
Interactive Zero-Knowledge with Restricted
Random Oracles

Moti Yung1 and Yunlei Zhao2

1 RSA Laboratories and Department of Computer Science, Columbia University,
New York, NY, USA. moti@cs.columbia.edu

2 Software School, School of Information Science and Engineering, Fudan University,
Shanghai 200433, China. ylzhao@fudan.edu.cn

Abstract. We investigate the design and proofs of zero-knowledge (ZK)
interactive systems under what we call the “restricted random oracle
model” which restrains the usage of the oracle in the protocol design to
that of collapsing protocol rounds a la Fiat-Shamir heuristics, and limits
the oracle programmability in the security proofs. We analyze subtleties
resulting from the involvement of random oracles in the interactive set-
ting and derive our methodology. Then we investigate the Feige-Shamir
4-round ZK argument for NP in this model: First we show that a 2-
round protocol is possible for a very interesting set of languages; we then
show that while the original protocol is not concurrently secure in the
public-key model, a modified protocol in our model is, in fact, concur-
rently secure in the bare public-key model. We point at applications and
implications of this fact. Of possible independent interest is a concurrent
attack against the Feige-Shamir ZK in the public-key model (for which
it was not originally designed).

1 Introduction

The basic random oracle (RO) methodology was originally introduced in [2] as an
idealization and abstraction of the Fiat-Shamir heuristics [14] that transforms Σ-
protocols (i.e., 3-round public-coin special honest verifier zero-knowledge SHVZK
protocols) into signature schemes. The methodology was used to achieve non-
interactive schemes (signatures, public-key encryption and non-interactive zero-
knowledge NIZK). However, nowadays more and more complicated interactive
protocols are developed employing random oracle (one example is the recent
direct anonymous attestation (DAA) scheme [3] developed for industrial use).

In this work, we show that the design of interactive schemes with advanced
security notions using the normal random oracle methodology is more subtle
than is typically believed. The subtlety lies in the programmability of the RO
in security proofs. Namely, in security proofs the simulator defines output of
query values and in fact “programs” the RO on any query, in particular any
query it chooses. We further investigate the usages of RO in protocol designs.
For a protocol developed in the RO model, we consider the sensitivity of the
security of the protocol when the RO is replaced (realized) by practical (hash)



functions, showing that different usages lead to different sensitivities (say, to
future cryptanalysis of the function).

We attempt to minimize the usage of the ROs both in protocol designs
and in security proofs. This is naturally desired property. In our approach we
impose the following restrictions:

– We limit the usage of ROs in security proofs by letting the honest player
and the simulator (who plays the role of the honest player) use a non-
programmable RO.

– Furthermore, the non-programmable RO could be replaced by any hash
function without compromising the security of the honest player.

– Finally, we limit the usage of ROs in protocol designs to collapsing Σ-
protocols just as in the original Fiat-Shamir methodology.

We note that on one hand, it is desirable to minimize using the truly random
function property of real hash functions in protocol designs (due to its idealized
nature and its unrealization within certain constructions, e.g., [5, 6, 22, 18, 1]).
On the other hand, we justify the original Fiat-Shamir methodology by the sim-
ple (yet, we believe important) observation that even very weak hash functions
(clearly not collision-resistant and not pseudorandom) can be used to collapse
Σ-protocols into non-interactive ones with remarkable security guarantee (not
ZK but nevertheless a useful property that can be employed).

In this work, we refer to protocols, which are developed with limiting ROs
in security proofs and protocols designs according to our approach (which we
motivate herein), as protocols with restricted ROs.

Although our approach of restricted ROs is seemingly very limiting, it turns
out to be still very powerful for achieving practical interactive cryptographic
schemes with a (seemingly) better balance between “(idealized) provable” se-
curity and implementation efficiency. In particular, we show that a ΣOR-based
practical implementation (without NP-reductions) of the Feige-Shamir 4-round
ZK arguments (the version that appears in [13]) can give us generic yet practical
2-round (that is optimal) ZK systems with restricted ROs.

We then investigate the concurrent security of the Feige-Shamir ZK protocol.
We show that (perhaps surprisingly) the Feige-Shamir ZK protocol is, in general,
not concurrently secure in public-key settings (when users possess public keys),
by identifying a concurrent attack. Though it may look quite natural to run
the Feige-Shamir ZK protocol in public-key models when it is used in practice
and perhaps to do it concurrently (even though the protocol was not designed
for concurrency), our attack shows that this intuition is wrong. Fortunately, the
Feige-Shamir ZK protocol is concurrently secure with restricted ROs in the bare
public-key (BPK) model. In this process, we also identify and clarify compli-
cations and subtleties in dealing with concurrent adversaries in the setting of
interactive zero-knowledge with restricted ROs.

We remark that the 2-round ZK systems with restricted ROs (with or without
registered public-keys) can be used to construct more complicated interactive
systems with restricted ROs. It can also be used to transform a large number
of existing interactive schemes, which are developed originally with the normal



random oracle methodology, into schemes with restricted ROs, by adding at most
one additional round but with seemingly stronger security guarantees.

Finally, as part of this work, two constructions are given which are of inde-
pendent interest and may be worthy of further explorations: a one-round witness-
hiding (WH) protocol for DLP, and a concurrent attack against the Feige-Shamir
ZK when it is run in the new setting of public-key models.

2 Preliminaries

In this section we review the major cryptographic tools used, and present a key
observation on non-interactive ΣOR-protocols with ROs.

Definition 1 (Σ-protocol [7]). A 3-round public-coin protocol 〈P, V 〉 is said
to be a Σ-protocol for a relation R if the following hold:

– Completeness. If P , V follow the protocol, the verifier always accepts.
– Special soundness. From any common input x of length n and any pair of

accepting conversations on input x, (a, e, z) and (a, e′, z′) where e 6= e′, one
can efficiently computes w such that (x, w) ∈ R. Here a, e, z stand for the
first, the second and the third message respectively and e is assumed to be
a string of length t (that is polynomially related to n) selected uniformly at
random in {0, 1}t.

– Special honest verifier zero-knowledge (SHVZK). There exists a probabilistic
polynomial-time (PPT) simulator S, which on input x and a random chal-
lenge string e, outputs an accepting conversation of the form (a, e, z), with
the same probability distribution as the real conversation between the honest
P , V on input x.

Σ-protocols have been proved to be a very powerful cryptographic tool and
are widely used. Many basic Σ-protocols have been developed, and the following
are Σ-protocol examples for DLP and RSA.

Σ-Protocol for DLP [24]. The following is a Σ-protocol 〈P, V 〉 proposed by
Schnorr [24] for proving the knowledge of discrete logarithm, w, for a common
input of the form (p, q, g, h) such that h = gw mod p, where on a security
parameter n, p is a uniformly selected n-bit prime such that q = (p − 1)/2 is
also a prime, g is an element in Z∗

p of order q. It is also actually the first efficient
Σ-protocol proposed in the literature.

– P chooses r at random in Zq and sends a = gr mod p to V .
– V chooses a challenge e at random in Z2t and sends it to P . Here, t is fixed

such that 2t < q.
– P sends z = r + ew mod q to V , who checks that gz = ahe mod p, that p, q

are prime and that g, h have order q, and accepts iff this is the case.

Σ-Protocol for RSA [19]. Let n be an RSA modulus and q be a prime.
Assume we are given some element y ∈ Z∗

n, and P knows an element w such
that wq = y mod n. The following protocol is a Σ-protocol for proving the
knowledge of q-th roots modulo n.



– P chooses r at random in Z∗
n and sends a = rq mod n to V .

– V chooses a challenge e at random in Z2t and sends it to P . Here, t is fixed
such that 2t < q.

– P sends z = rwe mod n to V , who checks that zq = aye mod n, that q is
a prime, that gcd(a, n) = gcd(y, n) = 1, and accepts iff this is the case.

The OR-proof of Σ-protocols [8]. One basic construction with Σ-protocols
allows a prover to show that given two inputs x0, x1, it knows a w such that
either (x0, w) ∈ R0 or (x1, w) ∈ R1, but without revealing which is the case.
Specifically, given two Σ-protocols 〈Pb, Vb〉 for Rb, b ∈ {0, 1}, with random chal-
lenges of (without loss of generality) the same length t, consider the following
protocol 〈P, V 〉, which we call ΣOR. The common input of 〈P, V 〉 is (x0, x1) and
P has a private input w such that (xb, w) ∈ Rb.

– P computes the first message ab in 〈Pb, Vb〉, using xb, w as private inputs. P
chooses e1−b at random, runs the SHVZK simulator of 〈P1−b, V1−b〉 on input
(x1−b, e1−b), and let (a1−b, e1−b, z1−b) be the output. P finally sends a0, a1

to V .
– V chooses a random t-bit string s and sends it to P .
– P sets eb = s ⊕ e1−b and computes the answer zb to challenge eb using

(xb, ab, eb, w) as input. He sends (e0, z0, e1, z1) to V .
– V checks that s = e0 ⊕ e1 and that conversations (a0, e0, zo), (a1, e1, z1) are

accepting conversations with respect to inputs x0, x1, respectively.

Theorem 1. [8] The protocol ΣOR above is a Σ-protocol for ROR, where ROR =
{((x0, x1), w)|(x0, w) ∈ R0 or (x1, w) ∈ R1}. Moreover, for any malicious veri-
fier V ∗, the probability distribution of conversations between P and V ∗, where w
is such that (xb, w) ∈ Rb, is independent of b. That is, ΣOR is perfectly witness
indistinguishable (WI).

Given access to a random oracle (RO) O, we can transform a Σ-protocol
into a non-interactive protocol, which in this work we call non-interactive Σ-
protocol in the RO model. On a common input x, an auxiliary input aux and a
private witness w, the prover then generates the first message a, queries O with
(x, a, aux) to get the challenge e and then computes the answer z. The proof is
then (a, z, aux). To verify such a proof, query O with (x, a, aux) to get e and
then run the verifier of the original Σ-protocol. The transformed non-interactive
protocol is zero-knowledge proof of knowledge in the random oracle model [2, 25].
The key observation here (which is simple yet powerful) is the following claim:
Claim 1. The non-interactive ΣOR-protocol in the RO model remains witness-
indistinguishable even if the random oracle is replaced by any real hash function.

Proof. Note that the WI property of ΣOR is with respect to any malicious
verifier. In particular, the WI property holds for a specific malicious verifier that
uses a real hash function to generate the challenge in Round-2.



Common input. An element x ∈ L of length n, where L is an NP-language that
admits Σ-protocols.

P ’s private input. A witness w for x ∈ L.
Random oracle. A random oracle denoted O.
Round-1. The verifier V selects a OWF fV that admits Σ-protocols, randomly se-

lects two elements in the domain of fV , x0
V and x1

V , computes y0
V = fV (x0

V ) and
y1

V = fV (x1
V ), randomly selects a bit b from {0, 1}, sends to the prover a non-

interactive ΣOR-proof on (y0
V , y1

V ), denoted πV = (y0
V , y1

V , aV , eV , zV , auxV ), that
it knows either the preimage of y0

V or the preimage of y1
V . The witness used by V

in forming πV is xb
V . The random challenge eV is generated by querying O with

(x, y0
V , y1

V , aV , auxV ) where auxV is the auxiliary information of V that possibly
includes a time stamp.

Round-2. The prover P first checks the validity of πV and aborts if it is not valid.
Otherwise, P randomly select a bit b′ from {0, 1}, sends back a non-interactive
ΣOR-proof on (x, y0

V , y1
V , b′), denoted πP = (aP , eP , zP , b′), that it knows either

a witness for x ∈ L or the preimage of yb′
V . The witness used by P is its private

input w. The random challenge eP is generated by querying the random oracle
with (x, aP , b′, πV ).

Verifier’s Decision. The verifier checks the validity of πP and accepts if it is valid,
otherwise it rejects.

Figure-1. An insecure ZK protocol in the normal random oracle model

3 Restricted ROs: Motivation and Discussions

In this section, we first provide some motivating examples along with discussions
and comments. Then, in light of the motivating examples and discussions, we
give some desirable principles for limiting the uses of ROs in security proofs and
protocol designs that are naturally derived from the motivation.

3.1 Motivating examples and discussions

A motivating example for limiting the uses of RO in security proofs.
Consider the following protocol depicted in Figure-1.

We note that the zero-knowledge property of the protocol of Figure-1 can
be easily shown in the normal random oracle model, where the ZK simulator
simulates (programs) the RO (i.e, the simulator defines the outputs of the ran-
dom oracle on any queries, in particular any queries it chooses). The proof is
omitted here due to space limitation. But we argue that this protocol (though
simulatable (in the programmable oracle case, which is what the proof shows)
is not really ZK even in the random oracle model. Observe the following attack:
On an input yV ∗ that the adversary V ∗ does not know the preimage of under the
OWF fV ∗ (selected by V ∗ in Round-1), the adversary V ∗ additionally randomly
selects a x′V ∗ from the domain of fV ∗ and computes y′V ∗ = fV ∗(x′V ∗). Then, V ∗



randomly selects a bit b from {0, 1}, sets yb
V ∗ to be y′V ∗ and y1−b

V ∗ to be yV ∗ . Fi-
nally, V ∗ sends to the honest prover a non-interactive ΣOR-proof on (y0

V ∗ , y1
V ∗)

that it knows either the preimage of y0
V ∗ or the preimage y1

V ∗ by using x′V ∗ as the
witness. Then according to the perfect witness indistinguishability of Round-1,
with probability 1/2 the honest prover will select b′ = 1 − b in Round-2. That
is, with probability 1/2 V ∗ will get a non-interactive ΣOR-proof for showing the
knowledge of either the witness for x ∈ L or the preimage of y1−b

V ∗ = yV ∗ , a
knowledge of such a witness cannot be generated by V ∗ alone without interact-
ing with P . In other words, the honest prover divulges (seemingly significantly)
valuable “knowledge” to the above malicious verifier.

Note that the above protocol is a very simple interactive protocol in the
random oracle model, and so we can easily identify the above simple attack.
When we construct much more complicated interactive schemes in the random
oracle model, the security analyses might be much more complicated and subtle.
In light of the above attack, we believe that for interactive protocols in the
random oracle model, letting the ZK simulator define the random outputs of
the random oracle on queries it chooses may be too artificial to reflect the real
power of the malicious verifier even in the random oracle model.

According to the above arguments, for proving the security of interactive
protocols in the random oracle model we should restrict the power of the simu-
lator in defining the random outputs of the random oracle. Also note that in a
much more complicated interactive scheme in the random oracle model, where
both the prover and the verifier prove using the non-interactive Σ-protocols,
the provers may actually be the verifier of the high-level complicated interactive
protocol.

Comment: Note that it is easy to check that the protocol depicted in Figure-
1 is not zero-knowledge if the simulator (who plays the role of the honest prover)
uses a non-programmable random oracle.

Motivating examples for limiting the uses of RO in protocol de-
signs.

Random oracles have been employed in many ways. Consider, for example,
the following commitment scheme in the random oracle model employed in [23]:
To commit to a message m, the commitment sender randomly picks a random
string r and sends RO(x, r). The security (both binding and hiding) can be
easily checked in the random oracle model. But in practice when the random
oracle RO is replaced by real practical hash functions, the security properties of
this commitment scheme are (critically) sensitive to the realization. The zero-
knowledge protocol with ROs developed in [23] critically uses the above com-
mitment scheme. This means that for a large complicated cryptographic system
built with the ZK protocol of [23] as a building block, the security of the whole
system will also be (critically) dependent on the assumed random-function prop-
erty of the underlying hash functions. This means it will be critically sensitive to
the realizations of the underlying practical hash functions used, which we would
like to avoid in certain critical settings (e.g., if the realization is cryptanalyzed
in the future and the binding property is lost, say).



So, what uses of random oracle are less sensitive to the case that the hash
function realizing it is cryptanalyzed (perhaps in the future)? We justify the orig-
inal Fiat-Shamir methodology by showing that even very weak hash functions
can be used to collapse Σ-protocols into non-interactive ones with remarkable
security guarantee. Consider the following one-round witness hiding (WH) pro-
tocol 〈P, V 〉 for DLP.

Common input. (p, q, g, h), where on a security parameter n, p is a uniformly
selected n-bit prime such that q = (p − 1)/2 is also a prime, g and h are
elements in Z∗

p of order q.
P’s private input. w such that h = gw mod p.
The protocol. P chooses r at random in Zq, computes a = gr mod p. If a

is an even number then let e = 1
2a mod p and if a is an odd number then

let e = 1
2 (a − 1) mod p (this guarantees that e ∈ Zq). Then P computes

z = r + ew mod p. Finally P sends (a, z) to V .
V ’s decision. V computes e from a and checks that gz = ahe mod p, that p, q

are prime and that g, h, a have order q, and accepts iff this is the case.

The above protocol can be viewed as the non-interactive version of Schnorr’s
Σ-protocol for DLP [24] when the random oracle is replaced by the following hash
function H: for any strings x, y in {0, 1}∗ and e ∈ Zq, H(xe0) = H(ye1) = e.
Clearly this hash function is not collision-resistant and not pseudorandom. But
this extremely weak hash function still provides remarkable security guarantee
for the above transformed non-interactive protocol.

We first note that under the DLP hardness assumption, the above non-
interactive protocol is witness hiding (WH) for DLP. Specifically, suppose with
non-negligible probability a PPT adversary can produce w from (a, z), then the
adversary can also compute logg(a) for a random a in Z∗

p of order q, which
violates the DLP hardness assumption.

Now, we consider the soundness. We want to argue that if a malicious prover
P ∗ does not know w, then it should not give the correct pair (a, z) such that
gz = ah

1
2 a for even a, or gz = ah

1
2 (a−1) for odd a. Suppose P ∗ does not know

w but can successfully produce (a, z), then it must be the case that a is a
hard instance of DLP and P ∗ does not know logg(a) (since otherwise P ∗ can
compute w from logg a), which seems infeasible. In particular, based on the
following specifically tailored but seemingly hard (and reasonable) assumption
the soundness of the above non-interactive protocol holds. (Note that the WH
property does not rely on the new assumption.)

Hardness assumption: Given (p, q, g, h) of the above form, no PPT al-
gorithm A can with non-negligible probability produce a pair (a, z) such that
gz = ah

1
2 a for even a or gz = ah

1
2 (a−1) for odd a, where a ∈ Z∗

p of order q and
z ∈ Zq. (Note that this assumption implies that a is a hard instance of Z∗

p and
the producer A itself also does not know logg a.)

Summary: For the security of cryptographic schemes proved with ROs, what
may be lost in real world when ROs are replaced by real practical hash functions?
The above motivating examples and discussions show that it depends on both,
the uses of ROs in security proofs and the uses of ROs in protocol design.



3.2 Principles for restricting uses of ROs in security proofs and
protocol designs

In light of the above motivating examples and discussions, we introduce restric-
tions on uses of RO in interactive protocols. We describe the principles in the
two-party case, but extensions to the multi-party case are immediate. For a two-
party interactive scheme (with restricted ROs), there are two random oracles:
OP for the prover and OV for the verifier. The uses of the ROs in security proofs
and protocol design are limited in the following way:

1. For proving prover’s security properties (i.e., zero-knowledge), the random
oracle OP used by the simulator (which plays the role of the honest prover) is
non-programmable (and the adversary can access OP for verifying messages).
The random oracle OV∗ used by the adversary V ∗ (malicious verifiers) is pro-
grammable (and the simulator can access OV∗ for verifying messages). Simi-
larly, for proving verifier’s security properties (i.e., soundness), the simulator
(playing the role of the honest verifier) uses the non-programmable random
oracle OV . The adversary P ∗ (malicious provers) uses a programmable RO
OP∗ . Note that this essentially requires that in security proofs the simulator
can only define the outputs of the programmable random oracle on queries
made by the adversary in question.

2. Furthermore, the non-programmable random oracles, OP and OV , can be
replaced by any real (i.e., hash) function without compromising the security
of the honest players P and V respectively. This requirement essentially
says that the restricted random oracle model could be viewed as a “hybrid”
between the normal random oracle model and the standard model with real
(hash) functions, in the sense that the malicious player still lives in the
idealized random oracle world but the honest player could live in real hash
function world. In other words, if you are honest (e.g. a trusted authority)
then you could use any real hash function in generating messages from you
without compromising your security. Note that, in practice many interactive
schemes in the random oracle model (e.g. the DAA protocol of [3]) involve
(possibly quite complicated) interactive setup/join protocols between users
and a trusted authority.

3. As in the original Fiat-Shamir methodology, the random oracles are used only
to collapse Σ-protocols into non-interactive ones. This requirement reduces
the dependency of the security of the protocol upon the idealized random
function property of the realizations of the ROs (e.g., it is not used as a long
term commitment, which is naturally desirable in certain critical settings as
discussed above).

In the rest of this work, we refer to protocols which are developed with
limiting the uses of ROs according to the above principles as protocols with
restricted ROs.

Remark: In the above description, we only give the general principles of
limiting the uses of ROs. When it comes to formally and exactly defining certain
cryptographic primitives (e.g., ZK) with restricted ROs, we need to formally



specify (and embed) the above general principles in the specific cryptographic
primitives. In particular, the next section provides the formal definition of ZK
with restricted ROs.

Comparisons with the work of [23]. We have noted recently the related
work of Pass [23] who nicely treats the issue of deniability. [23] observed that
non-interactive zero-knowledge in the random oracle model [2] does not preserve
deniability and presented a new definition of ZK, named deniable ZK, in the RO
model, and constructed a 2-round deniable zero-knowledge protocol from any
Σ-protocol.

The approach taken by Pass in [23] for defining and constructing deniable ZK
with ROs amounts to the following non-programmable random oracle methodol-
ogy: all players (including the ZK simulator) access a unique non-programmable
random oracle. The non-programmable RO methodology is also investigated by
Nielsen in the non-committing encryption setting [22]. Below, we provide detailed
comparisons between our approach and Pass’s non-programmable random ora-
cle methodology. We believe we have some noticeable advantages, though one
should welcome various methodologies in this subtle area.

– In Pass’s approach, all players access a unique non-programmable RO. But in
our approach, there are a pair of ROs: one is non-programmable RO through
which messages from the honest player and the simulator (who plays the
role of the honest prover) are generated; and one is a programmable RO
through which the messages from the adversary in question are generated.
Furthermore, the non-programmable RO could be replaced by any real hash
function without compromising the honest player’s security, a property we
do not know how to achieve with Pass’s approach.

– We attempted to develop efficient protocols for important cryptographic lan-
guages (e.g., DLP and RSA); the efficient protocols are a central reason for
which we employ the random oracle idealization, to start with. Solutions for
ZK protocols with Pass’s approach seems intrinsically inefficient, due to the
cut-and-choose technique used, which leads to blow-ups in both computa-
tional complexity and communication complexity. Specifically, if the 2-round
ZK protocol of [23] is from Schnorr’s Σ-protocol for DLP, then on a secu-
rity parameter n the prover needs to perform 8n modular exponentiations
and the verifier needs to perform 10n exponentiations. For communication
complexity, there are about 12n2 bits exchanged in total. This inefficiency
may violate the spirit of RO protocols as was noted by Pass, who, in fact,
suggested as an urgent open problem to find more efficient constructions
of zero-knowledge with ROs with the approach. In comparison, our schemes
are generic yet practical solutions with restricted ROs and go through only 9
modular exponentiations at each player’s side in the BPK model (in the plain
model the verifier needs 11 exponentiations), with the DLP as an example.

– In our approach, we further restrict the uses of ROs in protocol designs
by limiting the uses of ROs only to collapsing Σ-protocols, while Pass’s
approach does not. In fact, the ZK protocol with ROs developed in [23] crit-
ically uses the commitment scheme c = RO(m, r). This by itself seems fine,



but there is the concern (since we deal with realized idealized objects) that
a realization can be broken implying weakened commitment which reveals
knowledge. We attempt a design where security properties (WI) for honest
parties remain intact even if the realization turns out to be weak.

4 Generic yet Practical Round-Optimal Zero-Knowledge
with Restricted ROs

Here, we provide the definition of ZK with restricted ROs, show its round-
complexity lower-bound, and then present a generic yet practical round-optimal
zero-knowledge argument with restricted ROs for any NP-language that ad-
mits Σ-protocols (which includes many important languages most relevant to
cryptography).

Definition 2 (zero-knowledge argument with restricted ROs).
A pair of interactive machines, 〈P, V 〉, is called a zero-knowledge argument

with restricted ROs for a language L ∈ NP (with NP-relation RL), if both
machines are polynomial-time and the following conditions hold:

Completeness: For any x ∈ L and its NP-witness w, and any auxiliary input
auxV ∈ {0, 1}∗, it holds that

Pr[〈P (OP ,OV )(w), V (OV ,OP )(auxV )〉(x) = 1] = 1

where OP and OV are two random variables uniformly distributed in {0, 1}poly(|x|)

→ {0, 1}poly(|x|). The random oracles OP and OV are used in the following
way: random oracles are used only to collapse Σ-protocols (namely, deriving
the challenges in such protocols and running them non-interactively), where
each player only access its designated random oracle for generating messages
from it (and the second random oracle is only accessed for verifying messages
from its counterpart).

Computational soundness: For any x 6∈ L, any PPT interactive machine
P ∗, and any auxiliary input auxP∗ ∈ {0, 1}∗ and auxV ∈ {0, 1}∗, it holds
that:

Pr[〈P ∗(OP∗ ,OV )(auxP∗), V (OV ,OP∗ )(auxV )〉(x) = 1] ≤ ε(|x|)

where ε(·) is a negligible function, and OP∗ and OV are random variables
uniformly distributed in {0, 1}poly(|x|) → {0, 1}poly(|x|). Furthermore, the
soundness condition holds even if OV is arbitrarily (rather than uniformly)
distributed from {0, 1}poly(|x|) → {0, 1}poly(|x|) (i.e., OV can be any func-
tion).

(Black-box) zero-knowledge: There exists an expected polynomial-time sim-
ulator S such that for every PPT verifier V ∗, any auxV ∗ ∈ {0, 1}∗, any
sufficiently long x ∈ L, the following two ensembles are computationally in-
distinguishable (where the distinguishing gap is a function in |x|):



– {(OV ∗ ,OP , view
P (OP ,OV ∗ )(w)

V ∗(OV ∗ ,OP )(auxV ∗ )
(x))}x∈L,auxV ∗∈{0,1}∗ for arbitrary w

such that (x,w) ∈ RL.
– {(OP , SOP (x, auxV ∗))}x∈L,auxV ∗∈{0,1}∗

where OP and OV ∗ are random variables uniformly distributed in {0, 1}poly(|x|)

→ {0, 1}poly(|x|), and view
P (OP ,OV ∗ )(w)

V ∗(OV ∗ ,OP )(auxV ∗ )
(x) is a random variable describ-

ing V ∗’s state and all messages exchanged during a joint computation be-
tween P and V ∗ on common input x when P has w as its auxiliary in-
put and accesses (OP ,OV ∗), and V has auxV ∗ as its auxiliary input and
accesses (OV ∗ ,OP ). Furthermore, the zero-knowledge condition holds even
when OP is taken arbitrarily (rather than uniformly) from {0, 1}poly(|x|) →
{0, 1}poly(|x|) (i.e., OP can be any function).

Comment: Note that in the definition of (black-box) ZK with restricted
ROs, the RO OP is given (pre-specified) in the above two probability ensembles,
which means that S cannot “program” OP . But, for the RO OV ∗ , S is allowed
to “program” and output a “simulation” of OV ∗ in its simulation. Note that
the random oracle is actually an infinite object, S thus, for this purpose, has a
special fill out function. We refer the reader to [2] for a more formal treatment
of “programming” ROs.

We next show, by the Goldreich-Krawczyk technique [17], the impossibility
of non-interactive black-box zero-knowledge arguments with restricted ROs for
non-trivial languages. Specifically, we give the following proposition (whose proof
is omitted here due to space limitation):

Proposition 1. Suppose an NP-language L admits a one-round black-box zero-
knowledge argument with restricted ROs, then L ∈ BPP.

Finally, we show that a protocol based on the Feige-Shamir 4-round ZK
argument for NP renders a generic yet practical 2-round (i.e., optimal) ZK
argument with restricted ROs for any language that admits Σ-protocols. The
protocol is depicted in Figure-2.

Comment: At a high level, the protocol depicted in Figure-2 can be viewed
as a ΣOR-based implementation of the Feige-Shamir 4-round ZK arguments for
NP (the version appearing in [13]) in the RO model. The construction of [13] is
a plausible NP-solution and goes through general (inefficient) NP-reductions,
whereas here (for this section) we emphasize the fact that the protocol works
directly for any language that admits Σ-protocols (a large set that includes, in
particular, both DLP and RSA). If the underlying Σ-protocols for the language
are practical, then the transformed protocols are also practical. With Σ-protocol
for DLP as an example, our scheme goes through 9 modular exponentiations at
the prover side and 11 exponentiations at the verifier side.

Theorem 2. Let fV be any one-way function that admits Σ-protocol and L be a
language that admits Σ-protocols, the protocol depicted in Figure-2 is a 2-round
ZK argument with restricted ROs for L.



Common input. An element x ∈ L of length n, where L is an NP-language that
admits Σ-protocols.

P ’s private input. A witness w for x ∈ L.
Random oracles. There are two random oracles OP and OV : OP is used by the

prover for generating non-interactive Σ-proofs and OV is used by the verifier for
generating non-interactive Σ-proofs.

Round-1. The verifier V selects a OWF fV that admits Σ-protocols, randomly se-
lects two elements in the domain of fV , x0

V and x1
V , computes y0

V = fV (x0
V ) and

y1
V = fV (x1

V ), randomly selects a bit b from {0, 1}, sends to the prover a non-
interactive ΣOR-proof on (y0

V , y1
V ), denoted πV = (y0

V , y1
V , aV , eV , zV , auxV ), that

it knows either the preimage of y0
V or the preimage of y1

V . The witness used by V
in forming πV is xb

V . The random challenge eV is generated by querying OV with
(x, y0

V , y1
V , aV , auxV ), where auxV is the auxiliary information of V that possibly

includes a time-stamp.
Round-2. The prover P first checks the validity of πV and aborts if it is not valid.

Otherwise, P sends back a non-interactive ΣOR-proof on (x, y0
V , y1

V ), denoted πP =
(aP , eP , zP ), that it knows either the witness for x ∈ L or the preimage of either
y0

V or y1
V . The witness used by P is its private input (i.e., the NP-witness w). The

random challenge eP is generated by querying OP with (x, aP , πV ).
Verifier’s Decision. The verifier checks the validity of πP and accepts if it is valid,

otherwise it rejects.

Figure-2. The generic yet practical 2-round ZK arguments with restricted ROs

Proof (sketch). Intuitively, P proves x ∈ L only after it is convinced
that the verifier does know the preimage of either y0

V or y1
V (this means that the

verifier can also generate the second-round message by itself ), so the ZK property
of the protocol should hold. In more details, for a malicious verifier V ∗ who
accesses the programmable random oracle OV∗ , the zero-knowledge simulator S
first extracts xb

V ∗ (the witness used by V ∗ in generating the Round-1 message)
by redefining the random oracle OV∗ on queries made by V ∗, then using xb

V ∗ as
the witness S generates a simulated Round-2 message through its fixed random
oracle OP . By the perfect WI property of Round-2, the simulated transcript is
indistinguishable from the real transcript. Furthermore, since in security proof we
only need the WI property of the non-interactive ΣOR-protocol of Round-2, the
fixed random oracle OP can be replaced by any real function, as the WI property
of Round-2 does hold with respect to any function (see Claim 1 ). That is, the
honest prover’s security (i.e., ZK) holds even when the honest prover uses any
real function (say cryptographic hash based one) in generating non-interactive
ΣOR-protocols (of Round-2).

For proving soundness, however, one may argue that seeing the ΣOR-proof
πV sent by the honest verifier in Round-1 (which could be generated through any
real function) may help a malicious prover P ∗ to give a false ΣOR-proof πP∗ in
Round-2. What save us here are the key-pair technique (originally introduced
in the Public-Key Encryption setting by Naor and Yung [21]) and the witness
indistinguishability of the ΣOR-proof even with real functions. In more details,



suppose a malicious prover P ∗ can successfully convince of a false statement
x 6∈ L with a non-negligible probability, then we show a PPT algorithm E that
will break the one-wayness of fV . Specifically, on an input yV E runs P ∗ as a
subroutine and works as follows: E randomly selects x′V from the domain of fV ,
computes y′V = fV (x′V ). Then, E randomly selects a bit b from {0, 1}, sets yb

V be
y′V and y1−b

V be the input yV . Finally, by using x′V as the witness E sends to P ∗

the Round-1 message (generated through the fixed random oracle OV ), claiming
that it knows the preimage of either y0

V or y1
V . After receiving a successful Round-

2 message from P ∗ that is generated through the programmable RO OP∗ , by
rewinding P ∗ and redefining OP∗ E will extract a preimage of either y0

V or y1
V (as

we assume x 6∈ L). Then by the perfect WI property of Round-1, with probability
1/2 (conditioned on P ∗ successfully giving the Round-2 message), the extracted
value will be the preimage of y1−b

V = yV , which violates the one-wayness of fV .
Again, in the above security analysis, we only need the WI property of the non-
interactive ΣOR of Round-1, and so the fixed random oracle OV can be replaced
by any real function. That is, the honest verifier’s security (i.e., soundness) holds
even when the honest verifier uses any function in generating the non-interactive
ΣOR-protocols of Round-1.

5 Concurrent Security of the Feige-Shamir ZK with
Registered Public-Keys and with Restricted ROs

Dealing with concurrent adversaries in the interactive random oracle model turns
out to be much more complicated and subtle. The reason is that for messages
sent by an adversary we need to rewind the adversary and redefine the outputs
of the programmable random oracles to extract the witnesses used by the adver-
sary. But for a concurrent adversary, it can make both concurrent interleaving
interactions with the honest player instances and concurrent interleaving oracle
queries (across multiple existing sessions). We thus risk an exponential blow-
up when tracking back through the interleaving interactions or the interleaving
oracle queries across multiple sessions, in the sense that previous simulation ef-
forts (interaction rewinding-s or random oracle redefining-s) will become void.
This phenomenon is first observed by Dwork, Naor and Sahai [12] for inter-
active protocols in the standard model in dealing with adversaries that make
concurrent interleaving interactions with honest player instances, and observed
also by Shoup and Gennaro [25] for non-interactive schemes in the random or-
acle model in dealing with adversaries that make concurrent interleaving oracle
queries across multiple sessions in the context of threshold decryption.

To avoid the exponential blow-up in dealing with concurrent adversaries,
several computational models have been proposed: the timing model [12, 16],
the preprocessing model [10], the common reference string model [9], and the
bare public-key model [4].

The bare public-key (BPK) model was introduced by Canetti, Goldreich,
Goldwasser and Micali [4] to achieve round-efficient resettable zero-knowledge
(rZK) that is a generalization and strengthening of the notion of concurrent



zero-knowledge [12]. A protocol in the BPK model simply assumes that all ver-
ifiers have deposited a public key in a public file before any interaction takes
place among the users3. to all users at all times. Note that an adversary may de-
posit many (possibly invalid or fake) public keys in it, particularly, without even
knowing corresponding secret keys or whether such exist. That is, no trusted
third party is assumed in the BPK model. What is essentially guaranteed by
the BPK model is only a limitation on the number of different identities that
a potential adversary may assume and there are no other assurances. The ad-
versary, in turn, may try to impersonate any user registered in the public-file,
but it cannot act on behalf of a non-registered user. The BPK model is thus
very simple, and it is, in fact, a weaker version of the frequently used public-key
infrastructure (PKI) model (recall that PKI underlies any public-key cryptosys-
tem or any digital signature scheme). Despite its apparent simplicity, the BPK
model turns out to be quite powerful in dealing with concurrent adversaries and
stronger resetting adversaries.

Soundness in public-key models is more subtle than in the standard model
[20]. In public-key models, a verifier V has a secret key SK, corresponding to its
public-key PK. A malicious prover P ∗ could potentially gain some knowledge
about SK from an interaction with the verifier. This gained knowledge may help
him to convince the verifier of a false theorem in another interaction. Micali and
Reyzin [20] showed that under standard intractability assumptions there are
four distinct meaningful notions of soundness, i.e., from weaker to stronger, one-
time, sequential, concurrent and resettable soundness. In this paper we focus on
concurrent soundness which roughly means, for zero-knowledge protocols, that
a malicious prover P ∗ cannot convince the honest verifier V of a false statement
even when P ∗ is allowed multiple interleaving interactions with V .

Due to space limitation, the definitions of concurrent ZK and concurrent
soundness in the BPK model with restricted ROs are omitted here, and will be
presented in the full version of this work.

5.1 The Feige-Shamir ZK protocol is not secure in the public-key
setting

Next we show that the Feige-Shamir ZK protocol [13] is, in general, not con-
currently secure in the public setting (indeed it was not designed for that more
modern setting). Specifically, we show a concurrent attack against the ΣOR-
based implementation of the Feige-Shamir ZK protocol in the public-key setting
(which may be of independent interest).

Consider the version of the protocol depicted in Figure-2 when the pair
(y0

V , y1
V ) is published as the verifier’s public-key (i.e., fixed once and for all ses-

sions) and ROs are removed (i.e., random challenges eV and eP are not obtained
any longer by querying the ROs, but sent by the prover and the verifier re-
spectively). We remark that, at a first glance, it is quite natural for the verifier

3 The BPK model does allow dynamic key registrations (see [4]).



to publish (y0
V , y1

V ) as its public-key when the Feige-Shamir ZK protocol (es-
pecially its ΣOR-based implementation) is used in practice. But, the following
attack shows that this intuition is wrong.

Let L (wlog, the NP-complete language Directed Hamiltonian Cycle DHC)
be a language that admits Σ-protocols. We show how a malicious prover P ∗

can convince an honest verifier V (with public-key (y0
V , y1

V )) of a false statement
“x ∈ L” while x 6∈ L, by concurrently interacting two sessions with V . The
message schedule of P ∗ in the two sessions is specified as follows.

1. P ∗ interacts with V in the first session and works just as the honest prover
does in Phase-1. When P ∗ moves into Phase-2 of the first session and needs
to send V the first-round message, denoted by aP , of the ΣOR-protocol of
Phase-2 of this session on common input (x, y0

V , y1
V ), P ∗ suspends the first

session and does the following:

– It first runs the SHVZK simulator (of the underlying Σ-protocol for L)
on x to get a simulated conversation, denoted by (ax, ex, zx), for the false
statement “x ∈ L”.

– Then, P ∗ initiates a second session with V ; After receiving the first-
round message, denoted by a′V , of the ΣOR-protocol of Phase-1 of the
second session on common input (y0

V , y1
V ) (i.e., V ’s public-key) , P ∗ sets

aP = (ax, a′V ) and suspends the second session.

2. Now, P ∗ continues the execution of the first session, and sends aP = (ax, a′V )
to V as the first-round message of the ΣOR-protocol of Phase-2 of the first
session.

3. P ∗ Runs V further in the first session. After receiving the second-round
message of Phase-2 of the first session, denoted by eP (i.e., the random
challenge from V ), P ∗ sets e′V = eP ⊕ ex and suspends the first session
again.

4. P ∗ continues the execution of the second session, and sends e′V = eP ⊕ ex to
V as its random challenge in the second-round of the ΣOR-protocol of Phase-
1 of the second session. After receiving the third-round message of Phase-1
of the second session, denoted by z′V , P ∗ sets zP = ((ex, zx), (e′V , z′V )) and
suspends the second session again.

5. P ∗ continues the execution of the first session again, sending the value zP =
((ex, zx), (e′V , z′V )) to V as the last-round message of the first session.

Note that (ax, ex, zx) is an accepting conversation for showing “x ∈ L”,
(a′V , e′V , z′V ) is an accepting conversation for showing the knowledge of the preim-
age of either y0

V or y1
V , and furthermore eP = ex⊕ e′V . According to the descrip-

tion of ΣOR (presented in Section 2), this means that, from the viewpoint of
V , (aP , eP , zP ) is an accepting conversation on common input (x, y0

V , y1
V ) of the

ΣOR-protocol of Phase-2 of the first-session, and thus P ∗ successfully convinced
V of a false statement in the first session. We remark that, in general, the above
attack also enables P ∗ to convince V of a true statement x ∈ L without knowing
any NP-witness for x ∈ L.



5.2 The Feige-Shamir ZK is concurrently secure in the BPK model
with restricted ROs

As shown, the Feige-Shamir ZK is not concurrently secure in public-key model,
but we next show that it is still concurrently secure in the BPK model with
restricted ROs (which may make it useful in certain applications which it was
not originally designed for).

Specifically, consider the following modified version of the protocol depicted
in Figure-2 in the BPK model: there is a key generation phase before any inter-
action takes place among the users, in which each verifier Vi registers (y0

Vi
, y1

Vi
)

in a public-key file F , where y0
Vi

= fVi(x
0
Vi

), y1
Vi

= fVi(x
1
Vi

) and fVi is a OWF
that admits Σ-protocols. For a bit b randomly chosen from {0, 1}, Vi keeps xb

Vi
in

secret as its secret-key while discarding x
(1−b)
Vi

. Then in Round-1 of the modified
protocol, by using xb

Vi
as the witness, Vi sends a non-interactive ΣOR-proof that

it knows the preimage of either y0
Vi

or y1
Vi

. Round-2 remains unchanged.

Theorem 3. Under any one-way functions that admit Σ-protocols, the above
modified protocol is a generic yet practical 2-round concurrently sound concurrent
ZK argument with restricted ROs in the BPK model for any language that admits
Σ-protocols.

Below, we present the high-level proof overview of Theorem 3 and identify
some complications and subtleties of dealing with concurrent adversaries for
interactive schemes with ROs.

The simulation procedure for concurrent zero-knowledge is similar to the
simulation procedure for resettable zero-knowledge presented in [4]. Specifically,
for any concurrent adversary V ∗ that has as its output a public-key file of the
form F = {(y0

V ∗
1
, y1

V ∗
1
), (y0

V ∗
2
, y1

V ∗
2
), · · · , (y0

V ∗
q
, y1

V ∗
q
)}, the zero-knowledge simulator

S runs V ∗ as a subroutine and works in at most q + 1 phases. In each phase,
S either successfully gets a simulated transcript or “breaks” a new public-key
(y0

V ∗
i
, y1

V ∗
i
), 1 ≤ i ≤ q, in the sense that S can extract the corresponding secret-

key xb
V ∗

i
. In this process, we identify that dealing with concurrent adversaries

for interactive schemes in the random oracle model actually amounts to dealing
with resetting adversaries in the standard model. Specifically, in dealing with
these resetting adversaries for proving resettable zero-knowledge in the standard
model for the sake of extracting the witness used by a malicious resetting verifier
in one session (for facilitating the successful simulation), we normally need to
rewind the adversary and change the random challenge that has been sent with
respect to some message of that session (e.g. the first message of a Σ-protocol),
and give back, in turn, a different random challenge. But, the random challenge
to be changed in that session may have been “defined” in a previous session, we
may thus need to rewind the adversary in a previous session in which the ran-
dom challenge is defined for the first time. Similarly, in dealing with concurrent
adversaries for proving concurrent zero-knowledge in the random oracle model,
to extract the witness used by the adversary in forming the Round-1 message in



one session, we need to redefine the random output of the programmable ran-
dom oracle. But the random output of the programmable random oracle used in
that session may be obtained by the adversary by querying the random oracle
in a previous session, and thus we need to rewind the adversary in the previous
session where it made the oracle query in question for the first time. We remark
that in the proof of concurrent ZK we only need the WI property of the non-
interactive ΣOR-proofs (of Round-2) generated through the non-programmable
RO OP (that does hold even when OP is replaced by any function of a proper
size). This means that the honest prover’s security (i.e., concurrent ZK) holds
even when the honest prover uses any function in generating the non-interactive
ΣOR-protocols of Round-2.

For concurrent soundness, assume a PPT q-concurrent adversary P ∗ can
successfully convince V with public-key (y0

V , y1
V ) of a false statement with non-

negligible probability p in one of the q concurrent sessions, then we will construct
an algorithm E that on an input y in the range of fV outputs the preimage of y

with non-negligible probability p2

2q in expected polynomial-time, which violates
the one-wayness of fV .

Algorithm E on an input y, first randomly selects an element x′ in the domain
of fV , computes y′ = fV (x′), randomly selects a bit b from {0, 1}, sets yb be y′

and y1−b be y, publishes (y0, y1) as its public-key while keeping x′ privately as
the corresponding secret-key. Then, E randomly chooses i from {1, 2, · · · , q},
and runs P ∗ by playing the role of the honest verifier (with (y0, y1) as its public-
key and x′ as its secret-key) in any session other than the i-th session. In the
i-th session on a common input xi, suppose P ∗ successfully gives a Round-2
message, denoted by (a(i)

P∗ , e
(i)
P∗ , z

(i)
P∗), with respect to a Round-1 message, denoted

by π
(i)
V , sent by E in the first-round of the i-th session, where e

(i)
P∗ is the random

oracle answer given by E to P ∗ on a query of the form (xi, aP∗ , π
(i)
V ) to the

programmable random oracle OP∗ . Then E rewinds P ∗ to the point that P ∗

just made the oracle query (xi, aP∗ , π
(i)
V ), gives back a new random oracle answer

e
(i)′
P∗ and runs P ∗ from the above rewinding point and on. We stress that in the

above process all Round-1 messages from E to P ∗ are generated through the
fixed random oracle OV .

Since we assume that P ∗ can, with probability p, convince V of a false state-
ment in one of the q concurrent sessions, then conditioned on E correctly guessing
the value i, it is easy to see that with probability p2 E will extract anNP-witness
for xi ∈ L or a preimage of either y0 or y1, which is guaranteed by the special
soundness of the ΣOR protocol. Since we further assume that xi 6∈ L and E

randomly guesses i from {1, · · · , q}, we conclude that with probability p2

q E will
output the preimage of either y0 or y1. Furthermore, according to the perfect
WI property of ΣOR-protocol, we know that with probability p2

2q E will output
a preimage of y = y1−b, which violates the one-wayness of fV . Note that in
the above proof we only need the WI property of the non-interactive Σ-proofs
(of Round-1) generated through the non-programmable RO OV (that does hold
even when OV is replaced by any properly sized function), which means that the



honest verifier’s security (i.e., concurrent soundness) holds even for this type of
OV .

Comment: At a first glance, it seems that the above proof procedure for
concurrent soundness can also be applicable to the Feige-Shamir ZK protocol
in the public-key model without ROs (that is however, as we have shown, not
concurrently secure). This subtle point needs further elaboration: The WI prop-
erty is only guaranteed to be concurrently composable when the same protocol
is composed concurrently. But in our case, the concurrent adversary P ∗ actually
also runs WI protocols to V (or E) with the player role reversed with respect to
the WI protocols from V (or E) to P ∗ . In general, in this case the concurrent
WI property of the ΣOR-protocols from V (or E) to P ∗ is not guaranteed. This
is also the very reason why the Feige-Shamir ZK protocol is not concurrently
secure in the public-key model without ROs, as shown by our concurrent attack.
In contrast, in the (ΣOR-based implementation of ) Feige-Shamir ZK protocol
in the BPK model with restricted ROs, the important fact is that we are, both,
working in the random oracle model and the WI (i.e., ΣOR) protocols are non-
interactive. In more details, suppose in this case the preimage extracted by E
is dependent on the witness used by E, then we can show a PPT algorithm E′

that violates the WI property of non-interactive ΣOR-protocols as follows. For a
PPT concurrent adversary P ∗ and the honest verifier V with public-key (y0, y1)
who actually is a non-interactive ΣOR-prover on (y0, y1) with random challenges
generated through the fixed random oracle OV , E′ runs P ∗ as a subroutine and
interacts with V . E′ works just as E does but with the following modifications:
Whenever E′ needs to send a non-interactive ΣOR-proof in Round-1 of a ses-
sion, E′ just interacts with V to get such a proof and sends it to P ∗. Note
that E′ never redefines the fixed random oracle OV . Clearly, E′ can violate the
WI property of the non-interactive ΣOR-proofs received from V if the extracted
preimage (from P ∗) is dependent on the witness used by V .

6 A Note on the Applications of the 2-Round ZK with
Restricted ROs

The notion of zero-knowledge plays a central role in modern cryptography and
we are now at the point where more and more complicated interactive schemes
with random oracle methodologies are under development (including ones for
industrial use). Thus, we expect that the generic yet practical 2-round ZK pro-
tocols with restricted ROs (with or without registered public-keys) can be used
as a building block in constructing more complicated interactive schemes prov-
ably secure with restricted ROs.

In particular, we note that the 2-round ZK protocols with restricted ROs
can be used to transform a large number of (but not necessarily all) interactive
schemes (and non-interactive systems with interactive setup/join protocols like
PKI, group signatures or e-cash) developed originally in the normal random ora-
cle model, which use the random oracle only to collapse Σ-protocols, into schemes
with provable security using restricted ROs, paying in efficiency at most one ex-



tra round, but with seemingly more sound provable security guarantees. The
idea is to replace each non-interactive NIZK in the original interactive scheme
(developed in the normal interactive RO model) by our 2-round ZK protocols
with restricted ROs. The key observation here is that all 2-round ZK protocols
with one party playing the role of the prover can share the same Round-1 non-
interactive ΣOR-protocol sent by its counterpart. This way, the non-interactive
nature of the NIZK-protocols in the original interactive systems can be preserved
at the price of at most one additional initiating round on top of the protocol.
This general transformation, along with detailed discussions, will be presented
in the full version of this work.

Acknowledgments. We are grateful to Yehuda Lindell for referring us
to [13] and for valuable discussions and suggestions. We thank the anonymous
referees of TCC’06 for valuable and detailed comments and suggestions.

References

1. M. Bellare, A. Boldyreva and A. Palacio. An Uninstantiable Random-Oracle-
Model Scheme for a Hybrid-Encryption Problem In C. Cachin and J. Camenisch
(Ed.): Advances in Cryptology-Proceedings of EUROCRYPT 2004, LNCS 3027,
pages 171-188. Springer-Verlag, 2004.

2. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for De-
signing Efficient Protocols. InACM Conference on Computer and Communications
Security, pages 62-73, 1993.

3. E. Brickell, J. Camenisch and L. Chen. Direct Anonymous Attestation. ACM’s
CCS 2004.

4. R. Canetti, O. Goldreich, S. Goldwasser and S. Micali. Resettable Zero-Knowledge.
In ACM Symposium on Theory of Computing, pages 235-244, 2000.

5. R. Canetti, O. Goldreich and S. Halevi. The Random Oracle Methodology, Revis-
ited. In ACM Symposium on Theory of Computing, pages 209-218, 1998.

6. R. Canetti, O. Goldreich and S. Halevi. On the Random-Oracle Methodology as
Applied to Length-Restricted Signature Schemes. In 1st Theory of Cryptography
Conference (TCC), LNCS 2951 , pages 40-57, Springer-Verlag, 2004.

7. R. Cramer. Modular Design of Secure, yet Practical Cryptographic Protocols, PhD
Thesis, University of Amsterdam, 1996.

8. R. Cramer, I. Damgard and B. Schoenmakers. Proofs of Partial Knowledge and
Simplified Design of Witness Hiding Protocols. In Y. Desmedt (Ed.): Advances
in Cryptology-Proceedings of CRYPTO 1994, LNCS 839, pages 174-187. Springer-
Verlag, 1994.

9. I. Damgard. Efficient Concurrent Zero-Knowledge in the Auxiliary String Model.
In B. Preneel (Ed.): Advances in Cryptology-Proceedings of EUROCRYPT 2000,
LNCS 1807, pages 418-430. Springer-Verlag, 2000.

10. G. Di Crescenzo and R. Ostrovsky. On Concurrent Zero-Knowledge with Pre-
Processing. In M. J. Wiener (Ed.): Advances in Cryptology-Proceedings of
CRYPTO 1999, LNCS 1666, pages 485-502. Springer-Verlag, 1999.

11. D. Dolev, C. Dwork and M. Naor. Non-Malleable Cryptography. SIAM Journal
on Computing, 30(2): 391-437, 2000. Preliminary version appears in STOC’91.



12. C. Dwork, M. Naor and A. Sahai. Concurrent Zero-Knowledge. In ACM Sym-
posium on Theory of Computing, pages 409-418, 1998. Full version to appear in
Journal of the ACM.

13. U. Feige. Alternative Models for Zero-Knowledge Interactive Proofs. Ph.D. Thesis,
Department of Computer Science and Applied Mathematics, Weizmann Institute
of Science, Rehovot, Israel, 1990.

14. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In A. Odlyzko (Ed.): Advances in Cryptology-Proceedings
of CRYPTO’86, LNCS 263, pages 186-194. Springer-Verlag, 1986.

15. U. Feige and Shamir. Zero-Knowledge Proofs of Knowledge in Two Rounds. In
G. Brassard (Ed.): Advances in Cryptology-Proceedings of CRYPTO 1989, LNCS
435, pages 526-544. Springer-Verlag, 1989.

16. O. Goldreich. Concurrent Zero-Knowledge with Timing, Revisited. In ACM Sym-
posium on Theory of Computing, pages 332-340, 2002.

17. O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof
Systems. SIAM Journal on Computing, 25(1): 169-192, 1996.

18. S. Goldwasser and Y. Tauman. On the (In)security of the Fiat-Shamir Paradigm.
In IEEE Symposium on Foundations of Computer Science, pages 102-115, 2003.

19. L. Guillou and J. J. Quisquater. A Practical Zero-Knowledge Protocol Fitted to
Security Microprocessor Minimizing both Transmission and Memory. In C. G.
Gnther (Ed.): Advances in Cryptology-Proceedings of EUROCRYPT 1988, LNCS
330 , pages 123-128, Springer-Verlag, 1988.

20. S. Micali and L. Reyzin. Soundness in the Public-Key Model. In J. Kilian (Ed.):
Advances in Cryptology-Proceedings of CRYPTO 2001, LNCS 2139, pages 542–565.
Springer-Verlag, 2001.

21. M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure Against Chosen
Ciphertext Attacks. In ACM Symposium on Theory of Computing, pages 427-437,
1990.

22. Jesper Buus Nielsen. Separating Random Oracle Proofs from Complexity Theoretic
Proofs: The Non-Committing Encryption Case. In M. Yung (Ed.): Advances in
Cryptology-Proceedings of CRYPTO 2002, LNCS 2442, pages 111-126, Springer-
Verlag, 2002.

23. R. Pass. On Deniabililty in the Common Reference String and Random Oracle
Models. InD. Boneh (Ed.): Advances in Cryptology-Proceedings of CRYPTO 2003,
LNCS 2729, pages 316-337, Springer-Verlag 2003.

24. C. Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryptology,
4(3): 24, 1991.

25. V. Shoup and R. Gennaro. Securing Threshold Cryptosystems Against Chosen
Ciphertext Attack. Journal of Cryptology, 15(2): 75-96, 2002.


