
On Error Correction in the Exponent

Chris Peikert

MIT CSAIL, 32 Vassar St, Cambridge, MA, 02139.
cpeikert@theory.csail.mit.edu

Abstract. Given a corrupted word w = (w1, . . . , wn) from a Reed-
Solomon code of distance d, there are many ways to efficiently find and
correct its errors. But what if we are instead given (gw1 , . . . , gwn) where
g generates some large cyclic group — can the errors still be corrected
efficiently? This problem is called error correction in the exponent, and
though it arises naturally in many areas of cryptography, it has received
little attention.

We first show that unique decoding and list decoding in the exponent
are no harder than the computational Diffie-Hellman (CDH) problem in
the same group. The remainder of our results are negative:
– Under mild assumptions on the parameters, we show that bounded-

distance decoding in the exponent, under e = d − k1−ε errors for
any ε > 0, is as hard as the discrete logarithm problem in the same
group.

– For generic algorithms (as defined by Shoup, Eurocrypt 1997) that
treat the group as a “black-box,” we show lower bounds for decoding
that exactly match known algorithms.

Our generic lower bounds also extend to decisional variants of the de-
coding problem, and to groups in which the decisional Diffie-Hellman
(DDH) problem is easy. This suggests that hardness of decoding in the
exponent is a qualitatively new assumption that lies “between” the DDH
and CDH assumptions.

1 Introduction

Reed-Solomon codes and cryptography. The Reed-Solomon (RS) family of error-
correcting codes [19] has proven incredibly useful throughout several areas of
theoretical computer science and in many real-world applications. They are very
simple to define: for any field Fq of size q, any message length k and code
length n such that k ≤ n ≤ q, and any evaluation set of n distinct points
E = {α1, . . . , αn} ⊆ Fq, the Reed-Solomon (RS) code RSq(E , k) is the set of all
codewords (p(α1), . . . , p(αn)), where p(x) ∈ Fq[x], deg(p) < k.

In addition to their elegant definition and many beautiful combinatorial prop-
erties, Reed-Solomon codes also admit efficient algorithms for correcting errors.
The algorithm of Berlekamp and Welch [1] corrects up to d/2 = (n − k + 1)/2
errors in any codeword w ∈ RSq(E , k), while the list-decoding algorithm of Gu-
ruswami and Sudan [12] (building on groundbreaking work by Sudan [23]) can
find all codewords within Hamming distance n−

√
nk of a given word.

Reed-Solomon codes also play a fundamental role in modern cryptogra-
phy, but are often known by a different name: Shamir (or polynomial) secret-
sharing [21]. McEliece and Sarwate first observed [15] that sharing a secret using
Shamir’s scheme is equivalent to encoding the secret under an RS code: a random
low-degree polynomial p is chosen so that p(α0) is the value of the secret, and the
shares are the evaluations of p at many other distinct points α1, . . . , αn. More-
over, reconstructing the secret when players withhold or mis-report their shares
is equivalent to decoding a codeword that has been corrupted with erasures or
errors (respectively).

Placing shares in the exponent. Many cryptographic schemes rely on the pre-
sumed hardness of computing discrete logs in some cyclic group G of prime order
q generated by an element g. In constructing threshold versions of such schemes,
distributing trust over many players often involves distributing the secret key via
polynomial secret sharing/RS encoding (where the alphabet is the field Zq). To
perform the cryptographic task, typically the players must collectively compute
some value of the form gw, where w depends on the secret key and must remain
secret. For example, to decrypt an ElGamal [10] ciphertext (c, d) = (gr,m · yr)
where y = gx and x is the secret key, the players must collectively compute the
value cx = gxr without revealing their individual shares of x.

The basic protocol for computing gw usually works as follows:

1. Player i uses its share of the secret key to compute gwi , where wi = p(αi)
is a share of the secret value w = p(α0) under a polynomial p of degree less
than k.

2. The players broadcast their respective values of gwi , for i = 1, . . . , n.
3. The broadcast values are (efficiently) “interpolated in the exponent”1 to re-

cover gw.
Specifically, for any S ⊂ {1, . . . , n} such that |S| = k, given the values
gwi = gp(αi) for i ∈ S, each player locally computes

gw = gp(α0) = g
P

i∈S λS
i p(αi) =

∏
i∈S

(gwi)λS
i

using appropriate Lagrange coefficients λS
i :

λS
i =

∏
j∈S,j 6=i

αj − α0

αj − αi
mod q.

In Step 3 above, notice that any subset S of size k suffices, and that the
values from players outside S are unused in the interpolation formula. Therefore
interpolation in the exponent is robust against a “halting” adversary — i.e.,
one that may refuse to broadcast some shares, but always correctly reports the
values of those shares it does broadcast.
1 Using the language of coding theory, we might call this “erasure-decoding in the

exponent.”

Introducing errors in the exponent. A malicious adversary, on the other hand,
may lie about its shares. This introduces errors in the exponent, instead of
erasures. Without a way to separate correct shares from incorrect shares, the
interpolation formula may produce different results depending on which shares
are used.

This motivates the natural question of whether it is possible to efficiently cor-
rect errors “in the exponent.” More specifically: if a vector x = (x1, . . . , xn) dif-
fers from some RS codeword w = (w1, . . . , wn) in at most e positions, then given
gx = (gx1 , . . . , gxn), is it possible to efficiently recover gw = (gw1 , . . . , gwn)?

The goal of this paper is to investigate the computational complexity of
error correction in the exponent, and to relate it to well-known computational
problems in cyclic groups (such as discrete log and Diffie-Hellman).

Relationships among parameters. Error correction in the exponent involves sev-
eral different parameters, and its complexity depends upon the relationships
among these parameters. For analyzing asymptotic behavior, all these parame-
ters (q, n, k, e) will be seen as functions of a single security parameter `. We
will focus our attention on those parameter values which are most common in
cryptographic settings:

– Complexity of algorithms will always be measured relative to the security
parameter `. An efficient algorithm is one that runs in time polynomial in
the security parameter. A function is said to be negligible if it asymptotically
decreases faster than the inverse of any fixed polynomial in `; otherwise it is
said to be non-negligible.

– The alphabet size q is exponential in `; that is, q = 2O(`).
– The codeword length n (which often corresponds to the number of players

in a protocol) may be an arbitrary polynomial in `. Therefore n is some
polynomial in log q.

– The message length k (which often corresponds to the number of “curious”
— i.e., semi-honest — players) is at most n.

– The number of errors e (which often corresponds to the number of malicious
players) is at most n.

In protocols, often it is assumed that either e = 0 (corresponding to an honest-
but-curious adversary) or e = k − 1 (corresponding to a fully-malicious adver-
sary). In order to understand the problem more generally, we will consider e and
k independently.

1.1 Applications

While error correction in the exponent is a very interesting problem in its own
right, it is also heavily motivated by existing work.

In the positive direction, an error correction algorithm would be highly de-
sirable, because it would lead to improvements in robustness (i.e., correctness
in the presence of cheating players) and efficiency of many multiparty cryp-
tographic protocols. Currently, these protocols often require either expensive

zero-knowledge proofs of correct operation, or more efficient tools like verifiable
secret sharing. In either case, these steps cost extra rounds of communication
and computation, which could be avoided by instead having the parties perform
local error correction (with the side-effect of also identifying cheating parties).

There are many concrete cryptographic systems in the literature which would
benefit from error correction in the exponent, including (but not limited to):
threshold DSS key generation and signature protocols [11], threshold ElGamal
protocols [17], protocols for multiplication of shared secrets in the exponent [18],
distributed pseudorandom generators, functions, and verifiable random func-
tions [16, 9, 6], traitor-tracing schemes [2], and others. The last example of a
traitor-tracing scheme is interesting because, unlike the others, it is not a thresh-
old cryptographic protocol. This indicates that error correction in the exponent
may have relevance in many other areas of cryptography as well.

On the other hand, if in our study of this problem we discover that it appears
to be hard, then it can be used as a basis for new assumptions that may provide
a foundation for new kinds of cryptographic schemes, or improved constructions
of existing primitives.

1.2 Our Results

We consider the problem of correcting errors in the exponent for the (family of)
codes RSq(E , k), defined over the field Zq for prime q.

First we observe that unique decoding and list decoding in the exponent,
when the number of errors e does not exceed the classical error bounds for those
problems, is no harder than the computational Diffie-Hellman (CDH) problem [8]
in the same group. The remainder of our results are negative:

– Under mild assumptions on the parameters, we show that bounded-distance
decoding in the exponent under e = d−k1−ε errors is as hard as the discrete
logarithm problem in the same group, for any constant ε > 0.

– For generic algorithms (as defined by Shoup [22]) that only perform “black-
box” group operations, we show lower bounds for decoding that exactly
match known algorithms.

Our generic lower bounds also extend to decisional variants of the decoding
problem, and to groups in which the decisional Diffie-Hellman (DDH) problem
is easy. This suggests that hardness of decoding in the exponent is a qualitatively
new assumption that lies “between” the DDH and CDH assumptions.

Taken together, our positive and negative results may also hint at new con-
nections between other popular problems on cyclic groups (e.g., discrete log and
Diffie-Hellman), which may be illuminated by further study of error correction
in the exponent.

1.3 Related Work

We are aware of only one work which directly addresses error correction in the
exponent: Canetti and Goldwasser [4] gave a simple, efficient decoding algorithm

which works when e+1 = k = O(
√

n). (See Proposition 2.1 for a generalization.)
This provides an inexpensive way to achieve mild robustness in their threshold
version of the Cramer-Shoup cryptosystem [7].

A few recent works have investigated the hardness of various “plain” (i.e., not
in the exponent) decoding tasks for Reed-Solomon codes. Cheng and Wan [5],
somewhat surprisingly, showed that (under an appropriate number of errors)
certain list- and bounded-distance decoding problems are as hard as computing
discrete logs. However, their setting differs from ours in many important ways:
in their work, q is necessarily small (polynomial in n), and list-decoding is re-
lated to the discrete log problem in the field Fqh for a somewhat large h. In
contrast, we are concerned mainly with unique decoding and bounded-distance
decoding as they relate to computational problems in groups of order q, where
q is exponentially large in n.

Guruswami and Vardy [13] resolved a long-standing open problem, showing
that maximum-likelihood decoding (i.e., finding the nearest codeword) of Reed-
Solomon codes is NP-hard. More specifically, they showed that it is hard to
distinguish whether a word is at distance n − k or n − k − 1 from a Reed-
Solomon code. Of course, the problem remains NP-hard when placed “in the
exponent.” However, their results are also incomparable to ours: they show a
stronger form of hardness, but only in the worst case, for a very large number of
errors, and for a carefully-crafted evaluation set E . In contrast, we show weaker
forms of hardness, but in the average case, under many fewer errors, and for any
E .

We again stress that both of the above works [5, 13] are concerned with the
hardness of plain decoding (not in the exponent).

Notation. We denote a vector x in boldface and its value at index i by xi.
For two vectors x,y of the same length, define ∆(x,y) to be the Hamming
distance between x and y, i.e. the number of indices i for which xi 6= yi. Define
wt(x) = ∆(0,x). For a code C and a vector x, define ∆(x, C) = miny∈C ∆(x,y).
Denote {1, . . . , n} by [n].

2 Initial Observations and Upper Bounds

Unique decoding with a Diffie-Hellman oracle. Clearly, unique decoding in the
exponent under e < (n − k + 1)/2 errors is no harder than the discrete log
problem: given (gx1 , . . . , gxn), taking discrete logs yields (x1, . . . , xn), which can
be corrected using the standard algorithms [1]. However, this approach is ac-
tually overkill: it is, in fact, enough to have an oracle for the (computational)
Diffie-Hellman problem in G. The main ingredient of the Berlekamp-Welch al-
gorithm is simply a linear system, which can be solved in the exponent if we
have a way to perform multiplication and inversion mod q (in the exponent).
Multiplication is immediately provided by the Diffie-Hellman oracle: on ga, gb,
the oracle gives us gab. Inversion can be implemented as follows: on input ga,
compute ga−1 mod q = gaq−1 mod q by repeated squaring in the exponent. (Note
that this approach requires that q be known.)

Unique decoding by enumeration. Another approach to unique decoding (under
e < (n − k + 1)/2 errors) is to merely enumerate over all subsets of size k of
received shares. For each subset K, interpolate the shares (in the exponent) to
each point in E , counting the number of points in E for which the interpolated
value disagrees with the received share. It is easy to show that when the number
of disagreements is at most e, the shares in K are all correct, and the entire
codeword can be recovered from them. Unfortunately, this approach takes time(
n
k

)
, which in general is not polynomial in the security parameter.
A similar, but more efficient randomized approach was given in [4] for the

case e + 1 = k = O(
√

n). Here we generalize it to arbitrary e,k:

Proposition 2.1. For any e, k < n such that e < (n−k+1)/2, there is an algo-
rithm for unique decoding in the exponent which performs O

(
nk(log q) ·

(
n
k

)
/
(
n−e

k

))
group operations and succeeds with all but negligible (in n) probability. When
ek = O(n log n), the algorithm performs poly(n) ·O(log q) group operations.

Proof. The algorithm works exactly the same as the enumeration algorithm, ex-
cept with an independent, random subset K for each iteration, for some suitable
number of attempts.

Correctness of the algorithm immediately follows from the distance property
of RSq(E , k). We now analyze the runtime: each iteration requires O(nk log q)
group operations, using repeated squaring to exponentiate each share to its ap-
propriate Lagrange coefficient. An iteration succeeds if and only if all k of the
chosen shares are correct, and the probability of this event is:(

n−e
k

)(
n
k

) =
(n− e)!(n− k)!
(n)!(n− e− k)!

.

There are two ways to bound this quantity from below: we can write (n−e)!
n! ≥ n−e

and (n−k)!
(n−e−k)! ≥ (n − e − k)e, or we can write (n−k)!

n! ≥ n−k and (n−e)!
(n−e−k)! ≥

(n− e− k)k. Taking the best of the two options, we get a bound of:(
1− e + k

n

)min(e,k)

= exp(−O(min(e, k)(e + k)/n)) = exp(−O(ek/n)),

which is 1/poly(n). Therefore the algorithm can be made to run in poly(n) time
and succeed with high probability. ut

Taking the best of all the above approaches, we see that the complexity of
unique decoding in the exponent is upper-bounded by the complexity of the
CDH problem and by nk · (log q) ·

(
n
k

)
/
(
n−e

k

)
.

List decoding. When the number of errors is larger than the unique decoding
radius (i.e., half the distance of the code), the technique of list decoding can still
be used to recover all codewords within a given radius of the received word. For
example, the list decoding algorithm of Guruswami and Sudan [12] for Reed-
Solomon codes can recover all codewords within a radius of n −

√
nk (which is

always at least as large as the unique decoding radius (n− k + 1)/2).

The list decoding algorithm of [12] performs operations which are much more
sophisticated than those of the Berlekamp-Welch unique decoding algorithm [1].
(For example, the list decoding algorithm needs to compute polynomial GCDs,
perform Hensel liftings, and factor univariate polynomials.) However, it turns out
that all these operations can still be performed “in the exponent” with the aid
of a CDH oracle. Therefore, correcting significantly more errors (i.e., n−

√
nk)

in the exponent also reduces to the CDH problem. (We thank abhi shelat for his
assistance with these observations.)

The remainder of this paper will be devoted to establishing hardness results
and lower bounds.

3 Bounded-Distance Decoding in the Exponent

In this section, we show that bounded-distance decoding (a relaxation of unique
decoding) in the exponent, under a large number of errors, is as hard as the
discrete log problem. We define the following code for a generator g of a cyclic
group G of order q: Cq(E , k, g) = {(gw1 , . . . , gwn) : w ∈ RSq(E , k)}. Note that
this code’s alphabet is the group G. The Hamming distance ∆ is defined over
Gn as it is for any other alphabet.

Problem: Bounded-distance decoding of Cq(E , k, g) under e errors. We
denote this problem by BDDE-RSq,E,k,e.

Instance: A generator g of G, and x such that ∆(x, Cq(E , k, g)) ≤ e.
Output: Any codeword p ∈ Cq(E , k, g) such that ∆(p,x) ≤ e.

We will relate BDDE-RS to the problem of finding a non-trivial representation
of the identity element relative to a random base, as proposed by Brands [3]:

Problem: Finding a nontrivial representation of the identity element
1 ∈ G, with respect to a uniform base of n elements. We denote this
problem FIND-REP.

Instance: A base (x1, . . . , xn) ∈ Gn, chosen uniformly.
Output: Any nontrivial (a1, . . . , an) ∈ Zn

q such that
∏n

i=1 xai
i = 1.

Brands showed that solving FIND-REP in G is as hard as computing discrete
logs in G. For completeness, we briefly recall the result and its proof.

Proposition 3.1 ([3], Proposition 3). If there exists an efficient randomized
algorithm to solve FIND-REP in G with non-negligible probability, then there
exists an efficient randomized algorithm which, on input (g, y = gz) for any
generator g ∈ G and uniform z ∈ Zq, outputs z with overwhelming probability.

Proof. Suppose algorithm B solves FIND-REP in G with non-negligible probabil-
ity. We construct the following algorithm to solve the discrete log problem in G:
on input (g, y) where logg y is desired, choose (r1, . . . , rn) and (s1, . . . , sn) from
Zn

q uniformly and independently, and let xi = griysi . Run B on (x1, . . . , xn),
receiving correct output (a1, . . . , an) with non-negligible probability. If

∑
siai 6=

0 mod q, output −
P

riaiP
siai

mod q.

The analysis is straightforward: first observe that the constructed (x1, . . . , xn)
is uniform over Gn, because g is a generator of prime order. Furthermore, the
si are independent of xi, so they are independent of B’s output. Therefore if
(a1, . . . , an) is nontrivial, Pr[

∑
siai = 0 mod q] = 1/q, which is negligible. Now

suppose z = logg y. Then 1 =
∏

xai
i =

∏
gai(ri+zsi), which implies

∑
ai(ri +

zsi) = 0 mod q. Solving for z, we see that the algorithm’s output is correct.
Finally, because the discrete log problem is random self-reducible, an effi-

cient algorithm that solves discrete log with non-negligible probability can be
converted into one which succeeds with overwhelming probability. ut

3.1 Our Reduction

Our reduction from FIND-REP to BDDE-RS relies chiefly on the following tech-
nical lemma, which bounds the probability that a random word in Gn (i.e.,
an instance of FIND-REP) is very far from an RS codeword (in the exponent).
This lemma may be of independent interest, and any improvements to it will
automatically reduce the error bound in our discrete log reduction.

Lemma 3.1. For any positive integer c ≤ n− k, and any code Cq(E , k, g),

Pr
x

[∆(x, Cq(E , k, g)) > n− k − c] ≤ qc · n2c(
n

k+c

) ,

where the probability is taken over the uniform choice of x from Gn.

Proof. It is apparent that ∆(x, Cq(E , k, g)) ≤ n − k − c if (and only if) there
exists some set of indices S ⊆ [n], |S| = k + c, satisfying the following condition,
which we call the “low-degree” condition for the set S:

The points {(αi, logg xi)}i∈S lie on a polynomial of degree < k.

Define S = {S ⊆ [n] : |S| = k + c}. For every S ∈ S, define XS to be the 0-1
random variable indicating whether S satisfies the low degree condition, taken
over the random choice of x. Let X =

∑
S∈S XS .

Now for all S ∈ S, Prx[XS = 1] = q−c, because any k points of {(αi, logg xi)}i∈S

define a unique polynomial of degree at most k, and the remaining c points in-
dependently lie on that polynomial each with probability 1/q. Then by linearity
of expectation, E[X] =

(
n

k+c

)
/qc. Now by Chebyshev’s inequality,

Pr[∆(x, Cq(E , k, g)) > n− k − c] = Pr[X = 0]
≤ Pr [|X − E[X]| ≥ E[X]]

≤ σ2
X

E[X]2
,

where σ2
Z denotes the variance of a random variable Z.

It remains to analyze σ2
X = E[X2]−E[X]2. The central observation is that for

a large fraction of S, S′ ∈ S, XS and XS′ are independent, hence they contribute

little to the variance. In particular, if |S∩S′| ≤ k, then E[XS |XS′ = 1] = E[XS],
i.e. XS and XS′ are independent and E[XSXS′] = E[XS]E[XS′].

For all other distinct pairs S, S′ such that |S∩S′| > k, E[XSXS′] ≤ E[XS] ≤
1/qc. The number of such pairs can be bounded (from above) as follows: we have(

n
k+c

)
choices for S, then

(
k+c
k+1

)
choices of some k + 1 elements of S to include

in S′, then
(
n−k−1

c−1

)
remaining arbitrary values to complete the choice of S′. So

the total number of pairs is at most
(

n
k+c

)(
k+c
k+1

)(
n−k−1

c−1

)
.

Putting these observations together, we obtain the following bound on σ2
X :

σ2
X =

∑
S∈S

(
E[X2

S]− E[XS]2
)

+
∑

S,S′∈S
S 6=S′

(E[XSXS′]− E[XS]E[XS′])

≤
∑
S∈S

E[XS] +
∑

S,S′∈S
S 6=S′

(E[XSXS′]− E[XS]E[XS′])

≤ E[X] +
∑

S,S′∈S
|S∩S′|>k

E[XSXS′] ≤ E[X]
[
1 +

(
k + c

c + 1

)(
n− k − 1

c− 1

)]
.

Since k + c ≤ n, we may apply the (very loose) bound of
(
n
y

)
≤ ny to the two

binomial coefficients to get σ2
X ≤ E[X] · n2c, and the claim follows. ut

Theorem 3.1. For any n, k, c and q such that
(

n
k+c

)
≥ 2qcn2c, if an efficient

randomized algorithm exists to solve BDDE-RSq,E,k,n−k−c with non-negligible
probability (over a uniform instance and the randomness of the algorithm), then
an efficient randomized algorithm exists to solve the discrete log problem in G.

The following corollary gives concrete relationships among n, k, q, and de-
coding radius for which the theorem applies.

Corollary 3.1. For any constant ε > 0, δ ∈ (0, 1], and any q = 2O(`) expo-
nential in the security parameter `, for any polynomial n(`) = ω(`1/δε), any
k = Ω(nδ), k ≤ (1 − Ω(1)) · n and any c ≤ k1−ε, the discrete log problem in
cyclic groups of order q reduces to BDDE-RSq,E,k,n−k−c.

Example 3.1. For k = n/2 and c = k0.99, we certainly have k ≤ (1−Ω(1))·n and
k = Ω(n1). Then a poly-time algorithm for bounded-distance decoding in the
exponent for RS words of length n = `100 under n/2−k0.99 errors would imply a
poly-time algorithm for discrete log in groups of size about q = 2`. In contrast,
the unique decoding radius of this code is n/4 = n/2−k/2, and the list decoding
radius is n −

√
nk ≈ n/2 − k · 0.414; both are close to the bounded-distance

radius above. Because RS codes can efficiently be uniquely- and list-decoded in
the exponent using an oracle for the Diffie-Hellman problem, the error radius
of our reduction comes tantalizingly close to providing a reduction from the
discrete log problem to the Diffie-Hellman problem. (We thank abhi shelat for
this interpretation of the result.)

Proof (of Corollary 3.1). Because
(

n
k+c

)
≥ (n

k+c)k+c and qc ≥ 2n2c for suffi-
ciently large `, then by Theorem 3.1, it suffices to establish that for n = ω(`1/δε)
and sufficiently large `,(

n

k + c

)k+c

≥ q2c ⇐⇒ (k + c) log
n

k + c
≥ 2c log q.

We will establish the second inequality by bounding the left side from below
by Ω(k), and bounding the right side from above by o(k), which suffices.

First we analyze the left term: because c = k1−ε,

lim
`→∞

n

k + c
=

n

k
≥ 1 + Ω(1),

so log n
k+c = Ω(1). Therefore the left term is Ω(k).

On the right, we have 2c log q = c · O(`). Because c ≤ k1−ε and n =
ω(`1/δε) ⇐⇒ ` = o(nδε), the right side is k1−ε · o(nδε). Finally nδ = O(k),
so we get k1−ε · o(kε) = o(k), as desired. ut

Proof (of Theorem 3.1). Suppose that algorithm D solves BDDE-RSq,E,k,n−k−c

with non-negligible probability. By Proposition 3.1, it will suffice to construct
an algorithm A that solves FIND-REP in G with non-negligible probability.
A works as follows: on input x = (x1, . . . , xn), where x is uniform over Gn, im-

mediately runD(g,x). By Lemma 3.1, (g,x) is an instance of BDDE-RSq,E,k,n−k−c

with probability at least 1/2. Then conditioned on this event, the instance is uni-
form, and with non-negligible probability D outputs some p = (p1, . . . , pn) where
∆(p,x) ≤ n− k− c. Take any k + 1 indices E ⊆ [n] such that xi = pi for i ∈ E.
Then any k of the xi linearly interpolate (in the exponent) to the remaining xi.
That is, we can compute non-trivial Lagrange coefficients λi for all i ∈ E such
that

∏
i∈E xλi

i = 1. Let λi = 0 for all i 6∈ E, and output (λ1, . . . , λn), which is a
solution to FIND-REP. ut

4 Generic Algorithms for Noisy Polynomial Interpolation

Generic algorithms. Shoup proposed the generic algorithms framework [22] for
computational problems in groups. Informally, a generic algorithm only performs
group operations in a black-box manner; it does not use any particular property
of the representation of group elements.

Formally, we consider a group G, an arbitrary set S ⊂ {0, 1}∗ with |S| ≥ |G|,
and a random injective encoding function σ : G → S. We are only concerned
with cyclic groups G of prime order q, independent of their representation. Such
group are all isomorphic to Zq under addition, so we will assume without loss of
generality that G = Zq under group operation +.

A generic algorithm A has access to an encoding list (σ(x1), . . . , σ(xt)) of
elements x1, . . . , xt ∈ Zq. A can make unit-time queries of the form xi ± xj to
a group oracle by specifying the operation and the indices i, j into the encoding

list; the answer σ(xt+1), where xt+1 = xi±xj , is appended to the list. The query
complexity of a generic algorithm is the number of elements in its encoding list
(including any provided as input) when it terminates.

The probability space of an execution of A consists of the random choice
of input, the random function σ, and the coins of A. If we bound the success
probability of A over this space, then it follows that for some encoding function
σ, the same bound applies when the probability is taken only over the input
and A’s coins. Therefore any algorithm which uses the group in a “black-box”
manner is subject to the bound.

We remark that most general-purpose algorithms for discrete log and related
problems are indeed generic. One exception is the index calculus method, which
requires a notion of “smoothness” in the group G. Thus far, index calculus
methods have not been successfully applied to groups over the kinds of elliptic
curves that are typically used in cryptography.

Schwartz’s lemma. A key tool in the analysis of generic algorithms is Schwartz’s
Lemma, which bounds the probability that a multivariate nonzero polynomial,
defined over a finite field, is zero at a random point.

Lemma 4.1 ([20]). For any nonzero polynomial f ∈ Fq[X1, . . . , Xt] of total
degree d,

Pr[f(x1, . . . , xt) = 0] ≤ d/q,

where the probability is taken over a uniform choice of (x1, . . . , xt) ∈ Ft
q.

Noisy polynomial interpolation. We now consider a problem which we call “noisy
polynomial interpolation,” which is closely related to decoding for Reed-Solomon
codes. (See Remark 4.1 below for details on this relationship.) This is exactly
the problem which tends to appear in many multiparty cryptographic protocols.

Problem: Generic noisy polynomial interpolation at a fixed point α0 6∈
E under e < (n − k + 1)/2 errors. We denote this problem by
GNPIq,E,α0,k,e.

Instance: An initial encoding list (σ(P (α1)+e1), . . . , σ(P (αn)+en), σ(1))
for a random P (x) ∈ Zq[x], deg(P) < k, and a random e ∈ Zn

q such
that wt(e) = e.

Output: σ(P (α0)).

Remark 4.1. GNPI is potentially a strictly easier problem than full decoding: it
could be the case that interpolating a noisy polynomial at some specific, rare
point α0 is easier than recovering the entire codeword (i.e., interpolating at
all points α1, . . . , αn). Conversely, recovering the entire codeword would permit
generic Lagrange interpolation of the polynomial at any point α0. Therefore, the
bound for GNPI provided by Theorem 4.1 is potentially stronger than one which
might be provided for the full-decoding task.

Theorem 4.1. A generic algorithm for GNPIq,E,α0,k,e making m queries suc-

ceeds with probability at most (m + 1)2
(
1/q +

(
n−k

e

)
/
(
n
e

))
.

Corollary 4.1. If ek = ω(n log n), then no efficient generic algorithm solves
GNPIq,E,α0,k,e, except with probability negligible in the security parameter. In
particular, the algorithm of Canetti and Goldwasser [4] (described in Section 2)
is optimal.

Proof (of Corollary 4.1). First,
(
n−k

e

)
/
(
n
e

)
≤

(
n−k

n

)e
= (1−k/n)e = exp(−Ω(ek/n)),

which is negligible in n, and hence in the security parameter. Since 1/q is negli-
gible as well, the total success probability is negligible. ut

Proof (of Theorem 4.1). We can write the real interaction between a generic algo-
rithm A and its oracle as a game, which proceeds as follows: let P0, . . . , Pk−1 and
E1, . . . , En be indeterminants. First, the game chooses p = (p0, . . . , pk−1)← Zk

q

and e ∈ Zn
q uniformly, such that wt(e) = e. While interacting with A, the game

will maintain a list of linear polynomials F1, . . . , Ft ∈ Zq[P0, . . . , Pk−1, E1, . . . , En].
Concurrently,A will have an encoding list (σ(x1), . . . , σ(xt)) where xj = Fj(p, e).
Furthermore, the game defines an “output polynomial” F0, which corresponds
to the correct output.

Initially, t = n + 1, Fj = Ej +
∑k−1

i=0 Piα
i
j for j ∈ [n], and Fn+1 = 1. The

output polynomial is F0 =
∑k−1

i=0 Piα
i
0.

Whenever A makes a query for xi ± xj , the game computes Ft+1 = Fi ±
Fj , xt+1 = Ft+1(p, e), σt+1 = σ(xt+1), and appends σt+1 to A’s encoding list.
When A terminates, we may assume that it always outputs some σj it received
from the oracle (otherwise A only succeeds with probability at most 1

q−m). Then
A succeeds iff σj = σ(F0(p, e)).

The ideal game. We now consider an “ideal game” between A and a different
oracle, in which each distinct polynomial Fj is mapped to a distinct, random σj ,
independent of the value Fj(p, e). More formally, the game proceeds as follows:
initially, (σ1, . . . , σn+1) is just a list of distinct random elements of S correspond-
ing to polynomials F1, . . . , Fn+1 defined above. Whenever A asks for xi ± xj as
its (t+1)st query, the game computes Ft+1 = Fi±Fj . If Ft+1 = F` for any ` ≤ t,
the game sets σt+1 = σ`, otherwise it chooses σt+1 to be a random element of
S − {σ1, . . . , σt}. Finally, when A terminates, the game chooses a random value
σ0 from S−{σ1, . . . , σm}, corresponding to F0. A succeeds in this game if it out-
puts σ0; since A only produces output from {σ1, . . . , σm}, the success probability
in the ideal game is zero.

It is easy to see that A’s success probability in the real game is identical to
its success probability in the ideal game, conditioned on a “failure event” F not
occurring. The event F is that Fi(p, e) = Fi′(p, e) for some Fi 6= Fi′ , where
i, i′ ∈ {0, . . . ,m}, and the probability is taken over p, e.

Analysis of the games. We now analyze Pr[F]: for any Fi 6= Fi′ , consider F =
(Fi − Fi′) ∈ Zq[P0, . . . , Pk−1, E1, . . . , En]. Suppose that in e, the values ej for
indices j ∈ M = {m1, . . . ,me} are chosen uniformly, while the others are zero.
Then we can consider a polynomial F ′ in the indeterminants P0, . . . , Pk−1 and
Em1 , . . . , Eme , where F ′ is simply F with zero substituted for each Ej , j 6∈M .

Let e′ = (em1 , . . . , eme). We are then interested in Prp,e′ [F ′(p, e′) = 0].
There are two cases: if F ′ is nontrivial, then this probability is 1/q by Lemma 4.1,
because p and e′ are chosen uniformly. Therefore it remains to bound Prp,e[F ′ =
0].

In order to have F ′ = 0, the constant term and all the coefficients of P` must
be zero in F ′, and hence also in F . By its construction, F is a nontrivial linear
combination of F0, . . . , Fn, and Fn+1 = 1: i.e., there exist c = (c0, . . . , cn) ∈ Zn+1

q

and d ∈ Zq such that

F = d +
n∑

j=0

cjFj = d +
n∑

j=1

cjEj +
k−1∑
`=0

P` ·
n∑

j=0

cjα
`
j .

Therefore we have d = 0 and Ac = 0, where A is a Vandermonde matrix with
A`+1,j+1 = α`

j for j = 0, . . . , n and ` = 0, . . . , k − 1. Because any k columns of
A are linearly independent and F is nontrivial, we have wt(c) ≥ k + 1. In order
for F ′ = 0, it must be that cj = 0 for every j ∈M . Because the set M is chosen
independently of c, the probability of this event is at most

(
n−k

e

)
/
(
n
e

)
. Finally,

by a union bound over all pairs Fi 6= Fi′ , we obtain the result. ut

4.1 Relation to the DDH Problem

In this section, we show evidence that the noisy polynomial interpolation prob-
lem in G is not as easy as the Decisional Diffie-Hellman (DDH) problem in G.
Specifically, for the GNPI problem, we show lower bounds for generic algorithms
that are augmented with a DDH oracle.

Such lower bounds imply that, even in groups in which the DDH problem
is easy, noisy polynomial interpolation may still be hard. Such a scenario is
not just idle speculation: there are reasonable instances of so-called “gap Diffie-
Hellman” groups [14], in which the DDH problem is known to be easy, but the
computational Diffie-Hellman problem is believed to be hard. Recalling from
Section 2 that GNPI is no harder than the CDH problem, this suggests that
GNPI may be a problem of intermediate hardness, located strictly between the
(easy) DDH problem and the (assumed hard) CDH problem.

Augmented generic algorithms. We augment a generic algorithm A with a DDH
oracle as follows: at any time, A can submit to the DDH oracle a triple (a, b, z)
of indices into its encoding list. The oracle replies whether xa · xb = xz mod q.

Theorem 4.2. A generic algorithm for GNPIq,E,α0,k,e, augmented with a DDH
oracle, making mG queries to its group oracle and mD queries to its DDH oracle
succeeds with probability at most

(
(mG + 1)2 + 2mD

) (
1/q +

(
n−k

e

)
/
(
n
e

))
.

Corollary 4.2. If ek = ω(n log n), no efficient generic algorithm augmented
with a DDH oracle solves GNPIq,E,α0,k,e, except with probability negligible in the
security parameter.

Proof (Sketch of Theorem 4.2). As in the proof of Theorem 4.1, we consider
“real” and “ideal” games, and bound the probability of a failure event.

Both games proceed much in the same way: they maintain a list of polyno-
mials Fi and answer queries to the group oracle as before. The games answer
DDH queries (a, b, z) in the following way:

– In the real game, respond “yes” if Fa(p, e) · Fb(p, e) = Fz(p, e), where the
multiplication is done in Zq.

– In the ideal game, respond “yes” if Fa ·Fb = Fz, where the multiplication is
of formal polynomials in Zq[P0, . . . , Pk−1, E1, . . . , En]. (Because every Fi is
linear, the ideal game will only respond “yes” when at least one of Fa, Fb is
a constant.)

The failure event F is the union of the old failure event (from the proof of
Theorem 4.1) with the event that, for some query (a, b, z) to the DDH oracle,
Fa(p, e) · Fb(p, e)− Fz(p, e) = 0 when Fa · Fb − Fz 6= 0.

As before, suppose M = {m1, . . . ,me} is the set of indices such that {ej}j∈M

are chosen uniformly, while the others are zero, and let e′ = (em1 , . . . , eme).
For a particular query (a, b, z) such that F = Fa · Fb − Fz 6= 0, consider the
polynomial F ′ ∈ Zq[P0, . . . , Pk−1, Em1 , . . . , Eme] which is defined to be F with
zero substituted for all Ej , j 6∈M . Define F ′

a, F ′
b, F

′
z similarly, so F ′ = F ′

aF ′
b−F ′

z.
Certainly the total degree of F ′ is at most 2. If F ′ 6= 0, then by Lemma 4.1,
Pr[F ′(p, e′) = 0] ≤ 2/q.

It remains to bound Pre[F ′ = 0 | F 6= 0]. In order to have F 6= 0 and
F ′ = 0, we consider two mutually exclusive cases: (1) Fa or Fb (or both) is a
constant polynomial, or (2) Fa, Fb are both non-constant polynomials, i.e. of
positive degree.

In case (1), F is nonzero, linear, and is a linear combination of F1, . . . , Fn+1.
As argued in the proof of Theorem 4.1, Pr[F ′ = 0 | F 6= 0] ≤

(
n−k

e

)
/
(
n
e

)
.

For case (2), we first introduce some notation: for a polynomial H and a
monomial Z, define coeffZ(H) to be the coefficient of Z in H. We claim that
for either i = a or i = b, F ′

i is a constant polynomial. Suppose not: then there
exist two indeterminants X, Y such that coeffX(F ′

a) 6= 0 and coeffY (F ′
b) 6= 0. If

X = Y , we see that coeffX2(F ′) 6= 0, a contradiction. If X 6= Y , we have

coeffXY (F ′) = coeffX(F ′
a)coeffY (F ′

b) + coeffX(F ′
b)coeffY (F ′

a) = 0.

Then coeffX(Fb) 6= 0, which implies that coeffX2(F ′) 6= 0, a contradiction.
Using reasoning as in the proof of Theorem 4.1, we see that

Pr[F ′
a or F ′

b is constant | Fa, Fb are non-constant] ≤ 2
(

n− k

e

)
/

(
n

e

)
.

Taking a union bound over all queries to the DDH oracle, we get the claimed
result. ut

4.2 Decisional Variants

Certain decisional versions of the noisy polynomial interpolation problem are
also hard for generic algorithms. Here, in addition to the noisy points of the
polynomial, the algorithm is given the correct value P (α0) and a truly random
value (in random order), and simply must decide which is which. We denote this
problem by DGNPIq,E,α0,k,e. The hardness of DGNPI implies that P (α0) “looks
random,” given the noisy values of the polynomial.

Problem: Decisional generic noisy polynomial interpolation at a fixed
point α0 6∈ E under e < (n−k +1)/2 errors. We denote this problem
by DGNPIq,E,α0,k,e.

Instance: Encoding list (σ(P (α1)+e1), . . . , σ(P (αn)+en), σ(1), σ(z0), σ(z1))
for a random P (x) ∈ Zq[x], deg(P) < k, a random e ∈ Zn

q such that
wt(e) = e, and a random bit b where zb = P (α0) and z1−b is random.

Output: The bit b.

Theorem 4.3. A generic algorithm for DGNPIq,E,α0,k,e making m queries suc-

ceeds with probability at most 1
2 + 2m2

(
1/q +

(
n−k

e

)
/
(
n
e

))
.

Proof (Sketch). The proof is very similar to the proof of Theorem 4.1. We
again imagine a game which maintains a list of polynomials Fi in the inde-
terminants P0, . . . , Pk−1, E1, . . . , En, and two new indeterminants Z0, Z1. In the
ideal game, the two input polynomials corresponding to z0 and z1 are just Z0

and Z1, respectively. In the ideal game, every distinct polynomial is mapped
to a different string, and the algorithm succeeds with probability 1/2 because
its view is independent of b. The failure event is that for some Fi 6= Fi′ , either
F (p, e,

∑k−1
j=0 pjα

j
0, z) = 0 or F (p, e, z,

∑k−1
j=0 pjα

j
0) = 0 where F = Fi − Fi′ and

z is chosen at random. From here, the analysis proceeds as in Theorem 4.1. ut

In fact, we can extend the definition of DGNPI instances to include the value
of the polynomial P at several distinct points β0, . . . , βr 6∈ E , instead of just at
α0. These evaluations “look random” to generic algorithms, with a distinguishing
advantage bounded by 2m2

(
1/q +

(
n−(k−r)

e

)
/
(
n
e

))
. Also, as in Section 4.1, we

can prove that DGNPI is hard for generic algorithms that are augmented with a
DDH oracle. We defer the details to the full version.

5 Conclusions and Open Problems

We have shown evidence that error correction (of Reed-Solomon codes) in the
exponent is hard, and that its hardness seems to be qualitatively different than
that of the Diffie-Hellman problems. We can think of several related open prob-
lems, including:

– Find some other family of codes which admits an efficient (preferably generic)
algorithm for decoding in the exponent, and which can be used as the ba-
sis of a secret-sharing scheme — or show that the two goals are mutually
incompatible.

– Demonstrate a non-generic decoding algorithm for a specific class of cyclic
groups with performance better than the generic bounds (perhaps using ideas
from index calculus methods).

– Provide new constructions of standard (or new) cryptographic primitives,
assuming error correction in the exponent is hard. Such constructions would
be useful both as a hedge against possible attacks on other (stronger) as-
sumptions, and for any unique functionality properties they may have.

– Show new connections between the discrete log and Diffie-Hellman problems,
using the fact that decoding is often easy with a CDH oracle.

In addition, the general idea of correcting errors in “partially hidden” data (i.e.,
data that has been obscured by some one-way function) seems ripe with inter-
esting problems.

Acknowledgements

The author gratefully thanks Shafi Goldwasser, Ran Canetti, Alon Rosen, Adam
Smith, Tal Rabin, and abhi shelat for helpful comments and discussions, and the
anonymous reviewers for their valuable and constructive suggestions.

References

1. E. Berlekamp and L. Welch. Error correction of algebraic block codes. US Patent
Number 4,633,470, 1986.

2. D. Boneh and M. K. Franklin. An efficient public key traitor tracing scheme. In
CRYPTO ’99: Proceedings of the 19th Annual International Cryptology Conference
on Advances in Cryptology, pages 338–353, London, UK, 1999. Springer-Verlag.

3. S. Brands. Untraceable off-line cash in wallet with observers. In CRYPTO ’93:
Proceedings of the 13th annual international cryptology conference on Advances in
cryptology, pages 302–318, New York, NY, USA, 1994. Springer-Verlag New York,
Inc.

4. R. Canetti and S. Goldwasser. An efficient threshold public key cryptosystem se-
cure against chosen ciphertext attack. In Advances in Cryptology — EUROCRYPT
’99, volume 1592, pages 90–106. Springer-Verlag, 1999.

5. Q. Cheng and D. Wan. On the list and bounded distance decodability of the Reed-
Solomon codes. In Proc. FOCS 2004, pages 335–341. IEEE Computer Society,
2004.

6. R. Cramer and I. Damg̊ard. Secret-key zero-knowlegde and non-interactive verifi-
able exponentiation. In 1st TCC, pages 223–237, 2004.

7. R. Cramer and V. Shoup. A practical public key cryptosystem provably se-
cure against adaptive chosen ciphertext attack. In Advances in Cryptology —
CRYPTO’98, 1998.

8. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, IT-22(6):644–654, 1976.

9. Y. Dodis. Efficient construction of (distributed) verifiable random functions. In
6th PKC, pages 1–17, 2003.

10. T. E. Gamal. A public-key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31:469–472, 1985.

11. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold dss signa-
tures. In Advances in Cryptology — Eurocrypt ’96, pages 354–371, 1996.

12. V. Guruswami and M. Sudan. Improved decoding of reed-solomon and algebraic-
geometric codes. In IEEE Symposium on Foundations of Computer Science, pages
28–39, 1998.

13. V. Guruswami and A. Vardy. Maximum-likelihood decoding of Reed-Solomon
codes is NP-hard. In SODA, 2005.

14. A. Joux and K. Nguyen. Separating decision Diffie-Hellman from computational
Diffie-Hellman in cryptographic groups. J. Cryptology, 16(4):239–247, 2003.

15. R. J. McEliece and D. V. Sarwate. On sharing secrets and Reed-Solomon codes.
Comm. ACM, 24(9):583–584, 1981.

16. M. Naor, B. Pinkas, and O. Reingold. Distributed pseudo-random functions and
kdcs. In Advances in Cryptology — Eurocrypt ’99, pages 327–346, 1999.

17. C. Park and K. Kurosawa. New ElGamal type threshold digital signature scheme.
IEICE Trans. Fundamentals, E79-A(1):86–93, January 1996.

18. M. D. Raimondo and R. Gennaro. Secure multiplication of shared secrets in the
exponent. Cryptology ePrint Archive, Report 2003/057, 2003.

19. I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. J. SIAM,
8(2):300–304, June 1960.

20. J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM, 27(4):701–717, 1980.

21. A. Shamir. How to share a secret. Comm. ACM, 22(11):612–613, 1979.
22. V. Shoup. Lower bounds for discrete logarithms and related problems. In Proc.

Eurocrypt ’97, pages 256–266, 1997.
23. M. Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound.

Journal of Complexity, 13(1):180–193, 1997.

