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Abstract. Secure asynchronous two-party communication applies ratch-
eting to strengthen privacy, in the presence of internal state exposures.
Security with ratcheting is provided in two forms: forward security and
post-compromise security. There have been several such secure protocols
proposed in the last few years. However, they come with a high cost.
In this paper, we propose two generic constructions with favorable prop-
erties. Concretely, our first construction achieves security awareness. It
allows users to detect non-persistent active attacks, to determine which
messages are not safe given a potential leakage pattern, and to acknowl-
edge for deliveries.
In our second construction, we define a hybrid system formed by com-
bining two protocols: typically, a weakly secure “light” protocol and a
strongly secure “heavy” protocol. The design goals of our hybrid con-
struction are, first, to let the sender decide which one to use in order
to obtain an efficient protocol with ratchet on demand ; and second, to
restore the communication between honest participants in the case of a
message loss or an active attack.
We can apply our generic constructions to any existing protocol.

1 Introduction

In recent messaging applications, protocols are secured with end-to-end encryp-
tion to enable secure communication services for their users. Besides security,
there are many other characteristics of communication systems. The nature of
two-party protocols is that it is asynchronous: the messages should be trans-
mitted regardless of the counterpart being online; the protocols do not have
any control over the time that participants send messages; and, the participants
change their roles as a sender or a receiver arbitrarily.

Many deployed systems are built with some sort of security guarantees. How-
ever, they often struggle with security vulnerabilities due to the internal state
compromises that occur through exposures of participants. In order to prevent
the attacker from decrypting past communication after an exposure, a state
update procedure is applied. Ideally, such updates are done through one-way
functions which delete the old states and generate new ones. This guarantees



forward secrecy. Additionally, to further prevent the attacker from decrypting
future communication, ratcheting is used. This adds some source of randomness
in every state update to obtain what is called future secrecy, or backward secrecy,
or post-compromise security, or even self-healing.

Formal definitions of ratcheting security given have been recently studied,
by Bellare et al. [2], followed by many others subsequent studies [1,7–10]. Some
of these schemes are key-exchange protocols while others are secure messaging.
Since secure ratcheted messaging boils down to secure key exchange, we consider
these works as equivalent.

Previous work. Early ratcheting protocols were suggested in Off-the-Record
(OTR) and then Signal [3, 11]. The security of Signal was studied by Cohn-
Gordon et al. [5]. Unger et al. [12] surveyed many ratcheting techniques. Alwen
et al. [1] formalized the concept of “double ratcheting” from Signal.

Cohn-Gordon et al. [6] proposed a ratcheted protocol at CSF 2016 but
requiring synchronized roles. Bellare et al. [2] proposed another protocol at
CRYPTO 2017, but unidirectional and without forward secrecy. Poettering and
Rösler (PR) [10] designed a protocol with “optimal ” security (in the sense that
we know no better security so far), but using a random oracle, and heavy algo-
rithms such as hierarchical identity-based encryption (HIBE). Yet, their proto-
col does not guarantee security against compromised random coins. Jaeger and
Stepanovs (JS) [8] proposed a similar protocol with security against compro-
mised random coins: with random coin leakage before usage. Their protocol also
requires HIBE and a random oracle.

Durak and Vaudenay (DV) [7] proposed a protocol with slightly lower secu-
rity3 but relying on neither HIBE nor random oracles. They rely on a public-
key cryptosystem, a digital signature scheme, a one-time symmetric encryption
scheme, and a collision-resistant hash function. They further show that a uni-
directional scheme with post-compromise security implies public-key cryptogra-
phy, which obviates any hope of having a fully secure protocol solely based on
symmetric cryptography. At EUROCRYPT 2019, Jost, Maurer, and Mularczyk
(JMM) [9] proposed concurrently and independently a protocol with security
between optimal security and the security of the DV protocol.4 They achieve it
even with random coin leakage after usage. Contrarily to other protocols achiev-
ing security with corrupted random coins, in their protocol, random coin leakage
does not necessarily imply revealing part of the state of the participant. In the
same conference, Alwen, Coretti, and Dodis [1] proposed two other ratcheting
protocols denoted as ACD and ACD-PK with security against adversarially cho-
sen random coins and immediate decryption. Namely, messages can be decrypted
even though some previous messages have not been received yet. The ACD-PK
protocol offers a good level of security, although having immediate decryption
may lower it a bit as it will be discussed shortly. On the other hand, during a
phase when the direction of communication does not change, the ACD protocol

3 More precisely, the security is called “sub-optimal ” [7].
4 They call this security level “near-optimal ” [9].
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is fully based on symmetric cryptography, hence has lower security (in particular,
no post-compromise security in this period). However, it is much more efficient.
Following the authors of ACD, we consider Signal and ACD as equivalent.

We summarize these results in Table 1. The first four rows are based on
DV [7, Table 1]. The other rows of the table will be discussed shortly.

Recently, Yan and Vaudenay [13] proposed Encrypt-then-Hash (EtH), a sim-
ple, natural, and extremely efficient ratchet protocol based on symmetric cryp-
tography only, which provides forward secrecy but not post-compromise security.
In short, it replaces the encryption key by its hash after every encryption or de-
cryption, and needs one key for each direction of communication.

We are mostly interested in the DV model [7]. It gives a simple descrip-
tion of the KIND security and FORGE security. The former deals with key in-
distinguishability where the generated keys are indistinguishable from random
strings and the latter states that update messages for ratcheted key exchange are
unforgeable. Additionally, they present the notion of RECOVER-security which
guarantees that participants can no longer accept messages from their counter-
part after they receive a forged message. Even though FORGE security avoids
non-trivial forgeries, there are still (unavoidable) trivial forgeries. They occur
when the state of a participant is exposed and the adversary decides to imper-
sonate him. With RECOVER security, when an adversary impersonates someone
(say Bob), the impersonated participant is out and can no longer communicate
with the counterpart (say Alice). It does not mean to bother participants but
rather work for their benefit. Indeed, this security notion guarantees that the
attack is eventually detected by Bob if he is still alive. If the protocol has a way
to resume secure communication based on an explicit action from the users, this
property is particularly appealing.

What makes the DV model simple is that all technicalities are hidden in a
cleanness notion which eliminates trivial attack strategies. The adversary can
only win when the attack scenario trace is “clean”. This model makes it easy to
consider several cleanness notions, specifically for hybrid protocols. The difficulty
is perhaps to provide an exhaustive list of criteria for attacks to be clean.

Our contributions. We start with formally and explicitly defining a notion of
security awareness in which the users detect active attacks by realizing they can
no longer communicate; users can be confident that nothing in the protocol can
compromise the confidentiality of an acknowledged message if it did not leak
before; and users can deduce from an incoming message which of the messages
they sent have been delivered when the incoming message was formed.

More concretely, we elaborate on the RECOVER security to offer optimal
security awareness. We start by defining a new notion called s-RECOVER. We
make sure that not only is a receiver of a forgery no longer able to receive genuine
messages via r-RECOVER-security but he can no longer send a message to his
counterpart either via s-RECOVER-security. The r-RECOVER security is equal
to RECOVER security of the DV protocol. Both r-RECOVER and s-RECOVER
notions imply that reception of a genuine message offers a strong guarantee of
having no forgery in the past: after an active attack ended, participants realize
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they can no longer communicate. Our security-awareness notion makes also ex-
plicit that the receiver of a message can deduce (in absence of a forgery) which
of his messages have been seen by his counterpart (which we call an acknowledg-
ment extractor). Hence, each sent message implicitly carries an acknowledgment
for all received messages. Finally, what we want from the history of receive/send
messages and exposures of a participant is the ability to deduce which message
remains private (or “clean”). We call it a cleanness extractor.

Then, we give another generic construction to compose “any” two protocols
with different security levels to allow a sender to select which security level
to use. By composing a strongly secure protocol (such as PR, JS, JMM, DV)
with a lighter and weakly secure one (such as EtH [13], which is solely based on
symmetric cryptography), we obtain the notion of ratchet on-demand. When the
ratcheting becomes infrequent, we obtain the excellent software performances
of EtH as we will show in our implementation results. Hybrid constructions
already exist, like Signal/ACD. However, they offer no control on the choice of
the protocol to be used. Instead, they ratchet if (and only if) the direction of
communication alternates.

We find that there would be an advantage to offer more fine grained flexibility.
The decision to ratchet or not could of course be made by the end user or rather
be triggered by the application at an upper layer, based on a security policy. For
instance, it could make sense to ratchet on a smartphone for every new message
following bringing back the app to foreground, or to ratchet no more than once
an hour.

Another interesting outcome of our hybrid system is that we can form our
hybrid system with two identical protocols: an upper one and a lower one. The
lower protocol is used to communicate the messages and the upper protocol is
used to control the lower protocol: to setup or to reset it. With this hybrid
structure with identical protocols, we can repair broken communication in the
case of a message loss or active attacks. As far as we observe, the complexity
of the hybrid system is the same as the complexity of the underlying protocol.
Since our security-aware property breaks communication in the case of an active
attack, this repairing construction is a nice additional tool.

Last but not least, we implemented the many existing protocols: PR, JS, DV,
JMM, ACD, ACD-PK, together with EtH. We observe that EtH is the fastest one.
This is not surprising for all protocols which heavily use public-key cryptogra-
phy, but it is surprising for ACD. Our goal is to offer a high level of security
with the performances of EtH. We reach it with on-demand ratcheting when the
participant demands healing scarcely.

Finally, we conclude that security awareness can be added on top of an exist-
ing protocol (even a hybrid one) in a generic way to strengthen security. We pro-
pose this generic strengthening (called chain) of protocol to obtain r-RECOVER
and s-RECOVER security on the top of any protocol. As an example, we apply
it on the ratchet-on-demand hybrid protocol composed with DV and EtH and
obtain our final protocol.
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We provide a comparison of all the protocols with r-RECOVER-security,
s-RECOVER-security, acknowledgment extractor and cleanness extractor in Ta-
ble 1. Note that this table is made to help both the authors and the readers to
have a fair understanding of what specified properties each protocol has or not.
We stress that “any” protocol could form a hybrid system to provide ratchet-
on-demand and repairing a broken communication in the case of message loss or
active attacks. The protocol which is shown in the last column is the case where
we chose to use DV and EtH to construct our hybrid system.

Table 1: Comparison of Several Protocols with our protocol
chain(hybrid(ARCADDV, EtH)) from Cor. 29 in Section 3.3: security level;
worst case complexity for exchanging n messages; types of coin-leakage
security; plain model (i.e. no random oracle); PKC or less (i.e. no HIBE).
DV and ARCADDV have identical characteristics. ARCADDV is based on DV
and described in Appendix B. The terms “optimal”, “near-optimal”, and
“sub-optimal” from Durak-Vaudenay [7] are mentioned on p. 2. “Pragmatic”
degrades a bit security to offer on-demand ratcheting. “id-optimal” is optimal
among protocols with immediate decryption.

PR [10] JS [8] JMM [9] DV [7] ACD-PK [1] ours

Security optimal optimal near-optimal sub-optimal id-optimal pragmatic

Worst case complexity O(n2) O(n2) O(n2) O(n) O(n) O(n)

Coins leakage resilience no pre-send post-send no chosen coins no

Plain model (no ROM) no no no yes yes yes

PKC or less no no yes yes yes yes

Immediate decryption no no no no yes no

r-RECOVER security no yes no yes no yes

s-RECOVER security no yes no no no yes

ack. extractor yes yes yes yes no yes

cleanness extractor yes yes yes yes yes yes

category BARK ARCAD ARCAD BARK ARCAD ARCAD

To summarize, our contributions are:

– we formally define the notion of security awareness, construct a generic pro-
tocol strengthening called chain, and prove its security;

– we define the notion of on-demand ratcheting, construct a generic hybrid
protocol called hybrid, define and prove its security;

– we implement PR, JS, DV, JMM, ACD, ACD-PK, and EtH protocols in order
to clearly compare their performances.

Notation. We have two participants named Alice (A) and Bob (B). Whenever we
talk about either one of the participants, we represent it as P, then P refers to P’s
counterpart. We have two roles send and rec for sender and receiver respectively.
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We define send = rec and rec = send. When the communication is unidirectional,
the participants are called the sender S and the receiver R.

Structure of the paper. In Section 2, we revisit the preliminary notions from
Durak-Vaudenay [7] and Alwen-Coretti-Dodis [1]. They all are essential to be
able to follow our results. In Section 3, we define a new notion named security
awareness and build a protocol with regard to the notion. In Section 4, we define
a new protocol called on-demand ratcheting with better performance than state-
of the-art. Finally, in Appendix A, we present our implementation results with
the figures comparing various protocols. Appendix B presents ARCADDV: the DV
protocol in a simplified form and in the frame of ARCAD.

2 Preliminaries

2.1 ARCAD Definition and Security

In this section, we recall the DV model [7] and we slightly adapt it to define
asynchronous ratcheted communication with additional data denoted as ARCAD.
That is, we consider message encryption instead of key agreement (BARK: bidi-
rectional asynchronous ratcheted key agreement). The difference between BARK
and ARCAD is the same as the difference between KEM and cryptosystems: pt
is input to Send instead of output of Send. Additionally, we treat associated
data ad to authenticate. Like DV [7]5, we adopt asymptotic security rather than
exact security, for more readability. Adversaries and algorithms are probabilistic
polynomially bounded (PPT) in terms of a parameter λ.

As we slightly change our direction from key exchange to encryption, we feel
that it is essential to redefine the set of definitions from BARK for ARCAD. In this
section, some of the definitions are marked with the reference [7]. It means that
these definitions are unchanged except for possible necessary notation changes.
The other definitions are straightforward adaptations to fit ARCAD. We try not
to overload this section by redefining already existing terminology, hence, we let
less essential definitions in the full version [4].

Definition 1 (ARCAD). An asynchronous ratcheted communication with ad-
ditional data (ARCAD) consists of the following PPT algorithms:

– Setup(1λ)
$−→ pp: This defines the common public parameters pp.

– Gen(1λ, pp)
$−→ (sk, pk): This generates the secret key sk and the public key

pk of a participant.
– Init(1λ, pp, skP, pkP,P)→ stP: This sets up the initial state stP of P given his

secret key, and the public key of his counterpart.

– Send(stP, ad, pt)
$−→ (st ′P, ct): it takes as input a plaintext pt and some as-

sociated data ad and produces a ciphertext ct along with an updated state
st ′P.

5 Proceedings version.
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– Receive(stP, ad, ct)→ (acc, st ′P, pt): it takes as input a ciphertext ct and some
associated data ad and produces a plaintext pt with an updated state st ′P
together with a flag acc.6

An additional Initall(1λ, pp) → (stA, stB, z) algorithm, which returns the initial
states of A and B as well as public information z, is defined as follows:

Initall(1λ, pp):
1: Gen(1λ, pp)→ (skA, pkA)
2: Gen(1λ, pp)→ (skB, pkB)
3: stA ← Init(1λ, pp, skA, pkB,A)

4: stB ← Init(1λ, pp, skB, pkA,B)
5: z← (pp, pkA, pkB)
6: return (stA, stB, z)

Initall is defined for convenience as an initialization procedure for all games. None
of our security games actually cares about how Initall is made from Gen and Init.
This is nice because there is little to change to define a notion of “symmetric-
cryptography-based ARCAD” with a slight abuse of definition: we only need to
define Initall. This approach was already adopted for EtH [13] which was proven
as a “secure ARCAD” in this way.

For all global variables v in the game such as receivedPct, stP, or ctP (which
appear in Fig. 1 and Fig. 2, for instance), we denote the value of v at time
t by v(t). The notion of time is participant-specific. It refers to the number
of elementary operations he has done. We assume neither synchronization nor
central clock. Time for two different participants can only be compared when
they are run non-concurrently by an adversary in a game.

Definition 2 (Correctness of ARCAD). Consider the correctness game given
on Fig. 1.7 We say that an ARCAD protocol is correct if for all sequence sched
of tuples of the form (P, “send”, ad, pt) or (P, “rec”), the game never returns 1.
Namely,

– at each stage, for each P, receivedPpt is prefix of sentPpt
8;

– each RATCH(P, “rec”) call returns acc = true.

We note that RATCH(P, “rec”, ad, ct) ignores messages when decryption fails.
For this reason, when we say that a participant P “receives” a message, we may
implicitly mean that the message was accepted. More precisely, it means that
decryption succeeded and RATCH returned acc = true.

In addition to the RATCH oracle (in Fig. 1) which is used to ratchet (either to
send or to receive), we define several other oracles (in Fig. 2): EXPst to obtain the

6 In our work, we assume that acc = false implies that st ′P = stP and pt = ⊥, i.e. the
state is not updated when the reception fails. Other authors assume that st ′P = pt =
⊥, i.e. no further reception can be done.

7 We use the programming technique of “function overloading” to define the RATCH
oracle: there are two definitions depending on whether the second input is “rec” or
“send”.

8 By saying that receivedPpt is prefix of sentPpt, we mean that sentPpt is the concatenation

of receivedPpt with a (possible empty) list of (ad, pt) pairs.
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Oracle RATCH(P, “rec”, ad, ct)
1: ctP ← ct
2: adP ← ad
3: (acc, st ′P, ptP)← Receive(stP, adP, ctP)
4: if acc then
5: stP ← st ′P
6: append (adP, ptP) to receivedPpt
7: append (adP, ctP) to receivedPct
8: end if
9: return acc

Oracle RATCH(P, “send”, ad, pt)
10: ptP ← pt
11: adP ← ad
12: (st ′P, ctP)← Send(stP, adP, ptP)
13: stP ← st ′P
14: append (adP, ptP) to sentPpt
15: append (adP, ctP) to sentPct
16: return ctP

Game Correctness(sched)
1: set all sent∗∗ and received∗∗ to ∅
2: Setup(1λ)

$−→ pp

3: Initall(1λ, pp)
$−→ (stA, stB, z)

4: initialize two FIFO lists incomingA, incomingB ← ∅
5: i← 0
6: loop
7: i← i+ 1
8: if schedi of form (P, “rec”) then
9: if incomingP is empty then return 0

10: pull (ad, ct) from incomingP
11: acc← RATCH(P, “rec”, ad, ct)
12: if acc = false then return 1
13: else
14: parse schedi = (P, “send”, ad, pt)
15: ct← RATCH(P, “send”, ad, pt)
16: push (ad, ct) to incomingP
17: end if
18: if receivedApt not prefix of sentBpt then return 1

19: if receivedBpt not prefix of sentApt then return 1
20: end loop

Fig. 1: The Correctness Game of ARCAD Protocol.

state of a participant; EXPpt to obtain the last received message pt; CHALLENGE
to send either the plaintext or a random string. All those oracles are used without
change throughout all security notions in this paper.

Definition 3 (Matching status [7]). We say that P is in a matching status
at time t for P if

1. at any moment of the game before time t for P, receivedPct is a prefix of sentPct
— this defines the time t for P when P sent the last message in receivedPct(t);

2. at any moment of the game before time t for P, receivedPct is a prefix of sentPct.

We further say that time t for P originates from time t for P.

Intuitively, P is in a matching status at a given time if his state is not influenced
by an active attack (i.e. message injection/modification/erasure/replay).

Definition 4 (Forgery). Given a participant P in a game, we say that (ad, ct) ∈
receivedPct is a forgery if at the moment of the game just before P received (ad, ct),
P was in a matching status, but no longer after receiving (ad, ct).

Definition 5 (Trivial forgery). Let (ad, ct) be a forgery received by P. At the
time t just before the RATCH(P, “rec”, ad, ct) call, P was in a matching status.
We assume that time t for P originates from time t for P. If there is an EXPst(P)
call between time t for P and the next RATCH(P, “send”, ., .) call (or just after
time t is there is no further RATCH(P, “send”, ., .) call), we say that (ad, ct) is a
trivial forgery.
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We give a brief description of the DV security notions [7] as follows.
FORGE-security: It makes sure that there is no forgery, except trivial ones.
r-RECOVER-security9: If an adversary manages to forge (trivially or not) a

message to one of the participants, then this participant can no longer accept
genuine messages from his counterpart.

PREDICT-security: The adversary cannot guess the value ct which will be
output from the Send algorithm.

KIND-security: We omit this security notion which is specific to key ex-
change. Instead, we consider IND-CCA-security in a real-or-random style.

We define the ratcheting security with IND-CCA notion. Before defining it, we
like to introduce a predicate called Cclean as IND-CCA is relative to this predicate.
The purpose of Cclean is to discard trivial attacks. Somehow, the technicality of
the security notion is hidden in this cleanness notion. An “optimal” cleanness
predicate discards only trivial attacks but other predicates may discard more
and allow to have more efficient protocols [7].

More precisely, for “clean” cases, a security property must be guaranteed. A
“trivial” attack (i.e. an attack that no protocol can avoid) implies a non-clean
case. If the cleanness notion is tight, this is an equivalence.

In the full version [4] we recall the most useful cleanness predicates. In short,

Cleak ∧ C
A,B
trivial forge corresponds to the DV-cleanness notion for post-compromise

security (“sub-optimal”) and Csym is the weaker cleanness notion for forward
secrecy only which is adapted to symmetric cryptographic schemes.

Game IND-CCAA
b,Cclean

(1λ)

1: Setup(1λ)
$−→ pp

2: Initall(1λ, pp)
$−→ (stA, stB, z)

3: set all sent∗∗ and received∗∗ variables to ∅
4: set ttest to ⊥
5: b ′ ← ARATCH,EXPst,EXPpt,CHALLENGE(z)
6: if ¬Cclean then return ⊥
7: return b’

Oracle EXPst(P)
1: return stP

Oracle CHALLENGE(P, ad, pt)
1: if ttest 6= ⊥ then return ⊥
2: if b = 0 then
3: replace pt by a random string of same length
4: end if
5: ct← RATCH(P, “send”, ad, pt)
6: (t,P, ad, pt, ct)test ← (timeP,P, ad, pt, ct)
7: return ct

Oracle EXPpt(P)
1: return ptP

Fig. 2: IND-CCA Game.
(Oracle RATCH is defined in Fig. 1)

Definition 6 (Cclean-IND-CCA security). Let Cclean be a cleanness predicate.
We consider the IND-CCAA

b,Cclean
game of Fig. 2. We say that the ARCAD is

Cclean-IND-CCA-secure if for any PPT adversary, the advantage

Adv(A) =
∣∣Pr

[
IND-CCAA

0,Cclean
(1λ)→ 1

]
− Pr

[
IND-CCAA

1,Cclean
(1λ)→ 1

]∣∣
9 It is called RECOVER-security in DV [7]. We call it r-RECOVER because we will

enrich it with an s-RECOVER notion in Section 3.1.
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of A in IND-CCAA
b,Cclean

security game is negligible.

Game FORGEA
Cclean

(1λ)

1: Setup(1λ)
$−→ pp

2: Initall(1λ, pp)
$−→ (stA, stB, z)

3: (P, ad, ct)← ARATCH,EXPst,EXPpt(z)
4: RATCH(P, “rec”, ad, ct)→ acc
5: if acc = false then return 0
6: if ¬Cclean then return 0
7: if (ad, ct) is not a forgery (Def. 4) for P then

return 0
8: return 1

Game r-RECOVERA(1λ)
1: win← 0
2: Setup(1λ)

$−→ pp

3: Initall(1λ, pp)
$−→ (stA, stB, z)

4: set all sent∗∗ and received∗∗ variables to ∅
5: P ← ARATCH,EXPst,EXPpt(z)
6: if we can parse receivedPct = (seq1, (ad, ct), seq2)

and sentPct = (seq3, (ad, ct), seq4) with seq1 6=
seq3 (where (ad, ct) is a single message and
all seqi are finite sequences of single messages)
then win← 1

7: return win

Game PREDICTA(1λ)

1: Setup(1λ)
$−→ pp

2: Initall(1λ, pp)
$−→ (stA, stB, z)

3: (P, ad, pt)← ARATCH,EXPst,EXPpt(z)

4: RATCH(P, “send”, ad, pt)→ ct

5: if (ad, ct) ∈ receivedPct then return
1

6: return 0

Fig. 3: FORGE, r-RECOVER, and PREDICT Games.
(Oracles RATCH, EXPst, EXPpt are defined in Fig. 1 and Fig. 2.)

Definition 7 (Cclean-FORGE security). Given a cleanness predicate Cclean, con-
sider FORGEA

Cclean
game in Fig. 3 associated to the adversary A. Let the advantage

of A be the probability that the game outputs 1. We say that ARCAD is Cclean-
FORGE-secure if, for any PPT adversary, the advantage is negligible.

In this definition, we added the notion of cleanness which determines if an attack
is trivial or not. The original notion of FORGE security [7] is equivalent to using
the following Ctrivial predicate Cclean:

Ctrivial: the last (ad, ct) message is not a trivial forgery (following Def. 5).

The purpose of this update in the definition is to allow us to easily define a
weaker form of FORGE-security for symmetric protocols and in Section 3.3.

Definition 8 (r-RECOVER security [7]). Consider the r-RECOVERA game in
Fig. 3 associated to the adversary A. Let the advantage of A in succeeding in the
game be Pr(win = 1). We say that the ARCAD is r-RECOVER-secure, if for any
PPT adversary, the advantage is negligible.

Definition 9 (PREDICT security [7]). Consider PREDICTA(1λ) game in Fig. 3
associated to the adversary A. Let the advantage of A in succeeding in the game
be the probability that 1 is returned. We say that the ARCAD is PREDICT-secure,
if for any PPT adversary, the advantage is negligible.
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PREDICT-security is useful to reduce the notion of matching status to the two

conditions that receivedPct is a prefix of sentPct at time t for P and receivedPct is a
prefix of sentPct at time t for P.

2.2 The Epoch Notion in Secure Communication

We define the epochs in an equivalent way to the work done by Alwen et al. [1].10

Epochs are useful to designate the sequence of messages, as both participants
may not see exactly the same. We will use epoch numbers in the design of our
hybrid scheme for on-demand ratcheting in Section 4.1.

Epochs are a set of consecutive messages going in the same direction. An
epoch is identified by an integer counter e. Each message is assigned one epoch
counter em. Hence, the epochs are non-intersecting. For convenience, each par-
ticipant P keeps the epoch value ePsend of the last sent message and the epoch
value ePrec of the last received message. They are used to assign an epoch to a
message to be sent.

Definition 10 (Epoch). Epochs are non-intersecting sets of messages which
are defined by an integer. During the game, we let ePrec (resp. ePsend) be the epoch of
the last received (resp. sent) message by P. At the very beginning of the protocol,
we define ePsend and ePrec specifically. For the participant A, eArec = −1 and eAsend = 0.
For the participant B, eBsend = −1 and eBrec = 0. The procedure to assign an epoch
em to a new sent message follows the rule described next:
If ePrec < ePsend, then the message is put in the epoch em = ePsend. Otherwise, it is
put in epoch em = ePrec + 1.

Let eP = max{ePrec, ePsend}. Let bA = 0 and bB = 1. We have

ePsend =

{
eP if eP mod 2 = bP

eP − 1 otherwise
ePrec =

{
eP if eP mod 2 6= bP
eP − 1 otherwise

Therefore, it is equivalent to maintain (ePrec, ePsend) or eP. The procedure to
manage eP and em is described by Alwen et al. [1].

We will use a counter c for each epoch e. We will use the order on (e, c) pairs
defined by

(e, c) < (e ′, c ′)⇐⇒ (e < e ′ ∨ (e = e ′ ∧ c < c ′))

3 Security Awareness

3.1 s-RECOVER Security

We gave the DV r-RECOVER security definition [7] in Def. 8. It is an important
notion to capture that P cannot accept a genuine ct from P after P receives a

10 The notion of epoch appeared in Poettering-Rösler [10] before.
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forgery. However, r-RECOVER-security does not capture the fact that when it is
P who receives a forgery, P could still accept messages which come from P. We
strengthen r-RECOVER security with another definition called s-RECOVER.

Definition 11 (s-RECOVER security). In the s-RECOVERA game in Fig. 4
with the adversary A, we let the advantage of A in succeeding in the game be
Pr(win = 1). We say that the ARCAD is s-RECOVER-secure, if for any PPT
adversary, the advantage is negligible.

Game s-RECOVERA(1λ)
1: win← 0
2: Setup(1λ)

$−→ pp

3: Initall(1λ, pp)
$−→ (stA, stB, z)

4: set all sent∗∗ and received∗∗ variables to ∅
5: P ← ARATCH,EXPst,EXPpt(z)
6: if receivedPct is a prefix of sentPct then
7: set t to the time when P sent the last message in receivedPct
8: if receivedPct(t) is not a prefix of sentPct then win← 1
9: end if

10: return win

Fig. 4: s-RECOVER Security Game.
(RATCH and EXP oracles are defined in Fig. 1 and Fig. 2.)

Ideally, what we want from the protocol is that participants can detect forg-
eries by realizing that they are no longer able to communicate to each other. We
cannot prevent impersonation to happen after a state exposure but we want to
make sure that the normal exchange between the participants is cut. Hence, if
a participant eventually receives a genuine message (e.g. because it was authen-
ticated after meeting in person), he should feel safe that no forgeries happened.
Contrarily, detecting a communication cut requires an action from the partic-
ipants, such as restoring communication using a super hybrid structure, as we
will suggest in Section 4.1.

We directly obtain the following useful result:11

Lemma 12. If an ARCAD is r-RECOVER, s-RECOVER, and PREDICT secure,
whenever P receives a genuine message from P (i.e., an (ad, ct) pair sent by P is
accepted by P), P is in a matching status (following Def. 3), except with negligible
probability.

Our notion of RECOVER-security and forgery is quite strong in the sense
that it focuses on the ciphertext. Some protocols such as JMM [9] focus on the

11 The proof is provided in the full version [4].
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plaintext. In JMM, ct includes some encrypted data and some signature but only
the encrypted data is hashed. Hence, an adversary can replace the signature by
another signature after exposure of the signing key. It can be seen as not so
important because it must sign the same content. However, the signature has a
key update and the adversary can make the receiver update to any verifying key
to desynchronize, then re-synchronize at will. Consequently, the JMM protocol
does not offer RECOVER security as we defined it. Contrarily, PR [10] hashes
(ad, ct) but does not use it in the next ad or to compute the next ct. Thus, PR
has no RECOVER security either.12 One may think that it is easy to fix this by
hashing all messages but this is not as simple. We propose in Section 3.3 the
chain transformation which can fix any protocol, thanks to Lemma 18.

3.2 Security Awareness

To have a security-awareness notion, we want r-RECOVER, s-RECOVER, and
PREDICT security13, we want to have an acknowledgment extractor (to be aware
of message delivery), and we want to have a cleanness extractor (to be aware of
the cleanness of every message, if not subject to trivial exposure). The last two
notions are defined below. This means that on the one hand, impersonations are
eventually discovered, and on the other hand, by assuming that no impersonation
occurs and assuming that exposures are known, a participant P knows exactly
which messages are safe, at least after one round-trip occurred.

Definition 13 (Security-awareness). A protocol is Cclean-security-aware if

– it is r-RECOVER, s-RECOVER, and PREDICT-secure;
– there is an acknowledgment extractor (Def. 15);
– there is a cleanness extractor for Cclean (Def. 16).

To make participants aware of the security status of any (challenge) message,
they need to know the history of exposures, they need to be able to reconstruct
the history of RATCH calls from their own view, and they need to be able to
evaluate the Cclean predicate. Thankfully, the Cclean predicates that we consider
only depend on these histories. We first formally define the notion of transcript.

Definition 14 (Transcript). In a game, for a participant P, we define the
transcript of P as the chronological sequence TP of all (oracle, extra) pairs in-
volving P where each pair represents an oracle call to oracle with P as input

12 More precisely, in PR, if A is exposed then issues a message ct, the adversary can
actually forge a ciphertext ct ′ transporting the same pk and vfk and deliver it to B
in a way which makes B accept. If A issues a new message ct ′′, delivering ct ′′ to B
will pass the signature verification. The decryption following-up may fail, except if
the kuKEM encryption scheme taking care of encryption does not check consistency,
which is the case in the proposed one [10, Fig. 3, eprint version]. Therefore, ct ′′ may
be accepted by B so PR is not r-RECOVER secure. The same holds for s-RECOVER
security.

13 We want it to be able to apply Lemma 12 and be aware of matching status.
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(i.e. either RATCH(P, “rec”, ., .), RATCH(P, “send”, ., .), EXPpt(P), EXPst(P), or
CHALLENGE(P)), except the unsuccessful RATCH calls which are omitted. For
each pair with a RATCH or CHALLENGE oracle, extra specifies the role (“send”
or “rec”) and the message (ad, ct) of the oracle call. For other pairs, extra = ⊥.

The partial transcript of P up to time t is the prefix TP(t) of TP of all oracle
calls until time t. The RATCH-transcript of P is the list TRATCHP of all extra
elements in TP which are not ⊥ (i.e. it only includes RATCH/CHALLENGE calls).
Similarly, the partial RATCH-transcript of P up to time t is the list TRATCHP (t)
of extra elements in TP(t) which are not ⊥.

Next, we formalize that a participant can be aware of which of his messages
were received by his counterpart.

Definition 15 (Acknowledgment extractor). We consider a game Γ where
the transcript TP is formed for a participant P. Given a message (ad, ct) success-
fully received by P at time t and which was sent by P at time t, we let (ad ′, ct ′)
be the last message successfully received by P before time t. (If there is no such
message, we set it to ⊥.)

An acknowledgment extractor is an efficient function f such that f(TRATCHP (t)) =
(ad ′, ct ′) for any time t when P is in a matching status (Def. 3).

Given this extractor, P can iteratively reconstruct the entire flow of messages,
and which messages crossed each other during transmission.

We formalize awareness of a participant for the safety of each message.

Definition 16 (Cleanness extractor). We consider a game Γ where the tran-
script TP is formed for a participant P. Let t be a time for P and t be a
time for P. Let TP(t) and TP(t) be the partial transcripts at those time. We
say that there is a cleanness extractor for Cclean if there is an efficient func-
tion g such that g(TP(t), TP(t)) has the following properties: if there is one
CHALLENGE in the TP(t) transcript and, either P received (adtest, cttest) or there
is a round trip P → P → P starting with P sending (adtest, cttest) to P, then
g(TP(t), TP(t)) = Cclean(Γ). Otherwise, g(TP(t), TP(t)) = ⊥.

The function g is able to predict whether the game is “clean” for any challenge
message. The case with an incomplete round trip P → P → P starting with P
sending (adtest, cttest) to P is when the tested message was sent but somehow
never acknowledged for the reception. If the message never arrived, we cannot
say for sure if the game is clean because the counterpart may later either receive
it and make the game clean or have a state exposure and make the game not
clean. In other cases, the cleanness can be determined for sure.

3.3 Strongly Secure ARCAD with Security Awareness

In this section, we take a secure ARCAD (it could be ARCADDV, in the full
version [4], or the hybrid one defined in Section 4) which we denote by ARCAD0

and we transform it into another secure ARCAD which we denote by ARCAD1 =
chain(ARCAD0), that is security aware. We achieve security awareness by keeping
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some hashes in the states of participants. The intuitive way to build it is to
make chains of hash of ciphertexts (like a blockchain) which will be sent and
received and to associate each message to the digest of the chain. This enables a
participant P to acknowledge its counterpart about received messages whenever
P sends a new message.

We define a tuple (Hsent, Hreceived, snt noack, rec toack) and store it in the
state of a participant. Hsent is the hash of all sent ciphertexts. It is computed
by the sender and delivered to the counterpart along with ct. It is updated with
hashing key hk and the old Hsent every time a new Send operation is called.
Likewise, Hreceived is the hash of all received ciphertexts. It is computed with
hk and the last stored Hreceived by the receiver upon receiving a message. It is
updated every time a new Receive operation is run.

Using Hsent and Hreceived alone is sufficient for r-RECOVER security but not
for s-RECOVER security.

rec toack is a counter of received messages which need to be reported when
the next Send operation is run. For each Send operation, the protocol attaches
to ct the last Hreceived to acknowledge for received messages and reset rec toack
to 0. rec toack is incremented by each Receive.

snt noack is a list of the hashes of sent ciphertexts which are waiting for an
acknowledgment. Basically, it is initialized to an empty array in the beginning
and whenever a new Hsent is computed, it is accumulated in this array. The
purpose of such a list is to keep track of the sent messages for which the sender
expects an acknowledgment. More precisely, when the participant P keeps its
list of sent ciphertexts in snt noack, the counterpart P keeps a counter rec toack
telling that an acknowledgment is needed. Remember that P sends Hreceived
back to the participant P to acknowledge him about received messages. As soon
as P acknowledges, P deletes the hash of the acknowledged ciphertexts from
snt noack.

The principle of our construction is that if an adversary starts to impersonate
a participant after exposure, there is a fork in the list of message chains which
is viewed by both participants and those chains can never merge again without
making a collision.

We give our security aware protocol on Fig. 5. The security of the protocol
is proved with the following lemmas.

Theorem 17. If ARCAD0 is correct, then chain(ARCAD0) is correct.

The proof is straightforward.

Lemma 18. If H is collision-resistant, chain(ARCAD0) is RECOVER-secure (for
both s-RECOVER and r-RECOVER security).

Proof. All (ad, ct) messages seen by one participant P in one direction (send
or receive) are chained by hashing. Hence, if receivedPct = (seq1, (ad, ct), seq2),
the (ad, ct) message includes (in the second field of ct) the hash h of seq1. If

sentPct = (seq3, (ad, ct), seq4), the (ad, ct) message includes the hash h of seq3. If
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ARCAD1.Setup(1λ)

1: ARCAD0.Setup(1λ)
$−→ pp0

2: H.Gen(1λ)
$−→ hk

3: pp← (hk, pp0)
4: return pp

ARCAD1.Gen = ARCAD0.Gen

ARCAD1.Init(1λ, pp, skP, pkP,P)
1: parse pp = (hk, pp0)

2: ARCAD0.Init(1λ, pp0, skP, pkP,P)
$−→ st ′P

3: Hsent, Hreceived← ⊥
4: snt noack← [], rec toack← 0
5: stP ← (st ′P, hk, Hsent, Hreceived, snt noack, rec toack)
6: return stP

ARCAD1.Send(stP, ad, pt)
1: parse stP as (st ′P, hk, Hsent, Hreceived, snt noack, rec toack)
2: if rec toack = 0 then ack← ⊥ else ack← Hreceived
3: ad ′ ← (ad, Hsent, ack)

4: ARCAD0.Send(st ′P, ad ′, pt)
$−→ (st ′P, ct ′)

5: ct← (ct ′, Hsent, ack)
6: rec toack← 0
7: Hsent← H.Eval(hk, Hsent, ad, ct)
8: snt noack← (snt noack, Hsent)
9: stP ← (st ′P, hk, Hsent, Hreceived, snt noack, rec toack)

10: return (stP, ct)

ARCAD1.Receive(stP, ad, ct)
1: parse stP as (st ′P, hk, Hsent, Hreceived, snt noack, rec toack)
2: parse ct as (ct ′,h, ack)
3: if h 6= Hreceived or ack 6∈ {⊥} ∪ snt noack then
4: return (false, stP,⊥)
5: end if
6: ad ′ ← (ad,h, ack)
7: ARCAD0.Receive(st ′P, ad ′, ct ′)→ (acc, st ′P, pt ′)
8: if acc then
9: Hreceived← H.Eval(hk, Hreceived, ad, ct)

10: rec toack← rec toack + 1
11: if ack 6= ⊥ then remove in snt noack all elements

of snt noack until ack (included)
12: stP ← (st ′P, hk, Hsent, Hreceived, snt noack, rec toack)
13: end if
14: return (acc, stP, pt ′)

Fig. 5: Our Security-Aware ARCAD1 = chain(ARCAD0) Protocol.

H is collision-resistant, then seq1 6= seq3 with negligible probability. Hence, we
have r-RECOVER security.

Additionally, all genuine (ad, ct) messages include (in the third field of ct)
the hash ack of messages which are received by the counterpart. This list must
be approved by P, thus it must match the list of hashes of messages that P sent.
Hence, if receivedPct is prefix of sentPct and t is the time when P sent the last

message in receivedPct, then this message includes the hash of receivedPct(t) which
must be a hash of a prefix of sentPct. Thus, unless there is a collision in the hash

function, receivedPct(t) is a prefix of sentPct and we have s-RECOVER security. ut

Lemma 19. chain(ARCAD0) has an acknowledgment extractor.

Proof. Let (ad, ct) be a message sent by P to P in a matching status. Let (ad ′, ct ′)
be the last message received by P before sending (ad, ct). Due to the protocol,
ct includes the value of Hreceived after receiving (ad ′, ct ′). Since this message is
from P, P recognizes this hash Hreceived = Hsent from snt noack. Both (ad ′, ct ′)
and this hash can be computed from TRATCHP (t). Hence, chain(ARCAD0) has an
extractor. ut

Lemma 20. chain(ARCAD0) has a cleanness extractor for the following predi-
cates:

Cleak,C
Ptest

trivialforge,C
A,B
trivialforge,C

Ptest

forge,C
A,B
forge,Cratchet,Cnoexp

Hence, there is an extractor for all cleanness predicates which we considered.14

The following result is trivial.

14 The proof is given in the full version [4].
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Lemma 21. If ARCAD0 is PREDICT-secure, then chain(ARCAD0) is PREDICT-
secure.

Consequently, if ARCAD0 is PREDICT-secure, chain(ARCAD0) is security-aware.

4 On-Demand Ratcheting

In this section, we define a bidirectional secure communication messaging proto-
col with hybrid on-demand ratcheting. The aim is to design such a protocol to
integrate two ratcheting protocols with different security levels: a strongly secure
protocol using public-key cryptography and a weaker but much more efficient
protocol with symmetric key primitives. The core of the protocol is to use the
weak protocol with frequent exchanges and to use the strong one on demand
by the sending participant. Hence, we build a more efficient protocol with on-
demand ratcheting. Yet, it comes with a security drawback. Even though the
security for the former is to provide post-compromise security, we secure part of
the communication only with the forward secure protocol.

The sender uses a flag to tell which level of security the communication will
have and apply ratcheting with public-key cryptography or the lighter primi-
tives such as the EtH protocol [13]. The flag is set in the ad input and it is
denoted as ad.flag. We call the strong protocol as ARCADmain and the weak one
as ARCADsub. Ideally, the time to set the flag for specific security can be decided
during the deployment of the application using the protocol. This choice may
also be left to the users who can decide based on the confidentiality-level of their
communication. The more often the protocol turns the flag on, the more secure
is the hybrid on-demand protocol. If we do it for every message exchange, then
we obtain ARCADmain without ARCADsub. If we do it for no message exchange,
then we obtain ARCADsub.

4.1 Our Hybrid On-Demand ARCAD Protocol

We give our on-demand ARCAD protocol on Fig. 6. It uses two sub-protocols
called ARCADmain and ARCADsub. The former is to represent a strong-but-slow
protocol such as ARCADDV (Fig. 11). The latter is typically a weaker-but-faster
protocol like EtH [13]. The use of one or the other is based on a flag that can be
turned on and off in ad (it is checked with ad.flag operation in the protocol). To
have the flag on lets the protocol run ARCADmain while setting the flag off means
to run ARCADsub. Assuming that ARCADmain is ratcheting (i.e. post-compromise
secure) and ARCADsub is not, this defines on-demand ratcheting. We denote our
hybrid protocol as hybridARCAD = hybrid(ARCADmain, ARCADsub).

We use as a reference the (e, c) number of messages in the ARCADmain thread.
Every ARCADmain message creates a new ARCADsub send/receive state pair. The
sending participant keeps the generated send state in a sub[e, c] register under
the (e, c) number of the message and sends the generated receive state together
with his message. The very first message which a participant sees (either in
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sending or receiving) forces the flag to indicate ARCADmain as we have no initial
ARCADsub state. The (e, c) number if authenticated and also explicitly added
in the ciphertext. The receiving participant checks that (e, c) increases and uses
the sub[e, c] register state to receive the message.

Theorem 22. If the protocols ARCADmain and ARCADsub are both correct, then
the protocol hybrid(ARCADmain, ARCADsub) is correct.

The proof is provided in the full version [4].

4.2 Application: Super-Scheme to (Re)set a Protocol

Our hybrid construction finds another application than on-demand ratcheting:
defense against message loss or active attacks. Indeed, by using ARCADmain =
ARCADsub, we can set ad.flag to restore an ARCADsub communication which was
broken due to a message loss. Normal communication works in the ARCADsub

session, hence with a flag down. However, we may use ARCADmain to start a new
ARCADsub session. If ARCADsub gets broken due to a message loss or an active
attack on it, ARCADmain can be used to restart a new ARCADsub session. We
cannot resume if the ARCADmain session is broken. However, we can also make
nested hybrid protocols with more than two levels of protocols inside for safety.
It may increase the state sizes but the performance should be nearly the same.
Then, only persistent message drop attacks would succeed to make a denial of
service.

4.3 Security Definitions

We modify the predicates and the notion of FORGE-security from Section 2. In
our hybrid protocol, each message (ad, ct) has a clearly defined (e, c) pair. A
ct which is input or output from RATCH comes with an ad which has a clearly
defined ad.flag bit.

Sub-games. Given a game Γ for the hybridARCAD scheme with an adversary A,
we define a game main(Γ) for ARCADmain with an adversary A ′ which simulates
everything but the ARCADmain calls in Γ . Namely, A ′ simulates the enrichment
of the states and all ARCADsub management together with A.

Given a game Γmain for ARCADmain using no CHALLENGE oracle and an (e, c)
pair, we denote by maine,c(Γmain) the variant of Γmain in which the RATCH Send
call making the message (ad, ct) with pair (e, c) is replaced by a CHALLENGE
query with b = 1. This perfectly simulates Γmain and produces the same value,
and we can evaluate a predicate Cclean relative to this challenge message. We
define Ce,cclean(Γmain) = Cclean(maine,c(Γmain)). Intuitively, Ce,cclean(Γmain) means that
the message of pair (e, c) was safely encrypted and should be considered as
private because no trivial attack leaks it.

We also define sube,c(Γ) and sub ′e,c(Γ). We let P be the sending participant
of the ARCADmain message of pair (e, c). In sub ′e,c(Γ), the adversary A ′ sim-
ulates everything but the ARCADsub calls involving messages with pair (e, c).
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hybridARCAD.Setup(1λ)
1: ppmain ← ARCADmain.Setup(1λ)
2: ppsub ← ARCADsub.Setup(1λ)
3: return (ppmain, ppsub)

hybridARCAD.Gen(1λ, ppmain, ppsub)
4: return ARCADmain.Gen(1λ, ppmain)

hybridARCAD.Init(1λ, (ppmain, ppsub), skP, pkP,P)
1: ARCADmain.Init(1λ, ppmain, skP, pkP,P)→ stmain

2: initialize array stsub[] to empty
3: if P = A then (esend, erec)← (0,−1)
4: else (esend, erec)← (−1, 0)
5: end if
6: initialize array ctr with ctr[0] = −1
7: stP ← (λ, ppsub, stmain, stsub[], esend, erec, ctr[])
8: return stP

hybridARCAD.Send(stP, ad, pt)
1: parse stP as (λ, ppsub, stmain, stsub[], esend, erec, ctr[])
2: e← max(esend, erec); c← ctr[e] . current epoch
3: if ad.flag or c = −1 then
4: if esend < erec then e← erec + 1; c← 0
5: else e← esend ; c← ctr[e] + 1
6: end if
7: ARCADsub.Initall(1λ, ppsub)

$−→ (stS, stR, z) . create a new sub-state.
8: stsub[e, c]← stS
9: pt ′ ← (stR, pt); ad ′ ← (ad, 1, e, c)

10: ARCADmain.Send(stmain, ad ′, pt ′)
$−→ (stmain, ct ′) . send using the main state.

11: ct← (ct ′, e, c)
12: esend ← e ; ctr[esend]← c

13: else
14: ad ′ ← (ad, 0, e, c)

15: ARCADsub.Send(stsub[e, c], ad ′, pt)
$−→ (stsub[e, c], ct ′) . send using the sub-state.

16: ct← (ct ′, e, c)
17: end if
18: clean-up: erase stsub[e, c] for all (e, c) such that (e, c) < (esend, ctr[esend]) and (e, c) < (erec, ctr[erec])
19: clean-up: erase ctr[e] for all e such that e < esend and e < erec
20: stP ← (λ, ppsub, stmain, stsub[], esend, erec, ctr[])
21: return (stP, ct)

hybridARCAD.Receive(stP, ad, ct)
22: parse stP as (λ, ppsub, stmain, stsub[], esend, erec, ctr[])
23: parse ct as (ct ′, e, c)
24: if (e, c) < (erec, ctr[erec]) then return (false, stP,⊥) . (e, c) must increase
25: if ad.flag or (e = 0 and ctr[0] = −1) then
26: ad ′ ← (ad, 1, e, c)
27: ARCADmain.Receive(stmain, ad ′, ct ′)→ (acc, stmain, pt ′)
28: parse pt ′ as (stR, pt)
29: if acc then
30: stsub[e, c]← stR
31: erec ← e; ctr[e]← c

32: end if
33: else
34: ad ′ ← (ad, 0, e, c)
35: if stsub[e, c] undefined then return (false, stP,⊥)
36: ARCADsub.Receive(stsub[e, c], ad ′, ct ′)→ (acc, stsub[e, c], pt)
37: end if
38: clean-up: erase stsub[e, c] for all (e, c) such that (e, c) < (esend, ctr[esend]) and (e, c) < (erec, ctr[erec])
39: clean-up: erase ctr[e] for all e such that e < esend and e < erec
40: stP ← (λ, ppsub, stmain, stsub[], esend, erec, ctr[])
41: return (acc, stP, pt)

Fig. 6: On-Demand hybridARCAD = hybrid(ARCADmain, ARCADsub) Protocol.
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The initial states of P and P are also set by the game sub ′e,c(Γ). However, it

makes an EXPst(P) call at the beginning of the protocol to get the initial state
stR for ARCADsub. With this state, A ′ can simulate the encryption of stR with
ARCADmain and all the rest. Clearly, the simulation is perfect but it adds an
initial EXPst(P) call.

The sube,c(Γ) game is a variant of sub ′e,c(Γ) without the additional EXPst(P).
To simulate the encryption of stR, A ′ encrypts a random string instead. When it
comes to decrypt the obtained ciphertext, the random plaintext is ignored and
the RATCH calls with stR are simulated with the RATCH calls for the ARCADsub

game. The simulation is no longer perfect but it does not add an EXPst(P) call.

Hybrid cleanness. We assume two cleanness predicates Cclean and Cmain (which
could be the same) for ARCADmain and one cleanness predicate Csub for ARCADsub.
We define a hybrid predicate CCclean

Cmain,Csub
as follows. By abuse of notation, we write

Cclean
main,sub instead, for more readability. Let Γ be a game played by an adversary

A against hybridARCAD.

We let (ad, ct) be the challenge message (adtest, cttest) if it exists. Otherwise,
(ad, ct) is the last message in Γ . We let (e, c) be the number of (ad, ct). We let

Cclean
main,sub(Γ) =


if (ad, ct) belongs to ARCADmain : Cmain(main(Γ))

else :

{
if Ce,cclean(main(Γ)) :
else :

Csub(sube,c(Γ))
Csub(sub ′e,c(Γ))

This means that if the challenge holds on an ARCADmain message, we only care for
main(Γ) to be Cmain-clean. Otherwise, either the ARCADmain message initiating
the relevant ARCADsub session is Cclean or not. If it is clean, we can replace it and
consider Csub-cleanness for sube,c(Γ). Otherwise, the initial ARCADsub state stR
trivially leaked (or was exposed, equivalently) and we consider Csub-cleanness for
sub ′e,c(Γ). The role of Cclean is to control which of the two games to use. Cclean

must be a privacy cleanness notion for main. Contrarily, Cmain and Csub could be
either privacy or authenticity notions.

Note that Csub(sub ′e,c(Γ)) = false for Csub = Cnoexp, due to the EXPst call.
We easily obtain the following result.

Lemma 23. If ARCADmain is Cmain-IND-CCA-secure and ARCADsub is Csub-
IND-CCA-secure, then hybridARCAD is Cclean-IND-CCA with Cclean = C

main
main,sub.

Proof (sketch). 15 Let us assume that Γ is clean in the sense of Cclean.
Let (ad, ct) be the challenge (or last) message. If (ad, ct) belongs to ARCADmain,

then main(Γ) is Cmain-clean. The outcome of main(Γ) and Γ is the same. Due to
the Cmain-IND-CCA security of ARCADmain, the advantage in Γ is negligible. Let
us now assume that (ad, ct) belongs to ARCADsub.
Ce,cCmain

indicates if the ARCADmain message of pair (e, c) can be replaced by
the encryption of something random to produce the same result, except with

15 More details are provided in the full version [4].
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negligible probability. In this case, sube,c(Γ) produces the same outcome as Γ
and Cclean implies that it must be Csub-clean. Due to the Csub-IND-CCA security
of ARCADsub, the advantage in Γ is negligible.

Similarly, if Ce,cCmain
(Γ) does not hold, Cclean implies that sub ′e,c(Γ) is clean. It

produces the same outcome as Γ . Due to the Csub-IND-CCA security of ARCADsub,
the advantage in Γ is negligible. ut

In the FORGE game, we replace the Ctrivial predicate. Typically, by taking
Cmain as the predicate that tests if the last (ad, ct) message is a trivial forgery and
by taking Csub as the predicate that additionally tests if no EXPst occurred, the
Cclean

main,sub predicate defines a new FORGE notion for hybrid(ARCADDV, EtH). More
generally, if ARCADmain is Cmain-FORGE-secure and ARCADsub is Csub-FORGE-
secure, we would like to have CCclean

Cmain,Csub
-FORGE-security.

Game FORGE∗ACclean
(1λ)

1: Setup(1λ)
$−→ pp

2: Initall(1λ, pp)
$−→ (stA, stB, z)

3: (P, ad, ct)← ARATCH,EXPst,EXPpt(z)
4: if one participant (or both) is NOT in a matching status then return 0
5: RATCH(P, “rec”, ad, ct)→ acc
6: if acc = false then return 0
7: if ¬Cclean then return 0
8: if we can parse receivedPct = (seq1, (ad, ct)) and sentPct = (seq1, seq2, (ad, ct), seq3) then return 0
9: return 1

Fig. 7: Relaxed FORGE Security.

We almost have the reduction but there is something missing. Namely, a
forgery for hybridARCAD in Γ may not be a forgery for neither ARCADmain in
main(Γ) nor ARCADsub in sube,c(Γ). This happens if the adversary in Γ drops the
delivery of the last messages in a sub scheme. We relax FORGE-security using the
FORGE∗ game in Fig. 7. Only Steps 4 and 8 are new. Our chain strengthening
in Section 3 can later make the protocols fully FORGE-secure. We easily prove
the following result.

Lemma 24. If ARCADmain is Cclean-IND-CCA-secure and Cmain-FORGE∗-secure
and if ARCADsub is Csub-FORGE∗-secure, then hybridARCAD is Chybrid-FORGE∗,
where Chybrid = C

clean
main,sub.

Proof (sketch). 16 If (ad, ct) belongs to ARCADmain and Γ = FORGE∗ succeeds
to return 1, then Cmain(main(Γ)) holds and main(Γ) succeeds to return 1 as well.
Similarly, if (ad, ct) belongs to ARCADsub and Γ returns 1, then, depending on

16 More details are provided in the full version [4].
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Ce,cclean(Γ), either Csub(sube,c(Γ)) or Csub(sub ′e,c(Γ)) holds, and either game suc-
ceeds to return 1 (thanks to IND-CCA security in the latter case). Applying
FORGE∗ security of those protocols, this occurs with negligible probability. ut

What FORGE∗ security does not guarantee is that some forgeries in a sub-
scheme may occur in the far future, due to state exposure. Fortunately, our
protocol mitigates this problem by making sure that old sub-protocols become
obsolete. Indeed, our protocol makes sure that sent messages always have an
increasing sequence of (e, c) pairs, and the same for received messages. Hence, we
cannot have a forgery with an old (e, c) pair. Another problem which is explicit
in Step 8 of the game is that the adversary may prevent P from receiving a
sequence seq2 sent from P (namely in a sub-protocol). In Section 3, making the
protocol r-RECOVER-secure fixes both problems. (See Lemma 26.) Hence, we
will obtain FORGE-security.

4.4 Security-aware Hybrid Construction

In this section, we apply our results from Section 3.3 to our hybrid constructions.

Lemma 25. Let Cclean ∈ {Ctrivial,Cnoexp} and ARCAD1 = chain(ARCAD0). If
ARCAD0 is Cclean-FORGE-secure (resp. Cclean-FORGE∗-secure), then ARCAD1 is
Cclean-FORGE-secure (resp. Cclean-FORGE∗-secure).

Proof. We reduce an adversary playing the FORGE game with ARCAD1 to an
adversary playing the FORGE game with ARCAD0 by simulating the hashings.
ARCAD1 is an extension of ARCAD0 such that an ARCAD1 message (ad, (ct ′,h, ack))
is equivalent to an ARCAD0 message ((ad,h, ack), ct ′). It is just reordering (ad, ct).
Hence, a forgery for ARCAD1 must be a forgery for ARCAD0. FORGE∗-security
works the same. ut

Lemma 26. Given ARCADmain and ARCADsub, let

ARCAD0 = hybrid(ARCADmain, ARCADsub) , ARCAD1 = chain(ARCAD0)

If ARCADmain is Cclean-IND-CCA-secure and Cmain-FORGE∗-secure and ARCADsub

is Csub-FORGE∗-secure, then ARCAD1 is Cclean
main,sub-FORGE∗-secure. If H is addi-

tionally collision-resistant, then ARCAD1 is Cclean
main,sub-FORGE-secure.

Proof. Due to Lemma 24, Cclean
main,sub-FORGE∗-security works like in the previous

result. To extend to Cclean
main,sub-FORGE-security, we just observe that ARCAD1 is

r-RECOVER-secure due to Lemma 18. We thus deduce seq2 = ⊥ from having

receivePct = (seq1, (ad, ct)) and sentPct = (seq1, seq2, (ad, ct), seq3). Hence, we have
a full forgery, except with negligible probability. ut

Lemma 27. Let Cclean = Cleak, Cratchet, Cnoexp, or CStforge (t = trivial or ⊥},
S = Ptest or {A,B}), If ARCAD0 is Cclean-IND-CCA-secure, then ARCAD1 is Cclean-
IND-CCA-secure.
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Proof. We reduce an adversary playing the IND-CCA game with ARCAD1 to an
adversary playing the IND-CCA game with ARCAD0 by simulating the hashings.
We easily see that the cleanness is the same and that the simulation is perfect.

ut

We easily extend this result to hybrid constructions. We conclude with our final
result.

Theorem 28. Given ARCADmain and ARCADsub, let

ARCAD0 = hybrid(ARCADmain, ARCADsub) , ARCAD1 = chain(ARCAD0)

We assume that 1. H is collision-resistant; 2. ARCADmain is Cclean-IND-CCA-
secure and Cmain-FORGE∗-secure; 3. ARCADsub is Csub-FORGE∗-secure and C ′clean-
IND-CCA-secure. Then, ARCAD1 is 1. r-RECOVER-secure, 2. s-RECOVER-secure,
3. Cclean

main,sub-FORGE-secure, 4. Cclean
clean,clean′-IND-CCA-secure, 5. with acknowledge-

ment extractor.

Corollary 29. Let ARCAD1 = chain(hybrid(ARCADDV, EtH)) (where ARCADDV

is defined on Fig. 11) and let Cclean = Cleak ∧ CA,B
forge. With the assumptions

from Th. 30 and the EtH result [13, Th.2], if H is collision-resistant, ARCAD1 is
Cclean

trivial,noexp-FORGE-secure, Cclean
clean,sym-IND-CCA-secure, and with security-awareness.

In particular, when a sender deduces an acknowledgment for his message m from
a received message m ′, if he can make sure that m ′ is genuine and that no trivial
exposure for m happened, then he can be sure that his message m is private, no
matter what happened before or what will happen next.

5 Conclusion

We revisited the DV security model. We proposed an hybrid construction which
would mostly use EtH and occasionally a stronger protocol, upon the choice
of the sender, thus achieving on-demand ratcheting. Finally, we proposed the
notion of security awareness to enable participants to have a better idea on
the safety of their communication. We achieved what we think is the optimal
awareness. Concretely, a participant is aware of which of his messages arrived to
his counterpart when he sent the last received one. We make sure that any forgery
(possibly due to exposure) would fork the chain of messages which is seen by both
participants and result in making them unable to continue communication. We
also make sure that assuming that the exposure history is known, participants
can deduce which messages leaked.
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We compare the performances of ARCADDV and EtH to other ratcheted messag-
ing and key agreement protocols that have surfaced since 2018. In particular, we
implemented five other schemes from the literature. Namely, the bidirectional
asynchronous key-agreement protocol BRKE by PR [10], the similar secure mes-
saging protocol by JS [8], the secure messaging protocol by JMM [9] and a
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modularized version of two protocols by ACD [1]. In ACD [1], the given protocols
are both with symmetric key cryptography ACD and public-key cryptography
ACD-PK. We did not implement the DV protocol [7], as ARCADDV is a slightly
modified version of DV, hence has identical performances.
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Fig. 8: Runtime Benchmarks
The protocol in [10] is represented with PR; [8] with JS; [9] with JMM; and [1] with

ACD and ACD-PK. ACD-PK is the public-key version with stronger security.

All the protocols were implemented in Go 17 and measured with its built-
in benchmarking suite 18 on a regular fifth generation Intel Core i5 processor.
In order to mitigate potential overheads garbage collection has been disabled
for all runs. Go is comparable in speed to C/C++ though further performance
gains are within reach when the protocols are re-implemented in the latter two.
Additionally, some protocols deploy primitives for which no standard implemen-
tations exist, which is, for example, the case for the HIBE constructions used in
the PR and JS protocols, making custom implementations necessary that can

17 https://golang.org/
18 https://golang.org/pkg/testing/
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Fig. 9: State Size Benchmarks
Due to the equivalent state sizes in unidirectional and deferred unidirectional traffic,

one figure is omitted

certainly be improved upon. For the deployed primitives, when we needed an
AEAD scheme, we used AES-GCM. For public key cryptosystem, we used the
elliptic curve version of ElGamal (ECIES); for the signature scheme, we used
ECDSA. And, finally for the PRF-PRNG in [1] protocol, we used HKDF with
SHA-256. Lastly, the protocols themselves may offer some room for performance
tweaks.

The benchmarks can be categorized into two types as depicted in Fig. 8–9.

(a) Runtime designates the total required time to exchange nmessages, ignoring
potential latency that normally occurs in a network.

(b) State size shows the maximal size of a user state throughout the exchange
of n messages.

A state is all the data that is kept in memory by a user. Each type itself is
run on three canonical ways traffic can be shaped when two participants are
communicating. In alternating traffic the parties are synchronized, i.e. take turns
sending messages. In unidirectional traffic one participant first sends n2 messages
which are received by the partner who then sends the other half. Finally, in
deferred unidirectional traffic both participants send n

2 messages before they
start receiving. ACD-PK adds some public-key primitives to the double ratchet
by ACD [1] to plug some post-compromise security gaps. These two variations
serve as baselines to see how the metrics of a protocol can change when some of
its internals are replaced or extended. Also note that due to the equivalent state
sizes in unidirectional and deferred unidirectional traffic one figure is omitted.

As we can see, overall, the fastest protocol is EtH, followed by the two ACD
protocols, then ARCADDV, then the JMM protocol, and lastly the strongest pro-
tocols PR and JS. ARCADDV and JMM may be comparable except for deferred
unidirectional communication.
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The smallest state size is obtained with EtH. ARCADDV performs well in
terms of state size.

Clearly, hybrid(ARCADDV, EtH) has performances which are weighted aver-
ages of the ones of ARCADDV and EtH, depending on the frequency of on-demand
ratcheting.

B ARCADDV Formal Protocol

With slight modifications, we transform the DV protocol [7] into an ARCAD that
we call ARCADDV.

ARCADDV is based on a hash function H 19, a one-time symmetric cipher
Sym20, a digital signature scheme DSS21, and a public-key cryptosystem PKC22.

ARCADDV, just as DV, consists of many modules which are built on top of
each other. The “smallest” module is a “naive” signcryption scheme SC which
can be of the form

SC.Enc(

stS︷ ︸︸ ︷
skS, pkR, ad, pt) = PKC.Enc(pkR, (pt, DSS.Sign(skS, (ad, pt))))

SC.Dec(skR, pkS︸ ︷︷ ︸
stR

, ad, ct) =

[
(pt,σ)← PKC.Dec(skR, ct) ;
DSS.Verify(pkS, (ad, pt),σ) ? pt : ⊥

]

SC extends to a multiple-state (and multiple-key) encryption called onion. It
handles the the case where the states get accumulated during a sequential send or
receive operation during the communication. It generates a secret key to encrypt
a plaintext. This secret key is, then, secret shared and encrypted under different
states so that if a state is exposed, its shares would still remain confidential. onion
leads to a unidirectional scheme called uni where participants have fixed roles as
either senders or receivers. The underlying idea of unidirectional communication
is to let the sender generate the next send/receive states for the future exchange
during the current send operation and transmit the next receive state to the
receiver. These future states are shown as st ′S and st ′R in the second row of Fig.
10. After each uni.Send and uni.Rec operations, the states are completely flushed
to ensure security.

Finally, unidirectional communication allow us to construct the bidirectional
ARCADDV as shown in the last row of Fig.10. Since the communication become
bidirectional, the participant P also keeps states for receiving. More specifically,
the sender generates a pair of fresh states and transmits the send state to the

19 H uses a common key hk generated by H.Gen and an algorithm H.Eval.
20 Sym uses a key of length Sym.kl, encrypts over the domain Sym.D with algorithm

Sym.Enc and decrypts with Sym.Dec.
21 DSS uses a key generation DSS.Gen, a signing algorithm DSS.Sign, and a verification

algorithm DSS.Verify.
22 PKC uses a key generation PKC.Gen, an encryption algorithm PKC.Enc, and a de-

cryption algorithm PKC.Dec.
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counterpart so that s/he can use it to send a reply to back to the sender with
this states.

ARCADDV is depicted on Fig. 11.
Note that we removed some parts of the protocol which ensure r-RECOVER

security. This is because the generic transformation in Section 3 which we apply
on ARCADDV will restore it in a stronger and generic way.

We recall the security results.

Theorem 30 (Security of ARCADDV [7]). ARCADDV is correct. If Sym.kl(λ) =
Ω(λ), H is collision-resistant, DSS is SEF-OTCMA, PKC is IND-CCA-secure,
and Sym is IND-OTCCA-secure, then ARCADDV is Ctrivial-FORGE-secure, (Cleak∧

CA,B
forge)-IND-CCA-secure and PREDICT-secure.23,24

23 SEF-OTCMA is the strong existential one-time chosen message attack. IND-OTCCA is
the real-or-random indistinguishability under one-time chosen plaintext and chosen
ciphertext attack. Their definitions are given in [7].

24 Following Durak-Vaudenay [7], for a Ctrivial-FORGE-secure scheme, (Cleak ∧ CA,B
forge)-

IND-CCA security is equivalent to (Cleak ∧ C
A,B
trivial forge)-IND-CCA security, which cor-

responds to the “sub-optimal” security in Table 1.
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Fig. 10: ARCADDV Protocol Adapted from DV [7] without RECOVER-Security.
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onion.Enc(1λ, hk, st1S, . . . , stnS , ad, pt)
1: pick k1, . . . ,kn in {0, 1}Sym.kl(λ)

2: k← k1 ⊕ · · · ⊕ kn
3: ctn+1 ← Sym.Enc(k, pt)
4: adn+1 ← ad
5: for i = n down to 1 do
6: adi ← H.Eval(hk, adi+1,n, cti+1)
7: cti ← SC.Enc(stiS, adi,ki)
8: end for
9: return (ct1, . . . , ctn+1)

onion.Dec(hk, st1R, . . . , stnR , ad, ~ct)
1: if |~ct| 6= n+ 1 then return ⊥
2: parse ~ct = (ct1, . . . , ctn+1)
3: adn+1 ← ad
4: for i = n down to 1 do
5: adi ← H.Eval(hk, adi+1,n, cti+1)
6: SC.Dec(stiR, adi, cti)→ ki
7: if ki = ⊥ then return ⊥
8: end for
9: k← k1 ⊕ · · · ⊕ kn

10: pt← Sym.Dec(k, ctn+1)
11: return pt

uni.Init(1λ)

1: SC.GenS(1
λ)

$−→ (skS, pkS)

2: SC.GenR(1
λ)

$−→ (skR, pkR)
3: stS ← (skS, pkR)
4: stR ← (skR, pkS)
5: return (stS, stR)

uni.Send(1λ, hk, ~stS, ad, pt)

1: SC.GenS(1
λ)

$−→ (sk ′S, pk ′S)

2: SC.GenR(1
λ)

$−→ (sk ′R, pk ′R)
3: st ′S ← (sk ′S, pk ′R)
4: st ′R ← (sk ′R, pk ′S)
5: pt ′ ← (st ′R, pt)
6: onion.Enc(1λ, hk, ~stS, ad, pt ′)→ ~ct
7: return (st ′S, ~ct)

uni.Receive(hk, ~stR, ad, ~ct)
1: onion.Dec(hk, ~stR, ad, ~ct)→ pt ′

2: if pt ′ = ⊥ then
3: return (false,⊥,⊥)
4: end if
5: parse pt ′ = (st ′R, pt)
6: return (true, st ′R, pt)

ARCADDV.Setup(1λ)

1: H.Gen(1λ)
$−→ hk

2: return hk

ARCADDV.Gen(1λ, hk)

1: SC.GenS(1
λ)

$−→ (skS, pkS)

2: SC.GenR(1
λ)

$−→ (skR, pkR)
3: sk← (skS, skR)
4: pk← (pkS, pkR)
5: return (sk, pk)

ARCADDV.Init(1λ, pp, skP, pkP,P)
1: parse skP = (skS, skR)
2: parse pkP = (pkS, pkR)
3: stsendP ← (skS, pkR)
4: strecP ← (skR, pkS)
5: stP ← (λ, hk, (stsendP ), (strecP ))
6: return stP

ARCADDV.Send(stP, ad, pt)
1: parse stP = (λ, hk, (stsend,1P , . . . , stsend,uP ), (strec,1P , . . . , strec,vP ))

2: uni.Init(1λ)
$−→ (stSnew, strec,v+1

P ) . append a new receive state to the strecP list
3: pt ′ ← (stSnew, pt) . then, stSnew is erased to avoid leaking
4: take the smallest i s.t. stsend,iP 6= ⊥ . i = u− n if we had n Receive since the last Send

5: uni.Send(1λ, hk, stsend,iP , . . . , stsend,uP , ad, pt ′)
$−→ (stsend,uP , ct) . update stsend,uP

6: stsend,iP , . . . , stsend,u−1
P ← ⊥ . flush the send state list: only stsend,uP remains

7: st ′P ← (λ, hk, (stsend,1P , . . . , stsend,uP ), (strec,1P , . . . , strec,v+1
P ))

8: return (st ′P, ct)

ARCADDV.Receive(stP, ad, ct)
9: parse stP = (λ, hk, (stsend,1P , . . . , stsend,uP ), (strec,1P , . . . , strec,vP ))

10: set n+ 1 to the number of components in ct . the onion has n layers
11: set i to the smallest index such that strec,iP 6= ⊥
12: if i+ n− 1 > v then return (false, stP,⊥)
13: uni.Receive(hk, strec,iP , . . . , strec,i+n−1

P , ad, ct)→ (acc, st ′P
rec,i+n−1, pt ′)

14: if acc = false then return (false, stP,⊥)
15: parse pt ′ = (stsend,u+1

P , pt) . a new send state is added in the list
16: strec,iP , . . . , strec,i+n−2

P ← ⊥ . update stage 1: n− 1 entries of strecP were erased
17: strec,i+n−1

P ← st ′P
rec,i+n−1 . update stage 2: update strec,i+n−1

P

18: st ′P ← (λ, hk, (stsend,1P , . . . , stsend,u+1
P ), (strec,1P , . . . , strec,vP ))

19: return (acc, st ′P, pt)

Fig. 11: ARCADDV Protocol Adapted from DV [7] without RECOVER-Security.
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