bandwidth of Π̃store initialization
inherit this new cost. Recall in the original scheme the dominate cost of Πaccess

was the linear scan of the stash. In this setting, with the disparity of reads vs
writes, we consider a smaller stash size. If we assume one write for every N reads
and our smaller stash size, Π̃DORAM accesses amortize to be Oλ(N ε).

4.3 2PC for Multivariate FFT over Binary Fields

The one remaining task in the specification of protocol Π̃ldc is to construct a
secure computation of multivariate polynomial evaluation and interpolation. One
effective, but slow, technique is to use Lagrange interpolation. For a univariate
polynomial p =

∑
i p · xi, we can transform secret shares of a vector p = (p) of

coefficients into shares of the vector p̂ = (p(i)) of its evaluation at all points (or
vice-versa) via multiplication by the Vandermonde matrix p̂ = A·p, or its inverse
p = A−1 · p̂, and shares of this matrix-vector multiplication can be computed
locally by each party since the Vandermonde matrix A is public. However, the
computational cost for matrix-vector multiplication is Ω(N2).

The Fast Fourier Transform (FFT) [8] is a well-known algorithm for com-
puting polynomial evaluation in quasilinear time, and the Inverse FFT similarly
calculates polynomial interpolation efficiently. The fastest known FFT for bi-
nary fields is the additive FFT algorithm by Gao and Mateer [12]. As its name
suggests, this algorithm solely involves linear operations. In this section, we de-
sign a secure computation protocol Π̃mFFT of FFT for multilinear polynomials
over binary fields that can be performed locally (i.e., without interaction) with
quasilinear computational cost. While this contribution may be of independent
interest, in this work it completes the task from Section 4.1 of constructing a non-
interactive Π̃ldc protocol with quasilinear (rather than quadratic) computation
cost. For example, in the Enc protocol within Π̃ldc, it allows for securely com-
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Fig. 17. Π̃1FFT protocol for secure 2-party computation of the Additive Fast
Fourier Transform of a univariate polynomial p in a binary field F.

Input: public integer h and basis H = {v0, v1, . . . , vh−1} of a subspace of F of size
2h, plus shares 〈p〉 of coefficients of a polynomial p ∈ F[x] of degree 2h − 1.

Output: shares 〈p̂〉 = FFT(h,H, 〈p〉) of the evaluations of p on all points spanned
by H, in the ordering specified by H[i] =

∑h−1
j=0 ijvj , where ij = the jth bit of i.

1. As the base case: if h = 1, then return (〈p(0)〉, 〈p(v0)〉). For a degree-1 poly-
nomial p, we compute 〈p(0)〉 = 〈p0〉 and 〈p(v0)〉 = 〈p0〉+ v0〈p1〉.

2. Compute the new bases H̄ = {v̄i} and H̃ = {ṽi} of size h−1 containing basis
elements v̄i = vi · v−1

h−1 and ṽi = v̄2i − v̄i for all i ∈ [h− 1].

3. Compute coefficients 〈qi〉 = vih−1 · 〈pi〉 of the polynomial q = p(vh−1 · x).
4. Execute the Taylor expansion algorithm T(h, 〈q〉) in Fig. 18. Let 〈f〉 and 〈g〉

denote the shares of the resulting polynomials, each of degree 2h−1 − 1.
5. Recursively compute 〈f̂〉 = FFT(h−1, H̃, 〈f〉) and 〈ĝ〉 = FFT(h−1, H̃, 〈g〉).
6. Set 〈p̂i〉 = 〈f̂i〉+ H̄[i] · 〈ĝi〉 and 〈p̂i+2h−1〉 = 〈p̂i〉+ 〈ĝi〉 ∀i ∈ [2h−1]. Return p̂.

puting the coefficients of the polynomial ψ : Hm → F in time O(N log2N) and
securely evaluating the polynomial ψ at all locations in Fm in time O(M log2M).

We describe this protocol in two steps. First, we show how to securely eval-
uate FFT for univariate polynomials (building a secure computation of Taylor
series expansion as a building block). Second, we bootstrap to a secure evaluation
of FFT for multivariate polynomials. For brevity, we show these FFT protocols
only in the forward (polynomial evaluation) direction. It is straightforward to
validate that the same techniques apply to construct a secure computation pro-
tocol of inverse FFT (i.e., polynomial interpolation) in quasilinear time.

2PC protocol Π̃1FFT for univariate FFT. In this section, we present a secure
two-party computation protocol Π̃1FFT. Let H ⊂ F be a subspace (possibly the

entire field) of size |H| = 2h defined by a basis H, and let p =
∑2h−1
i=0 pi ·xi be a

univariate polynomial of degree less than 2h. This protocol begins with shares of
the 2h coefficients 〈p〉 = (〈pi〉)i∈[2h] of the polynomial, and it returns the shares

〈p̂〉 = (〈p(i)〉)i∈[2h] of its evaluation at all 2h points in H.

The protocol Π̃1FFT is shown in Fig. 17, and it uses the Taylor series expan-
sion algorithm in Fig. 18 as a building block. Each step of these algorithms only
involves addition and scalar multiplication of secret-shared values, so the secure
computation Π̃1FFT can be performed locally. These algorithms are precisely
the secret-shared versions of their counterparts in Gao and Mateer [12].

We provide a high-level intuition of Π̃1FFT when considering the basis H =
{zh−1, zh−2, . . . , z, 1}, in which case q = p; full details are given in [12]. The core
idea of the Fast Fourier Transform is to reduce the evaluation of one polynomial q
into the evaluation of two polynomials f and g of half the degree, plus quasilinear
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Fig. 18. Protocol for Taylor expansion of a polynomial q(x) ∈ F[x] at x2 − x.

Input: public integer h, shares of coefficients 〈q〉 of a polynomial of degree 2h− 1.

Output: 〈f〉, 〈g〉 = T(h, 〈q〉) such that each vector is of length ≤ 2h−1 and they

collectively form the Taylor series expansion q(x) =
∑2h−1

i=0 (fi + gix) · (x2 − x)i.

1. As the base case: if h = 1 so deg(q) = 1, return 〈f0〉 = 〈q0〉 and 〈g0〉 = 〈q1〉.
2. Partition the vector 〈q〉 into 〈t0〉 containing the first 2h−1 elements, 〈t1〉

containing the next 2h−2 elements, and 〈t2〉 containing the last 2h−2 elements.
3. Compute the vectors 〈t〉 = 〈t1〉+ 〈t2〉 of length 2h−2, 〈q0〉 = 〈t0〉+ (0 ‖ 〈t〉)

of length 2h−1, and 〈q1〉 = (〈t〉 ‖ 〈t2〉) of length 2h−1. Here, 0 denotes the
vector containing 2h−2 zero elements, and ‖ denotes vector concatenation.

4. Recursively, find 〈f0〉, 〈g0〉 = T(h− 1, 〈q0〉) and 〈f1〉, 〈g1〉 = T(h− 1, 〈q1〉).
5. Return the concatenated vectors 〈f〉 = 〈f0〉 ‖ 〈f1〉 and 〈g〉 = 〈g0〉 ‖ 〈g1〉.

work to “stitch” the results together into an evaluation of q. Gao and Mateer [12]
show how this can be done over binary fields, based on these observations:

– The Taylor expansion q(x) =
∑2h−1

i=0 (fi+gix) · (x2−x)i leads to an equation

q(x) = f(x2 − x) + x · g(x2 − x) involving polynomials f(z) ,
∑2h−1

i=0 fi · zi

and g(z) ,
∑2h−1

i=0 g · zi of lower degree 2h−1 − 1.
– The function x 7→ x2−x is 2-to-1, and specifically it maps the 2h-sized space

spanned by H into the smaller 2h−1 space spanned by the basis H̃.

Ergo, in order to evaluate the polynomial q at all points spanned by H, it suffices
to evaluate polynomials f and g at all points spanned by the smaller basis H̃ and
combine the results using the Taylor expansion q(x) = f(x2− x) + x · g(x2− x).

We provide a secure 2-party computation of Gao and Mateer’s method of
computing the Taylor expansion of q in Fig. 18, and we provide a 2PC of poly-
nomial evaluation in Fig. 17. The only operations that involve secret-shared data
are linear combinations and splitting/joining vectors, all of which can be per-
formed locally. Note that step 2 of Fig. 17 involves more complicated algebra,
but it only involves public (non-secret-shared) values, so it can be performed
locally and pre-computed before parties receive their input shares.

2PC protocol Π̃mFFT for multivariate FFT. Recall that the locally decod-
able code used in Π̃ldc is based on Reed-Muller codes, and as a result it uses
multivariate polynomials. Here, we show how to bootstrap from an FFT for uni-
variate polynomials into one for multivariate polynomials. The full protocol is
shown in Fig. 19, and it is based on a technique used by Kedlaya and Umans [24].

Protocol Π̃mFFT operates via recursion over many evaluations of univari-
ate polynomials. Given an m-variate polynomial p of total degree < 2h − 1 for
which the parties have shares of all coefficients, we rewrite the polynomial by
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Fig. 19. Π̃mFFT protocol for secure 2-party evaluation of a multivariate polyno-
mial p(x0, . . . , xm−1) at all points in a subspace Hm ∈ Fm.

Input: shares of coefficients 〈p〉 of an m-variate polynomial p of total degree 2h−1.

Output: shares 〈p̂〉 of evaluations p(x) at all points x ∈ Hm.

1. As the base case: if m = 1, then run protocol Π̃1FFT as shown in Fig. 17.

2. By rearranging terms, write p(x) =
∑2h−1
i=0 xi0 · pi(x1, x2, . . . , xm−1). Observe

that the parties collectively hold shares of the coefficients of each 〈pi〉.
3. Recursively, get shares 〈p̂i〉 of evaluations of each pi at all points in Hm−1.
4. For each vector c ∈ Hm−1, compute shares of the evaluation of the univariate

polynomial 〈p(x0, c)〉 =
∑2h−1
i=0 〈pi(c)〉 · xi0 on all points in H using Π̃1FFT.

conditioning on the power of the first variable: p(x0, . . . , xm−1) =
∑2h−1
i=0 xi0 ·

pi(x1, x2, . . . , xm−1). We can evaluate the (m− 1)-variate polynomials pi recur-
sively, and use the results to evaluate the univariate polynomial over x0. Since
each univariate polynomial evaluation takes time quasilinear in |H|, a simple
recurrence relation shows that the entire evaluation is quasilinear in |H|m = N .
This completes the construction, and it is the necessary building block to com-
plete the proof of Theorem 2 and achieve quasilinear server computation for our
LDC protocol.
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