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Abstract. Verifiable random functions (VRFs), introduced by Micali,
Rabin and Vadhan (FOCS’99), are the public-key equivalent of pseudo-
random functions. A public verification key and proofs accompanying the
output enable all parties to verify the correctness of the output. How-
ever, all known standard model VRFs have a reduction loss that is much
worse than what one would expect from known optimal constructions of
closely related primitives like unique signatures. We show that:
1. Every security proof for a VRF that relies on a non-interactive as-

sumption has to lose a factor of Q, where Q is the number of adver-
sarial queries. To that end, we extend the meta-reduction technique
of Bader et al. (EUROCRYPT’16) to also cover VRFs.

2. This raises the question: Is this bound optimal? We answer this ques-
tion in the affirmative by presenting the first VRF with a reduction
from the non-interactive qDBDHI assumption to the security of VRF
that achieves this optimal loss.

We thus paint a complete picture of the achievability of tight verifiable
random functions: We show that a security loss of Q is unavoidable and
present the first construction that achieves this bound.

1 Introduction

Verifiable Random Functions (VRFs), introduced by Micali, Rabin and Vad-
han in [41], can be thought of as the public key equivalent of pseudorandom
functions (PRFs). That is, a secret key sk always comes together with a public
verification key vk. The secret key sk allows the evaluation of the verifiable ran-
dom function Fsk(X) on input X and obtain the pseudorandom output Y . In
contrast to pseudorandom functions, however, a verifiable random function also
produces a non-interactive proof of correctness π. Together with vk, the proof π
allows everyone to verify that Y is the output of Fsk(X). We require two security
properties from VRFs: unique provability and pseudorandomness. Unique prov-
ability means that for every verification key vk and every VRF input X, there
is a unique Y for which a proof π exists such that the verification algorithm
accepts. However, note that there might be multiple valid proofs π verifying the
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correctness of Y with respect to vk and X. Further, we (informally) say that a
VRF is pseudorandom if there is no efficient adversary that can distinguish a
VRF output without the accompanying proof from a uniformly random element
of the range of the VRF. In addition to these properties, Hofheinz and Jager
introduced the notion of VRFs with all desired properties [27]. Namely, we say
that a VRF possesses all desired properties if it fulfills all requirements above,
has an exponentially sized domain, is secure even in presence of an adaptive the
adversary is proven secure under a non-interactive complexity assumption. In
this work, we only consider VRFs that have all desired properties.

Applications of VRFs. VRFs have found a wide range of applications in the-
ory in practice. One of the most notable ones is the recent application of VRFs
in proof of stake consensus mechanisms, like the ones used in the Algorand
Blockchain [23], the Cardano Blockchain [6,21] and the DFINITY Blockchain [4].
Further applications are in key transparency systems like CONIKS [40], where
VRFs prevent the enumeration of all users that have keys in the system. Sim-
ilarly, VRFs are used in the proposed DNSSEC extension NSECv5 [49], where
they provably prevent zone enumeration attacks in the authenticated denial of
existence mechanism of DNSSEC [24].

Tightness. Following the reductionist approach to security, we relate the dif-
ficulty of breaking the security of a cryptographic scheme to the difficulty of
solving an underlying hard problem. Let λ be the security parameter and con-
sider a reduction showing that any adversary that breaks the security of a cryp-
tographic scheme in time t(λ) with probability ε(λ) implies an algorithm that
solves the underlying hard problem with probability ε′(λ) in time t′(λ) with
t′(λ) ≥ t(λ) and ε′(λ) ≤ ε(λ). We then say that the reduction loses a factor `(λ)
if t′(λ))/ε′(λ) ≥ `(λ)t(λ)/ε(λ) for all λ ∈ N. We say that a reduction is tight if `
is a constant, i.e. if the quality of the reduction does not depend on the security
parameter.

The loss of a reduction is of particular practical importance when deciding
on the key sizes to use for cryptographic schemes. For simplicity, assume that we
have a reduction with ε′(λ) = ε(λ) and t′(λ) = `(λ)t(λ) and let topt(λ) denote the
time the fastest algorithm takes to solve an instance of the hardness assumption.
Then, if we want to rule out the existence of an adversary that breaks the security
of the scheme faster than tadv, we have to choose the security parameter large
enough such that topt(λ)/`(λ) ≥ tadv. Hence, if ` is large, then λ has to be rather
large in order to guarantee that any adversary that breaks the security of the
scheme has runtime at least tadv. However, a large security parameter also implies
large keys, which negatively affects the real-world efficiency of the scheme. On
the positive side, this means that if we are able to construct a tight reduction,
this allows us to use small key sizes and guarantee security against all adversaries
with runtime at most tadv. This approach to security is also known as concrete
security and is more thoroughly discussed in [8].
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Impossibility of tight reductions. Unfortunately, we know that tight reductions
can not exist for some primitives. Coron presented the first result of this kind in
2002 for unique signatures [19], in which he showed that every security reduc-
tion for unique signatures loses at least a factor of ≈ Q, where Q is the number
of adaptive signature queries made by the forger. He achieved this result by
introducing the meta-reduction technique. That is, one shows that a tight reduc-
tion can not exist by proving that any tight reduction would be able to solve
the underling hard problem without the help of an adversary. Subsequently, the
technique has been successfully used to prove the same lower bound for the
loss of security reductions for efficiently re-randomizable signatures by Hofheinz
et al. [28] and later on to an even wider classes of primitives by Bader et al. [5].
Most recently the Coron’s technique has been extended by further works. First,
Morgan and Pass extended Coron’s technique to also incorporate interactive
complexity assumptions and reductions that execute several instances of an ad-
versary in parallel. However, since the result applies to a wider class of reductions
and complexity assumptions, the lower bound on the loss is only

√
Q instead of

Q. Then Morganet al. applied the technique to MACs and PRFs [43].
Even though VRFs are closely related to unique signatures, none of the lower

bounds on the loss mentioned above applies to VRFs in general because the
non-interactive proofs of VRFs do not need to be unique, nor do they need to
be re-randomizable. For example, the VRF by Bitansky does not have unique
proofs [10]. Hence, in contrast to a remark in [42], a VRF does not immediately
imply a unique signature, but only a signature with a unique component.

Circumventing tightness lower bounds. Despite all the lower bounds on the loss
of reductions to the security of unique signatures, Guo et al. showed in [25]
that reductions circumventing the lower bounds are possible by making heavy
use of the programmability of a random oracle. However, this technique is only
applicable in the random oracle model and can not be adapted in the standard
model to the best of our knowledge.

Moreover, the tightness lower bounds have also been circumvented in the
standard model by making the signatures non-randomizable [2, 11, 20, 26, 37,
47]. Kakvi and Kiltz even describe a tightly secure unique signature scheme by
using a public key in the reduction that allows for non-unique signatures and is
indistinguishable from an honestly generated public key [35].

Furthermore, for identity based encryption – a primitive that is closely related
to VRFs [1]– Wee and Chen [17] describe a scheme that can proven secure
with a reduction whose loss depends only on the security parameter and not
on the number of queries made by the adversary. In 2016, Boyen and Li then
presented the first tightly secure construction in [16]. Similar to our approach
in this work, they homomorphically evaluate a pseudorandom function in the
reduction. However, they use it in order to apply the technique of Katz and
Wang to construct tightly secure signatures by making the signatures non-re-
randomizable [37].

However, the techniques above are not applicable to VRFs. Replacing the
verification with an indistinguishable verification key that allows for non-unique
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signatures is not possible due to the strong uniqueness requirement. Moreover,
our meta reduction makes no assumptions about the re-randomizability of the
proof of correctness produced by a VRF evaluation. Hence, making the proofs of
correct evaluation non-rerandomizable can not allow for tighter reductions. Thus,
to the best of our knowledge the only avenues to achieve tighter reductions for
VRFs would be either to use the random oracle model, to prove the security from
an interactive assumption or to use a reduction that can run several instances
of an adversary in parallel. However, for the latter two approaches, it seems
unlikely to achieve a loss better than

√
Q due to the lower bound by Morgan

and Pass [42].

Our contributions. In this paper, we study the tightness of reductions from non-
interactive complexity assumptions to the security of verifiable random functions.

1. We first extend the lower bound for the loss of re-randomizable signatures
from Bader et al. [5] to verifiable unpredictable functions (VUFs), which
differ from VRFs in that the output only has to be unpredictable instead of
pseudorandom. Since this is a weaker requirement, the theorem for VUFs also
implies the same bound for reductions to the security of VRFs. Concretely,
we prove that any reduction from a non-interactive complexity assumption
to the unpredictability of a VUF loses a factor of at least Q.

2. We present a VRF and a reduction from the non-interactive q-DBDHI as-
sumption to the adaptive pseudorandomness of the VRF that achieves this
bound. The VRF is based on the VRF by Yamada [51,52].

1.1 Notation

We introduce some notation before giving a technical overview of our work. For
this, let a, b, c ∈ N with a ≤ b ≤ c. We then let [c] := {1, . . . , c}. Analogously,
we let [a, c] := {a, . . . , c} and [c \ b] := [c] \ {b}. Also, for any finite set S, we

denote drawing a uniformly random element y from S by y
$←S. Further, for a

probabilistic algorithm A that uses k bits of randomness and takes some input
x, we write A(x; ρA) for the execution of A on input x with fixed random bits

ρA ∈ {0, 1}k. Analogously, we write a
$←A(x) for executing A on input x with

uniformly random bits and assigning the result to a. Finally, we will view the time
to execute the security experiment as part of the runtime of an adversary that
is executed in the security experiment. We do so as to not worsen the runtime
of a reduction by accounting it runtime for simulating the security experiment
for the adversary.

1.2 Technical Overview

Before presenting our results, we give a short overview over our techniques below.
We first describe how we prove the lower bound for the loss of VRFs and then
describe our construction attaining this bound.
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Adversary A
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Meta-Reduction B)

Reduction Λ

Meta Reduction B
Problem instance

Solution

Problem instance

Solution

Fig. 1. The meta-reduction technique of Coron [19].

Bounding the tightness of VRFs. We first extend the meta-reduction of Bader
et al. to VRFs and thus show that any reduction from a non-interactive com-
plexity assumption to the security of a VRF necessarily loses a factor of at least
Q, where Q is the number of queries made by the adversary. The results by
Bader et al. do not cover VRFs and VUFs because their theorems only apply
to re-randomizable signatures/relations1. However, VRFs and VUFs do not fall
into this class of primitives because their non-interactive proofs are not neces-
sarily re-randomizable. In order to explain how we extend their technique, we
shortly revisit Coron’s meta-reduction technique depicted in Figure 1. A meta-
reduction can be thought of as a reduction against a reduction. That is, the
meta-reduction B simulates a hypothetical adversary A for a reduction Λ. Since
the meta-reduction is constructed to have a polynomial runtime and simulates
the hypothetical adversary, it is actually the reduction Λ that solves the instance
of the hardness assumption. This allows us to show that any reduction with a
certain tightness is able to break the underlying hardness assumption without
the help of any adversary and therefore contradicts the hardness assumption.

In their proof, Bader et al. use the re-randomizability/uniqueness of the sig-
natures that Λ produces for A in order to solve the challenge when simulating
A. We extend their technique to VRF/VUFs by showing that it is sufficient if
the part of the signature that the adversary has to provide for the challenge, in
the case of VUFs the unpredictable value Y , is unique or re-randomizable.

For simplicity, we prove the theorem for VUFs: this automatically implies
the same bound for VRFs because every VRF is also a VUF. Following Bader
et al., we consider a very weak security model in which the number of queries Q
is fixed a priori. Further, the adversary is presented with Q uniformly random
and pairwise distinct inputs X1, . . . , XQ and has to choose a challenge X∗ from
these. For all other inputs, the adversary is then given the VUF output and
proof. Finally, the adversary has to output the VUF value for the challenge
input and wins if the output is correct. We refer to this very weak security as
weak-selective unpredictability. We describe a hypothetical adversary that breaks
the adaptive pseudorandomness with certainty and then show that our meta-

1 Note that unique signatures are re-randomizable because, given a unique signature
for a message, it is trivial to sample from all signatures for that message since there
is only that one signature.
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reduction can efficiently simulate this adversary for the reduction. Informally,
on input a problem instance for a non-interactive complexity assumption, the
meta-reduction Λ behaves as follows.

1. It passes on the problem instance to the reduction and lets it output a
verification key vk and Q pairwise different VUF inputs X1, . . . , XQ.

2. It then iterates over all j ∈ [Q] and executes the second part of the reduction
as if it chose j as the challenge and lets the reduction produce all pairs of
VUF output and proof except for the j’th pair. It then verifies them and
saves them if they are correct with respect to vk and the corresponding input.

3. Finally, it chooses j∗
$←[Q] and passes on the correct VUF output for Xj∗

to the reduction. We formally prove in Section 2 that the meta-reduction
indeed has learned the correct VUF output for Xj∗ from the reduction with
probability at least 1/Q.

4. When the reduction then outputs the solution to the underlying problem
instance, the meta-reduction outputs this solution as well.

Overall, we can then show that the meta-reduction takes time at most B =
Q · tΛ +Q(Q+ 1)tVfy and has a success probability at least εΛ − 1/Q, where tΛ
and εΛ are the runtime and the success probability of the reduction and tVfy is
the time it takes to verify a VUF output. Now we can follow that Λ has a loss
of at least ` = (εN + 1/Q)−1, where εN is the largest probability any algorithm
running in time tB has in breaking the hardness assumption. Since the hardness
assumption implies that εN is negligibly small, we have that ` ≈ Q.

While the meta-reduction above is only applicable to reductions that execute
the adversary exactly once, our proof of the lower bound on the loss of VRFs in
Section 2, like the one by like Bader et al., also applies to reductions that can
sequentially rewind the adversary.

On the difficulty of constructing tightly secure VRFs. As Table 1 shows, known
security proofs for VRFs in the standard model are significantly more lossy than
the lower bound Q. This raises the question:

Do verifiable random functions with a loss of Q exist?

In consequence, such a VRF would show that a loss of Q is indeed optimal.

We proceed by explaining why all previous constructions have a loss much
worse than Q and then give an overview over our approach that achieves the
optimal tightness. They all have in common that the reduction makes a guess in
the very beginning and then has to abort and output a random bit depending
on the queries and the challenge of the adversary. Let succ-red be the event that
the reduction solves the underlying hardness assumption and let abort be the
event that the reduction aborts and outputs a random bit. For a clear exposition,
we assume that the reduction always succeeds when it does not abort and the

6



Schemes Security loss

Hohenberger and Waters [29] O(λQ/ε)

Boneh et al. Sec. 7 in [15] (Qλ)τ(ε)

Jager [31] O(Qν/εν+1)

Hofheinz and Jager [27] O(λ log(λ)Q2/c/ε3)
Yamada Sec 6.1 in [52] O(Qν/εν+1)

Yamada Sec. 6.2 in [52] O(Qν/εν+1)
Yamada App. C in [51] O(λ2Q/ε2)

Katsumata Sec. 5.1 in [36] O(Qν/εν+1)
Kastumata Sec. 5.3 in [36] O(Qν/εν+1)

Rosie [46] O(λ log(λ)Q2/c/ε3)

Kohl [38] O(|π| log(λ)Q2/ν/ε3)

Kohl [38] O(|π| log(λ)Q2+2/ν/ε3)
Jager and Niehues [34] O(t3/ε2)

Jager et al. [32] O(t3/ε2)

Section 4 O(Q)

Table 1. We compare the loss of previous VRFs with all desired properties. For the
variables, let |π| denotes the size of the proofs of the VRF and ε, t and Q the advantage,
runtime and number of queries made by the adversary the reduction is run against.
Further, there are three values that depend on the error correcting code used in the
construction: the function τ(ε) > 1 and the constants ν > 1 and c ≤ 1/2. Note that
the full version [14] of [15] has been updated with the bound stated above.

adversary succeeds. We then have that

Pr [succ-red] = Pr [succ-red∧ abort] + Pr [succ-red∧¬abort]

=
1

2
(1− Pr [¬abort]) + Pr [succ-red∧¬abort]

=
1

2
+ Pr [succ-red∧¬abort]− Pr [¬abort]

2
.

This shows that, in contrast to computational security experiments/hardness as-
sumptions, where a lower bound would suffice, we need upper and lower bounds
on Pr [abort] that are close to each other in order prove the security of a VRF.
Waters used the artificial abort technique to prove close lower and upper bounds
on Pr [¬abort] [50]. That is, the reduction estimates the probability of aborting
over all possible choices it can make in the very beginning for the sequence of
queries made by the adversary and then aborts with a probability that ensures
that the reduction always aborts with almost the same probability. However,
the estimation step in the reduction is computationally expensive. Bellare and
Ristenpart addressed this issue with a more thorough analysis and by making
Pr [¬abort] slightly smaller [9]. Jager then applied Bellare’s and Ristenpart’s
technique to admissible hash functions (AHFs) and introduced balanced admis-
sible hash functions [31]. But in conclusion, none of the techniques known so far
achieves the optimal loss of Q.
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A reduction with optimal tightness. We next answer the question stated above
in the affirmative by presenting a VRF with a reduction that only loses a factor
of Q. To do so, we have to address the issue raised above: that the success
probability for the partitioning argument depends on the sequence of queries
made by the adversary. We achieve this by passing every query and the challenge
of the adversary through a pseudorandom function (PRF). Further, we utilize
a property of the VRF Yamada introduced in [51, Appendix C]. This VRF
allows the reduction to homomorphically embed an arbitrary NAND circuit of
polynomial size and logarithmic depth in the VRF. The idea here is that the
reduction can embed an arbitrary NAND-circuit in the VRF such that it can
answer all queries by the adversary for which the circuit evaluates to 0 and can
extract a solution to the underlying hard problem whenever the circuit evaluates
to 1. In particular, the homomorphic evaluation hides selected parts of the circuit
inputs, all internal states of the circuit and the output of the circuit from the
adversary.

We use these properties to homomorphically evaluate a PRF. Since the ad-
versary does not learn any internal states or outputs of the PRF, we thus have
that the outputs of the PRF are distributed as if they were the outputs of a
random function. In particular, we then have that the outputs of the PRF are
distributed uniformly and independent of each other. We show in Section 3 that
it then suffices for the reduction to guess dlog(Q)e + 1 bits of the PRF output
of the challenge. Then the probability that the following two events both occur
is at least 1/8Q:

1. The PRF output of the challenge matches the guess.
2. The guess does not match the PRF output for any of the adversary’s queries.

Further, viewing the PRF outputs as the output of a truly random function,
the probability for the reduction to succeeds is independent of the probability of
the adversary breaking the security of the VRF. Ultimately, this yields a VRF,
which has a loss of Q plus the loss of the PRF.

2 Impossibility of VRFs and VUFs with Tight
Reductions

In this section, we prove that any reduction from a non-interactive complexity
assumption to the security of a VUF or VRF unavoidably loses a factor of Q.
To do so, we first formally introduce VUFs and VRFs and their accompanying
security notions. We then introduce a very weak security notion for VUFs and
prove that even for this notion, every reduction form a non-interactive complexity
assumption to it necessarily loses a factor of Q.

2.1 Syntax of Verifiable Random Functions (VRFs) and Verifiable
Unpredictable Functions (VUFs).

Formally, a VRF or VUF consists of algorithms (Gen,Eval,Vfy) with the follow-
ing syntax.
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– (vk, sk)
$←Gen(1λ) takes as input the security parameter λ and outputs a key

pair (vk, sk). We say that sk is the secret key and vk is the verification key.

– (Y, π)
$←Eval(sk, X) takes as input a secret key sk and X ∈ {0, 1}λ, and

outputs a function value Y ∈ Y, where Y is a finite set, and a proof π.
We write Vsk(X) to denote the function value Y computed by Eval on input
(sk, X).

– Vfy(vk, X, Y, π) ∈ {0, 1} takes as input a verification key vk, X ∈ {0, 1}λ,
Y ∈ Y, and proof π, and outputs a bit.

Note that VRFs and VUFs share a common syntax. The only difference is in the
achieved security properties. We first define security for VRFs and then describe
how the definition has to be adapted for VUFs.

GVRF(A1,A2)
(λ)

(vk, sk)
$←Gen(1λ); ρA

$←{0, 1}λ

(X∗, st)
$←AEval(sk,·)

1 (vk; ρA)

Y0 := Eval(sk, X∗)

Y1
$←Y

b
$←{0, 1}

b′ := AEval(sk,·)
2 (Yb, st)

return b == b′

Fig. 2. The security experiment specifying pseudorandomness of verifiable random
functions.

Definition 1. VRF = (Gen,Eval,Vfy) is a secure verifiable random function
(VRF) if it fulfills following requirements.

Correctness. For all (vk, sk)
$←Gen(1λ) and X ∈ {0, 1}λ holds: if (Y, π)

$←
Eval(sk, X), then Vfy(vk, X, Y, π) = 1. Further, the algorithms Gen, Eval,
Vfy are polynomial-time.

Unique provability. For all vk ∈ {0, 1}∗ and all X ∈ {0, 1}λ, there does
not exist any Y0, π0, Y1, π1 ∈ {0, 1}∗ such that Y0 6= Y1 and it holds that
Vfy(vk, X, Y0, π0) = Vfy(vk, X, Y1, π1) = 1.

Pseudorandomness. Consider an attacker A = (A1,A2) with access (via ora-
cle queries) to Eval(sk, ·) in the pseudorandomness game depicted in Figure 2.
Let Q = (X1, . . . , XQ) be the oracle queries made by A1 and A2, then we say
that A is legitimate if there is no ρA ∈ {0, 1}λ such that there exists i ∈ [Q]
with Xi = X∗, where Xi is the i’th query to Eval made by A. We define the
advantage of A in breaking the pseudorandomness of VRF as

AdvVRFA (λ) :=
∣∣∣Pr
[
GVRF(A1,A2)

(λ) = 1
]
− 1/2

∣∣∣ .
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weak-selective-UnpredictabilityQ,VUF(A1,A2)
(λ)

(vk, sk)
$←Gen(1λ); ρA

$←{0, 1}λ

(X1, . . . , XQ)
$←{0, 1}λ s.t. Xi 6= Xj for all i 6= j

(Yi, πi)
$←Eval(sk, Xi)

(j, st)
$←A1(vk, (Xi)i∈[Q];ρA)

Y ∗
$←A2((Yi, πi, st)i∈[Q\j])

return Y ∗ == Yj

Fig. 3. The security experiment specifying weak selective pseudorandomness.

We require the same security properties from VUFs as the properties we re-
quire from VRFs in Definition 1, with the exception that we require the weaker
property of unpredictability instead of pseudorandomness from VUFs. This prop-
erty can be formalized just like pseudorandomness just that the adversary has
to output the correct Y ∗ instead of distinguishing it from a random element as
depicted in Figure 2. We do not give a formal definition since it is very similar
to VRFs, and we use the notion of weak select unpredictability, which is defined
in Section 2.2, in our proof.

2.2 Lower Tightness Bounds for VUFs

We begin by introducing the very weak security notion of weak-selective unpre-
dictability. In this security model, all queries and the challenge are uniformly
random and pairwise different. We formally define it as follows.

Definition 2. Let VUF = (Gen,Eval,Vfy) be a verifiable unpredictable function
and let t : N→ N, ε : N→ [0, 1]. For an adversary A = (A1,A2), we say that A
(t, Q, ε)-breaks the weak selective pseudorandomness of VUF if A runs in time t
and

AdvVUFA1,A2
(λ) := Pr

[
weak-selective-UnpredictabilityQ,VUFA1,A2

(λ) = 1
]

= ε(λ)

where weak-selective-UnpredictabilityQ,VUF(A1,A2)
(λ) is the security experiment depic-

ted in Figure 3.

Note that any verifiable random function fulfilling the requirements of Defini-
tion 1 has also weak-selective unpredictability. Hence, ruling out a tight reduc-
tion from weak selective unpredictability to a class of hardness assumptions,
also rules out tight reductions from pseudorandomness to that class of hardness
assumptions. We thus prove a lower bound on the loss of any reduction from
any non-interactive complexity assumption to the weak selective unpredictabil-
ity of a VUF, where the reduction my sequentially repeat the execution of the
adversary.
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Following [3,5], we define a non-interactive complexity assumption as a triple
N = (T,V,U) of Turing machines (TMs). While the TM T generates a problem
instance and V verifies the correctness of a solution, the TM U represents a
trivial adversary to compare an actual adversary against. For example, a trivial
adversary against the DDH assumption would just output random bit as its
guess. We formally define non-interactive complexity assumptions as follows.

Definition 3. A non-interactive complexity assumption N = (T,V,U) consist

of three Turing machines. The instance generation machine (c, w)
$←T(1λ) takes

the security parameter as input and outputs a problem instance c and a witness
w. U is a probabilistic polynomial-time Turing machine, which takes c as input
and outputs a candidate solution s. The verification Turing machine V takes as
input (c, w) and a candidate solution s. If V(c, w, s) = 1, then we say that s is a
correct solution to the challenge c.

NICANA(λ)

(c, w)
$←T(1λ); ρA

$←{0, 1}λ

s
$←A(c; ρA)

return V(c, w, s)

Fig. 4. The generic security experiment for a non-interactive complexity assumption
N = (T,V,U) between the challenger and an adversary A.

Definition 4. Let N = (T,V,U) be a non-interactive complexity assumption
and let NICA be the security experiment depicted in Figure 4. For functions
t : N → N, ε : N → [0, 1] and a probabilistic Turing machine B running in time
t(λ), we say that B (t, ε)-breaks N if∣∣∣Pr

[
NICANB (λ) = 1

]
− Pr

[
NICANU (λ) = 1

]∣∣∣ ≥ ε(λ),

where the probabilities are taken over the randomness consumed by T and the ran-
dom choices of ρU and ρB in the security experiments NICAnB(λ) and NICAnU(λ).

Bader et al. prove lower bounds for simple reductions as well as for reduc-
tions that can sequentially rewind the adversary [5]. Since the latter class of
reduction include the former class, we directly prove the lower bound on the loss
for the larger class of reductions. Following Bader et al., we view a reduction
that sequentially rewinds an adversary up to r ∈ N times as a 3r + 2-tuple of
Turing machines. That is, one TM that initializes the reduction, one to produce
a solution in the end and three for each execution of the adversary. For an ad-
versary A = (A1,A2) against the weak selective unpredictability of a verifiable
unpredictable function VUF , we let r-ΛA be the Turing machine depicted in
Figure 5.
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r-ΛA(c, ρΛ)

stΛ1,1

$←Λ1(c; ρ0)

For 1 ≤ ` ≤ r do:

(vk`, (X`
i )i∈[Q], ρA, stΛ`,2)

$←Λ`,1(stΛ,1)

(j∗`, stA)
$←A1(vk`, (X`

i )i∈[Q]; ρA)

((Y `i , π
`
i )i∈[Q\j∗`], stΛ`,3)

$←Λ`,2(j∗`, stΛ`,2)

Y `j∗`
$←A2((Y `i , π

`
i )i∈[Q\j∗`], stA)

stΛ`+1,1

$←Λ`,3
(
Y `j∗` , j

∗`, stΛ`,3

)
s

$←Λ3(stΛr+1,1)

Fig. 5. Description of the Turing r-ΛA machine built from an adversary A = (A1,A2)
against the weak selective unpredictability of a verifiable unpredictable function and a
reduction (Λ1, (Λ`,1, Λ`,2, Λ`,3)`∈[r], Λ3).

Definition 5 (Def. 6 in [5]). For a verifiable unpredictable function VUF , we
say that a Turing machine r-Λ = (Λ1, (Λ`,1, Λ`,2, Λ`,3)`∈[r], Λ3) is an r-simple
(tΛ, Q, εΛ, εA)-reduction from breaking the non-interactive complexity assump-
tion N = (T,V,U) to breaking the weak selective unpredictability of VUF if for
any TM A that (tA, Q, εA)-breaks the weak selective unpredictability of VUF ,
TM r-ΛA as defined in Figure 5 (tΛ + rtA, εA) breaks N .

Furthermore, we define the loss of a reduction as the factor that (tΛ(λ) +
rtA(λ))/εΛ(λ) is larger than tA(λ)/εA(λ). We formalize this in the following
definition.

Definition 6. For a verifiable unpredictable function VUF , a non-interactive
complexity assumption N , a function ` : N→ N and a reduction Λ, we say that
Λ loses `, if there exists an adversary A that (tA, Q, εA) breaks the weak selective
unpredictability of VUF such that ΛA (tΛ + r · tA, εA)-breaks N where

tΛ(λ) + rtA(λ)

εΛ(λ)
≥ `(λ) · tA(λ)

εA(λ)
.

After introducing the needed notations and notions, we can now state our the-
orem regarding the loss of VRFs and VUFs.

Theorem 1. Let N = (T,V,U) be a non-interactive complexity assumption,
Q, r ∈ poly(λ) and let VUF be a verifiable unpredictable function. Then for any
r-simple (tΛ, Q, εΛ, 1)-reduction Λ from breaking N to breaking the weak selective
unpredictability of VUF there exists a TM B that (tB, εB)-breaks N , where

tB ≤ r ·Q · tA + r ·Q · (Q− 1) · tVfy

εB ≥ εΛ −
r

Q
.
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Here, tVfy is time needed to run the algorithm Vfy of VUF .

Note that the theorem also applies to adversaries with εA < 1, as we discuss
after the proof of Theorem 1. However, before proving Theorem 1, we show that
it implies that every r-simple reduction Λ from a non-interactive complexity
assumption N has at least a loss of ≈ Q. For tN := tB = r·Q·tΛ+r·Q·(Q−1)·tVfy,
let εN be the largest probability such that there exists an algorithm that (tN , εN )-
breaks N . We then have that εN ≥ εB and by Theorem 1, we have that εΛ ≤
εB + r/Q ≤ εN + r/Q. We can then conclude that

tΛ + r · tA
εΛ

≥ r · tA
εN + r/Q

= (εN + r/Q)−1 · r · tA
1

= (εN + r/Q)−1 · r · tA
εA
.

This means that Λ loses at least a factor of ` = r/(εN + r/Q). Further, if εN is
very small, which it is supposed to be for a good complexity assumption, then
` ≈ Q.

Proof. Our proof is structured like the proofs in [5,28,39] and thus first describes
a hypothetical adversary that breaks the weak selective unpredictability of VUF
with certainty and then describes a meta reduction that perfectly and efficiently
simulates this adversary towards Λ.

The hypothetical adversary A. The hypothetical adversaryA = (A1,A2) consists
of the following two procedures.

A1(vk, (Xi)i∈[Q]; ρA) samples j
$←[Q] and outputs (j, st) with the state st = (vk,

(Xi)i∈[Q], j).
A2((Yi, πi)i∈[Q\j], st) first parses the state st as (vk, (Xi)i∈[Q], j) and then checks

whether Vfy(vk, Xi, Yi, πi) = 1 for all i ∈ [Q \ j]. If there is i∗ such that
Vfy(vk, Xi, Yi, πi) = 0, it aborts with result ⊥. Otherwise, it computes Y ∗ ∈
Y such that there exists π ∈ {0, 1}∗ with Vfy(vk, Xj , Y

∗, π) = 1. The exis-
tence of such a Y ∗ is guaranteed by the correctness of VUF .

Observe that A breaks the weak selective unpredictability of VUF with certainty
because a correct VUF produces only valid pairs of outputs and proofs, but A2

may not be efficiently computable. However, we show that B can efficiently
simulate A nonetheless.

The meta-reduction B. We now describe the meta-reduction B that simulates A
r times for Λ = (Λ1, (Λ`,1, Λ`,2, Λ`,3)`∈[r], Λ3). B’s goal in this is to break N and

is therefore called on input c, where (c, w)
$←T(1λ).

i. B receives c as input. It samples randomness ρΛ
$←{0, 1}λ and executes

stΛ1,1
= Λ1(c, ρΛ). If Λ1 does not output stΛ1,1

, then B aborts and outputs
⊥. Since the randomness of Λ1 is fixed, we view all subroutines of Λ as de-
terministic. Note that Λ1 can pass on random coins to the other subroutines
via stΛ1,1 .
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ii. Next, B sequentially simulates A r times for Λ. That is, for all 1 ≤ ` ≤ r it
does the following.
a) Initialize an empty array A` with Q places, that is A`[i] =⊥ for all

i ∈ [Q].
b) Run (vk`, (X`

i )i∈[Q], ρA, stΛ`,2) = Λ`,1(stΛ`,1). If Λ`,1 does not produce
such an output, then B aborts and outputs ⊥.

c) Then B runs
(
(Y `i,j , π

`
i,j)i∈[Q\j], stΛ3,`

)
= Λ`,2(j, stΛ`,2) for all j ∈ [Q]. If

Λ`,2 only produces correct outputs with respect to vk`, that is if∧
i∈[Q\`]

Vfy(vk`, X`
i , Y

`
i,j , π

`
i,j) = 1,

then B sets A`[i] := Y `i,j for all i ∈ [Q \ j].
d) B then samples j∗`

$←[Q]. It then proceeds in one of the following cases:
1. If Λ`,2(j∗`, stΛ`,2) produced any invalid pair of output and proof, that

is, if there exists i ∈ [Q \ j∗`] such that it holds that the Vfy rejects,
that is Vfy(vk`, X`

i , Y
`
i,j∗` , π

`
i,j∗`) = 0, then B aborts and outputs ⊥.

2. Otherwise, B sets Y ∗ := A`[j∗`].
e) Set stΛ`+1,1

:= Λ`,3(Y ∗, stΛ`,3)

iii. Finally, B runs s
$←Λ3(stΛr+1,1

) and outputs s.

Success probability of B. In order to analyze the success probability of B, we
compare the simulation of A by B with the description of A. Note that A1

samples j uniformly at random and A2 aborts if it is given an invalid pair of
output and proof. B also samples j∗` uniformly at random from [Q] and aborts
if Λ`,2(j∗`, stΛ`,2) produced any invalid pair of output and proof, just like A.

However, we are only guaranteed that A`[j∗`] contains the correct output of
VUF for X`

i if there is j′ ∈ [Q \ j∗`] such that Λ`,2(j′, st`,2) outputs only correct
pairs of outputs and proofs, i.e., if this is not the case the simulation of A by B
deviates from A’s behavior. Below, we formally prove that B perfectly simulates
A unless the event described above occurs and upper bound the probability that
it occurs by r/Q.

Let stΛ`,2 be the unique state computed by Λ`,1 and let j∗` ∈ [Q] be the
unique index that Λ`,3 is executed with. Note that these values are well-defined

in both NICAΛ
A

N (λ) and NICABN (λ). Now, define the event all-valid(stΛ`,2 , j) as
the event that Λ`,2 outputs only valid pairs of outputs and proofs. That is

all-valid(stΛ`,2 , j) =

{
1 if Vfy(vk`, X`

i , Y
`
i,j , π

`
i,j) = 1 for all i ∈ [Q \ j]

0 otherwise,

where (Y `i,j , π
`
i,j)i∈[Q\j] = Λ`,2(stΛ`,2 , j). Recalling the case in which B’s sim-

ulation deviates the hypothetical adversary A, we define the event bad(`) :=
all-valid(stΛ`,2 , j

∗`)
∧
j∈[Q\j∗`] ¬all-valid(stΛ`,2 , j), that is the event that Λ`,2 re-

turned only valid pairs of outputs and proofs for j = j∗` in the `’th simulation
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of A. Further, we let bad :=
∨
`∈[r] bad(`) be the event that bad(`) occurs for

any ` ∈ [r].
Next, let S(F) denote the event that NICAFN (λ) = 1 for some adversary

F against the non-interactive complexity assumption N . Then we observe the
following:

Pr
[
S(r-ΛA)

]
− Pr [S(B)]

= Pr
[
S(r-ΛA)∧ bad

]
+ Pr

[
S(r-ΛA)∧¬bad

]
− Pr [S(B)∧ bad]− Pr [S(B)∧¬bad]

≤Pr
[
S(r-ΛA)∧¬bad

]
− Pr [S(B)∧¬bad] + Pr [bad]

Therefore, we proceed by showing two things:

1. Pr
[
S(r-ΛA)∧¬bad

]
= Pr [S(B)∧¬bad]

2. Pr [bad] ≤ r/Q

In order to prove the first statement, we consider two cases in which A outputs
either ⊥ or the correct output of VUF for input X`

j under verification key vk`.
These are the two cases that B distinguishes in step ii. d).

1. In the first case Λ`,2(j∗`, stΛ`,2) outputs (Y `i,j∗` , π
`
i,j∗`)i∈[Q\j∗`] such that there

is i ∈ [Q \ j∗`] with Vfy(vk`, X`
i , Y

`
i,j∗` , π

`
i,j∗`) = 0. Note that in this case, A2

aborts and outputs ⊥. B also aborts and outputs ⊥ in step ii. d) in the first
case.

2. In the second case no such i ∈ [Q\j∗`] exists for the output of Λ`,2(j∗`, stΛ`,2).

Hence, we have all-valid(stΛ`,2 , j
∗`) = 1. Furthermore, since we assumed

that bad does not happen, we have that there is also j ∈ [Q \ j∗`] with
all-valid(stΛ`,2 , j) = 1 and therefore A`[j∗`] contains the correct VUF out-
put, which B passes on to Λ`,3. Since A also outputs the correct VUF value
in this case, the two outputs are distributed identically.

We therefore have Pr
[
S(r-ΛA)∧¬bad

]
= Pr [S(B)∧¬bad].

Next, we show that Pr [bad] ≤ r/Q. For this, consider a fixed ` ∈ [r] and
observe that bad(`) can occur only if there is a unique index j ∈ [Q] such that
all-valid(st`,2, j) = 1. Hence, the probability that B draws j∗` = j in step ii. d) in
the `’th round is 1/Q. We therefore have that Pr [bad(`)] = 1/Q, and it follows
by the union bound that Pr [bad] ≤ r/Q. Summing up, we have shown that.

Pr
[
S(r-ΛA)

]
− Pr [S(B)] ≤ Pr [bad] ≤ r/Q ⇐⇒ εΛ ≤ εB − r/Q

It is now only left to compute the running time of B. For this, note that B
executes the algorithms Λ`,2 Q times for each ` ∈ [r] and other algorithms of Λ
only once. Furthermore, B executes Vfy r ·Q ·(Q−1) times. Overall, we therefore
conclude that

tB ≤ r ·Q · tΛ + r ·Q · (Q− 1) · tVfy,

where tVfy is the time it takes to execute Vfy. This concludes the proof.
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Non-perfect adversaries. We only considered adversaries that always break the
weak selective unpredictability of the VUF in the theorem above. However, the
hypothetical adversary A and the meta-reduction can also simulate adversaries
with arbitrary εA ∈ [0, 1] by just aborting with probability 1 − εA in the simu-
lation of A.

3 A Reduction Strategy with Optimal Tightness

Now that we showed that every reduction from a non-interactive complexity as-
sumption to the pseudorandomness or unpredictability of a VRF or VUF loses
at least a factor of Q, we present a VRF together with a reduction, which at-
tains this bound up to a small constant factor. We achieve this by describing a
partitioning proof strategy. In these types of proofs, the reduction partitions the
input space of the VRF in a controlled set and an uncontrolled set and embeds
this partitioning into the verification key. The reduction is then able to answer
evaluation queries for inputs in the controlled set and can extract a solution to
the underlying complexity assumption if the challenge is in the uncontrolled set.
This type of proof has also been used in most of the previous VRFs that do not
rely on the random oracle heuristic, for example [31, 36, 38, 52]. In this section,
we describe how the reduction chooses this partition. We discuss the embedding
of the partitioning in the VRF in Section 4.

Optimal partitioning. In order to make a partitioning argument with optimal
tightness for VRFs, we need to decouple the probability that the partitioning
succeeds from the queries and the challenge, which are chosen by the adversary.
We achieve this by passing every input of the adversary through a pseudoran-
dom function. This ensures that the outputs are distributed independently and
uniformly at random for pairwise different inputs. We formally define a PRF as
follows.

Definition 7. For functions t,m, n : N → N and ε : N → [0, 1], we say that a
function PRF : {0, 1}m(λ)×{0, 1}λ → {0, 1}n(λ) is an (t, ε)-secure Pseudorandom
Function if it holds for every algorithm D running in time t(λ) that∣∣∣∣∣ Pr

KPRF $←{0,1}m

[
DPRF(KPRF,·)(1λ) = 1

]
− Pr
F

$←Fλ,n(λ)

[
DF (·) = 1

]∣∣∣∣∣ ≤ ε(λ),

where Fλ,n(λ) = {F : {0, 1}λ → {0, 1}n(λ)} is the set of all functions from {0, 1}λ
to {0, 1}n(λ).
For a clear exposition, assume that all queries by the adversary and the challenge
are passed through a truly random function. We later on replace this truly
random function with a PRF. If the PRF is secure, then this does only make a
negligible difference in the success probability.

We use the outputs X ′ of the truly random function for partitioning in the
following way. The reduction draws η uniformly random bits Kpart for some
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carefully chosen η ∈ [n(λ)]. It then defines the uncontrolled set, i.e., the set of
inputs for which the reduction can extract a solution but not answer evaluation
queries, as the set of all inputs whose PRF output match Kpart on the first η
bits. We formalize this partitioning as the following function F.

Definition 8. For X ′ ∈ {0, 1}n(λ) and Kpart ∈ {0, 1}η, we define

F(X ′,Kpart) :=

{
1 if X ′|η = Kpart

0 otherwise,

where X ′|η denotes the first η bits of X ′.

Such a function F has been used in many previous partitioning arguments, e.g.
[22,27,31,36,52], but has its origin in [13, Sec. 4.1] as biased binary pseudorandom
function.

Let TRF
$←Fλ,n(λ) be a truly random function and let X1, . . . , XQ, X

∗ ∈
{0, 1}λ be arbitrary with Xi 6= Xj and Xi 6= X∗ for all i 6= j. We then let X ′i :=

TRF(Xi) and X∗
′

:= TRF(X∗). Observe that we then have that all X ′i and X∗
′

are independent and uniformly random in {0, 1}n(λ). We show in the following

Lemma that for η = dlog(Q)e+ 1 and Kpart $←{0, 1}η, where Q is the number of
evaluation queries made by the adversary, we have that F(X ′i,K

part) = 0 for all

i ∈ [Q] and F(X∗
′
,Kpart) = 1 with probability at least 1/(8Q). That means, the

partitioning argument has optimal tightness for VRFs up to a small constant
factor. We later on show that since a pseudorandom function is indistinguishable
from a truly random function, we can efficiently apply this in our construction.

Lemma 1. Let Q = Q(λ) be a polynomial, let η = η(λ) := dlog(Q)e+ 1 and let

X ′1, . . . , X
′
Q, X

∗′ be as above. For Kpart $←{0, 1}η, we then have that

Pr
[
F(X ′i,K

part) = 0 for all 0 ≤ i ≤ Q and F(X∗
′
,Kpart) = 1

]
≥ 1/(8Q).

Proof. We start by lower bound the probability from the lemma as follows.

Pr
[
F(X ′i,K

part) = 0 for all 0 ≤ i ≤ Q and F(X∗
′
,Kpart) = 1

]
= Pr

[
F(X ′i,K

part) = 0 for all 0 ≤ i ≤ Q | F(X∗
′
,Kpart) = 1

]
Pr
[
F(X∗

′
,Kpart) = 1

]
=

(
Q∏
i=1

Pr
[
F(X ′i,K

part) | F(X∗
′
,Kpart) = 1

])
Pr
[
F(X∗

′
,Kpart) = 1

]
(1)

=

(
1−

(
1

2

)η)Q
Pr
[
F(X∗

′
,Kpart) = 1

]
≥
(

1−
(

1

2

)η
Q

)
Pr
[
FK(X∗

′
,Kpart) = 1

]
(2)

=

(
1−

(
1

2

)η
Q

)(
1

2

)η
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Observe that Equation (1) holds because all X ′i and X∗
′

are stochastically in-
dependent and that Equation (2) follows from Bernoulli’s inequality. Next, no-

tice that since η = dlog(Q)e + 1 we have that
(
1
2

)η ≥ ( 12)log(Q)+2
= 1

4Q and

−
(
1
2

)η ≥ − ( 12)log(Q)+1
= − 1

2Q . We can therefore conclude the proof as follows.

Pr
[
F(Xi,K

part) = 0 for all 0 ≤ i ≤ Q and F(X∗,Kpart) = 1
]

≥
(

1−
(

1

2

)η
Q

)(
1

2

)η
≥
(

1− 1

2Q
Q

)
1

4Q
=

1

2

1

4Q
=

1

8Q

Note that Lemma 1 only holds if all X ′i and X∗
′

are distributed independently
and uniformly at random in {0, 1}n, e.g., if X ′i = TRF(Xi) for all i ∈ [Q] and

X∗
′

= TRF(X∗). Observe that we stated our argument for a truly random
function instead of a PRF and our construction in Section 4 uses a PRF. We
therefore define the function G, which uses a pseudorandom function instead of
a truly random function.

Definition 9. For X ∈ {0, 1}λ,KPRF ∈ {0, 1}m and Kpart ∈ {0, 1}η, we define

G(X,KPRF,Kpart) := F(PRF(KPRF, X),Kpart).

Intuitively, Lemma 1 also applies to G and adversarially chosen Xi and X∗ be-
cause the outputs of the pseudorandom function are indistinguishable from the
outputs of a truly random function. Hence, any adversary that is able to effi-
ciently make queries to the PRF such that the probability in Lemma 1 differs
significantly from the probability for a truly random function would also be able
to distinguish the pseudorandom function from a truly random function. We
show that this also holds formally as part of the security proof of the pseudo-
randomness of VRF in Section 4.1.

4 Verifiable Random Functions With Optimal Tightness

In order to embed the partitioning argument we described in Section 3 into a
VRF, we use the verifiable random function that Yamada describes in [51, Ap-
pendix C]. This is the full version of [52]. This VRF is well-suited for our pur-
poses, because it enables us to embed the homomorphic evaluation of arbitrary
NAND-circuits in the reduction such that the reduction can answer all queries
for inputs on which the circuit evaluates to zero and can extract a solution to the
underlying complexity assumption for all inputs for which the circuit evaluates
to 1. At the same time, the embedding of the circuit hides some input bits, all
internal states and the output of the circuit from the adversary. We use this
property to embed the homomorphic evaluation of G from Definition 9. We first
describe bilinear group generators, which we require in the VRF construction
and then describe how we model NAND circuits. Finally, we describe the VRF.
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Bilinear group generators. We shortly introduce (certified) bilinear group genera-
tors, which were originally described in [27]. These allow us to define complexity
assumptions relative to the way the bilinear group is chosen end ensure that
every group element has a unique encoding, which is required for the unique
provability of our construction.

Definition 10. A Bilinear Group Generator is a probabilistic polynomial-time
algorithm GrpGen that takes as input a security parameter λ (in unary) and

outputs Π = (p,G,GT , ◦, ◦T , e, φ(1))
$←GrpGen(1λ) such that the following re-

quirements are satisfied.

1. p is a prime and log(p) ∈ Ω(k)

2. G and GT are subsets of {0, 1}∗, defined by algorithmic descriptions of maps
φ : Zp → G and φT : Zp → GT .

3. ◦ and ◦T are algorithmic descriptions of efficiently computable (in the se-
curity parameter) maps ◦ : G × G → G and ◦T : GT × GT → GT , such
that

a) (G, ◦) and (GT , ◦T ) form algebraic groups,

b) φ is a group isomorphism from (Zp,+) to (G, ◦) and

c) φT is a group isomorphism from (Zp,+) to (GT , ◦T ).

4. e is an algorithmic description of an efficiently computable (in the secu-
rity parameter) bilinear map e : G × G → GT . We require that e is non-
degenerate, that is,

x 6= 0⇒ e(φ(x), φ(x)) 6= φT (0).

Definition 11. We say that group generator GrpGen is certified, if there exist
deterministic polynomial-time (in the security parameter) algorithms GrpVfy and
GrpElemVfy with the following properties.

Parameter Validation. Given the security parameter (in unary) and a string
Π, which is not necessarily generated by GrpGen, algorithm GrpVfy(1λ, Π)
outputs 1 if and only if Π has the form

Π = (p,G,GT , ◦, ◦T , e, φ(1))

and all requirements from Definition 10 are satisfied.

Recognition and Unique Representation of Elements of G. Further, we
require that each element in G has a unique representation, which can be
efficiently recognized. That is, on input the security parameter (in unary)
and two strings Π and s, GrpElemVfy(1λ, Π, s) outputs 1 if and only if
GrpVfy(1λ, Π) = 1, and it holds that s = φ(x) for some x ∈ Zp. Here
φ : Zp → G denotes the fixed group isomorphism contained in Π to specify
the representation of elements of G.
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NAND circuits. Before describing our construction, we require a formal defini-
tion of NAND circuits. The type of circuits we consider take two types of inputs:
public inputs and secret inputs. For the function G, which we want to embed
in the VRF, we can think of the public input as a VRF input X ∈ {0, 1}λ and
of the secret input as the PRF key KPRF and the partitioning key Kpart. Like
Yamada, we roughly follow the notation of [7] when describing NAND circuits.
That is, we assign an index to each input bit and to each gate, beginning with
the public input bits, continuing with the secret inputs bits and finally indexing
the gates. Formally, if there are k ∈ N inputs of which kpub ∈ [k] are public
input bits and ksec = k − kpub are secret input bits, then we set P := [kpub] and
S := [kpub + 1, kpub + ksec] as the respective index sets for the public and secret
input bits.

For a NAND circuit C : {0, 1}|P|+|S| → {0, 1} with c many gates and |P|+ |S|
many input bits, we assign an index j ∈ C := [|P| + |S| + 1, |P| + |S| + c] to
each gate. Further, we formalize the wiring of the circuit with the functions
in1, in2 : C → P ∪S ∪C that represent the input wires of a gate. We require that
for all j ∈ C it holds that in1(j) < j and in2(j) < j. This condition ensures that
the circuit does not contain any circles.

Since we only consider circuits with a single output bit, we assume without
loss of generality that the output of the gate with index |P|+ |S|+ |C| outputs
the overall output of the circuit. Furthermore, we define the depth of a gate j as
the maximal distance from any input gate to j. Consequentially, we define the
depth of a circuit C as the depth of the gate with index |P|+ |S|+ |C|.

Evaluating a circuit. For a circuit C in the notation above with public inputs
p = (pj)j∈P , secret inputs s = (sj)j∈S , gates with indexes in C and the wiring
encoded by in1, in2 : C → P∪S∪C, we define the function value : P∪S∪C → {0, 1}
as follows. For all j ∈ P we set value(j) := pj and for all j ∈ S as value(j) := sj .
Further, for all j ∈ C, we set value(j) := value(in1(j))NANDvalue(in2(j)). In
order to evaluate a circuit on input p ∈ {0, 1}|P| and s ∈ {0, 1}|S|, we compute
value(|P|+ |S|+ |C|) since the gate with index |P|+ |S|+ |C| outputs the overall
output of C. Note that the evaluation of the circuit is well-defined because we
have that for all j ∈ C it holds that in1(j) < j and in2(j) < j.

Representing G as a circuit. For our construction, we need to represent G from
Definition 9 as a NAND-circuit. However, given the plain definition of G, the
number of input bits of the circuit depends on η(λ), which in turn depends on the
number Q of Eval queries made by the adversary. We address this by adapting the
encoding of Kpart. Namely, we let PrtSmp(1λ, Q(λ)) be the algorithm that samples

Kmatch $←{0, 1}n(λ), computes η := dlog(Q(λ))e + 1 sets Kfixing = 1η||0n(λ)−η(λ)
and outputs Kpart = (Kmatch,Kfixing) ∈ ({0, 1}n(λ))2. We then adapt the function
F(X ′,Kpart) to compare X and Kmatch on all positions where Kfixing is 1 and output
1 if they match on all such positions and 0 otherwise. These adaptations do not
change the output of F or G but ensure that the NAND-circuit representing G
only depends on λ and not on Q. Note that it would be possible to encode Kfixing

more efficiently, but we use this encoding for simplicity.
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Construction. We assume that the NAND-circuits for the function G for different
security parameters are publicly known, and we denote the circuit for G with
security parameter λ by CG,λ. For our construction, we have that P = [λ],
since the public input of G is X ∈ {0, 1}λ. Furthermore, we set SPRF := [|P| +
1, |P| + m(λ)] for the indexes of the bits of KPRF ∈ {0, 1}m(λ), Spart := [|P| +
|SPRF| + 1, |P| + |SPRF| + 2n(λ)] for the indexes of Kmatch ∈ {0, 1}2n(λ), and
S := SPRF ∪ Spart. Finally, we assume that the function in1λ, in

2
λ : C → P ∪ S ∪ C

encode the wiring of CG,λ and that |P|+ |S|+ |C| is the index of the output gate.
For simplicity, we set out := |P|+ |S|+ |C|.

Gen(1λ) first generates a group description Π
$←GrpGen(1λ) and samples uni-

formly random group generators g, h
$←G\{0}, w0

$←Z∗p and wj
$←Zp for all

j ∈ S. It then sets W0 := gw0 , Wj := gwj for all j ∈ S and outputs

vk :=
(
Π, g, h,W0, (Wj)j∈S

)
and sk :=

(
w0, (wj)j∈S

)
.

Eval(sk, X) parses X ∈ {0, 1}λ as (X1, . . . , Xλ) and sets

θj :=

{
Xj if j ∈ P
wj if j ∈ S

for all j ∈ P ∪ S. For all j ∈ C, it sets

θj := 1− θin1
λ(j)

θin2
λ(j)

.

It then sets π0 := gθout/w0 and πj := gθj for all j ∈ C and outputs

Y := e(g, h)θout/w0 and π := (π0, (πj)j∈C).

Vfy(vk, X, Y, π) first verifies that vk has the form (Π, g, h,W0, (Wj)j∈S) and that
π has the form (π0, (πj)j∈C). It then verifies the group description by running
GrpVfy(1λ, Π) and then verifies all group elements in vk, π and Y by running
GrpElemVfy(1λ, Π, s) for all s ∈ {g, h, Y, π0, π|P|+|S|+1, . . . , π|P|+|S|+|C|}. Vfy
outputs 0 if any of the checks fails. Next, the algorithm verifies the correct-
ness of Y in respect to vk, X and π by setting πj := gXj for all j ∈ P and
πj := Wj for all i ∈ S and performing the following steps.

1. It checks whether e(g, πj) = e(g, g)
(
e(πin1

λ(j)
, πin2

λ(j)
)
)−1

for all j ∈ C.
2. It checks whether e(π0,W0) = e(πout, g).
3. It checks whether e(π0, h) = Y .

If any of the checks above fail, then Vfy outputs 0. Otherwise, it outputs 1.

The proofs for correctness and unique provability closely follow the respective
proofs by Yamada [51]. We therefore only present them in the full version [45,
Section 4.1]. Before proving the pseudorandomness of the VRF, we shortly dis-
cuss the instantiation with concrete PRFs and the effect on the efficiency.
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Instantiation. In order to instantiate the VRF , we need that G can be rep-
resented by a circuit of polynomial size and logarithmic depth. While this is
certainly possible for the comparison of the PRF output with Kmatch, we also re-
quire a PRF that can be computed by such a NAND circuit. The Naor-Reingold
PRF is an example of such a PRF that is also provably secure under the DDH
assumption [44]. However, we can further optimize the efficiency by using the
adaptation of the Naor-Reingold PRF in [33, Section 5.1]. This PRF has secret
keys of size ω(log(λ)). Further, we can change the encoding of Kmatch and Kfixing

to also consist of only ω(log(λ)) many bits. This would bring the size of the
public verification key down to ω(log(λ)), would however only hold for λ large
enough. We can further optimize the size of the proofs by applying the technique
of [30], which allows to reduce the circuit size of every PRF to O(λ) at the cost
of reducing the output length to λ1/c for some constant c > 0 that depends on
the PRF. However, the smaller output length is no issue, since λ1/c is larger
than dlog(Q(λ))e + 1 = O(log(λ)) for large enough λ, because Q is polynomial
in λ. This technique therefore reduces the size of proofs to O(λ).

4.1 Proof of Pseudorandomness

The security of our VRF is based on the decisional q-bilinear Diffie-Hellman
inversion assumption that we formally introduce below.

Definition 12 (Definition 4 in [12]). For a bilinear group generator GrpGen,

an algorithm B and q ∈ N, let Gq-DBDHI
B (λ) be the following game. The challenger

runs Π
$←GrpGen(1λ), samples g, h

$←G, α
$←Z∗p and b

$←{0, 1}. Then it defines

T0 := e(g, h)1/α and T1
$←GT . Finally, it runs b′

$←B(Π, g, h, gα, . . . , gα
q

, Tb),
and outputs 1 if b = b′, and 0 otherwise. We denote with

Advq-DBDHI
B (λ) :=

∣∣∣Pr
[
Gq-DBDHI
B (λ) = 1

]
− 1/2

∣∣∣
the advantage of B in breaking the q-DBDHI-assumption for groups generated
by GrpGen, where the probability is taken over the randomness of the challenger
and B. For functions t : N→ N and ε : N→ [0, 1], we say that B (t, ε)-breaks the

q-DBDHI assumption relative to GrpGen, if Advq-DBDHI
B (λ) = ε(λ) and B runs in

time t(λ).

Note that the assumption falls in the category of non-interactive complexity
assumptions from Definition 3. Based on this assumption, we can formulate the
theorem for the pseudorandomness of our VRF.

Theorem 2. Let VRF = (Gen,Eval,Vfy) be the verifiable random function
above, then for every legitimate adversary A = (A1,A2) that (tA, εA) breaks
the pseudorandomness of VRF and makes Q(λ) queries to Eval for some poly-
nomial Q : N→ N, there exists an algorithm B that (tB, εB)-breaks the q-DBDHI
assumption relative to GrpGen used in VRF with

tB(λ) = tA(λ), εB(λ) ≥ εA(λ)

8Q(λ)
− εPRF(λ)− negl(λ) and q := 2d,
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where d is the depth of the circuit for G, εPRF is the largest advantage any algo-
rithm with runtime tA(λ) that makes Q(λ) queries to its oracle has in breaking
the security of the PRF used in VRF and negl(λ) is a negligible function. In
particular: VRF achieves the optimal tightness, since εPRF(λ) is negligible if the
construction is instantiated with a PRF with a security reduction loss of at most
Q(λ).

Remark 1. Note that the requirement of a loss of at most Q for the PRF is
fulfilled by e.g. the Naor-Reingold PRF [44] or the PRFs by Jageret al. [33].

Proof. Since Eval is deterministic, A can not learn anything by making the same
query to Eval twice. We therefor assume without loss of generality that A makes
only pairwise distinct queries to Eval. Further, we set Q := Q(λ), n := n(λ),m :=
m(λ) and εA := εA(λ) in order to simplify notation.

We prove Theorem 2 with a sequence of games argument [48]. We denote the
event that Game i outputs 1 by Ei. The first part of the proof will focus on our
technique of using a PRF for partitioning. The second part of the proof follows
the proof by Yamada [51, Theorem 6] and we provide it mostly for completeness.

Game 0. This is the original security experiment from Definition 1 and we
therefore have that ∣∣∣∣Pr [E0]− 1

2

∣∣∣∣ = εA

holds by definition.

Game 1. In this game, the challenger first runs the game as before. But, be-

fore outputting a result, it samples X ′i
$←{0, 1}n uniformly and independently

at random for each query Xi ∈ {0, 1}λ to Eval by A and X∗
′ $←{0, 1}n for the

challenge X∗ ∈ {0, 1}λ. Observe that this perfectly emulates the process of eval-
uating a truly random function on the queries and the challenge because we
assumed without loss generality that all queries and the challenge are pairwise

distinct. Further, it sets η := dlogQe+ 1 and samples Kpart $←PrtSmp(1λ, Q). It
then aborts and outputs a random bit if F(X ′i,K

part) = 1 for any i ∈ [Q] or if

F(X∗
′
,Kpart) = 0. We denote the occurrence of any of the two abort conditions

by the event bad. We next show that

|Pr [E1]− Pr [E0]| = εA(1− Pr [bad]) ≤ εA
(

1− 1

8Q

)
.
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We use later that Pr [¬bad] ≥ 1/(8Q), which follows from Lemma 1 and will in
the end yield the loss stated in Theorem 2. We have the following.

|Pr [E1]− Pr [E0]| = |Pr [E1 | bad] Pr [bad] + Pr [E1 | ¬bad] Pr [¬bad]− Pr [E0]|

=

∣∣∣∣12 (1− Pr [¬bad]) + Pr [E1 | ¬bad] Pr [¬bad]− Pr [E0]

∣∣∣∣
=

∣∣∣∣12 + Pr [¬bad]

(
Pr [E1 | ¬bad]− 1

2

)
− Pr [E0]

∣∣∣∣
=

∣∣∣∣12 + Pr [¬bad]

(
Pr [E0]− 1

2

)
− Pr [E0]

∣∣∣∣ (3)

=

∣∣∣∣Pr [¬bad]

(
Pr [E0]− 1

2

)
−
(

Pr [E0]− 1

2

)∣∣∣∣
=

∣∣∣∣(Pr [E0]− 1

2

)
(Pr [¬bad]− 1)

∣∣∣∣
=

∣∣∣∣Pr [E0]− 1

2

∣∣∣∣ · |Pr [¬bad]− 1|

= εA · (1− Pr [¬bad])

Note that Equation (3) holds because Pr [E1 | ¬bad] = Pr [E0 | ¬bad] and the
event ¬bad is independent of E0. The independence holds because X∗

′
and all X ′i

are drawn at random. Note that it is this independence together with the inde-
pendence between the different X ′i and X∗ that allows us to achieve the optimal
tightness in contrast to the other approaches discussed in the introduction.

Further, by Lemma 1, we have that Pr [¬bad] ≥ 1/(8Q) holds and therefore

|E1 − E0| = εA(1− Pr [¬bad]) ≤ εA
(

1− 1

8Q

)
.

Game 2. In this game, the challenger only changes the way it computes X∗
′

and X ′i for all i ∈ [Q]. The challenger samples KPRF $←{0, 1}m and aborts and
outputs a random bit if G(Xi,K

PRF,Kpart) = 1 or if G(X∗,KPRF,Kpart) = 0. The
only difference to Game 1 is that G sets X∗

′
:= PRF(KPRF, X∗) and X ′i :=

PRF(KPRF, Xi) instead of drawing them uniformly at random.
Informally, every algorithm distinguishing Game 2 from Game 1 with advan-

tage ε implies a distinguisher for PRF with advantage ε. We describe a distin-
guisher BPRF for PRF that is based on Game 2 and Game 1 and achieves exactly
this: BPRF(λ) with access to either a PRF(KPRF, ·) or a truly random function

F
$←Fλ,n(λ) as oracle first runs (vk, sk)

$←Gen(1λ) and uses sk to answer all
queries and the challenge by A. After A submits its guess b′, BPRF queries its
oracle on Xi and by that obtains X ′i for all i ∈ [Q]. Analogously, it queries its

oracle on X∗ and by that obtains X∗
′
. It then samples Kpart $←PrtSmp(1λ, Q)

and aborts and outputs a random bit if F(X∗
′
,Kpart) = 0 or F(X ′i,K

part) = 1 for
some i ∈ [Q]. Otherwise, BPRF outputs 1 if A’s guess is correct and 0 otherwise.
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Note that B has exactly the same runtime as A and that the probability that
it outputs 1 is identical to Pr [E2] if its oracle is the pseudorandom function.
Analogously, if its oracle is a truly random function, then its output is 1 with
probability Pr [E1]. We therefore have

|Pr [E2]− Pr [E1]| =∣∣∣∣∣ Pr
KPRF $←{0,1}m

[
BPRF(KPRF,·)

PRF (1λ) = 1
]
− Pr
F

$←Fλ,n(λ)

[
BF (·)

PRF = 1
]∣∣∣∣∣ ≤ εPRF.

Game 3. In this game, the challenger samples KPRF $←{0, 1}m and the partition-

ing key Kpart $←PrtSmp(1λ, Q) in the very beginning and aborts and outputs a
random bit as soon as A makes an Eval query Xi with G(Xi,K

PRF,Kpart) = 1 or
if it holds for A’s challenge X∗ that G(X∗,KPRF,Kpart) = 0. Since this is just a
conceptual change, we have that

Pr [E3] = Pr [E2] .

From here on, the proof mostly follows the proof by Yamada [51, Appendix C]
and we present it here for completeness.

Game 4. In this game, we change the way the wj are chosen. That is, the chal-

lenger samples the partitioning key Kpart $←PrtSmp(1λ, Q) with Kpart ∈ {0, 1}|Spart|

and KPRF $←{0, 1}|SPRF|. For all j ∈ S it sets sj := KPRF
j−|P| for all j ∈ SPRF and

sj := Kpart
j−|P|−|SPRF| for all j ∈ Spart. The challenger then samples α

$←Z∗p, and

w̃j
$←Z∗p for all j ∈ S. It then sets

w0 := w̃0α and wj := w̃j · α+ sj for all j ∈ S.

Note that the w̃j are drawn from Z∗p and not from Zp like the wj in the previous
game. This slightly changes the distributions of the wj . However, the overall
statistical distance is at most |S|/p, which is negligible because p = Ω(2λ) by
Definition 10. We therefore have that

|E4 − E3| = negl(λ).

Before proceeding to the next game, we introduce additional notation. That
is, for all X ∈ {0, 1}λ and all j ∈ P ∪ S ∪ C, we let

PX,j(Z) :=


Xj if j ∈ P,
w̃iZ + sj if j ∈ S and

1− PX,in1
λ(j)

(Z)PX,in2
λ(j)

(Z) if j ∈ C.

Note that by the definition of wj form Game 3, we have that PX,j(α) = θj . In
order to proceed to the next game, we require the following lemma by Yamada.
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Lemma 2 (Lemma 16 in [51]). There exists RX(Z) ∈ Zp[Z] with deg(R(Z)) ≤
deg(PX,out(Z)) ≤ 2d, where d is the depth of the circuit for the function G, and

PX,out(Z) = G(X,KPRF,Kpart) + Z · RX(Z).

We provide proof in the full version [45, Appendix A] for completeness.

Game 5. With Lemma 2 at our hands, we change how the challenger answers A’s
queries to Eval in this game. As in the previous game, the challenger aborts and
outputs a random bit if G(Xi,K

PRF,Kpart) = 1 for any query Xi by A. Otherwise,
the challenger computes and outputs

Y := e
(
gRX(α)/w̃0 , h

)
, π :=

(
π0 = gRX(α)/w̃0 ,

(
πj := gPX,j(α)

)
j∈C

)
.

Observe that Y and π are distributed exactly as in Game 4. This holds for all
πj because PX,j(Z) is defined exactly as Pj in the definition of Eval above, just
with wj defined as in Game 4. Further, it holds for π0 and Y because

RX(α)

w̃0
=
α · RX(α)

α · w̃0
=

G(X,KPRF,Kpart) + α · RX(α)

α · w̃0
=

PX,out(α)

w0
,

where the last equality follows from Lemma 2. We therefore have that

Pr [E5] = Pr [E4] .

Game 6. In this game, we change how the challenger answers to A’s challenge
X∗. As in the previous game, the challenger aborts and outputs a random bit if
G(X∗,KPRF,Kpart) = 0. Otherwise, the challenger computes RX∗(α) and sets

Y0 :=
(
e(g, h)1/α · e

(
gRX∗ (α), h

))1/w̃0

= e
(
g(1+αRX∗ (α))/(w̃0α), h

)
= e

(
g(G(X∗,KPRF,Kpart)+αRX∗ (α))/(w̃0α), h

)
= e

(
gPX∗,out(α)/w0 , h

)
Then, the challenger samples a uniformly random bit b and Y1

$←GT and outputs
Yb to A. Again, observe that PX∗,out(α) is, relative to wj as defined in Game 4,
distributed exactly as θout in the definition of Eval . We therefore have that

Pr [E6] = Pr [E5] .

We now claim that there is an algorithm B that runs in time tA and solves
the q-DBDHI problem probability Pr [E6].

Lemma 3. Let d ∈ N be the depth of the CG,λ, then there is an algorithm B
with run time tB ≈ tA that on input a q-DBDHI instance with q = 2d perfectly

simulates Game 6 such that Pr
[
Gq-DBDHI
B (λ) = 1

]
= Pr [E6].
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Due to space limitations and since the proof very closely follows the respective
proof by Yamada, we only provide it in the full version [45]. By Lemma 3 and
the (in)equalities we derived above we have that

εA =

∣∣∣∣Pr [E0]− 1

2

∣∣∣∣ ≤ |Pr [E0]− Pr [E1]|+
∣∣∣∣Pr [E1]− 1

2

∣∣∣∣
≤ εA

(
1− 1

8Q

)
+

∣∣∣∣Pr [E1]− 1

2

∣∣∣∣
≤ εA

(
1− 1

8Q

)
+ εPRF +

∣∣∣∣Pr [E2]− 1

2

∣∣∣∣
= εA

(
1− 1

8Q

)
+ εPRF +

∣∣∣∣Pr [E3]− 1

2

∣∣∣∣
≤ εA

(
1− 1

8Q

)
+ εPRF + negl(λ) +

∣∣∣∣Pr [E4]− 1

2

∣∣∣∣
= εA

(
1− 1

8Q

)
+ εPRF + negl(λ) +

∣∣∣∣Pr [E6]− 1

2

∣∣∣∣
= εA

(
1− 1

8Q

)
+ εPRF + negl(λ) + εB

Rearranging the terms, we have that

εB ≥
εA
8Q
− εPRF − negl(λ).

This concludes the proof of Theorem 2.

5 Conclusion

We have settled the question: What is the optimal tightness an adaptively se-
cure VRF can achieve? We did so by showing that every reduction from a non-
interactive complexity assumption that can sequentially rewind the adversary
a constant number of times necessarily loses a factor of ≈ Q. Further, we con-
structed the first VRF with a reduction that has this optimal tightness. The
takeaway message is that the optimal loss for adaptively secure VRFs is Q and
that it is possible to construct VRFs that attain this bound.

Our main technical contributions are:

1. The extension of the lower bound for the loss of reductions by Bader et al. [5]
to VRFs and VUFs in Section 2.

2. Further, we presented a new partitioning strategy that achieves this optimal
tightness even in the context of decisional security notions and complexity
assumptions.
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3. Finally, we show that this partitioning strategy can be applied in Yamada’s
VRF and thus yields a VRF in the standard model with optimal tightness.
This also shows that the lower bound on the loss of reductions from a non-
interactive complexity assumption to the security of a VRF that we present
is optimal.

However, there are still some open questions. The technique of Bader et al., and
therefore also our results, only applies to non-interactive complexity assumptions
and reductions that sequentially rewind adversaries. While this result covers
already a large class of assumptions and reductions, it does not cover interactive
assumptions and reductions that can run several instances of the adversary in
parallel. Morgan and Pass show a lower bound of

√
Q for the loss of reductions

to the unforgeability of unique signatures from interactive assumptions [42]. It
seems plausible that their technique could be extended to also cover VRFs and
VUFs.

Another open question is whether there are VRFs with an optimally tight
reduction that have key and proof sizes comparable to constructions with non-
optimal tightness (see e.g. [38] or [36] for recent comparisons). Furthermore,
the q-DBDHI assumption with a polynomial q is not a standard assumption
and gets stronger with q [18]. It would therefore be preferable to construct an
efficient VRF with optimal tightness from a standard assumption, like the VRFs
in [27,38,46].
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