
Handling Expected Polynomial-Time Strategies

in Simulation-Based Security Proofs

Jonathan Katz1 and Yehuda Lindell2?

1 Department of Computer Science, University of Maryland, USA.
jkatz@cs.umd.edu

2 Department of Computer Science, Bar-Ilan University, Israel.
lindell@cs.biu.ac.il

Abstract. The standard class of adversaries considered in cryptogra-
phy is that of strict polynomial-time probabilistic machines (or circuits).
However, expected polynomial-time machines are often also considered.
For example, there are many zero-knowledge protocols for which the
only simulation techniques known run in expected (and not strict) poly-
nomial-time. In addition, it has been shown that expected polynomial-
time simulation is essential for achieving constant-round black-box zero-
knowledge protocols. This reliance on expected polynomial-time simula-
tion introduces a number of conceptual and technical difficulties. In this
paper, we develop techniques for dealing with expected polynomial-time
adversaries in the context of simulation-based security proofs.

1 Introduction

Informally speaking, the simulation paradigm (introduced in [15]) states that
a protocol is secure if the adversary’s view in a real protocol execution can
be generated solely from the information that it legitimately possesses (i.e., its
input and output). The implication of this statement is that the adversary learns
nothing from the protocol execution, since everything that the adversary sees in
such an execution could be generated by the adversary itself. This paradigm can
be instantiated in a number of different ways, where the differences that we refer
to here relate to the complexity of the real adversary and the complexity of the
simulator that generates the adversary’s view.
The most straightforward way of instantiating the simulation paradigm is

to require that for every strict polynomial-time adversary there exists a strict
polynomial-time simulator that generates the required view. However, in many
cases it is not known how to construct such simulators; rather, it is shown that for
every strict polynomial-time adversary there exists an expected polynomial-time
simulator that generates the required view. Essentially, this instantiation of the
simulation paradigm has become the default one (at least for zero-knowledge).
This reliance on expected polynomial-time simulation is problematic for the
following reasons:

1. Aesthetic considerations: The intuition behind the simulation paradigm
is that anything an adversary can learn from its interaction in a real protocol

? Most of this work was carried out while the author was at IBM T.J. Watson.

execution, it could also learn given only the input and the output. This follows
because the adversary can run the simulator itself and thus obtain a view that
is essentially the same as its view in a real execution. However, if the adversary
is only allowed to run in strict polynomial-time while the simulator may run in
expected polynomial-time, then the adversary cannot run the simulator (because
it doesn’t have enough time). One immediate solution to this problem is to allow
the adversary to run in expected polynomial-time as well. However, as we will
see in Section 1.1 below, this turns out to be problematic for technical reasons.

2. Technical considerations (composition): Consider the case that a secure
protocol π calls a secure subprotocol ρ. Furthermore, both π and ρ are proven
secure for strict polynomial-time adversaries using expected polynomial-time
simulation. (Here, this means that π is proven secure under the assumption that
ρ is replaced by some ideal function evaluation.) Now, the typical way of proving
that π is secure when it calls the real subprotocol ρ is to first replace ρ with
a simulated version, and then prove the security of π. However, this strategy
will fail since it yields an expected polynomial-time adversary for π (because the
adversary for π actually runs an internal expected polynomial-time simulation
of ρ); yet π is proven secure only for strict polynomial-time adversaries.
In order to stress the implications of this difficulty, consider the following nat-

ural protocol. The parties first run a coin-tossing protocol (that uses expected
polynomial-time simulation) in order to generate a common random string. Fol-
lowing this, the parties run a protocol that is secure in the common random
string model (in this model, some trusted party provides both parties with the
same uniformly distributed string). If the protocol that is designed for the com-
mon random string model is proven secure with respect to strict polynomial-
time adversaries (which is usually the case), then the security of the coin-tossing
protocol does not imply that the larger protocol is secure. The reason for this
“gap” is the fact that simulation of the coin-tossing protocol yields an expected
polynomial-time adversary, in the presence of which the protocol in the common
random string model may not be secure. We remark that – seemingly due, at
least in part, to these difficulties – all simulation-based composition theorems of
which we are aware (e.g., [14, 4, 5]) deal only with the case of protocols proven
secure via strict polynomial-time simulation.

In conclusion, expected polynomial-time simulation is currently a fact of life
when it comes to proving the security of many cryptographic protocols. However,
this causes difficulties especially when a protocol proven secure using expected
polynomial-time simulation is used as a subprotocol.

1.1 Potential Ways of Resolving the Difficulties

There are at least two possible ways of dealing with the difficulties raised above:

1. Require simulators to be “as powerful” as adversaries: One way of
resolving the above difficulties is to require simulators and adversaries to lie in
the same complexity class. Here, there are two natural choices: (a) require both

the adversary and the simulator to run in strict polynomial-time, or (b) allow
both the adversary and the simulator to run in expected polynomial-time.

Limitations of the first choice (requiring strict polynomial-time for both
adversary and simulator) were demonstrated in [3], who show that there do not
exist constant-round zero-knowledge protocols with black-box simulators run-
ning in strict polynomial time. We note that non black-box simulation strategies
running in strict polynomial-time are known to exist [1, 2]. However, all known
“highly efficient” protocols are black-box. Thus, given our current knowledge,
strict polynomial-time simulation techniques still pose a limitation on efficiency.

Before considering the second choice, where both simulators and adversaries
run in expected polynomial-time, we briefly address the issue of defining ex-
pected polynomial-time adversaries. Loosely speaking, Feige [7] defined that an
adversary A attacking a protocol π runs in expected polynomial-time if it runs
in expected polynomial-time when interacting with the honest parties running π.
Here, A may run for an unbounded amount of time when interacting with other
machines (for example, an adversarial verifier for zero-knowledge needs only run
in expected polynomial-time when interacting with the honest prover). The justi-
fication for such a definition is that the goal of an adversary is to attack an honest
party. Therefore, any strategy that is “efficient” when interacting with an honest
party is “feasible”. We call this notion expected polynomial-time with respect to

the protocol π. A more stringent definition, advocated by Goldreich [9], requires
the adversary to run in expected polynomial-time when interacting with any
interactive machine. We call this notion expected polynomial-time in any interac-

tion. Clearly, any machine that is expected polynomial-time in any interaction is
also expected polynomial-time with respect to any protocol π; it is also not hard
to see that the converse is not true. Thus, the second notion defines a strictly
smaller set of adversaries than the first.

We are now ready to discuss the implementation of the simulation paradigm
in which both the adversary and the simulator run in expected polynomial-time.
Feige [7] showed that the known simulation strategies for computational zero-
knowledge all fail when considering adversaries that run in expected polynomial-
time with respect to the protocol. In contrast, it was shown by [16, Appendix
A.1] that the Feige-Shamir zero-knowledge argument system [7, 8] remains both
zero-knowledge and an argument of knowledge even when the adversarial party
runs in expected polynomial-time in any interaction. (We stress that the result
of [16] does not hold for adversaries that run in expected polynomial-time with
respect to the protocol.) It was further demonstrated by [16, Appendix A.2]
that the known simulator for the Goldreich-Kahan zero-knowledge proof 1 sys-
tem [11] does not remain zero-knowledge for adversaries that run in expected
polynomial-time in any interaction (and so likewise for expected polynomial-time
with respect to the protocol). Furthermore, there is no computational proof sys-
tem that is known to remain zero-knowledge for adversaries that run in expected
polynomial-time (under any definition). We therefore conclude that allowing

1 Recall that in a proof system soundness holds even for all-powerful provers, whereas
in an argument system it holds only for polynomial-time provers.

both the adversary and the simulator to run in expected polynomial-time is
problematic because we simply don’t know how to construct simulators for such
adversaries. This is in contrast to the case when both the adversary and the
simulator run in strict polynomial-time which, as we have mentioned, suffers
from limitations which are inherent.

We remark that requiring simulators to be “as powerful” as adversaries ad-
dresses not only the aesthetic difficulty raised above, but also the issue of com-
position. This is due to the fact that once the simulator lies in the same class as
the adversary, the general strategy for proving secure composition (as sketched
above) is a viable one.

2. Prove a direct composition theorem: A second and incomparable ap-
proach addresses the technical issue of protocol composition, but does not deal
with the above-mentioned aesthetic considerations. (Arguably, we can live more
easily without aesthetics than without protocol composition.) In this approach, a
composition theorem of the following type is proven: If two protocols π and ρ are
both proven secure for strict polynomial-time adversaries while using expected
polynomial-time simulation, then the composition of π with ρ is also secure for
strict polynomial-time adversaries while using expected polynomial-time simula-
tion. Such an approach may be pursued independently of the previous approach,
and is worthwhile since many known protocols only satisfy the “strict/expected”
notion of security. Namely, even if it is possible to construct protocols that are
secure when both the adversary and the simulator run in expected polynomial-
time, one may still want to use existing protocols that have been proven secure
only for adversaries that run in strict polynomial-time (while using expected
polynomial-time simulation).

1.2 Our Results

The main focus of this paper is to develop techniques for working with expected
polynomial-time adversaries and simulation. We take the first steps in this direc-
tion and present two incomparable results, corresponding to the two approaches
discussed in the previous section.

1. Simulation for expected polynomial-time adversaries. Our first result
focuses on achieving expected polynomial-time simulation for expected poly-
nomial-time adversaries. Before describing the result, we discuss one of the cen-
tral technical problems that arises when dealing with expected polynomial-time
adversaries: expected polynomial-time machines are not closed under “oracle
composition”. In more detail, let A be an oracle machine belonging to a class C
and let B be any machine that also belongs to class C. Then, we say the class C is
closed under oracle composition if the machine AB also belongs to C (when count-
ing the steps of both A and B in their executions). This property of closure under
oracle composition is important for black-box simulations (where machine A is
the simulator and machine B is the adversary), and holds for the class of strict
polynomial-time machines. However, the class of expected polynomial-time ma-

chines is not closed under oracle composition. To see this, consider the following
two machines:

1. Machine A queries its oracle with the message 0 and receives back a message
x. Next, A queries its oracle with x and halts.

2. Machine B receives an input q. If q equals its random tape r (where |q| =
|r| = k, the security parameter), then B runs for 2k steps and halts. Other-
wise, it replies with r and halts.

Machine A runs in strict (and thus expected) polynomial-time. Likewise, ma-
chine B runs in expected polynomial-time because the probability (over choice
of random tapes) that q = r is 2−k (and thus B runs for 2k steps with probability
2−k). However, the composed machine AB always runs for more than 2k steps.
We therefore conclude that the composition of an expected polynomial-time sim-
ulator with an expected polynomial-time adversary may not yield an expected
polynomial-time simulation. We stress that this problem is not just hypotheti-
cal. Rather, as we have mentioned earlier, many concrete protocols and expected
polynomial-time simulators suffer from this problem [7, 16]. Furthermore, simple
solutions, like truncating the execution after some polynomial number of steps,
do not work; see [3] for some discussion.
Ideally, we would like to present conditions under which closure under oracle

composition can be achieved for expected polynomial-time machines. This would
allow us to construct an expected polynomial-time simulator that fulfills the
conditions, and immediately derive simulation even when the adversary runs
in expected polynomial-time. Toward this goal, we prove a theorem that shows
how to automatically convert a class of simulators (characterized by a certain
property) so that they remain expected polynomial-time even if the adversary
runs in expected polynomial-time. More precisely, let S be a black-box simulator
with the following two properties:

1. S runs in expected polynomial-time when given any oracle A (even if A is
all-powerful). We stress that here we do not include A’s running time in the
complexity of S. We also remark that most known black-box simulators have
this property.

2. Every oracle query that S makes to its oracle A during its simulation is
“strongly indistinguishable” to A from some partial view of a real protocol
execution. By “strongly indistinguishable”, we mean that the oracle query
is computationally indistinguishable for circuits of size α(k), for some super-
polynomial function α(k) = kω(1). We remark that by making an appropriate
α(k)-hardness assumption, most known black-box simulators can be easily
modified so that they fulfill this property.

Let A be an expected polynomial-time adversary and let S be a simulator that
fulfills the above properties. We show that by truncating SA at α(k) steps, the
resulting machine is a “good” simulator that runs in expected polynomial-time.
We thus obtain a type of closure under oracle composition, as desired.
An important corollary of this theorem is a proof that, under mildly su-

perpolynomial hardness assumptions, there exist computational zero-knowledge

proofs for all NP that remain zero-knowledge even if the adversarial verifier runs
in expected polynomial-time. As we have mentioned above, prior to this work
no such proof system was known to exist. We note that our corollary has the
following caveat: Our simulator for the zero-knowledge proof runs in expected
polynomial-time only when given a statement x that is in the language L; see
Section 3.3 for more details.2

We note that the above result does not achieve closure under oracle com-
position in its utmost generality, because it holds only for the above-described
class of simulators. Nevertheless, many (if not most) known simulators can be
modified so that they belong to this class. Furthermore, it is impossible to prove
closure for all simulators, because closure under oracle composition for expected
polynomial-time machines simply does not hold. Of course, it may still be pos-
sible to widen the class of simulators for which closure holds, and to remove the
superpolynomial hardness assumptions.

2. A composition theorem. The above theorem holds for a restricted class
of simulators, but achieves generality with respect to closure under oracle com-
position. Our second result is the opposite in that it holds for all black-box
simulators, but relates only to a specific type of composition. Specifically, under
a superpolynomial hardness assumption, we prove an analogue of the modular se-
quential composition theorem of Canetti [4] for protocols that are proven secure
for strict polynomial-time adversaries using expected polynomial-time simula-
tion. Loosely speaking, the modular sequential composition theorem of [4] states
that if a secure protocol π contains sequential ideal calls to some functionalities,
then it remains secure even when these ideal calls are replaced by sequential
executions of subprotocols that securely realize the functionalities. The original
result of [4] was previously known to hold only for protocols proven secure via
strict polynomial-time simulation (in fact, in the full version we show that the
proof of [4] fails in general for protocols proven secure via expected polynomial-
time simulation). In contrast, our analogous result holds even if these protocols
are proven secure using expected polynomial-time simulation (and only for strict
polynomial-time adversaries). However, we also note that the proof of [4] requires
no hardness assumptions, in contrast to ours which requires a superpolynomial
hardness assumption.

We remark that both our results hold even for the larger class of adversaries
running in expected polynomial-time with respect to the protocol under consid-
eration [7].

Related work. The problem of simulation in expected polynomial-time was
first posed by [7]; here we provide the first (partial) answers to some of the open
questions posed there. The existence of constant-round zero-knowledge argu-
ments with strict polynomial-time (non black-box) simulation was demonstrated

2 Standard definitions require a simulator to generate a distribution that is indis-
tinguishable from the view of the verifier only when it receives a statement x ∈ L.
However, polynomial-time machines are typically required to run in polynomial-time
for all inputs (i.e., even for x /∈ L).

in [1, 2]. The feasibility of obtaining constant-round arguments of knowledge with
strict polynomial-time extraction was then shown in [3]. They also showed that
such protocols do not exist when the simulator or extractor is black-box. Thus,
the protocols of [1–3] provide an alternative to expected polynomial-time sim-
ulation. In this work, we take a different approach and develop techniques for
working with expected polynomial-time simulation. This has the advantage of
not ruling out the many protocols (including most of the highly efficient proto-
cols) that rely on expected polynomial-time simulation.

2 Definitions and Preliminaries

The security parameter is denoted by k; for conciseness, we equate the security
parameter with the input length. (We therefore consider security for “sufficiently
long inputs”.) We denote by A(x, z, r) the output of machine A on input x,
auxiliary input z, and random coins r. The running time of A is measured in
terms of the length of its first input x (where |x| = k), and the exact running
time of the deterministic computation A(x, z, r) is denoted by timeA(A(x, z, r)).
A runs in strict polynomial time if there is a polynomial p(·) such that for
all x, z, and all r, it holds that timeA(A(x, z, r)) ≤ p(|x|). A runs in expected
polynomial time if there is a polynomial p(·) such that for all x and z, it holds
that Expr[timeA(A(x, z, r))] ≤ p(|x|).

Running time for ITMs. If A is an interactive Turing machine (ITM), we let
A(x, z, r; ·) denote the “next message function” of A on inputs x, z, and random
coins r. The ITM A runs in strict polynomial time if there is a polynomial
p(·) such that for all x, z, r, and any sequence of messages m, it holds that
timeA(A(x, z, r;m)) ≤ p(|x|).
Defining expected polynomial-time ITMs is more complicated, and at least

two such definitions have been considered. We first present the definition of
Feige [7]. As mentioned in the Introduction, the idea behind this definition is that
any adversarial strategy that is efficient when run against the specified target is
feasible. Thus, the running-time of an adversary when interacting with an arbi-
trary ITM (that is not the honest party under attack) is irrelevant. Informally,
an ITM A is therefore said to run in expected polynomial-time with respect to a
particular protocol π if there exists a polynomial p(·) such that for all inputs, the
expected running time of A when interacting with honest parties running π is at
most p(|x|). (The expectation here is taken over the random coins of both A and
the honest parties.) More formally, let timeA(〈A(x, zA, r), B(y, zB , s)〉) denote
the running time of A with input x, auxiliary input zA, and random coins r,
when interacting with B having input y, auxiliary input zB , and random coins
s. Then:

Definition 1 An ITM A runs in expected polynomial-time with respect to an

ITM B if there exists a polynomial p(·) such that for all x, y with |x| = |y| and
all auxiliary inputs zA, zB ∈ {0, 1}∗, the following holds:

Expr,s [timeA(〈A(x, zA, r), B(y, zB , s)〉)] ≤ p(|x|).

Let π = (P1, P2) be a two-party protocol. Then an adversary A runs in expected

polynomial-time with respect to π if it runs in expected polynomial-time with
respect to P1 and in expected polynomial-time with respect to P2.

The above definition relates to the case of two-party protocols. The extension
to the multiparty case is obtained by considering the expected running-time of
A when interacting (simultaneously) with every subset of honest parties.
As we have mentioned above, the fact that an adversary A runs in expected

polynomial-time with respect to a protocol π means nothing about its running
time when it interacts with other machines. A definition of the above sort makes
sense in a cryptographic context, but is arguably a somewhat strange way of
defining a “complexity class”. An alternative approach advocated by Goldre-
ich [9] therefore states that an ITM runs in expected polynomial time if there
exists a polynomial p(·) such that for all inputs, the expected running time of
A when interacting with any (even all powerful) ITM is at most p(|x|). Here,
the expectation is taken over the random coins of A only. In such a case, we say
that A runs in expected polynomial-time in any interaction. More formally:

Definition 2 An ITM A runs in expected polynomial-time in any interaction if
for every ITM B it holds that A runs in expected polynomial-time with respect
to B (as defined in Definition 1).

It is immediate that if an ITM A runs in expected polynomial-time in any
interaction, then A also runs in expected polynomial-time with respect to any
protocol π. Furthermore, it is not difficult to show that for many protocols π,
the class of adversaries running in expected polynomial-time with respect to π is
strictly larger than the class of adversaries running in expected polynomial-time
in any interaction. Since all our results hold even with respect to the stronger
definition, and we view it as preferable in the cryptographic context, we adopt
Definition 1 in this paper.

Expected polynomial-time oracle machines. Let A be an oracle machine
that receives oracle access to an ITM B. In the execution of A with B, denoted by
AB(y,zB ,s;·)(x, zA, r), machine A receives input x, auxiliary-input zA and random
tape r, and provides queries of the form m to its oracle which are answered as
B(y, zB , s;m). We distinguish between two notions of running time for an oracle
machine AB :

1. timeA(A
B(y,zB ,s;·)(x, zA, r)) denotes the exact running time of A on input

x, auxiliary-input zA, and random tape r when interacting with the oracle
B(y, zB , s; ·), counting calls to B as a single step (i.e., we only “look” at the
steps taken by A).

2. timeA+B(A
B(y,zB ,s;·)(x, zA, r)) denotes the total running time of both A and

B in the analogous execution. Here, the steps taken by B to answer A’s
queries are also counted.

Given the above, we can define expected polynomial-time oracle machines. An
oracle machine A is said to run in expected polynomial-time if there exists a poly-

nomial p(·) such that for every (even all powerful) machine B, all sufficiently-
long inputs x, and every auxiliary input z, Expr[timeA(A

B(x, z, r))] ≤ p(|x|).
Likewise, the composed machine AB is said to run in expected polynomial-

time if there exists a polynomial p(·) such that for all sufficiently-long inputs
x and y with |x| = |y|, and all auxiliary inputs zA and zB , it holds that
Expr,s[timeA+B(A

B(y,zB ,s)(x, zA, r))] ≤ p(|x|). Note that for any strict poly-
nomial-time B, if A runs in expected polynomial-time (not counting the steps
of B) then so does AB (where B’s steps are counted). We stress, however, that
this does not necessarily hold when B runs in expected polynomial time (under
either definition considered earlier).
Requiring an expected polynomial-time oracle machine to run in the same

(expected) amount of time when interacting with any machine B, even one
which is computationally unbounded, seems to be overly stringent. However,
all black-box simulators that we are aware of fulfill this condition. This extra
condition is also needed for our results. We also remark that our definition of
expected polynomial-time oracle and composed machines is asymptotic. That is,
the machine is only required to run in (expected) time p(|x|) for all long enough
x’s. As long as all machines considered halt on all inputs (and all random tapes),
this is equivalent to the standard notion. (Indeed, we will assume this “halting
condition” for all machines.)

3 Simulation for Expected Polynomial-Time Adversaries

In this section, we show how protocols proven secure against strict poly-time
adversaries using a certain class of black-box simulation can in fact be proven
secure against expected poly-time adversaries as well.

3.1 Preliminaries

As we have mentioned, the results of this section hold for a certain class of black-
box simulators. We begin with a high-level description of secure computation,
and then define the class of simulators. For the sake of simplicity, we present
the results here for the case of two-party protocols. The extension to multiparty
protocols is straightforward.

Secure two-party computation. We provide a very brief and informal over-
view of the definition of security for two-party computation. For more details,
see [4, 10]. In the setting of two-party computation, two parties wish to jointly
compute a (possibly probabilistic) functionality f : {0, 1}∗×{0, 1}∗ → {0, 1}∗×
{0, 1}∗, where f = (f1, f2). That is, upon respective inputs x and y, the parties
wish to compute f(x, y) so that party P1 receives f1(x, y) and party P2 receives
f2(x, y). Furthermore, the parties wish to ensure that nothing more than the
output is revealed and that the function is correctly computed, even if one of
the parties behaves adversarially. These requirements (and others) are formalized
by comparing a real protocol execution to an ideal execution involving a trusted
party. In an ideal execution with f , the parties send their inputs x and y to a
trusted party who computes f(x, y) and sends f1(x, y) to P1 and f2(x, y) to P2.
Of course, the adversary who controls one of the parties can choose to send any

input it wishes to the trusted party.3 In contrast, in a real execution the parties
P1 and P2 run a protocol π, where one of the parties may be corrupted and thus
under the complete control of the adversary A. Informally, we say a protocol π
is secure if for every real-model adversary A interacting with an honest party
running π, there exists an ideal-model adversary S interacting with a trusted
party computing f , such that the output of A and the honest party in the real
model is computationally indistinguishable from the output of S and the honest
party in the ideal model. We note that in this work we consider static adversaries
who corrupt one of the parties before the protocol execution begins.

Notation. Let π = (P1, P2) be a two-party protocol and let f be a two-party
functionality. We denote by realπ,A(x, y, z) the output of a real execution of π
where party P1 has input x, party P2 has input y, and the adversary A has input
z. Likewise, we denote by idealf,S(x, y, z) the output of an ideal execution with
f where the respective inputs are as above. Since we are interested in black-box
simulation, we present the definition for a black-box simulator S:

Definition 3 (secure computation with black-box simulation): Let f and π be
as above. Protocol π is said to black-box securely compute f (in the malicious
model) if there exists a non-uniform probabilistic expected polynomial-time oracle
machine (ideal adversary/simulator) S such that for every non-uniform proba-
bilistic polynomial-time real-model adversary A, every non-uniform polynomial-
time distinguisher D, every polynomial p(·), all sufficiently-long inputs x and y
such that |x| = |y|, and all z ∈ {0, 1}poly(|x|),∣∣Pr[D(idealf,SA(z)(x, y, λ)) = 1]− Pr[D(realπ,A(x, y, z)) = 1]

∣∣ < 1

p(|x|)
.

We note that S is an expected polynomial-time oracle machine as defined earlier.
That is, for every A the expected value of timeS(S

A) is polynomial (even if A is
computationally unbounded). To be more exact, however, the running-time of
S may also depend on the messages it receives from the trusted party (and in
particular, the random coins used by the trusted party to compute the functional-
ity). We therefore denote by timeS(idealf,SA(z)(x, y, λ)) the running-time of SA

here. Adapting the earlier notation, we denote the expected running-time of SA

not counting A’s steps by Exps[timeS(idealf,SA(z,r)(1|z|,s)(x, y, λ)], and its ex-
pected time counting A’s steps by Expr,s[timeS+A(idealf,SA(z,r)(1|z|,s)(x, y, λ)].
(The expectations above are actually also over the random-coins of the function-
ality. In this extended abstract, we ignore this issue.)
We now define a stronger notion of simulation which, informally, requires

not only that the final output of idealf,SA be indistinguishable from realπ,A,
but also that each partial transcript generated during the simulation is indistin-
guishable from the (corresponding) partial transcript of a real execution of the
protocol. Furthermore, we require that indistinguishability holds in a “strong”
sense even against algorithms running in some slightly superpolynomial time.
We begin by defining the following distributions:

3 The adversary also has control over the delivery of the output from the trusted party
to the honest party. Therefore, fairness and output delivery are not guaranteed.

1. simf,SA(x, y, z, r, i) is defined by the following experiment: choose a random-

tape s ∈R {0, 1}∗ and run SA(z,r;·)(1|z|, s) in the ideal model with f . Let
queryi be the i

th oracle query made by S to A; if no such query is made,
then set queryi = ⊥. Output queryi.

2. realπ,A(x, y, z, r, i) is defined by the following experiment: choose s ∈R

{0, 1}∗ and run a real execution where A has random-tape r and the honest
party has random-tape s. Let T be the vector of messages sent by the honest
party to A in this execution, and let T j denote the first j messages in T .
Next, run the experiment simf,SA(x, y, z, r, i) above (with an independent
choice of s) and obtain queryi. If queryi = ⊥, then output ⊥. Otherwise, let
j denote the number of messages in queryi, and output T j .

We note that the reason for running sim in the second distribution is just to
decide the length of the partial transcript to output. That is, we wish to compare
the distribution of queryi to the partial transcript of a real execution of the
appropriate length. We are now ready for the formal definition.

Definition 4 (α-strong black-box simulation): Let π be a two-party protocol
that is secure under black-box simulation, and let S be a black-box simulator for
π. We say that S is an α-strong black-box simulator for π (and say that π is
secure under α-strong black-box simulation), if for every strict polynomial-time
adversary A, every non-uniform algorithm D running in time at most α(k), all
i ∈ N, all sufficiently large x and y, and all z, r ∈ {0, 1}∗,
∣∣Pr[D(simf,SA(x, y, z, r, i)) = 1]− Pr[D(realπ,A(x, y, z, r, i)) = 1]

∣∣ < 1

α(k)
.

If the above holds for adversaries A that are expected polynomial-time with re-
spect to π, then we say that π is secure under α-strong black-box simulation for

expected polynomial-time adversaries.

Extended black-box simulation. Finally, we introduce a generalization of
black-box simulation in which the black-box simulator is allowed to truncate its
oracle after it exceeds some (poly-time computable) number of steps α(·). We call
such a simulator extended black-box. We argue that this generalization is natural
in the sense that the simulator still does not “look” at the internal workings
of its oracle. We remark that when computing timeA(A

B), oracle calls are still
considered a single step (even if A truncates B after some number of steps).
Of course, timeA+B(A

B) also remains unchanged. We note that by requiring
α(·) to be polynomial-time computable, we ensure that any extended black-box
simulator can be implemented by a non black-box simulator.

3.2 Simulation for Expected Polynomial-Time Adversaries

Theorem 5 Let α(k) = kω(1) be a superpolynomial function that is poly-time
computable, and let π be a protocol that is secure under α-strong (extended)
black-box simulation for strict polynomial-time adversaries. Then there exists a
superpolynomial function α′(k) such that π is secure under α′-strong extended
black-box simulation for expected polynomial-time adversaries.

Proof: The idea behind the proof of this theorem is as follows. Since each query
made by the α-strong simulator S to the real adversary A is indistinguishable
from a partial real transcript even for circuits of size α(k), it follows that as
long as A does not exceed α(k) steps, it cannot behave in a noticeably different
way when receiving an oracle query or a real partial transcript. In particular,
it cannot run longer when it receives an oracle query than it would run when
interacting in a real protocol execution, and we know that it runs in expected
polynomial-time in the latter case. We therefore construct a new simulator S̃
that works in the same way as S, except that it halts if A ever exceeds O(α(k))
steps when answering a query. This enables us to prevent A from ever running
for a very long time (something which can cause its expected running-time to be
superpolynomial). Furthermore, by what we have claimed above, A will behave
in almost the same way as before, because it can exceed α(k) steps only with
probability that is inversely proportional to α(k). This will suffice for us to
show that the new simulator is expected polynomial-time even if A is expected
polynomial-time. Of course, we must also prove that the new simulation is no
different than the old one. This follows again from the fact that A must behave
in the “same way” as in a real execution, as long as α(k) steps are not exceeded.
We now proceed with the actual proof.
Throughout the proof, we let k denote the length of x. Let S be the α-strong

black-box simulator for π that is assumed to exist, and define Â as the algorithm
that behaves exactly as A except that it outputs ⊥ if it ever exceeds α(k)/2
steps. Then, we construct a new simulator Ŝ that receives oracle access to A and
emulates a simulation of S with Â. That is, Ŝ chooses a random tape s ∈ {0, 1}∗

and invokes S with random-tape s. Then, all oracle queries from S are forwarded
by Ŝ to its own oracle A and the oracle replies are returned to S unless the
oracle exceeds α(k)/2 steps while answering the query, in which case Ŝ returns
⊥ (thereby emulating Â). Furthermore, all communication between S and the
trusted party computing f is forwarded unmodified by Ŝ. We remark that Ŝ
is an extended black-box simulator because it truncates its oracle. (It makes no
difference whether S was extended black-box or not.) We first show that Ŝ runs
in expected polynomial time, even when A runs in expected polynomial-time
with respect to π.

Claim 6 For every expected polynomial-time adversary A, the composed ma-
chine ŜA runs in expected polynomial time. That is, for every A there exists a
polynomial p(·) such that all sufficiently large x and y, and all z ∈ {0, 1}∗, it
holds that Expr,s[timeŜ+A(idealf,ŜA(z,r)(1|z|,s)(x, y, λ)] ≤ p(k).

Proof: To prove the claim, first note that the running time of Ŝ consists of
two components: the steps taken by S and the steps taken by Â in answer-
ing all of the oracle queries of S. By the linearity of expectations, it suffices
to show that the expectation of each of these components is polynomial. Since
S is an expected polynomial-time oracle machine, its expected running time is
polynomial when interacting with any oracle (see the end of Section 2). It there-
fore remains to bound the total number of steps taken by Â. This is equal to

Expr,s[
∑τ

i=1 timeS
Â(z,r)

(i)], where τ is a random variable denoting the number of

oracle queries made by S, and timeS
Â(z,r)

(i) is a random variable denoting the run-

ning time of Â(z, r) in answering the ith query from S. (Note that these random
variables may depend on both r and s, and also on the honest party’s inputs.)
The expected value of τ is polynomial because S is an expected polynomial-time
oracle machine. We now show that the expected value of timeS

Â(z,r)
(i) is also poly-

nomial for any i. Applying Wald’s inequality (see Appendix A) then completes
the proof that the expected total number of steps taken by Â is polynomial.
For any i, it holds that Expr,s[timeS

Â(z,r)
(i)] = Expr[Exps[timeS

Â(z,r)
(i)]].

Furthermore, since Â halts after α(k)/2 steps, it follows that for any fixed r,

Exps

[
timeS

Â(z,r)
(i)
]
=

α(k)/2∑

t=1

t·Prs
[
timeS

Â(z,r)
(i) = t

]
=

α(k)/2∑

t=1

Prs

[
timeS

Â(z,r)
(i) ≥ t

]
.

Notice that the distribution on the message sequence input to Â here (namely,
the ith query from S) is exactly that given by simf,SÂ(x, y, z, r, i). Now, let

timeÂ(z,r)(i) be a random variable denoting the running time of Â(z, r) when

run on input distributed according to realπ,Â(x, y, z, r, i). (Recall that this is a

message of the same length as queryi, that Â receives in a real execution.) We
first claim that, for large enough x and y, for any z, r, i, and for t ≤ α(k)/2,

∣∣∣Prs[timeÂ(z,r)(i) ≥ t]− Prs[timeS
Â(z,r)

(i) ≥ t]
∣∣∣ <

1

α(k)
. (1)

This follows because otherwise we obtain a non-uniform distinguisher, in con-
tradiction to the fact that S is an α-strong black-box simulator. In more detail,
given an auxiliary input z′ = (z, r, t) with t ≤ α(k)/2, and a sequence of j
messages T j we simply run Â(z, r) on message sequence T j , and output 1 iff Â
exceeds t steps. For large enough k, the total running time of this distinguishing
algorithm (including the overhead for maintaining a counter and running Â) is
at most α(k). Therefore, by Definition 4, it follows that Eq. (1) holds. We remark
that the non-uniformity of Definition 4 is essential here. We thus have that:

α(k)/2∑

t=1

Prs

[
timeS

Â(z,r)
(i) ≥ t

]
≤

α(k)/2∑

t=1

(
Prs[timeÂ(z,r)(i) ≥ t] +

1

α(k)

)

=
1

2
+

α(k)/2∑

t=1

Prs[timeÂ(z,r)(i) ≥ t], (2)

and therefore the expected value of timeS
Â(z,r)

(i) is bounded by the expression

in Eq. (2). Using the simple observations that: (1) timeÂ(z,r)(i) ≤ timeÂ(z,r)

(where the latter expression refers to the total running time of Â(z, r) in a real
execution), and (2) timeÂ(z,r) ≤ timeA(z,r) (because Â is truncated whereas A

is not), we see that the expected value of timeS
Â(z,r)

(i) is bounded by:

1

2
+

α(k)/2∑

t=1

Prs[timeA(z,r) ≥ t] ≤
1

2
+Exps[timeA(z,r)]

where Exps[timeA(z,r)] is simply the expected running time of A in a real
protocol execution with the honest parties. The fact that A runs in expected
polynomial-time with respect to π therefore implies that the expected value of
timeS

Â(z,r)
(i) is polynomial, completing the proof of Claim 6.

Until now, we have shown that Ŝ runs in expected polynomial-time. It remains
to show that it is an α′-strong (extended black-box) simulator for expected
polynomial-time adversaries, for some superpolynomial function α′(k). First, Ŝ
is an expected polynomial-time oracle machine because it inherits this from S.
Next, we claim that for every expected polynomial-time A, every non-uniform
algorithm D running in time at most α(k), all i ∈ N, all sufficiently large x and
y, and all z, r ∈ {0, 1}∗,
∣∣∣Pr[D(simf,ŜA(x, y, z, r, i)) = 1]− Pr[D(simf,SA(x, y, z, r, i)) = 1]

∣∣∣ <
1

α′′(k)

for some superpolynomial function α′′(k). This follows from the facts that (1) the
composed machine ŜA runs in expected polynomial-time, and (2) the only time
that ŜA and SA differ is if A exceeds α(k)/2 steps. That is, let p(k) be the ex-
pected running time of the composed machine ŜA. Then, by Markov’s inequality,
the probability that ŜA will exceed α(k)/2 steps is at most 2p(k)/α(k). There-
fore, the statistical difference between simf,ŜA(x, y, z, r, i) and simf,SA(x, y, z, r, i)

is at most α′′(k)
def
= 2p(k)/α(k). Combining this with the assumption that S

is an α-strong simulator and so simf,SA(x, y, z, r, i) can be distinguished from
realπ,A(x, y, z, r, i) with probability at most 1/α(k), we conclude that

∣∣∣Pr[D(simf,ŜA(x, y, z, r, i)) = 1]− Pr[D(realπ,A(x, y, z, r, i)) = 1]
∣∣∣ <

1

α′(k)

where α′(k)
def
= (1/α(k) + 1/α′′(k))−1. We conclude that Ŝ is an α′-strong ex-

tended black-box simulator, as required.

3.3 Zero-Knowledge Proofs – A Corollary

Consider now the zero-knowledge functionality for an NP-language L. This func-
tion is defined by f(x, x) = (λ, χL(x)), where χL(x) = 1 if and only if x ∈ L.
A zero-knowledge protocol is a protocol π that securely realizes f for strict
polynomial-time adversaries. Now, for the sake of concreteness, consider the
zero-knowledge protocol of Goldreich, Micali, and Wigderson [13]. Assuming the
existence of commitment schemes that are hiding for circuits of size α(k), it is
easy to verify that the black-box simulator provided by [13] is α-strong for strict
polynomial-time adversaries. Therefore, by applying Theorem 5, we obtain that
the protocol of [13] is also black-box secure for adversaries that run in expected
polynomial-time with respect to the protocol. The soundness condition is unaf-
fected by the above. We therefore obtain the first computational zero-knowledge

proof system that remains zero-knowledge for expected polynomial-time adver-
saries (with respect to either of the definitions in Section 2).4 Thus, as a corollary
of Theorem 5, we partially resolve the open questions from [7, 16] discussed in
the Introduction. (The result is only “partial” because we need superpolynomial
hardness assumptions, and due to the caveat below.)
We remark that there is a subtle, yet important, caveat to the above. The

simulator is only α-strong in the case that the input is a statement x ∈ L.
This is due to the fact that when x /∈ L, it may be possible for a distinguisher
D to distinguish partial transcripts of the simulator from partial transcripts of
a real execution just by checking if the statement is in the language (unless
distinguishing x ∈ L from x /∈ L is also assumed to be hard for circuits of size
α(k)). On the one hand, this is fine because simulators are only required to
generate indistinguishable distributions in the case that x ∈ L. On the other
hand, this is a problem because our simulator is not even guaranteed to run in
expected polynomial-time for x /∈ L. Thus, within a proof of security, one cannot
invoke the zero-knowledge simulator on a statement x that may or may not be
in the language, unless it is assumed that it is hard to distinguish x ∈ L from
x /∈ L in time α(k). In the full version of this paper, we discuss the ramifications
of this caveat in greater detail.

3.4 Protocol Composition and Other Scenarios

We note that our result above has been stated for the stand-alone setting of
secure computation. However, it actually holds for any setting, as long as the
black-box simulator is α-strong for that setting. In particular, the result holds
also for the setting of protocol composition where many protocol executions are
run (and thus the simulator interacts with the trusted party many times).

4 A Modular Composition Theorem

Our goal in this section is to prove a modular composition theorem for secure
multi-party computation which is analogous to the result of Canetti [4], but
which holds even for protocols proven secure against strict polynomial-time ad-
versaries while using expected polynomial-time simulation. As in Section 3, the
results of this section are stated for the two-party case; the extension to the
multiparty case is straightforward.
The sequential composition theorem of [4] can be informally described as

follows. Let π be a two-party protocol computing a function g, designed in an
(idealized) model in which the parties have access to a trusted party who eval-
uates functions f1, . . . , fm; furthermore, assume that at most one ideal function
call is made during any round of π. This model is called the (f1, . . . , fm)-hybrid
model, denoted hybridf1,...,fm , because parties send real messages from the pro-
tocol π and also interact with a trusted party computing functions f1, . . . , fm.
Let ρ1, . . . , ρm be a sequence of two-party protocols such that ρi securely com-
putes fi (as in Definition 3), and let π

ρ1,...,ρm denote the “composed protocol” in

4 In fact, computational zero-knowledge arguments were also not known to exist for
adversaries that are expected polynomial-time with respect to the protocol.

which each ideal call to fi is replaced by an invocation of ρi (we stress that each
executed protocol ρi is run to completion before continuing the execution of π).
The composition theorem then states that if π securely computes g in the hy-
brid model, and if each ρi securely computes fi, then the composed real protocol
πρ1,...,ρm securely computes g. An important point to note is that the proof of [4]
only considers the case that each of the component protocols ρi is proven secure
via strict polynomial-time simulation. In fact, the proof of [4] demonstrably fails
(in general) for the case of protocols proven secure via expected polynomial-time
simulation; a counterexample is provided in the full version of this paper. In this
section, we show that a suitable modification of the approach of [4] can be used
to prove an analogous modular composition theorem even when each of the
component protocols is proven secure via expected polynomial-time simulation.
We view this result as important both for conceptual reasons as well as

for reasons of efficiency and practicality. Conceptually, there seems to be no
fundamental reason that a composition theorem of this sort should not hold for
the case of expected polynomial-time simulation; a number of technical barriers,
however, make proving such a result difficult. From a practical point of view,
many existing protocols – and, in particular, efficient ones – seem to require
a proof of security via expected polynomial-time simulation. The composition
theorem proven here enables protocol designers to enjoy the benefits of modular
design and analysis, while ultimately allowing (more) efficient sub-protocols to
be “plugged-in” for each of the components.

Preliminaries.We assume that the reader is familiar with [4], and so we borrow
notation to the extent possible. In our proof, we use pseudorandom function
families that are indistinguishable from random even for circuits of size α(k), for
some superpolynomial function α. We call these α-secure pseudorandom functions.

The composition theorem. The composition theorem we prove is analogous
to the one shown in [4] for the case of strict polynomial-time simulation. The
only differences are that on the one hand, our proof holds also for the case of
expected polynomial-time simulation, and on the other hand, we require black-
box simulation and the existence of α-secure pseudorandom functions (the proof
of [4] holds for any type of simulation and requires no hardness assumptions). We
stress that, unlike in Section 3, here we consider the case that the real adversary
runs in strict polynomial-time. Our proof of Theorem 7 is rather informal; a full
and rigorous proof appears in the full version.

Theorem 7 Assume the existence of α(k)-secure pseudorandom functions for
some α(k) = kω(1). Let f1, . . . , fm and g be two-party functions, let π be an
two-party protocol that black-box securely computes g in the (f1, . . . , fm)-hybrid
model where no more than one ideal evaluation call is made at each round, and
let ρ1, . . . , ρm be two-party protocols such that each ρi securely computes fi. Then
protocol πρ1,...,ρm securely computes g.

Proof: We follow the structure and notation of the proofs of [4, Theorems
5, 15] and [4, Corollaries 7, 17] as closely as possible. We focus on the case

m = 1; the general case follows easily using the techniques described here (and
is omitted due to lack of space). We begin with a high-level overview of our
proof, stressing where it diverges from [4]: Let f = f1 be a two-party function,
π a protocol in the f -hybrid model, ρ a protocol that securely computes f , and
πρ the composed protocol. Given a strict polynomial-time adversary A in the
real world (who interacts with parties running πρ), our goal is to construct an
expected polynomial-time ideal-world adversary S (interacting with a trusted

party who evaluates g) such that idealg,S
c
≡ realπρ,A. We proceed in the

following steps:

– As in [4], we first construct from A a (natural) real-world adversary Aρ who
interacts with parties running ρ as a stand-alone protocol. The security of
ρ implies the existence of an expected polynomial-time simulator Sρ, who

interacts with a trusted party evaluating f , such that idealf,Sρ
c
≡ realρ,Aρ

.

– As in [4], using A and Sρ we construct an adversary Aπ interacting with par-

ties running π in the f -hybrid model and satisfying hybrid
f
π,Aπ

c
≡ realπρ,A.

Contrary to [4], we cannot at this point claim the existence of an expected
polynomial-time ideal-world adversary S, who interacts with a trusted party

evaluating g, such that idealg,S
c
≡ hybrid

f
π,Aπ

(such a claim, if true, would
complete the proof). We cannot make such a claim because Aπ runs in ex-
pected polynomial-time but the security of π only guarantees the existence
of a “simulator” for strict polynomial-time adversaries.

– Instead, we first construct a modified adversary A′
π (still interacting with

parties running π in the f -hybrid model) that runs in expected polynomial

time and for which hybrid
f
π,A′

π

c
≡ hybrid

f
π,Aπ

under the assumption that
α-secure pseudorandom functions exist. This forms the crux of our proof,
and further details are given below.

– Let Sπ denote a black-box simulator for π (as in Definition 3). We define
an ideal-world adversary S by running a slightly modified version of Sπ
with oracle access to A′

π. We then prove that (1) idealg,S
c
≡ hybrid

f
π,A′

π
;

and (2) that S runs in expected polynomial time (even when taking the
running time of A′

π into account). The proof of the second claim relies on
the existence of α-secure pseudorandom functions. We stress that we do not
claim the above is true when Sπ is run with oracle access to an arbitrary
expected polynomial time machine (indeed, the claims may not be true if Sπ
is run with oracle access to the original Aπ), but rather we only make these
claims with regard to the specific A′

π that we construct.

We now proceed with the proof. Since the first steps of our proof – namely,
the construction of Aρ, Sρ, and Aπ – are exactly as in [4], we omit the details
here but instead provide only a high-level description of the adversary Aπ which
runs in the f -hybrid model. Loosely speaking, Aπ runs A until the protocol ρ
is supposed to begin. At this point, A expects to run ρ, whereas Aπ should use
an ideal call to f . Therefore, Aπ invokes Sρ giving it the current internal state
zρ of A as its auxiliary input, and forwarding the messages between Sρ and the

trusted party computing f . The output of Sρ is an internal state of A at the
end of the execution of ρ; adversary Aπ continues by invoking A on this state
and running A until the conclusion of π. We remark that Aπ’s random-tape
is parsed into r and r∗, and Aπ invokes A with random-tape r and Sρ with
random-tape r∗. This concludes the (informal) description of Aπ. As in [4], it

holds that hybrid
f
π,Aπ

c
≡ realπρ,A. In this case, however, Aπ is an expected

polynomial-time adversary.

Sidetrack – motivation for the proof. At this point, it is possible to provide
the key idea behind the proof of the theorem. Let Sπ be the simulator that is
guaranteed to exist by the fact that π black-box securely computes g in the
f -hybrid model. Then, the main problem that arises in the proof of [4] is that
the expected running-time of Sπ when given access to the oracle Aπ may not
be polynomial. Consider the case that the strategy of Sπ involves “rewinding”
Aπ. Then, it is possible that Aπ will invoke Sρ a number of times with the same
random-tape r∗. This introduces dependence between the executions, and may
cause Sρ to always run for a very long time. (The composition of the machines A
and B described in the Introduction yielded an exponential-time machine exactly
due to the fact that A invoked B with the same random-tape twice.) The first
solution that comes to mind would be to haveAπ choose an independent random-
tape every time that it invokes Sρ. However, Sπ works when given an oracle Aπ

with a fixed random-tape, and therefore this solution does not work. Our solution
is to instead modify Aπ so that it invokes Sρ with a new pseudorandom tape
each time (in a way reminiscent of a similar technique used in [6]). By using α-
strong pseudorandom functions, we ensure that the pseudorandom tapes “look
random” throughout the entire simulation by Sπ.

Back to the proof. As described above, we modify Aπ to an adversary A′
π,

using a family F of α-secure pseudorandom functions for α(k) = kω(1). The
random tape of A′

π is parsed as r, s, where r is used exactly as above (i.e., A
′
π

invokes A with random-tape r), and s is used as a key to an α-secure pseudoran-
dom function. Then A′

π sets the random-tape r
∗ for Sρ to r

∗ = Fs(z
ρ), where

zρ is the current internal state of A when Sρ is invoked (instead of choosing it
randomly like Aπ). In addition, A

′
π halts with output ⊥ if it ever exceeds α(k)/2

steps overall (not including steps used in computing Fs).
5 Apart from the above,

A′
π works in exactly the same way as Aπ. We now prove the following claims:

Claim 8 Assuming that F is an α-secure family of pseudorandom functions,
A′

π runs in expected polynomial time.

Proof (sketch): Consider a modified simulator Âπ who chooses a truly random-
tape r∗ for Sρ instead of a pseudorandom one. (In particular, the only difference

5 There is an additional subtlety here, in that Sρ may require a superpolynomial
number of coins while the output of Fs is polynomial. However, this can be easily
resolved: by construction, we never require more than α(k) coins for Sρ.Coins for Sρ
can thus be generated as needed by letting the ith coin required by Sρ be given by
Fs(z

ρ| 〈i〉) where 〈i〉 is the log(α(k))-bit representation of i.

between Âπ and Aπ is that Âπ outputs ⊥ if it ever exceeds α(k)/2 steps.)
Then, the expected running time of Âπ on any set of global inputs global (which
includes both the inputs explicitly given to Âπ as well as the inputs and random
coins of the honest parties and the random coins of the trusted party) is at most:

α(k)/2∑

t=1

Prr,r∗ [timeÂπ
(global) ≥ t] ≤

α(k)/2∑

t=1

Prr,r∗ [timeAπ
(global) ≥ t]

≤
∞∑

t=1

Prr,r∗ [timeAπ
(global) ≥ t] ≤ pAπ

(k)

where pAπ
(·) is the polynomial upper-bound on the expected running-time of

Aπ, and where we ignore the time required to maintain a counter for the number
of steps (since this only affects the expected running time by a multiplicative
polynomial factor). Now, since r∗ is actually chosen pseudorandomly by A′

π, we
have that for large enough k, every value of global and all t ≤ α(k)/2:

∣∣∣Prr,s[timeA′
π
(global) ≥ t]− Prr,r∗ [timeÂπ

(global) ≥ t]
∣∣∣ ≤

1

α(k)
. (3)

(Eq. (3) ignores the time spent by A′
π in computing Fs because, as above, it

only affects the expected running-time by a multiplicative polynomial factor.)
Otherwise, we can construct a distinguisher D for F as in the proof of Claim 6
(details appear in the full version). We conclude that the expected running-time
of A′

π on global inputs global and large enough k equals

α(k)/2∑

t=1

Prr,s[timeA′
π
(global) ≥ t] ≤

α(k)/2∑

t=1

(
Prr,r∗ [timeÂπ

(global) ≥ t] +
1

α(k)

)

which equals at most pAπ
(k) + 1, and so is polynomial.

Claim 9 Assuming that F is an α-secure family of pseudorandom functions, it

holds that hybrid
f
π,A′

π

c
≡ hybrid

f
π,Aπ

.

Proof (sketch): Let Âπ be the same as in Claim 8. Since the expected running-
time of Aπ on security parameter 1

k is polynomial (for any set of global inputs),

the probability that Aπ exceeds α(k)/2 steps is negligible. Hence hybrid
f

π,Âπ

is statistically close to hybrid
f
π,Aπ

. Now, A′
π is identical to Âπ except that it

uses a pseudorandom r∗ while Âπ uses a truly random r∗. Since A′
π and Âπ

both run in at most α(k)/2 steps (for the case of A′
π, not counting the time

required to compute Fs), the assumption that F is an α-secure family of pseu-

dorandom functions immediately implies that hybrid
f
π,A′

π
is computationally

indistinguishable from hybrid
f

π,Âπ
(details omitted), completing the proof.

Defining the simulator S. Since π black-box securely computes g, there exists
an oracle machine Sπ satisfying the conditions of Definition 3 (with appropriate
modifications for comparing the f -hybrid and ideal models). Our simulator S

works by simply invoking Sπ with oracle A
′
π, with the limitation that it halts

with output ⊥ if it ever exceeds α(k)/2 steps (including the running time of A′
π

but, again, not including time spent computing Fs). Our aim is to show that
(1) S runs in expected polynomial-time (even when taking the running time of

A′
π into account), and (2) hybrid

f
π,A′

π

c
≡ idealg,S . We stress that neither of

these claims are immediate since A′
π is an expected polynomial-time adversary,

and the simulator Sπ has only been proven for the case that it is given a strict
polynomial-time oracle.

Claim 10 Assuming that F is an α-secure family of pseudorandom functions,
S runs in expected polynomial time.

Proof (sketch): We use the same general technique as in the proof of Claim 8,

but the proof here is slightly more complicated. First imagine an adversary S̃
that differs from S in the following way: whenever Sρ is called from within A

′
π,

S̃ monitors the value of zρ at that point. Let zρi denote the i
th value of zρ in

the execution of S̃. Then instead of setting r∗i = Fs(z
ρ
i), S̃ instead chooses r

∗
i

as follows: if zρi = zρj for some j < i, then set r∗i = r∗j . Otherwise, choose r
∗
i

uniformly at random (the technicalities raised in footnote 5 can be handled in

the obvious way). We first show that S̃ runs in expected polynomial-time, and

then claim (as in the proof of Claim 8) that the expected running-times of S̃
and S cannot differ “too much”.
The running time of S̃ is the sum of three components: timeSπ , the running

time of Sπ when counting its oracle calls to A
′
π as a single step; timeA′

π
, the

running time of A′
π (when answering oracle calls of Sπ) but excluding time

spent running Sρ; and timeSρ , and the running time of Sρ when called by A
′
π

(each time A′
π is run).

6 By linearity of expectation, we can analyze each of these
individually. The expected value of timeSπ is polynomial since Sπ is an expected
polynomial-time oracle machine (as defined in Section 2). Furthermore, since
A′

π runs in strict polynomial time when excluding the steps of Sρ, and since
Sπ makes an expected polynomial number of calls to A

′
π, the expected value of

timeA′
π
is polynomial as well. It remains to analyze timeSρ . This variable is equal

to
∑timeSπ

i=1 timeSρ(i), where timeSρ(i) represents the running time of Sρ in its i
th

execution. Since the random coins r∗i used in the i
th execution of Sρ are chosen

at random, the expectation of timeSρ(i) is polynomial for all i. Wald’s inequality
(cf. Appendix A) thus implies that the expected value of timeSρ is polynomial.
Exactly as in the proof of Claim 8, the fact that F is α-secure can be used

to show that S runs in expected polynomial time as well. We omit the details
(which are identical) here.

To complete the proof of the main theorem, we need to prove that idealg,S
c
≡

hybrid
f
π,A′

π
. The proof of this is largely similar to the end of the proof of The-

orem 5 and appears in the full version of this paper.

6
As discussed earlier, we again ignore time spent computing Fs.

References

1. B. Barak. How to Go Beyond the Black-Box Simulation Barrier. In 42nd FOCS,
pages 106–115, 2001.

2. B. Barak and O. Goldreich. Universal Arguments and their Applications. 17th
IEEE Conference on Computational Complexity, pages 194–203, 2002.

3. B. Barak and Y. Lindell. Strict Polynomial-Time in Simulation and Extraction.
SIAM Journal on Computing, 33(4):783–818, 2004.

4. R. Canetti. Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology, 13(1):143–202, 2000.

5. R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In 42nd FOCS, pages 136–145, 2001.

6. R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable Zero-Knowledge.
STOC 2000.

7. U. Feige. Alternative Models for Zero Knowledge Interactive Proofs. Ph.D. Thesis,
Weizmann Institute, 1990.

8. U. Feige and A. Shamir. Zero-Knowledge Proofs of Knowledge in Two Rounds. In
CRYPTO’89, Springer-Verlag (LNCS 435), pages 526–544, 1989.

9. O. Goldreich. Foundations of Cryptography: Volume 1 – Basic Tools. Cambridge
University Press, 2001.

10. O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications. Cam-
bridge University Press, 2004.

11. O. Goldreich and A. Kahan. How To Construct Constant-Round Zero-Knowledge
Proof Systems for NP . Journal of Cryptology, 9(3):167–190, 1996.

12. O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof
Systems. SIAM Journal on Computing 25(1):169–192, 1996.

13. O. Goldreich, S. Micali, and A. Wigderson. Proofs that Yield Nothing but Their
Validity or All Languages in NP Have Zero-Knowledge Proof Systems. Journal of

the ACM 38(1):691–729, 1991.
14. O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge Proof

Systems. Journal of Cryptology 7(1):1–32, 1994.
15. S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive

Proof Systems. SIAM Journal on Computing, 18(1):186–208, 1989.
16. Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Compu-

tation. Journal of Cryptology, 16(3):143–184, 2003.

A Wald’s Inequality

We state a (slightly modified version of) Wald’s inequality here. The proof is
provided in the full version.

Lemma 11 Let Y1, Y2, . . . be an infinite sequence of non-negative random vari-
ables such that Exp [Yi] ≤ N for all i. Let τ be a non-negative integer random

variable for which, for all i, Pr[τ = i] depends only on Y1, . . . , Yi. Define Y
def
=∑τ

i=1 Yi (with the sum defined as 0 in case τ = 0). Then Exp
[
Y
]
≤ N ·Exp [τ].

