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Abstract. Cryptographic objects with updating capabilities have been
proposed by Bellare, Goldreich and Goldwasser (CRYPTO’94) under the
umbrella of incremental cryptography. They have recently seen increased
interest, motivated by theoretical questions (Ananth et al., EC’17) as well
as concrete practical motivations (Lehmann et al., EC’18; Groth et al.
CRYPTO’18; Kloof} et al., EC’19). In this work, the form of updatability
we are particularly interested in is that primitives are key-updatable and
allow to update “old” cryptographic objects, e.g., signatures or message
authentication codes, from the “o0ld” key to the updated key at the same
time without requiring full access to the new key (i.e., only via a so-called
update token).

Inspired by the rigorous study of updatable encryption by Lehmann and
Tackmann (EC’18) and Boyd et al. (CRYPTO’20), we introduce a defi-
nitional framework for updatable signatures (USs) and message authen-
tication codes (UMACSs). We discuss several applications demonstrating
that such primitives can be useful in practical applications, especially
around key rotation in various domains, as well as serve as building
blocks in other cryptographic schemes. We then turn to constructions
and our focus there is on ones that are secure and practically efficient.
In particular, we provide generic constructions from key-homomorphic
primitives (signatures and PRFs) as well as direct constructions. This
allows us to instantiate these primitives from various assumptions such
as DDH or CDH (latter in bilinear groups), or the (R)LWE and the SIS
assumptions. As an example, we obtain highly practical US schemes from
BLS signatures or UMAC schemes from the Naor-Pinkas-Reingold PRF.

1 Introduction

Updatable cryptographic primitives, initially introduced as incremental cryp-
tography [10, 11], support the transformation of one cryptographic object to a
related one without recomputing it entirely and have been widely studied (cf. [6]
for an overview). Recently, Ananth et al. in [2] studied a unified approach towards
adding updatability features to many cryptographic primitives such as attribute-
based encryption, functional encryption or more generally cryptographic circuit



compilers. Moreover, they study the updatability for classical protocols such as
zero-knowledge proofs and secure multi-party computation. Their constructions
thereby rely on a novel updatable version of randomized encodings [33, 4]. Be-
sides exploring such updatable primitives from a rather theoretical perspective,
there have been various interesting lines of work on specific updatable primitives
inspired by concrete practical applications. For instance, Groth et al. in [32] in-
troduce the notion of an updatable common reference string (CRS) and apply
it to zk-SNARKSs (used within many real world protocols in the cryptocurrency
and distributed ledger domain) to reduce the trust in the generator of the CRS
and cope with malicious CRS generators. Later in [43] Lipmaa studied quasi-
adaptive NIZK (QA-NIZK) proofs in an updatable CRS setting where in addi-
tion to CRS updates “old” valid proofs can be updated to be still valid under
an updated CRS. Another such primitive that is strongly motivated by practical
applications and has recently been studied quite intensively is updatable encryp-
tion (UE) [15, 27, 42, 40, 35, 18, 14]. An UE scheme is a symmetric encryption
scheme that allows the key holder to update keys and to compute an update
token, which can be given to a party storing ciphertexts, and can be used to
update existing ciphertexts to ones under the new key. UE is motivated by the
fact that it is a good key management practice to change encryption keys pe-
riodically and it avoids the cumbersome requirement to download, decrypt and
re-encrypt and upload all the data again.

Motivation. Our work is now essentially motivated by this previous work on
UE and the observation that it is equally important in context of signatures and
message authentication codes (MACs) to follow good key management practices
and to periodically switch keys. For instance, any kind of software distribution
channels including App stores or operating system updates rely on signatures to
ensure the authenticity of the software they distribute. Moreover, file systems or
(outsourced) databases usually require signatures or MACs to ensure integrity
of stored data (we discuss this in more detail later in this section). What we
envision therefore are signatures and MACs that are updatable in a sense that,
similar to UE, holders of a secret key can compute a token that allows some third
party to update existing signatures and MACs to ones valid under the new key.
Thereby, we want to guarantee unforgeability even if the adversary can see lots
of different keys and tokens with the restriction that we exclude trivial forgeries
(we discuss this possible leakage in more detail later).

Related and previous work. While there are notions of signatures that sup-
port updating keys or even guarantee unforgeability when allowing queries un-
der (adversarially) updated keys, none of them rigorously covers what we have
sketched above and in particular guaranteeing security even if signatures can
be updated between different keys. Closest are updatable signatures by Kloof3
et al. [40] implicitly used in one of their UE constructions. But they do not
treat their security in the updatable setting and rather sketch how they can be
obtained from unforgeable signatures in combination with generic properties of
the token generation. Key-updatable signatures by Jaeger and Stepanovs [34] or
key-updating signatures by Jost et al. [38] proposed in context of secure mes-



saging allow to update keys and obtain signatures under updated keys, but do
not consider signature updates. Similarly, signatures with re-randomizable keys
by Fleischhacker et al. [29] consider adversarially chosen updates of the secret
key (and access to a signing oracle under updated keys), but do not consider up-
dating existing signatures. Somewhat orthogonal, key-homomorphic signatures
by Derler and Slamanig [25] consider updating keys as well as updating ex-
isting signatures (this concept is similar to key-homomorphic PRFs [15]). But
they only study the required properties functional-wise and do not consider an
unforgeability notion (rather they implicitly prove them for their respective ap-
plications). Nevertheless, as we will see these key-homomorphic signatures and
key-homomorphic PRFs [15, 8, 39] can be used as the basis for some construc-
tions of US and UMACS, respectively. Finally, there is a recent notion of updat-
able signatures by Abdolmaleki et al. [1], which however focuses on key-update
tokens that serve as a proof of correct update and allow extractability of update
keys in order to be used within zk-SNARKSs with updatable CRS.

Our framework for updatable signatures and MACs. Since none of the
existing works cover updatable signatures with strong security guarantees (and
there is to the best of our knowledge no work related to updatable MACs),
our goal is to design a comprehensive framework and security model. Therefore,
similar to models for UE [42, 18], we use the concept of epochs, where each
epoch e has an associated key-pair (ske, pke) of a signature scheme starting with
an initial key-pair in epoch 1 (all the discussion below analogously applies to
UMACQCs). An US scheme then provides the functionality that in epoch e given
(ske, pke) we can compute a key-pair (skey1, pket1) for the next epoch together
with an update token A.;; that is capable of updating signatures under a key
from epoch e to e + 1. Our focus is on schemes where these update tokens are
independent of the signature and so A.;; can be used for any signature from
epoch e. We want that the schemes support an arbitrary number of epochs (any
polynomial in the security parameters) but to support schemes from lattice as-
sumptions we also consider a bounded number of epochs (bounded US) with a
concrete bound 7' that usually depends on some parameters of the scheme. The
goal is now to achieve strong security guarantees, in particular, the US scheme
stays secure even after signing keys are compromised (a feature which is called
post-compromise secrecy) and also before signing keys get corrupted (a feature
called forward secrecy). Furthermore, outside of our model, we consider as an ad-
ditional practical feature of US and UMAC the so called message-independence.
This means that the update functionality only requires the update token and a
signature, but does not need to access the respective message.

For unforgeability, we allow the adversary to trigger arbitrary signature com-
putations, computations of next keys and updates adaptively and also adaptively
compromise tokens and signing keys. We thereby use the concept of leakage pro-
files originally defined in [42] and also used in [18] to capture key, token, and
signature “leakage” that cannot be captured by the oracles in the security exper-
iment. The reason is that due to the nature of updates, US schemes inherently
allow for information leakage of updated message-signature pairs, keys, and to-



kens besides what is modeled in the security experiment. For instance, if the
adversary compromises a secret key sk. and a token A.;; it might be possi-
ble to derive sk.41 (or sk from key sk.y; and token A.yq1). Also, a token A,
besides allowing to update signatures into the next epoch may also allow to
switch signatures back to previous epochs. However, we stress that in contrast
to UE, where no-directional UE schemes are highly desirable, for US it does not
seem to be that useful. The reason is that upgrading old signatures is covered
by correctness (and thus cannot be prevented) and preventing switching keys
or signatures back to previous epochs is only required if old public keys are not
considered revoked (and we currently do not see such applications).

In addition to the unforgeability notion, we also provide an unlinkability no-
tion that essentially says that updated signatures cannot be distinguished from
fresh signatures. More precisely, we require that an adversary even when given
all signing keys, tokens as well as signatures is not able to distinguish a fresh
signature from an updated version of the signature that it already holds. While
this property does not seem essential to the practical applications discussed be-
low, we discuss cryptographic applications where this notion is important.

Exploring applications. We will now discuss practical as well as cryptographic
applications of US and UMACs.

Key rotation in software distributions with US. Software distribution channels
including App stores such as Google Play [31, 26, 52], Apple’s App Store [3], or
Microsoft’s Windows Apps [45] and Windows Updates, or Linux distributions
such as Debian [41], Ubuntu, Red Hat [49] and Arch Linux [5] rely on signatures
to ensure the authenticity of their software packages. In one way or another, they
either sign indices including hashes of the software packages or sign the software
packages directly. For the latter, packages are often signed by individual develop-
ers whose keys are either signed by some central party like the app store provider
or are shipped to the user directly via keyring packages containing all trusted
keys. In this setting, key rotation of individual developer keys becomes an issue,
since, if keys are rotated, all software packages signed by the old key have to be
re-signed with the new one. The same issue can also be observed in the context
of signed boot loaders and kernels for secure boot [44]. When relying on US, key
rotation of developer keys becomes less of a burden on the developer. Indeed,
the developer would update the key and produce an update token which is then
used to update all signatures from this developer. Thus, instead of the developer
having to re-sign all their packages, the signature adaption can be outsourced to
a service run by the app store. Note that the effort for certifying new or updated
keys would be the same in both settings.

File system and (outsourced) database integrity with UMACs. Modern file sys-
tems including zfs [54] ensure the on-disk data integrity by storing hashes of the
data. Additionally, when replicating data from one storage pool to another, the
digests ensure integrity during transport. Similarly, databases support integrity
checks which are helpful for replication and backups. Especially interesting is the
application to outsourced databases [46, 53], where in case of key-rotation the
use of an UMAC enables these updates to be performed without re-computing




all the authentication tags from scratch and without giving the actual key to the
third party hosting the database.

Malleable signatures and revocation in privacy protocols. Redactable signatures
(RS) [51, 37] and sanitizable signatures (SS) [7, 19] are malleable signatures that
allow to remove parts from signed messages or replace designated parts of signed
messages by designated parties without invalidating the signatures. They have
numerous applications, but due to their selective disclosure functionality are es-
pecially attractive to protect privacy in medical documents when shared with
other parties. Replacing the conventional EUF-CMA secure signature scheme
that typically serves as a building block in such schemes with an US can, sim-
ilar to the above applications, help to reduce re-signing effort in case of a key-
rotation. This is particularly interesting when large amounts of signed medical
documents are involved. US providing unlinkability can firstly help if one requires
unlinkability from the respective RS or SS scheme (cf. [20] for a discussion of
the linkability problem when joining different versions of a document to derive
additional information) even over different versions of one document under dif-
ferent (updated) keys. Secondly, unlinkable RS [21, 50] serve as a building block
to construct anonymous credentials (ACs). In this context, unlinkable US allow
to realize credential revocation in the following way: the issuer can provide an
update token to a service that receives signatures from users and only updates
credentials of non-revoked users to the current issuer key. Unlinkability of the US
thereby in particular guarantees that it is hard to distinguish between creden-
tials of non-revoked users from that of newly joined users. The same revocation
idea can also be applied to replace re-issuing based revocation [17] in group sig-
natures that follow the sign-randomize-prove paradigm [12, 48, 24]. Moreover,
UMACSs seem to be suitable for the same purpose in keyed-verification ACs [22],
i.e., ACs where issuer and verifier are the same entity, typically constructed from
algebraic MACs instead of signatures. An in-depth study of these cryptographic
applications of US and UMAC:s is considered as future work.

CCA-secure UE with ciphertext integrity using UMACs. Kloo8 et al. [40] showed
how to achieve CCA security and ciphertext integrity for UE using the Encrypt-
and-MAC transformation. Their transformation requires encryption and MAC
schemes that support key-rotation. In [40] the key-rotatable MAC was instan-
tiated using the DDH-based PRF (NPR) [47] using a key-switching akin to the
proxy re-encryption approach due to Blaze et al. [13]. We note that a UMAC
satisfies the key-rotatable property, and hence, can be directly plugged into the
described transformation to obtain CCA-secure UE with ciphertext integrity by
using a suitable encryption scheme and any UMAC.

Further contributions. Besides the already discussed comprehensive frame-
work for US and UMACs, we provide the following contributions:

US and UMAC from KH primitives. We construct US from key-homomorphic
(KH) signatures [25], which satisfy some additional requirement that all natural
schemes provide. Due to the properties of KH signatures, they are unlinkable.
With respect to provable security, we use a proof-technique that is inspired by
the key-insulation technique due to Kloof} et al. [40], where we essentially can use




the unlinkability property of the underlying KH signature. Similarly, we obtain
fixed-length UMACs from key-homomorphic PRFs [15], which we generically
turn into variable-input UMACs and our proof technique essentially follows the
ones for signatures. This allows us to instantiate US and UMACs from various
assumptions such as DDH or CDH (latter in bilinear groups). For instance, we
achieve instantiations for highly practical US schemes from BLS signatures [16]
or UMAC schemes from the Naor-Pinkas-Reingold PRF [47]. Interestingly, by
using some tricks, we can show how to generically construct UMACs from “al-
most” key-homomorphic PRFs [15] leading to constructions from the (R)LWE
assumption, and thus, post-quantum UMACs. Unfortunately, there are no known
key-homomorphic signatures with the required properties from post-quantum as-
sumptions. Consequently, we investigate direct constructions of US from lattices.
On the positive side we are able to provide a US construction based on the prob-
abilistic GPV scheme [30] under the SIS assumption. On the negative side, we
therefore have to weaken the adversarial capabilities to prove it secure. While we
provide formal evidence that this does not seem to be too problematic in prac-
tice, we consider it as a challenging open issue to construct US schemes from
post-quantum assumptions being provable secure without any such restrictions.

Message-independent US and UMAC. We further discuss message-independent
constructions of US and UMAC from the BLS signature scheme [16], from the
Pointcheval-Sanders signature scheme [48], and from the Naor-Pinkas-Reingold
PRF [47]. These overcome the limitations of the respective constructions directly
obtained from them viewed as KH-signatures and -PRFs, which are message-
dependent. Message-independence can be a desirable property in practical ap-
plications, as access to the message is not required for updating signatures and
MAGCs, i.e., if they are verified and then stored and at a later point updated
(in a batch) one does not need to access the respective messages and improves
update performance.

2 Preliminaries

Notation. For n € N, let [n] := {1,...,n}, and let A € N be the security
parameter. For a finite set S, we denote by s <— S the process of sampling
s uniformly from S. For an algorithm A, let y «+ A(\,x) be the process of
running A on input (A, z) with access to uniformly random coins and assigning
the result to y (we may omit to mention the A-input explicitly and assume that
all algorithms take A\ as input). To make the random coins r explicit, we write
AN\, x; 7). We use L to indicate that an algorithm terminates with an error and
AP when A has oracle access to B, where B may return T as a distinguished
special symbol. We say an algorithm A is probabilistic polynomial time (PPT)
if the running time of A is polynomial in A. Given x € Z", we denote by ||x|| its
infinity norm, i.e., for x = (21, 2,...,2,), we have ||x|| := max(|z1], ..., |zn]).
A function f is negligible if its absolute value is smaller than the inverse of any



polynomial (i.e., if YedkoVA > ko : | f(A)] < 1/A°). We may write ¢ = q()) if we
mean that the value ¢ depends polynomially on .

Basic primitives. Due to the lack of space we recall PRFSs, signature schemes
and MACs in the full version.

Key-homomorphic signatures. We recall relevant parts of the definitional
framework of key-homomorphic signatures as introduced in [25, 23]. Let X =
(KGen, Sign, Verify) be a signature scheme and the secret and public key elements
live in groups (H,+) and (E, -), respectively. For these two groups it is required
that group operations, inversions, membership testing as well as sampling from
the uniform distribution are efficient.

Definition 1 (Secret Key to Public Key Homomorphism [25]). A4 sig-
nature scheme X provides a secret key to public key homomorphism, if there
exists an efficiently computable map p : H — E such that for all sk,sk’ € H it
holds that u(sk + sk') = u(sk) - pu(sk'), and for all (sk,pk) < Gen(N), it holds
that pk = p(sk).

In the discrete logarithm setting, it is usually the case sk < Z, and pk = gk
with g being the generator of some group G of prime order p.

Definition 2 (Key-Homomorphic Signatures [23]). A signature scheme is
called key-homomorphic, if it provides a secret key to public key homomorphism
and an additional PPT algorithm Adapt, defined as:

Adapt(pk, M, o, A): Given a public key pk, a message M, a signature o, and a
shift amount A outputs a public key pk’ and a signature o',

such that for all A € H and all (pk, sk) < Gen(\), all messages M € M and all
o with Ver(pk, M,o) =1 and (pk’,o’) + Adapt(pk, M, o, A) it holds that

Pr[Ver(pk', M,o')=1]=1 A pk' = u(A)- pk.

The following notion covers whether adapted signatures look like freshly gener-
ated ones, even if the initial signature used in Adapt is known.

Definition 3 (Perfect Adaption [25]). A key-homomorphic signature scheme
provides perfect adaption, if for every k € N, every message M € M, it holds
that

[0, (sk, pk), Adapt(pk, M, 0, A)]

where (sk,pk) < Gen()\), o + Sign(sk, M), A+ H, and
[U, (Sk, /J'(Sk))7 (/L(Sk) : M(A)7 Sign(Sk + A4, M))] ’
where sk < H, o < Sign(sk, M), A <« H, are identically distributed.

Key-homomorphic PRFs. Key-homomorphic PRFs (KH-PRFs) are PRFs
which satisfy additional algebraic properties. More precisely, the key space K
and the range ) of the PRF exhibit certain group structures such that the
evaluation of the PRF on any fixed input x € X is homomorphic with the
respect to these group structures. More precisely:



Definition 4 (Key-Homomorphic PRFs [47, 15]). Let (K,®), (Y, +) be
groups. Then, a keyed function F: K x X — Y is a key-homomorphic PRF
(KH-PRF) if F is a secure PRF and for every key ki,ke € K and every input
x € X, we have

F(k‘l, a)‘) + F(kg,.’[?) = F(k/’l (&) 1{32,.’1}).

We note that KH-PRFs constructed from assumptions such as Learning
with Errors (LWE) as proposed in [15, 39, 14] do not achieve the perfect ho-
momorphism as described in the definition above, but are only “almost” key-
homomorphic in that F(k1,z) + F(ko,x) = F(k1 @ ko, x) + e, where e is a small
error term. For them one needs to bound the number of successive applica-
tions and provide T-time correctness for a pre-specified T' > 1 (cf. [15, 39] for
a comprehensive treatment). Note also, that only achieving an “almost” key-
homomorphic property allows to distinguish fresh evaluations of the PRF from
ones obtained via the key-homomorphic property.

3 Updatable MACs and Signatures

In this section, we present our definitional framework of updatable MACs and
signatures. In order to make the illustration compact and avoid redundancy, we
try to unify the notation as much as possible and will, whenever necessary, point
to the differences between the two primitives.

3.1 Updatable MACs

We define updatable message authentication codes (UMACs) next and their
security model in Section 3.3. An UMAC scheme UMAC with message space M
is a tuple of the PPT algorithms (Setup, Next, Sig, Update, Ver):

Setup(\,n): on input security parameter A € N and the maximum number of
epochs n € O(2*), the setup algorithm outputs a (secret) key k;.3

Next(k.): on input key k. for epoch e € [n—1], the key-update algorithm outputs
an updated key k.41 together with an update token A, ;.

Sig(ke, M): on input key k. for epoch e € [n] and a message M € M, the signing
algorithm outputs a tag o..*

Update(Act1, M, 0.): on input an update token Ay, a message M, and a tag
o for epoch e < n, the update algorithm outputs an updated message-tag
pair (M, 0c41) or L.

Ver(k., M,o.): on input key k., a message M, and a tag o. for epoch e € [n],
the verification algorithm outputs a verdict b € {0, 1}.

Correctness of UMAC. Correctness ensures that an update of a valid tag o,

(via Ac41) from epoch e to e+1 yields a valid tag 0.4 that can be verified under

the epoch key k.41 which is derived from k.. More formally, we require that for

3 See that such large values of n allow for virtually unbounded number of epochs.
4 We assume that from keys, tokens, and tags, the associated epoch is efficiently ex-
tractable.



all \,n € N, for all k1 < Setup(A,n), for all e € [n — 1], for all (ket1, Aet1)
Next(k.), for all M € M, for all o, with Ver(k., M,c.) =1, for all (M,0.41) <
Update(Ac1, M, 0.), we have that Pr [Ver(k., M, 0e) # 1] < £()) holds, for all
e’ € [n], where e(A) = negl()), and we call it perfectly correct if e(A) = 0.

3.2 Updatable Signatures

We define updatable signatures (US) next and their security model in Section
3.3. An US scheme US with message space M is a tuple of the PPT algorithms
(Setup, Next, Sig, Update, Ver):

Setup(A,n): on input security parameter A and the maximum number of epochs

n € O(2*), the setup algorithm outputs a public and secret key pair (pk1, sk1).

Next(pke, sk.): on input a public key pk. and secret key sk, for epoch e € [n—1],
the key-update algorithm outputs an updated public key pkey1, an updated
secret key ske;1 and an update token Agyq.

Sig(ske, M): on input secret key sk, for epoch e € [n] and a message M € M,
the signing algorithm outputs a signature oe.

Update(Ac11, M,0.): on input an update token A.1, a message M, and a
signature o, for epoch e < n, the update algorithm outputs an updated
message-signature pair (M, o.41) or L.

Ver(pk., M,c.): on input public key pk., a message M, and a signature o, for
epoch e € [n], the verification algorithm outputs a verdict b € {0,1}.

Correctness of US. For all A\,n € N, for all (pky, sk1) < Setup(\,n), for all

e € [n—1], for all (pke+1, sket1, Aet1) < Next(pke, sk.), for all M € M, for all o,

with Ver(pk., M, 0.) =1, for all (M, 0e4+1) + Update(Aci1, M, 0.), we have that

Pr [Ver(pke , M,00) # 1] < e(A) holds, for all € € [n], where £(\) = negl()),

and we call it perfectly correct if £(\) = 0.

3.3 Security of UMAC and US

We are now ready to define the security notions of UMAC and US where we
will use UX with X € {MAC, S} to distinguish between those two primitives.
In order to make the description as compact as possible, we will use pk. and
sk, for e € [n], as handles to the public and secret key, respectively; where for
UMACs we have pk. := L and sk, := k.. Moreover, we will also call the tags in
UMACGC:s signatures henceforth.

We introduce security definitions for existential unforgeability under chosen-
message attack (UX-EUF-CMA) and unlinkable updates under chosen-message
attack (UX-UU-CMA). Loosely speaking, the UX-EUF-CMA notion ensures that
signatures cannot be forged even when the PPT adversary sees many signatures
of chosen messages while the UX-UU-CMA notion guarantees that signatures
derived from Update are unlinkable even when the PPT adversary sees many
(updated) signatures of chosen messages.

In our security experiments, let ¢ € N be the number of signature queries and
e the current epoch. Furthermore, we introduce a global state S = (Z, K, T, S):

5 Asin UMACS, such large values of n allow for virtually unbounded number of epochs.
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T = {((pker, sker), Aer)erele)} ¢ all keys and update tokens.

K ={e’ €[e]} : all epochs where the adversary queried Corrupt(key,e’).

T ={€ € [e]} : all epochs where the adversary queried Corrupt(token,e’).

S={(e/,M,00)eele} : all tuples where the adversary queried Sig'(M,e€’) in
epoch e’ or Update’(M, ) in epoch €’ — 1;

When the experiment is initialized, we set Z = {((pk1, sk1), A1)}, for (pk1, sk1)
+ Setup(A\,n) and Ay := 1, and let S, K, and T be initially empty sets. Addi-
tionally, we require the following oracles which are eligible to change sets in S
for any epoch ¢’ € [e]:

Sig/(M,€') : on input message M and epoch e’ € [e], compute signature o,/ <+
Sig(sker, M), set S:=8 U {(¢/, M,0./)}, and return o.:. Else, return L.
Next’ : find (pke, ske) € Z, compute (pket1,sket1, Aet1) < Next(pke, ske), up-
date Z := Z U {((pke+1, Ske+1), Aet1)}, return pket1 and set e :=e + 1.
Update’(M,0./) : on input a message-signature pair (M, o), return L if

Ver'(M,c.) # 1; else, compute (M,0. 1) + Update(A. 1, M,0.), set
§:=8 U {(¢ +1,M,0.41)} and return oo/ ;1.
Corrupt({token, key}, e’) : on input handles token or key, and epoch ¢’ € [¢],
- return A.41 and set T := T U {e'}, if called with token and €’ < e,
- return sk and set K := K U {e}, if called with key. Else, return L.
Ver (M, 0.): on input a message-signature pair (M, o./),
- return b < Ver(ske/, M, 0./) in the UMAC case,
- return b < Ver(pk., M,0./) in the US case.

Leakage profile (K*, T*,S8*). We use the concept of a leakage profile originally
defined in [42] to capture key, token, and signature “leakage” that cannot be
directly captured via oracles. The reason is that due to the nature of signa-
ture updates, UX schemes inherently allow for information leakage of updated
message-signature pairs, keys, and tokens besides what is modeled via the global
state S. For example, one token A,/ ;1 alone in such schemes is capable of updat-
ing polynomially many message-signature pairs ((Miy,01.¢/), ..., (Mg, 04.)), for
all ¢ = £(X) and for each epoch e’ € [n—1]. As this is required by the correctness
of the scheme, we cannot capture which particular signature ¢’ the adversary
retrieves (via an update token) and, hence, cannot include it into S.

Furthermore, signatures, keys, and tokens cannot only be “upgraded” but
also potentially “downgraded”, e.g., a token A, and key sk, or a token A,
and a message-signature pair (M, o./) for epoch €’ € [n] might be used to derive
a key sk. 1 or message-signature pair (M, o 1) of the previous epoch e’ — 1,
respectively. Hence, we cannot capture which particular key sk’ or signature o’
the adversary retrieves (via an update token) and, hence, cannot include those
as well into K or S, respectively.

We want to emphasize that the directionality of updates, i.e., either bidirec-
tional or unidirectional, is subject to discussion in updatable encryption [36]. In
context of US or UMACSs, we observe that due to correctness one always can
upgrade signatures (so leakage in this direction does not add anything), and
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stronger schemes could only prevent to derive keys or signatures “into the past”.
This, however, seems of limited interest in authentication primitives, where old
keys are typically assumed to be invalidated. Consequently, we opted for the
arguably simpler bidirectional setting.

When looking ahead, we will construct US from key-homomorphic (KH)
signatures. Now, in [25], the authors also provide a number of constructions of
KH signatures that provide a property being weaker than the one we are using
and which is called adaption of signatures. Now, one could wonder why we do
not support such schemes. Firstly, it would only allow to achieve a very weak
notion of unlinkability. Secondly, and more importantly, all known KH signatures
with this “weak” adaption (e.g., Schnorr or Guillou-Quisquater signatures) have
the property that a signature and its updated version leak the update token.
Consequently, an adversary who obtains a signing key in some old epoch and
then sees a signature and its updated versions, can compute all the signing keys
up to the epoch of the latest updated version it sees. As this results in very weak
security guarantees, we decided that our framework should not support schemes
with these weak security guarantees.

Now, let us consider an UX scheme with optimal leakage to be the one where
we only have signature upgrade (but no downgrade) and tokens are not useful
to upgrade or downgrade keys in any way. The leakage would be limited for such
schemes, however, the model would still need to restrict the adversary to retrieve
the update token in epoch e* — 1, i.e., A.«, where e* is the forgery epoch. The
reason is that otherwise the adversary could trivially win the game by updating
any signature computed under a corrupted key to epoch e*. Hence, also such
strong schemes with so-called no-directional key updates would not achieve any
stronger security in our model; at least with the applications we have in mind.

Now we are ready to introduce the leakage profile. We model leakage via
key-update, token, and signature-update inferences where the leakage profile
(K*, T*,8%) of a concrete scheme is specified by the respective sets.

Key-update inferences. Key-update inferences of a specific UX scheme can
be formally captured as K* with corrupted-key set KC and corrupted-token set 7
maintained by the oracles:

o {e € [n] | corrupt-key(e) = true} with true = corrupt-key(e) iff:
o (eek)Vv(e—1eKneeT)V(e+1lekne+1eT).

Token inferences. Token inferences can be formally captured as T7* with
corrupted-token set 7 and key-leakage set K*:
T :={ecn]|(e€T)V (e—1€K" AN ecK")}.

Signature-update inferences. Signature-update inferences can be formally
captured as §* with corrupted-signature set S maintained by the oracles and
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sets K* and T* with M € M U{T}6:
{(e, M) | corrupt-sig(e, M) = true} with true = corrupt-sig(e, M) iff:

S = ((e,M,)e8S) Vv ((e,M)e K*x{T}) V (corrupt-sigle — 1, M) A
e€T*) V (corruptsigle +1,M) AN e+1€T*),

where corrupt-sig(0, M) = false.
In Figure 1 we provide an example of potential leakage in UX schemes with
our leakage profile.

epoch: e—5 e—4 e—3 e—2 e—1 e e+1 e+2 e+3 e+4

keys: ke—s ke—4 ke—3 ke—2 ke—1 ke k'e+1 ke+2 ke+3 k?e+4

tokens: Aecy Aez Aeca Aeci Ae Actr Aeqa Aers Aeqs Acys

signature:| 0e—5 Oec—4 Oe—3 Oec—2 Oec—1 Oe Octl  Oet2 O3  Octd

Fig. 1. Example of directly obtained (green) and inferable information (blue) for UX
schemes.

Existential unforgeability under chosen-message attacks (UX-EUF-
CMA). Informally, the UX-EUF-CMA notion ensures that no PPT adversary
can non-trivially forge signatures even when the adversary adaptively compro-
mises a number of keys and tokens. We say that an UX scheme is UX-EUF-
CMA-secure if any PPT adversary succeeds in the following experiment only
with negligible probability. The experiment starts by computing the initial keys
(pk1, sk1) < Setup(\, n). During the experiment, via the oracles, the adversary
may query signatures for any epoch €’ up to the current epoch e, iterate to the
next epoch e + 1, update signatures, and corrupt tokens or keys for any epoch
e’ up to the current epoch e (note that the global state S is changed by the
oracles). Eventually, the adversary outputs a message-signature pair (M*, 0. ),
for epoch e* € [n], and succeeds if Ver(pke, M*,0%.) = 1 in the US case and
Ver(skes, M*, 0% ) = 1 in the UMAC case, and the adversary is valid which we
define in Definition 5.

Definition 5 (Validity of A for UX-EUF-CMA). Depending on (S*,K*,T*),
a PPT adversary A is valid in the UX-EUF-CMA experiment if

{{le, Muf{(e’, M)} nS* =0, (1)
i.e., A has not learned any useful forgery-message information for epoch e*.

5 M = T is a placeholder for “all messages” in M and helps us to construct the set
S™ efficiently.
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Remark. Definition 5 essentially says that the adversary is not able to derive
a valid message-signature pair for epoch e* which excludes trivial wins. The
leftmost term in Equation (1) “checks” that A does not possess a valid (derived)
secret key in e* while the middle term “checks” that A is not able to derive a
valid signature for M* in epoch e* via corrupted tokens.

See that the keys (pke~, skex) for any e* € [n] can be derived, i.e., if e* <'e,
we have that ((pkex, skex), ) € Z, otherwise, if e* > e, we can derive (pkes, skex)
iteratively by invoking Next’ starting with (pke, ske). If e* < e we set epax = €,
else epax := €*. Figure 2 depicts the UX-EUF-CMA experiments.

Definition 6 (UX-EUF-CMA security of UX). A UX scheme UX is UX-
EUF-CMA-secure iff for any valid PPT adversary A the advantage function

AQVES ™ (A, ) = Pr | Bxplicy ™ (A m) = 1],

is negligible in X\, where Epr’(s'fjf‘cma (A, n) is defined in Figure 2.

Experiment Exp{j3® ™ (A, n)
(pk1, sk1) < Setup(\,n)
S=(Z,K,T,S), for T :={((pk1,sk1), L)}, K:=T:=8:=0
(]\4%7 0_2*) — ASig’,Next’,Update’,Ver',Corrupt()\)
if A is valid and Ver({pke=, skex}, M*,0%+) = 1 then return 1 else return 0

Fig. 2. The UX-EUF-CMA security notions for UX. For US, we verify
Ver(pkex, M*,0%«) = 1; for UMAC, we use Ver(skes, M*,0}+) = 1 in the last step.

Unlinkable updates under chosen-message attacks (UX-UU-CMA). In-
formally, the UX-UU-CMA notion ensures that no PPT adversary can distin-
guish fresh signatures from updated signatures even seeing (all) keys, update
tokens and signatures from the past. We say that an UX scheme is UX-UU-
CMA-secure if any PPT adversary succeeds in the following experiment only
with negligible probability. The experiment starts by computing the initial keys
(pk1,sk1) < Setup(A, n). During the experiment, via the oracles, the adversary
may query signatures for any epoch e’ up to the current epoch e, iterate to
the next epoch e + 1, update signatures, and corrupt tokens or keys for any
epoch e’ up to the current epoch e, and has access to a verification oracle (note
that the global state S is changed by the oracles). Then, the adversary outputs
a message M* and epoch e* for which it queried Sig’ in some epoch e’ < e*.
It receives a challenge signature ¢(® which is either a fresh signature on M*,
@ or the existing signature for M* updated to epoch e*, ¢(1). For the lat-
ter case, we use the compact notation of UpdateCh(M*) to denote the repeated
application of Update’ starting with o, for M* and finally resulting in ¢(*) as
signature for M* in epoch e* (note that Update’ implicitly checks the condition
Ver(pker, M*,0.) = 1). In both cases, this might require calling repeatedly Next
until (skes,pke+) is defined. Eventually it outputs a bit b* and wins if b = b*.
Note that the adversary can call Corrupt arbitrarily. We call an adversary valid if
it queried M* to Sig’ in some epoch ¢’ < e*. Figure 3 depicts the UX-UU-CMA
experiments.
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Definition 7 (UX-UU-CMA security of UX). A UX scheme UX is UX-
UU-CMA-secure iff for any valid PPT adversary A the advantage function

Advb’;:’Z’cma(A,n) = |Pr [Epr’i{f’j'cma(/\, n) = 1} —1/2],

is negligible in X, where Expis s " (X, n) is defined in Figure 3.

Experiment Expj$"s ™ (A, n)
(pk1, sk1) < Setup(\,n)
S=(Z,K,T,S), for T :={((pk1,sk1), L)}, K=T =8:=0
(M*,e*) «— ASig’,Next',Update',Ver',Corrupt()\)
b+ {0,1}
o « Sig(sker, M*), 0V < UpdateCh(M*)
b* ASig',Next/,Update/,Ver/,Corrupt(O_(b))

if (¢/,M*,-) €S, e <e*, and b= b* then return 1 else return 0

Fig.3. The UX-UU-CMA security notions for UX.

4 Construction of Updatable Signatures

In this section, we will present different instantiations of updatable signatures
from different assumptions (see Section 4.4 for an overview and discussion.)

4.1 Updatable Signatures from KH Signatures

Subsequently, we show how to generically construct US with polynomially many
updates from key-homomorphic (KH) signatures. Let X' = (Gen, Sig, Adapt, Ver)
be a KH signature scheme providing perfect adaption, where we denote the secret
key space by H and the secret key to public key homomorphism by p. The so-
obtained US scheme US is depicted in Figure 4. Before discussing the security,
we will note that correctness straightforwardly follows from inspection.

Theorem 1. Let X = (Gen, Sig, Adapt, Ver) be a uniform-keys key-homomorphic
signature scheme. If ) is EUF-CMA secure and provides perfect adaption, then
the updatable signature scheme US from Figure 4 is US-EUF-CMA-secure and
US-UU-CMA secure.

In the above theorem, we require uniform-keys KH signatures, which we intro-
duce now. This notion is satisfied by all natural schemes and in particular the
ones discussed in [25]:

Definition 8 (Uniform-Keys Key-Homomorphic Signatures). A key-
homomorphic signature scheme X is said to be uniform-keys if the distribution
of sk with (sk,pk) < X.Gen(1) is the uniform distribution over the secret key
space H.
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Setup(1*, n):
— Return (pki, sk1) + X.Gen(1).
Next(pke, ske):
— Choose random sk’ € H and set AL, := sk’ and Act1 := (AL, 1, pke).
— Compute pket1 = pke - p(AlLy1) and sket1 = ske + AL, ;.
— Return (pket1, Sket1, Aet1).
Sig(ske, M):
— Return X.Sig(ske, M).
Update(Aet1, M, oe):
— Parse Acq1 = (AL 1, pke)
— Compute 041 := X.Adapt(pke, M, 0., AL, 1).
— Return (M, 0c1).
Ver(pke, M, oe):
— Return X.Ver(pke, M, oe).

Fig.4. US from KH signatures.

Helper Lemmas. Notice that a valid adversary should not trivially forge sig-
natures using the updatable property of the US scheme and the information
provided by the leakage profile (e.g., produce a valid signature for epoch ¢’ € K*
using sk, and update it to a valid signature for epoch e* using the update tokens
in 7*) for epochs in an appropriate window containing epoch e*. More formally,
we can define

e = max {elegT UK " ande' ¢ K*, e € T* Ve<e <e*},
<e<Le*
ef:= min {e|legT ande ¢K*, & €T* Ve <e <e},

e*<e<emax

and let the interval [e, e*[ denote such a window and notice that e~ is well-
defined. Suppose on the contrary that the set

E:={ec[le’]|egT " UK" N e gK", eT" Ve<e <e*},

is empty (if it is not empty then it has a maximum element). We claim, by
backward induction on the epoch number k and starting from e*, that this
implies that [k, e*] C T* for all k € [1,e*] which is a contradiction as 1 ¢ T* by
construction of 7*. The base case is k = e*. Indeed if E is empty then e* ¢ E
which implies that e* € 7* as Ae/ with e* < ¢/ < e* and it cannot be that
e* € K*. Now assume by induction hypothesis that [k,e*] C T* for k < e*. We
deduce from it, using that k — 1 ¢ F, that k —1 € T* as k — 1 cannot be in *
by validity of the adversary when [k, e*] C T*. Hence, [k —1,e* —1] C T* which
concludes the proof. A similar argument also proves the well-definedness of e*.
We can summarize the above discussion in the following lemma.

Lemma 1. Let A be a valid adversary that produces a forgery in epoch 0 < e* <
emax n the US-EUF-CMA experiment, then there exists a mazimum integer
0 < e <e* and a minimum integer e* < eT < epax 5.t A

1) does not obtain tokens A.- and A+,
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2) obtains no secret key sk, for alle™ < e <eT and
3) can obtain all tokens A, fore” < e <e™,

from the queries made to the oracles. Subsequently, we often denote the interval
[e™,eT[ as the window.

From Definition 8, the following lemma easily follows.

Lemma 2. Let X be a uniform-keys key-homomorphic signature scheme. Then
the following hold:

1) For every (sk,pk) < X.Gen(1*) the distributions of sk + A with A < H and
sk! with (sk',pk’) + X.Gen(1*) are identical.

2) For every (sk, pk) < X.Gen(1*) and A € H we have that (sk+ A, pk-u(A)) €
X.Gen(1%).

Now we are ready for the proof of Theorem 1.

Proof. First we observe that correctness follows straightforwardly from inspec-
tion.

For US-UU-CMA security, we can observe that in the US-UU-CMA experi-
ment all keys, signing operations, updates and token computations are performed
honestly by the experiment. Any adversary A is given access to all keys, tokens
and signatures and what we need to consider is the computation of the challenge
signature ¢(®. Now, due to the adaption property of X, the outputs of X.Sig
and X.Adapt are identical and thus also the outputs of US.Sig and US.Update.
By repeatedly applying Definition 3 within US.UpdateCh for computing o*) and
using Lemma 2 we are done. More formally, let us consider the sequence of games
as outlined below:

Game 0. This is the experiment Exp{js's " (), n) with b = 0, i.e., we always

return o(©) < Sig(ske-, M*).

Game 1. This is the experiment Exp(js's“"*(A,n) with b = 1, i.e., we always
return o(!) <~ UpdateCh(M*).

Lemma 3 (Game 0 to Game 1). For any adversary A it holds that
|Pr{Sao] —Pr[Sai]|=0.

Observe that in both games the adversary A is given access to all keys, tokens
and signatures and outputs a message M* and epoch e* for which it queried Sig’
in some epoch ¢’ < e*. Now, in Game 0 we finally output o(®) < Sig(sk.-, M*),
i.e., a fresh signature of M™ that verifies under pk.« to A. In Game 1 let us
denote by o, the signature for M* under (sk./, pkes) that the adversary queried
for message M* during the experiment. Let us w.l.0.g. assume that (skes, pke~)
is already defined (otherwise repeatedly call Next until it is defined) and let
(skers1,Pkerv1, Aerg1)y .-y (Skex, Dkex, Aex ) be the sequence of keys and update
tokens. Now, UpdateCh does the following:

— Fori=¢,...,e* — 1 compute 0,11 < Update(A; 1, M*, 0;), where Update
parses A; 11 = (A}, pki) and calls 0541 + X.Adapt(pk;, M*, 04, A, ).
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By using Lemma 2, we know that every key pair in the sequence (skes, pkes), - . .,
(skex, pke+) is distributed identical as one obtained from X.Gen. Now, this al-
lows us to repeatedly apply the perfect adaption notion to the output of the
previous Update in this sequence to conclude that in the sequence of signatures
(0e;y. - 00 =: o) the last signature (1) is distributed identically to a fresh
signature computed as Sig(skex, M™*).

This lets us conclude that Adv{js"y“"*(A,n) = 0 for any adversary A, which
concludes the proof of US-UU-CMA security. O

To prove US-EUF-CMA security, we reduce US-EUF-CMA security to the
EUF-CMA security of X, where the challenger will be associated to period e™.
While we can use the Sig oracle of the EUF-CMA challenger for period e~, we
have to answer Sig queries for epoch e* and adjacent ones, and Update queries
from older epochs to e* and from e* to newer epochs. Moreover, we have to
provide secret keys and tokens on Corrupt queries to the adversary. By Lemma 1
we know that in order for an adversary to be valid and to rule out a trivial
forgery, there needs to be a maximum epoch 1 < e~ < e* and a minimum
epoch e* < et < enax for which A does not query tokens A.- and A.+ and
consequently does not know any secret key but knows all tokens for the window
of epochs [e™,eT[. We now can use the key insulation technique from KlooB et
al. [40] for optimization, so that instead of guessing the challenge epoch e* and
the window to the left and to the right, we only guess the boundaries of this
region e~ and e (containing the challenge epoch somewhere) and we can just
associate the EUF-CMA challenger of X' to some epoch in this interval (lets say
e~). This reduces the overall reduction loss from €2 (emax+1) t0 €max (€max+1)-

Outside of the window, i.e., for epochs up to e~ — 1 and starting from e*
upwards, we will behave in our simulation as in the original game and in par-
ticular choose and know all secret keys and update tokens (except A.+). For
all epochs inside the window, our strategy will be as follows: we do not know
the secret keys associated to the epochs, but they are implicitly set by choos-
ing for every epoch e; in the window a random token A, as in the real Next
algorithm. Then for every epoch e; in the window starting from e~ we use the
secret key to public key homomorphism of X' and set the corresponding public
key as pke, = pke,_, - 1(A,,) (for e~ < e; < eT). Now for any signature query
for message M and epoch e; within the window, we query M to the EUF-CMA
challenger of X' associated to e~ and use the X' .Adapt algorithm in the forwards
direction to obtain the signature for M in epoch e; within the window. Note
that due to the adaption property of X and thus the identical distribution of
signatures from X.Sig and X.Adapt, this is indistinguishable for A. The Update’
oracle is performed as in the original game for all those epochs where the up-
date token is knows. For the remaining epochs, i.e., e~ and e, when asked to
update (M, 0,-_1) (or (M, 0.+_1), respectively), we query M to the EUF-CMA
challenger of X' associated to e~ (or produce a fresh signature using sk.+, re-
spectively) and return it to the adversary. Again by the adaption property of X
and thus the identical distribution of freshly generated signatures and updated
ones, this is indistinguishable. Now if A outputs a valid forgery (M*,c%.) for

e*
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epoch e*, if e* = e~ we can directly output it. Otherwise we use X.Adapt to

adapt the forgery backwards into epoch e~ and output it. Note that in any case

a valid forgery output by A represents a valid forgery for X, as validity guaran-

tees that we have never queried M* throughout the game for any epoch inside

the window.

More formally, let us consider the following sequence of games.

Game 0. This is the experiment Eprss"exf'cma()\, n).

Game 1. This is identical to the previous game with the exception that we
guess the window [e™,e™[ in which the epoch e* for which A outputs the
forgery is located and abort if our guess is incorrect.

Game 2. This is identical to the previous game up to the following differences:
- For call to Next’ in epoch e~ — 1 we set A, := | and run (sk.—,pk.-) <

X.Gen(1) to obtain an independent key for epoch e~. The same is done
for a call to Next’ in epoch et — 1.

- For each call to the Next’ oracle for epoch e € {e™,..., et — 2}, we run
Next(pk., L) where we ignore the secret key and just set the key implicitly
via the public-key, i.e., choose random sk’ € H and set A, | := sk’ and
Ae—i—l = (A/e+1apke)7 compute pke+1 = pke '/”'(Ae-i-l)v set Ske-l-l = L.

- For each call to the Sig’ oracle for message M in any epoch e within
[e™,eT[, we compute o < X.Sig(sk.-, M) and then call X .Adapt using
the respective public keys to adapt it to a signature o. valid under pk.
and add (e, M, 0,) to S.

- For each call to the Update’ oracle for signature (M,o.) in epoch e €
{e= — 1,et — 1}, we compute o.y1 « X.Sig(skeir1, M). We then add
(e+1,M,0c41) to S and U, and return o.4; to the adversary.

Now, let us analyze the transitions:

Lemma 4. For any adversary A it holds that

<<1) Pr[Sao) < Pr(Saal.

€maz T l)ema:p

Proof. We guess the window by simply drawing e~ < {0, ..., mas} and e
{e7+1, ..., emaz } uniformly at random. Thus, this guess is correct with probabil-
ity at least m and if the guess turns out to be wrong, we abort. Note
that such a window always exists for a valid adversary A due to Lemma 1. 0O

Lemma 5. For any adversary A it holds that
|Pr{Sai1] —Pr[Sasq]|=0.

Proof. We observe that due to having a valid adversary A w.r.t. window [e™, e[
and due to Lemma 1 we recall that A

1) does not obtain tokens A,- and A+,
2) obtains no secret key sk, for all e™ <e < et and
3) can obtain all tokens A, for e™ <e < eT,
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from the queries made to the oracles, given the leakage profile. Note that due
to 1) we know that there implicitly exists a token mapping keys and signatures
from e — 1 to ¢~ and from e™ — 1 to e™ (but we do not need to know them)
and all (implicit) keys due to Lemma 2 are distributed as expected. Also, all
the tokens A, in this window that are given to A are distributed as expected.
Finally, we can use the same argumentation as in the proof of Lemma 3 to
show all signatures given to the adversary within the window in Game 2 are
distributed identical to the ones in Game 1. a

Lemma 6. For any adversary A it holds Pr[Sa 2] < Adv%fxma()\).

Proof. Now we are at the point where we can associate an EUF-CMA challenger
for X to the keys in time slot e~. Now, for every signature query for message M
and epoch e within the window to the Sig’ oracle, we query M to the EUF-CMA
challenger of X and then execute the remaining parts of the Sig’ oracle to adapt
the so obtained signature in the forwards direction to obtain the signature for
M in epoch e within the window. Now if A eventually outputs a valid forgery
(M*,0%.) for epoch e*, we know that in order to be valid, A did not query
message M* for any epoch within the window (otherwise, since it knows all
tokens this would be a trivial forgery). In case ¢* = e~ , we can directly output
(M*,0?.) to the EUF-CMA challenger of Y. Otherwise, we use X'.Adapt to adapt
the forgery backwards into epoch e~ and then output the message M* and the
adapted signature o as forgery to the EUF-CMA challenger.

Taking all together this concludes the proof. a

4.2 Message-Independent US from the BLS Signature Scheme

Next, we discuss US schemes that do not require the message in order to update
signatures, a feature which we call message-independence (MI). We prove that
they are secure US in the conventional sense, i.e., in the model we always have
access to the messages and verify their validity and we rather consider MI to
be a practical feature in the following sense. In many practical applications,
signatures can be verified offline at some point and then when performing (a
batch of) updates at a later point in time, one does not need to access all the
messages and verify the signatures. This helps to improve the performance of
the updating procedure.

In Figure 5, we provide a message-independent US scheme from the BLS
signature. In contrast to BLS viewed as a KH signature scheme, where key
updates are additive and the next public key is pk’ = pk - f]Al = NS’”A/, we
here consider a slight variation where the key update is multiplicative, i.e.,
pk! = pkd’ = gsk'ﬂ'. While this does not anymore yield a KH signature scheme
in the framework of [25], due to the absence of the secret to public key ho-
momorphism, it is easy to see that this variant provides an Adapt algorithm
satisfying Definition 2, i.e., given a signature ¢ = H(M)** the update is com-
puted as o/ = 04" = H(M)**4"_ Tt is also easy to see that the BLS scheme with
this Adapt algorithm satisfies perfect adaption (cf. Definition 3), where in the
definition p(sk) is replaced by §°* and u(sk) - u(A) is replaced by §%#4.
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Setup(1*, n):
— Run BG = (G1,Gs,Gr,g,§,e,p) + BGGen(1*), choose a hash function H :
{0,1}* — G; uniformly at random from hash function family {H}x.
— Choose = < Z;, and set sk =z and pk = §”.
— Return (pki, sk1) < (pk, sk).
Next(pke, ske):
— Choose 2’ + Z; and set AL, := 2’ and Acy1 := (AL, pke).
— Compute pke1 = pkot' and skeiq = ske - Al
— Return (pket1, Sket1, Aet1).
Sig(ske, M):
— Return o = H(M)**e.
Update(Act1, 0e):
— Parse Act1 = (AL, 1, pke).
— Compute 0et1 = gltett,
— Return oey1.
Ver(pke, M, 0e):
— Return e(H(M), pk.) = e(oe, g)-

Fig. 5. US with message-independent updates from BLS signatures.

Consequently, we can exactly follow the proof of Theorem 1 with the only
exception that we do not use u for computing the pk’s in the window, but choose
A., < Z, and compute pk., = pkéiﬁ (for all e~ < ¢; < et). Moreover, it is
easy to see that we adapt Lemma 2 with the same changes as discussed above.
Checking correctness is straightforward. Hence, we obtain the following:

Corollary 1. Let X' = (Gen, Sig, Adapt, Ver) be the BLS signature scheme with
the Adapt algorithm defined as (pk:Al,aA/) + Adapt(pk, M, 0, A"), then the
updatable signature scheme US from Figure 5 is US-EUF-CMA secure and US-
UU-CMA secure.

MI US from PS signatures. We note that the same technique (i.e., using
multiplicative updates to obtain MI) can be applied to other KH signatures,
such as Pointcheval-Sanders (PS) [48]. More precisely, for PS we can set the
public key to pk = (X,Y) = (§%,§¥) for the secret key sk := (x,y) with
T+ Z, and y < Z;. The signature is computed by sampling i < G and setting
o = (01,09) = (h, h*t¥™). The verification holds for (o1, X - Y™) = e(09, §).
In order to provide message-independent updates, we can sample A; < Z5 and
Ay < Z,, set the update token to A := (A, Ag), and compute the updated
key pair as sk’ := (z- A; + A,y - Ay) and pk/ := (X, V) = (X421 . g2, V%),
Then, the update procedure is performed by sampling a random r < Z7 and

computing o’ := (0}, 04) = (o7, 0541 - o7 42).

4.3 Towards Updatable Signatures from Lattices

In this section, we aim to construct an US scheme from lattices. In particular,
we start from the well-known GPV signature scheme [30] and, by using methods
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inspired by the lattice-based proxy re-signature approach in [28], we obtain an
US scheme that we call USgpy. In order to prove its US-EUF-CMA security,
however, we have to restrict the capabilities of the adversary, but will provide
evidence that this does not seem to make a huge difference in the practical use
of the scheme compared to the original leakage profile.

Let us briefly recall the construction of the GPV signature scheme in its prob-
abilistic full-domain hash (FDH) variant. For a recollection of lattice preliminar-
ies we refer the reader to the full version. In the following let H : {0, 1}* — Zp
be a hash function modeled as a random oracle. The GPV signature scheme
consists of the following algorithms:

— Gen(1™): Run TrapGen(n,m, g, s) to get pair (A, Ta) (A is an n X m matrix
over Z, and Ty is a short basis of A+(A)). Output (pk = A, sk = Ta).

— Sig(M, sk = Ta): Sample ¢ + {0,1}", compute y = H(M||t), and output
(u,t), where u is a short vector computed via u < SamplePre(A, T4, s,y).

— Ver((u,t), M,pk = A): Compute y = H(M||t). Output 1 if and only if
A -u =y and ||u] is small enough, and 0 otherwise.

To transform this scheme into an updatable one, we can apply a method similar
to the one used in [28] to generate the re-signing keys and re-sign signatures:
given the secret key of epoch e+ 1, using the SamplePre algorithm, it is possible to
compute a small norm matrix A4 (for the sake of conciseness, we do not include
the old public key as part of the update token) that maps, by left multiplication,
the current public key to the previous one, i.e., pkey1- A1 = pke. Then, we can
use this matrix to map, by right multiplication, a signature valid in the previous
epoch to a signature valid in the current one. The small norm of A.y; ensures
that, in the update process, the norm of the signature does not increase “too
much”. Figure 6 describes the so obtained lattice-based US scheme USgpy.

Correctness and leakage profile. In the Next algorithm, the token A. is
computed by running SamplePre(Acy1,Ta..,,s, Ac). In this way we obtain an
m x m matrix A,y (of short norm) such that

AeJrl . Ae+1 =A..

If . = (7e,t) is a valid signature of M under the public key A., we must have
that A, - 7. = H(M]|t), and that 7. is of small norm. When we update the
signature o, we get Te41 = Acqq - Te. Since both A, and 7. are of small norm,
SO iS Te+1. Moreover

Ae+1 *Te+1l = Ae+1 . (AeJrl . Te) - (AeJrl . Ae+1) *Te
=A. -7 = H(M|t),

which proves correctness of the updated signature. As a signature produced by
algorithm Sign has size O(sy/m), and after each update, the size grows at the rate
of O(sm), as in [28], we set the parameter used in verification to be B = w(27).
The US construction can support T = polylog(\) updates using the subexpo-
nential SIS assumption.
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Public parameters: security parameter A, T = polylog()\) maximum allowed
updates, ¢ = n°™, n = poly(\), m = O(nlogq), s = w(vIogn) and B = w(27).

KeyGen(1*):

— Let (A1, Ta,) + TrapGen(n,m,q,s).

— Return (ski := Ta,,pk1 := A1).

Next(pke, ske):

— Let (Acy1,Ta,,,) + TrapGen(n,m,q,s).

— Let Act1 < SamplePre(Act1,Ta,,,, s, Ae).

— Return (skey1:= Ta .y, Pket1 := Acq1, Acy1).

Sig(ske, M):

— Sample ¢ + {0, 1}".

— Compute y = H(M||t), and 7. + SamplePre(A., Ta,_,s,y).
— Return o. = (7, t).

Update(Aet1, 0e¢):

— Parse 0. = (7, t).

— Compute Te41 = Aetq - Te.

- Return Oet1 = (Te+1,t).

Ver(pke, M, oe):

— Parse 0 = (7e, t).

— Compute y = H(M||t).

— Return 1 if ||7.|| < B and pk. - 7 =y, otherwise return L.

Fig. 6. Message-independent unidirectional US from GPV.

Modified leakage profile. As far as the leakage profile is concerned, in order
to be able to prove the US-EUF-CMA security of USgpy, we need to add a re-
striction that the adversary is not allowed to query the update oracle at epoch
e~ —1 to obtain signatures at epoch e~. We note that this restriction is needed to
allow the challenger to simulate all responses to the oracle queries of the adver-
sary. In the general case, this weakened model would allow to prove US schemes
US-EUF-CMA which leak the token when seeing a signature and its updated
version (such as Schnorr type signatures). However, as proven in Proposition 1
below, even updating a large but limited amount of signatures will not leak the
token for the USgpy scheme. Consequently, weakening the model merely seems
to be an artifact that results from our proof technique, but does not seem to
represent a significant weakness in practice.

Moreover, as updated signatures are distinguishable from fresh ones, one has
to keep track of the different signatures given to the adversary: for this reason,
in the security proof we will split the set S into sets S’ and U’, which will consist
of the fresh and updated signatures respectively. In addition to also supporting
the feature of message-independence, interestingly, the USgpy scheme satisfies
also unidirectional updates: by construction, the secret key of epoch e alone is
required to produce the update token A.. In particular this implies that the
token cannot be used to backward adapt signatures, since this will contradict
the unforgeability of the underlying signature scheme. This “feature” can be
seen as one reason for the weakening of the model, as it is incompatible with the
proof technique used for the other US constructions.
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Security of USgpy. For this construction, we can prove the following theorem:

Theorem 2. Assuming the hardness of SISq n.m,25, the US scheme USgpy from
Figure 6 is US-EUF-CMA secure, with the above discussed restriction on the
adversary, in the random oracle model.

Proof (Sketch). We can follow, here as well, the proof of Theorem 1: we guess
the forgery period e* and the window [e™, e*[ (by the above discussion regarding
the uni-directionality of the US under consideration, the window will be, in this
case, one-sided, i.e., we can even assume that A has access to A.+). Outside
of the window, we will behave in our simulation as in the original game and
will know all secret keys and update tokens. Inside the window, we start by
embedding the SIS matrix A* as public key of the forgery epoch e*. We then
have to distinguish the right part of the window, e €]e*, e™|, from the left part,
e € [e™, e*[. For all epochs e in the right part, we can produce pk, and A, as in the
real game (and thus we also have the corresponding secret key sk.). For those in
the left part, we start by sampling Ac+ <= Dzmxm ; and set pke«_q := pke« - Agx.
Since this distribution is statistically close to the one of the matrices output
by the SamplePre algorithm, the adversary will not be able to distinguish the
simulation from the real game. We then iterate this process till we obtain pk,-.
In this way we can respond to all secret key and token corruption queries. As
far as the signature queries are concerned, we rely on the programmability of
the random oracle model: when the adversary queries the signature oracle, we
first sample the short vector that will serve as signature and then program the
random oracle H accordingly. The presence of the “salt” t guarantees us that,
except with negligible probability, we will be able to reply to all signing queries
(e.g., even if the adversary asks for signature of the same message in different
epochs, which would not be possible if there was no “salt” involved in the signing
algorithm). The update queries can be answered as in the real game as, by the
restriction imposed on the adversary, we will know all the tokens require to run
the allowed update queries. Since simulation and real game are computationally
indistinguishable, the reduction can derive a SIS solution from the forgery tuple.

O

We provide a full proof in the full version.

Remark 1. The above USgpy scheme does not achieve US-UU-CMA security:
Firstly, the tag associated to a signature is not changed during the update and,
secondly, the norm of the signature acts as distinguishing feature between fresh
and updated signatures.

The following proposition shows that, under the parameter restriction required
by the TrapGen algorithm, i.e., m > 5nlogq, we can update a large but limited
amount of signatures, namely k, without leaking the update token A to the
adversary.

Proposition 1. Let m > 5nlogq and k < n. For any PPT adversary A, the
probability that A on input (pke, Ske, Pket1) and any k pairs of updated signatures
(TM; 5,65 Det1 - T, 15,e) OUtputs the update token Aqtq is negligible.
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Proof. By the second claim of Lemma 5.2 from [30], A.41 is distributed accord-
ing to a discrete Gaussian over Z™*™  which has, by Lemma 2.10 from [30],
at least min-entropy m(m — 1). By the chain rule of min-entropy, every pair of
updated signatures (7., Act1 - 7e) lowers the entropy of A.41 by mlogq. Hence
the min-entropy of A.;; conditioned on the view of the adversary is at least
m(m — 1) — k - mlog g, which is greater than n by our bounds on k and m. O

4.4 Overview and Discussion

We provide a compact overview of US schemes obtained from different KH sig-
natures as well as our dedicated BLS-, PS- and GPV-based constructions in
Table 1. We present the scheme along with the required hardness assumption,
whether it is in the standard model, in the generic group model (GGM) or re-
quire random oracles (RO), whether it is unlinkable (UU-CMA), whether it is
message-dependent or -independent (MD/MI) and whether it supports an un-
bounded number of epochs (UB), i.e,. at least polynomially many in the security
parameter, or a concrete bound 7' on the number of updates.

Table 1. Overview of updatable signature schemes.

Scheme Assumption Model UU-CMA MD/MI UB
BLS (Sec. 4.2) co-CDH RO v MI v
BLS (Sec. 4.1) co-CDH RO v MD 4
PS (Sec. 4.2) P-LRSW GGM 4 MI v
PS (Sec. 4.1) P-LRSW GGM v MD v
Waters (Sec. 4.1) co-CDH SM v MD v
GPV (Sec. 4.3)7 SIS RO X MI T

T Provides US-EUF-CMA security only in a weakened model.

As far as efficiency is concerned (counting only expensive operations), and in
order to provide some intuition, the BLS construction requires 1 exponentia-
tion for the Next algorithm, while the Update algorithm needs 1 hash to group
operation and 1 exponentiation. On the other hand, the message-independent
BLS from Section 4.2 requires 1 exponentiation in the Next algorithm and only
1 exponentiation in the Update algorithm. PS requires 2 exponentiations for the
Next algorithm, followed by 3 exponentiations in the Update algorithm. On the
other hand, message-independent PS from Section 4.2 requires 3 exponentiations
for the Next algorithm, followed by 3 exponentiations in Update.

5 Construction of Updatable MACs

In this section we present a generic constructions of UMACs from (almost) key-
homomorphic PRFs and then present a dedicated construction of a UMAC from
the Naor, Pinkas, and Reingold (NPR) PRF [47].

Before we start, we will discuss a well-known approach to turn a PRF F :
K x X — Y into a MAC by setting o < II.Sig(sk, M) := F(sk, M) with the
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canonical verification that recomputes the tag o and compares it to the obtained
one. Analogously, a KH-PRF gives a KH-MAC due to the key-homomorphism
property and security of the PRF. However, if we use an “almost” KH-PRF, then
the canonical verification needs to be replaced with an “approximate” canonical
verification (i.e., noisy equality check), where the verification involves a metric
function (e.g., Euclidean distance) that gives the distance between input tag
and recomputed tag, and verification only succeeds if the distance is smaller
than some bound §.

Clearly, the above discussed approach only yields a fixed-length MAC with
message space X. If the message space is too small, however, we can use a
collision-resistant hash function family (Geny, H) with H : S x {0,1}* — X
to obtain a variable-length MAC that supports arbitrary length messages by
defining II".Sig(sk, M) := F(sk,H (s, M)). For that construction we can show
the following (cf. [9]):

Lemma 7. If II is a fized-length EUF-CMA secure MAC for message space X
and (Geng, H) a collision resistant hash function family, then IT' is a variable-
length EUF-CMA secure MAC for messages of arbitrary length.

Proof (Sketch). Let A be the adversary in the experiment Exp%f}fma and let
(M, ..., M,) be the messages queried by A to oracle Sig’ and (M*,o*) be the
valid forgery output by the adversary. Now, we have two cases: In the first case
i) we have that H(s, M*) = H(s, M;) for some i € [g], which yields a collision
pair (M*, M;) for H, contradicting collision-resistance of (Geng, H). In the sec-
ond case i) we have that H(s, M*) # H(s,M;) for all ¢ € [¢q]. However, this
means that (H(s, M*),o*) represents a valid tag (signature) for a new message
H(s, M*) and thus a valid forgery for II. O

Subsequently, in our generic construction we consider KH PRFs, which we can
equivalently view as KH MACs for fixed-length inputs. We will not make it
explicit in our construction, but straightforwardly applying Lemma 7 to our
generic construction in Section 5.1 will yield UMACs for variable-length inputs.

5.1 UMAQGCs from KH PRFs

Now we show how to obtain UMACs from (almost) KH-PRF's generically. For K
we write @ as the group operation and —k as the inverse of k. For the group Y,
we use the common addition. The UMAC obtained from a KH-PRF can be seen
in Figure 7, where the text in blue color is only required when using “almost”
KH-PRF and D, represents the error distribution (e.g., error distribution used
in lattice-based constructions). We can show the following:

Theorem 3. If FF : K x X — )Y is a secure (almost) key-homomorphic PRF

(equivalently an EUF-CMA secure (approzimate) MAC for message space X ),

then the UMAC construction in Figure 7is UMAC-EUF-CMA secure and UMAC-
UU-CMA secure.
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Setup(1*, n):

— Sample a random key k1 € K and output k;.
Next(ke) :

— Sample a random key ke+1 € K.

— Compute Act1 = ket1 ® —ke and (ket1, Aet1)-
Sig(ke, M) :

— Sample (x2,.-.,Xe) <3 Dy.

— Compute oe = F(ke, M) +>5_, xi and output (M, o).
Update(Aet1, M, 0e) :

— Compute get1 = 0e + F(Act1, M) and output (M, ceq1).
Ver(ke, M, 0¢) :

— If F(ke,M) =0¢ (||Jode — F(ke, M)|| <) output 1, otherwise output 0.

Fig. 7. Bi-directional UMAC from (almost) KH-PRF. Blue parts correspond to the
changes when using almost KH-PRF.

The proof of UMAC-EUF-CMA security follows exactly the strategy in the proof
of Theorem 1 with the only exceptions that within the window we need to
simulate the Ver’ oracle, and for the almost KH-PRF we need to account for the
additional error terms. For completeness, we provide a sketch of the proof in the
full version.

A note on almost KH-PRFs. In the notion of almost KH-PRFs such as
those from the (R)LWE assumption [15, 39, 14] every homomorphic operations
increases the error y and thus the constructions are only 7T-time correct. This
means, that UMACs constructed from such KH-PRFs by default will not satisfy
the UMAC-UU-CMA notion, while the tags obtained from the Update algorithm
will have higher error compared to fresh tags obtained from the Sig algorithm,
thus making them trivially distinguishable. In order to circumvent this issue, in
Figure 7, we use the trick to make the error depend on the epoch e that we are
in. Hence, freshly computed tags and updated ones have the same amount of
error, which makes them indistinguishable, and allows us to achieve the UMAC-
UU-CMA notion.

Another issue to consider is the effect of the approximate canonical verifica-
tion on the security of the UMAC. Since we have a noisy equality check during
the verification algorithm, we can consider that we have a ball centered around
the tag o, such that verification accepts any vector within this ball as a valid
tag. This implies that an adversary can just change the low-order bits of a valid
tag o to produce another valid tag ¢’ that will be within this ball and pass the
verification, and hence, break the strong unforgeability. However, since in this
work we are only interested in conventional unforgeability of the MAC (i.e., do
not require strongly unforgeable MACs), this approach is not useful to a valid
adversary against our UMAC. The adversary in our case is required to come up
with a valid tag that lies sufficiently far away from any tags that it was provided
with. Though, the adversary cannot do this due to the security of the underlying
KH-PRF. Nevertheless, the security of the KH-MAC obtained from KH-PRF is
correlated with the verification bound. If the verification bound is extremely
large, then we have that the balls around the valid tags are overlapping (i.e., the
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balls are so large that they cover the entire space), and then with high probabil-
ity any random vector is sufficiently close to a random tag. However, by setting
the parameters appropriately we can bound this probability to be negligible.
More precisely, when using lattice-based almost KH-PRFs as MACs, for a MAC
verification bound §, modulus ¢ and lattice dimension n, we have that the ball
around a valid tag o takes up (6/q)™ of the area, where the entire space has area
of ¢™. If the space taken by the ball is negligible, then it is hard for the adversary
to forge a valid tag. Since this will depend on the instantiation and parameters
of the almost KH-PRF, we leave it as an open problem to setup tighter bounds
and compute exact parameters. For our construction in Figure 7, we can set the
verification bound to § = T'- B, for a constant T' denoting the maximum number
of epochs for our UMAC, and B the bound on the errors sampled from D,.

5.2 Message-Independent UMAC from the NPR PRF

Since UMACs from KH-PRF's are inherently message-dependent, we now present
a dedicated construction of a variable-length UMAC scheme that is message-
independent (MI) from the PRF due to Naor, Pinkas, and Reingold (NPR) [47].
Let us recall the NPR PRF and therefore let G be a cyclic group of prime oder
p in which the DDH assumption holds and H : {0,1}* — G a hash function
modeled as a random oracle, then the NPR PRF with F' : Z5 x {0,1}* — G is
defined as F(k, M) := H(M)*. Tt is secure under the DDH assumption in the
random oracle model. In contrast to the key-homomorphic variant of the NPR
PRF which considers keys from the additive group Z,, we consider key updates
multiplicatively with A € Z, in the vein of the multiplicative variant of the US
from the BLS scheme in Section 4.2. Note that as in Section 4.2 we consider MI
to be a feature of UMACs for practical applications where one can assume that
one operates on valid UMACs.

Setup(1*, n):
— Run G = (G,p,g) + GGen(1?), choose a hash function H : {0,1}* — G;
uniformly at random from hash function family {Hg }«.
— Sample a random key k1 € Z;, and return (G, H, k1).
Next(ke) :
— Choose Acy1 < Z;, and return (keq1 := (G, H, ke - Act1), Act1).
Sig(ke, M) :
— Compute 0. = H(M)*e and return (M, o).
Update(Act1, 0e) :
— Compute 0et1 = GEAE
Ver(ke, M, 0¢) :
— If H(M)*e = g, return 1, otherwise return 0.

! and return oe1.

Fig. 8. Bi-directional variable-length UMAC from NPR PRF.

To show the security of this construction, we can exactly follow the proof of
Theorem 3 with the only exception that we do not use the key-homomorphic

—1
property of the PRF in Update, but choose A, +1 = Zj; and compute o = Rt
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or o = g?ei+ if we have to switch PRF evaluations back (from epoch e; + 1

to epoch e;) or forth (from epoch e; to epoch e; + 1). Checking correctness is
straightforward and we obtain the following;:

Corollary 2. Let F' be the NPR PRF, then the construction in Figure 5 is an
UMAC-EUF-CMA-secure and UMAC-UU-CMA secure UMAC.

5.3 Overview and Discussion

We provide a compact overview of UMACs obtained from different KH-PRF's
as well as our dedicated NPR-based construction in Table 2. We use the same
criteria for comparison as in Section 4.4.

Table 2. Overview of updatable MACs.

Scheme Assumption Model UU-CMA MD/MI UB
BLMR (NPR) [15] DDH RO v MD v
NPR (Sec.5.2) DDH RO v MI v
BEKS [14] RLWE RO v MD T
Kim [39] LWE SM v MD T

Regarding efficiency (again only counting expensive operations), for the key-
homomorphic NPR UMAC for instance Update requires 1 hashing to the group
as well as 1 exponentiation and Next only cheap operations. The variant of the
NPR UMAC from Sec. 5.2 requires instead 1 exponentiation for Update and Next
also only cheap operations.
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