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Abstract. Most cryptographic primitives such as encryption, authenti-
cation or secret sharing require randomness. Usually one assumes that
perfect randomness is available, but those primitives might also be re-
alized under weaker assumptions. In this work we continue the study of
building secure cryptographic primitives from imperfect random sources
initiated by Dodis and Spencer (FOCS’02). Their main result shows
that there exists a (high-entropy) source of randomness allowing for per-
fect encryption of a bit, and yet from which one cannot extract even a
single weakly random bit, separating encryption from extraction. Our
main result separates encryption from 2-out-2 secret sharing (both in
the information-theoretic and in the computational settings): any source
which can be used to achieve one-bit encryption also can be used for
2-out-2 secret sharing of one bit, but the converse is false, even for high-
entropy sources. Therefore, possibility of extraction strictly implies en-
cryption, which in turn strictly implies 2-out-2 secret sharing.

1 Introduction

For many important tasks, such as cryptography, randomness is indispensable.
Usually one assumes that all parties have access to a perfect random source,
but this assumption is at least debatable, and the question what kind of imper-
fect random sources can be used in various applications has attracted a lot of
attention.

Extraction. The easiest such class of sources consists of extractable sources for
which one can deterministically extract nearly perfect randomness, and then use
it in any application. Although examples of such non-trivial sources are known
[vN51,Eli72,Blu86,LLS89,CGH+85,BBR88,AL93,CDH+00,DSS01,KZ03,TV00],
most natural sources such as the so called entropy sources1 [SV86,CG88,Zuc96]
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⋆⋆ Supported by the Swiss National Science Foundation, project No. 200020-103847/1.
1 Informally, entropy sources guarantees that every distribution in the family has a

non-trivial amount of entropy (and possibly more restrictions), but do not assume



are easily seen to be non-extractable. One can then ask a natural question
whether perfect randomness is indeed needed for the considered application.
Clearly, the answer depends on the application. In particular, the natural funda-
mental question is to understand the extent to which a given application can be
based on imperfect randomness, and also to compare the randomness require-
ments for different applications.

Probabilistic Algorithms and Interactive Protocols. For example,
a series of celebrated results [VV85,SV86,CG88,Zuc96,ACRT99] showed that en-
tropy sources are necessary and sufficient for simulating probabilistic polynomial-
time algorithms — namely, problems which do not inherently need randomness,
but which could potentially be sped up using randomization. Thus, extremely
weak imperfect sources can still be tolerated for this application domain. This
result was recently extended to interactive protocols by Dodis et al. [DOPS04].

Encryption. On the other hand, McInnes and Pinkas [MP90] showed that un-
conditionally secure symmetric encryption cannot be based on entropy sources,
even if one is restricted to encrypting a single bit. This result was recently
strengthened by Dodis et al. [DOPS04], who showed that entropy sources are not
sufficient even for computationally secure encryption (as well as essentially any
other task involving “privacy”). On the opposite side, Dodis and Spencer [DS02]
showed that randomness extraction is not necessary for the existence of secure
encryption (at least when restricted to a single bit). Specifically, they show that
there are sources which can be used to perfectly encrypt a bit but cannot be used
to extract a single bit. This even holds if one additionally requires all the dis-
tributions in the imperfect source to have high min-entropy. Thus, good sources
for encryption lie strictly in between extractable and entropy sources.

Authentication. In the usual non-interactive (i.e., one-message) setting, Mau-
rer and Wolf [MW97] show that for sufficiently high entropy rate (specifically,
more than 1/2), even general entropy sources are sufficient for unconditional one-
time authentication, while Dodis and Spencer [DS02] showed that smaller rate
entropy sources are indeed insufficient to authenticate even a single bit. On the
other hand, [DS02] also show that for all entropy levels (in particular, below 1/2)
there exist “severely non-extractable” imperfect sources which are sufficient for
non-trivial authentication. Thus good sources for authentication once again lie
strictly in between extractable and entropy sources. The relation to encryption
sources is currently open (see Section 5). On a related note, [DOPS04] considered
the existence of computationally secure digital signature (and thus also message
authentication) schemes, and show that the latter seem to be possible even with
general entropy sources, at least under very strong but seemingly reasonable
computational assumptions. In the interactive setting, Renner and Wolf [RW03]
show (indeed, highly interactive) information-theoretic authentication protocols
capable of tolerating any constant-fraction entropy rate.

independence between different symbols of the source. In this sense they are the
most general sources one would wish to tolerate.



Secret Sharing? In this work we consider for the first time another crypto-
graphic primitive which inherently requires randomness: secret sharing. In par-
ticular, we concentrate on the simplest case of 2-out-2 (denoted simply 2-2)
secret sharing: one wants to split a message m into shares S1 and S2 so that
neither share leaks any information about m, and yet m can be reconstructed
from both shares. We first observe that (either information-theoretic or compu-
tational) encryption implies the existence of a corresponding 2-2 secret sharing:
one simply sets S1 to be the decryption key, and S2 to be the encryption of
the message M under this key. Our main technical result is to show that the
converse of this statement is false, at least when restricting to one-bit message.
Namely, there exist imperfect sources sufficient for perfect secret sharing of a
bit, but for which any bit encryption scheme can be insecure with constant dis-
tinguishing probability (on a positive note, we show that one cannot push this
probability too close to 1). Additionally, just like in the case of separation be-
tween encryption and extraction [DS02], our separation can be extended to hold
even if one additionally requires all the distributions in the imperfect source to
have high min-entropy.2 Moreover, our information-theoretic separation above
can be extended even to the computational setting. This means that there exist
high-entropy sources for which one can build efficient 2-out-2 secret sharing, but
any (efficient) encryption scheme can be broken by an efficient distinguisher on
an efficiently-samplable distribution from our source.3

To summarize (see Figure 1), extraction strictly implies encryption [DS02]
which in turn, as we show, strictly implies 2-2 secret sharing.

Comparing Cryptographic Primitives. As we see, our work continues the
approach initiated by Dodis and Spencer [DS02] to compare different crypto-
graphic tasks according to how they utilize randomness. Namely, given a block
length n of our randomness source, and the (min-)entropy threshold m ≤ n, we
say that primitive A implies primitive B if whenever an imperfect source S of
length n and (min-)entropy m is sufficient to implement A, then one could also
implement B with S . When m = n, we get back to the case of perfect random-
ness, where primitive A implies B if and only if the smallest number of truly
random bits needed to implement A is at least as large as the smallest number of
truly random bits to implement B. As was shown by [DS02,DOPS04] and con-
tinued here, many implications true in the perfect case simply stop being true
the moment we allow for slightly imperfect random sources (i.e., allow m < n).
In other words, these implications inherently rely on perfect randomness. On
the other hand, some implications continue to hold (at least to some extent)
even with imperfect randomness, implying they have more to do with the cryp-
tographic aspect of the problem rather than the availability of true randomness.
We believe that such comparison between cryptographic primitives sheds more

2 In particular, we construct sources with min-entropy only a constant away from the
maximal entropy (cf. Lemma 3 and Theorem 2).

3 In fact, even the process of finding such an efficiently-samplable distribution can be
done efficiently (with exponentially high probability), given only the oracle access
to the encryption oracle.



light on how they utilize randomness, and also serves as a stepping stone toward
classifying imperfect sources sufficient for different cryptographic tasks.

Organization. We give the preliminary definitions of our primitives in Section
2. Our main technical result comparing sources for (information-theoretic) en-
cryption and 2-2 secret sharing is given in Section 3. In Section 4 we extend our
results to the computational setting. Finally, in Section 5 we take a brief look
at authentication and discuss some open problems considering imperfect sources
sources sufficient for various cryptographic applications.

Extraction Encryption 2-2 Secret Sharing

enc(k, m) = extract(k) ⊕ m share2,2(k, m) = {k, enc(k, m)} (Thm. 1)

Proposition 2 Theorem 2

Fig. 1. The solid arrows indicate the implication and the separation we will prove.

2 Notation and Definitions

We use calligraphic letters like X to denote sets. The corresponding large letter
X usually denotes a random variable over X and the small letter x an element
from X . We use H(X) to denote the Shannon entropy of random variable X.

X ∈Ω X means that X is a random variable whose distribution is Ω and
x ∈Ω X means that x is a value sampled from X with distribution Ω. UX denotes
the uniform distribution over X . We write Un to denote U{0,1}n , the uniform
distribution over n-bit strings. A source S over X is a set of distributions over X .

Definition 1 A distribution Ω over K has min-entropy d if no element has
probability more than 2−d, i.e. maxk∈K Pr(k = k′|k′ ∈Ω K) ≤ 2−d. The largest
such d is denoted H∞(Ω). A source S over K has min-entropy d if it only
contains distributions with min-entropy at least d. The d-weak source over K
is the source which contains all distributions over K with min-entropy at least d.

Definition 2 A random variable B over {0, 1} is ǫ-fair if

min{Pr(B = 0),Pr(B = 1)} ≥ ǫ

(so a uniform random bit is 1/2-fair and a constant bit is 0-fair). A source S

over K is ǫ-fair if there exists a one-bit extractor (which is simply a function
extract : K → {0, 1}) such that extract(K), where K ∈Ω K, is ǫ-fair for all
Ω ∈ S .



Definition 3 An encryption scheme is a pair of algorithms enc : K×M→ C
and dec : K × C →M which for all keys k ∈ K and messages m ∈M satisfies

dec(k, enc(k,m)) = m (1)

A source S over K allows for perfect encryption of M if there is an en-
cryption scheme such that for all distributions Ω ∈ S the ciphertexts leak no
information about the encrypted message M , i.e. for any random variable M

∀Ω ∈ S : H(M | enc(K,M)) = H(M) where K ∈Ω K (2)

A source S over K allows for δ-encryption if there is an encryption scheme
such that for all distributions Ω ∈ S the statistical distance of the encryption
of any two distinct messages m1 and m2 is at most δ, i.e.

max
Ω∈S ,m1 6=m2

1

2

∑

c∈C

|Prk∈ΩK(enc(k,m1) = c)− Prk∈ΩK(enc(k,m2) = c)| ≤ δ (3)

Note that perfect encryption is 0-encryption and sending the plaintext is 1-
encryption.

Definition 4 For t, n ∈ Z, t ≤ n a t-n secret sharing is a pair of algorithms
sharet,n : K ×M → Xn and reconstructt,n : X t →M which for all keys k ∈ K
and all m ∈M satisfies

∀T ⊆ sharet,n(k,m) where |T | = t we have reconstructt,n(T ) = m (4)

A source S over K allows for perfect t-n secret sharing of M if any set of
less than t shares does not reveal any information about the shared M , i.e. for
all Ω ∈ S and all 1 ≤ i1 < i2 < . . . < it−1 ≤ n we have for distributions M

H(M |Si1 , Si2 , ..., Sit−1
) = H(M) where K∈ΩK, {S1, ..., Sn} ← sharet,n(K,M)

(5)

Note that (4) means that from any t shares one can reconstruct m. In terms
of perfect randomness, the uniform distribution over {0, 1}n is necessary and
sufficient to perfectly encrypt M = {0, 1}n (i.e. n-bit strings) for example by
using the key k as a one time pad:

enc(k,m) = k ⊕m dec(k, c) = c⊕m

where ⊕ denotes the bitwise XOR. Un is also necessary and sufficient (as the
dealer’s randomness) to construct a perfect 2-2 secret sharing of {0, 1}n, for
example as:

share2,2(k,m) = {k, k ⊕m} reconstruct2,2(s1, s2) = s1 ⊕ s2

In the next section we will show that in terms of non-perfect randomness these
two tasks are no longer equivalent. The sources which allow for perfect encryption
also allow for 2-2 secret sharing (of the same message space) but not vice-versa.
More precisely, we show that every source which allows for perfect 2-2 secret
sharing of one bit allows for 1/2-encryption of one bit, but in general not for
δ-encryption of one bit for δ < 1/3. This even holds if we require the source to
have high min-entropy.



3 Separating Encryption from Secret Sharing

We can now formally state the results of [MP90] and [DS02].

Proposition 1 ([MP90]) The (n− 2)-weak source over {0, 1}n does not allow
for δ-encryption of even 1 bit for any δ 6= 0.

So for every one-bit encryption scheme with key-space {0, 1}n there exists a
distribution for the keys with min-entropy n− 2 such that the ciphertext always
completely reveals the message.

Proposition 2 ([DS02]) There is a source over {0, 1}n which allows for perfect
encryption of one bit, but which is not 2−n/2-fair.

This separation holds even if we require the source to have high min-entropy:
for any ǫ > 2−n/2+1 there is a source S over {0, 1}n with min-entropy n −
log(1/ǫ) − O(1) which allows for perfect encryption of one bit but which is not
ǫ-fair.

3.1 Encryption → 2-2 Secret Sharing

Theorem 1 Any source S over K which allows for perfect encryption of M
allows for perfect 2-2 secret sharing of M.

Proof: For enc, dec which satisfy properties (1) and (2) we define for all k ∈
K,m ∈M

share2,2(k,m) = (k, enc(k,m)) and reconstruct2,2(s1, s2) = dec(s1, s2).

Property (1) implies immediately that this scheme satisfies (4). It also satisfies
property (5) as for any random variables M and Ω ∈ S ,K ∈Ω K we have that
H(M | K) = H(M) as K is independent of M and H(M | enc(K,M)) = H(M)
follows from (2). �

In the following section we show that forM = {0, 1}, the converse is not true.

3.2 2-2 Secret Sharing 6→ Encryption

In this section we will prove our main technical result (Theorem 2 below), namely
that sources which allow for 2-2 secret sharing do not allow for encryption in
general. We split the proof of the theorem into the following three lemmas.

Lemma 1 There is a source which allows for perfect 2-2 secret sharing of a bit
but does not allow for δ-encryption of a bit for any δ < 1/3.

This separation is in some sense not so strong as the separation for encryption
from extraction where a source was shown which allows perfect encryption but
not even a weak form of extraction. The question arises if we can get something
as δ ≤ 1− o(1) (and not just δ < 1/3) here too. The answer is no, since already
δ ≤ 1/2 is not achievable as shown in the next lemma.



Lemma 2 Any source which allows for perfect 2-2 secret sharing of a bit allows
for 1/2-encryption of a bit.

We prove Lemma 1 by showing a concrete source which contains only four
distributions over a domain of size six. Here the question arises whether this
separation only works for such toy examples and possibly breaks down when we
require the source to have high min-entropy. This is not the case: we show how
one can turn such a toy-example into a high min-entropy source with the same
parameters.

Lemma 3 For any t ∈ N there is a source as in Lemma 1, where the distribu-
tions in the source have range of size 6t and the min-entropy of each distribution
is at least log(6t)− log(192).

Combining Lemma 2 and Lemma 3 we get the following theorem

Theorem 2 There are sources over any K with min-entropy log |K| − 11 which
allow for perfect 2-2 secret sharing but do not allow for δ-encryption of one bit
for any δ < 1/3.

From the positive side, any source which allows for perfect 2-2 secret sharing
of a bit allows for 1/2-encryption of one bit.

Theorem 2 is stated for sources over any K and not just for sets of size 6t as
in Lemma 3. This is compensated for by an additional factor of log(6) in the
min-entropy gap (i.e. we have a gap of 11 > log(192) + log(6)).

Proof of Lemma 1: Let S be a source over K = {k1, . . . , k6} which contains
4 distributions Ω1, . . . , Ω4 where each Ωi is the uniform distribution over Si ⊂
K with S1 = {k1, k2},S2 = {k3, k4},S3 = {k1, k3, k5} and S4 = {k1, k4, k6}
respectively. Lemma 1 follows from the two claims below.

Claim 1 S allows for perfect 2-2 secret sharing of one bit.

Proof: We define the sharing share2,2 : K × {0, 1} → A × B, where A =
{a1, a2, a3, a4} and B = {b1, b2, b3, b4} as shown in Figure 2. A key ki is rep-
resented by a pair of directed edges, where the edge from A to B corresponds
to the shares of 0, and the edge from B to A to the shares of 1. For example
share2,2(k1, 0) = (a3, b2) and share2,2(k1, 1) = (a1, b2).

For any (ai, bj) there is at most one possible m ∈ {0, 1} such that (ai, bj) =
share2,2(k,m) for some k ∈ K. Thus for any random variable M it always holds
that H(M | share2,2(k,M)) = 0.

Note that for any i, 1 ≤ i ≤ 4, Ωi is the uniform distribution over some subset
of K whose corresponding directed edges (as shown in Figure 2) form a directed
cycle, where the edges alternate between A and B (e.g. for Ω1 we have the cycle
a3 → b2 → a1 → b4 → a3). So the distribution on A is the same no matter
if we choose a random edge from A to B (a sharing of the secret 0) or from
B to A (a sharing of the secret 1) on this cycle. This proves that the random
variable A defined as (A,B) = share2,2(k ∈Ωi

K,M) is independent of M and
H(M | A) = H(M) (and similarly for H(M | B) = H(M)). �
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Fig. 2. The mapping share2,2 from the proof of Lemma 1.

Claim 2 S does not allow for δ-encryption of a bit for any δ < 1/3.

Proof: Consider any mapping enc : K × {0, 1} → C. We will prove that for
our source S this enc cannot satisfy Definition 3 with δ < 1/3. Recall that S

contains the distributions Ωi, 1 ≤ i ≤ 4, where Ωi is uniform over Si. Consider
the graphs Gi, with V (Gi) = C, E(Gi) = {(enc(k, 0), enc(k, 1))|k ∈ Si}, where
each edge is labeled with the corresponding k ∈ K. We will show that E(Gi)
does not form a directed cycle for at least one i, 1 ≤ i ≤ 4.

Suppose this is not the case, then E(G1) forms a cycle of length 2, say k1 =
(c1, c2), k2 = (c2, c1). And similarly for E(G2), say k3 = (c3, c4), k4 = (c4, c3). If
E(G3) forms a cycle then (because of the above) either c1 = c4 or c2 = c3 but
not both must hold (e.g. if c1 = c4 then we can set k5 = (c2, c3)). Similarly if
E(G4) is a cycle then either c1 = c3 or c2 = c4 but not both must hold. We can
write this two conditions as (c1 = c4 ⊕ c2 = c3) ∧ (c1 = c3 ⊕ c2 = c4) = true,
which cannot be satisfied and we have a contradiction.

For an i where E(Gi) does not form a directed cycle (such an i exists
as we just proved) there are vertices c′, c′′ ∈ V (Gi) such that indegree(c′) >
outdegree(c′) and outdegree(c′′) > indegree(c′′), which using |E(Gi)| = |Si| ≤ 3
gives

1

2

∑

c∈C

|Prk∈Ωi
K(enc(k, 0) = c)− Prk∈Ωi

K(enc(k, 1) = c)| ≥ 1/3.

So because of this Ωi property (3) cannot be satisfied with δ < 1/3. �

�

Proof of Lemma 3: We will now show how to make a high min-entropy
source out of a toy example like the one from Lemma 1. Let K and S1, . . . ,S4 ⊂
K be as in the proof of Lemma 1. For t ≥ 2 and for each i, 1 ≤ i ≤ t let
Ki = {ki,1, . . . , ki,6} be a copy of K, and let Si,j = {ki,x : kx ∈ Sj} denote the

corresponding subsets. The key-space K̃ of our source is

K̃ = K1 ∪ K2 ∪ . . . ∪ Kt . (6)

For a set I ⊆ {1, . . . , t} and a mapping σ : {1, . . . , t} → {1, . . . , 4} we define

TI,σ =
⋃

i∈I

Si,σ(i).



Our source S contains all uniform distributions over the sets TI,σ with |I| ≥
⌈t/64⌉. That is, our source contains all the uniform distributions over sets which
are constructed by taking the union of subsets Si,j ⊂ Ki from at least a 1/64’th
fraction of the Ki’s. Since each distribution is uniform over a set of size at least
2t/64, S has min-entropy at least log(t/32) = log(6t)− log(192).

The source S allows for perfect 2-2 secret sharing of one bit: On input a key
ki,j ∈ Ki the dealer can compute the shares as he would for the key kj ∈ K in
Claim 1 in the proof of Lemma 1. One can assume (but this is not necessary)
that the dealer also publishes i, then we have the same situation as in Claim 1
and it follows from (the proof of) Claim 1 that this is indeed a perfect 2-2 secret
sharing.

It only remains to show that S does not allow for δ-encryption of one bit
with δ < 1/3. For this consider any mapping enc : K̃ × {0, 1} → C. As shown in
the proof of Lemma 1, for each i, 1 ≤ i ≤ t, there is a distribution Ωi which is
uniform over the set Si,j for some j, 1 ≤ j ≤ 4, satisfying

1

2

∑

c∈C

|Prk∈Ωi
eK(enc(k, 0) = c)− Prk∈Ωi

eK(enc(k, 1) = c)| ≥ 1/3. (7)

Let Xi denote such a Si,j . Consider a random mapping φ : C → {−1, 1}. We say
that Xi is good if

∀c ∈ C : 0 ≤ φ(c)·( |{k ∈ Xi : enc(k, 0) = c}| − |{k ∈ Xi : enc(k, 1) = c}| ) . (8)

As |Xi| ≤ 3 the rhs of eq. (8) can be nonzero for at most 6 different c ∈ C and
thus Xi is good with probability at least 2−6. This shows (as a simple application
of the probabilistic method) that there is a φ for which at least ⌈t2−6⌉ of the
Xi’s are good. Fix such a φ and let X be the union of good sets. The uniform
distribution over X , ΩX , is in S , but it does not allow for δ-encryption with
δ < 1/3: Let γi be the event that k ∈ Xi (below all not explicitly labeled

probabilities are over k ∈ΩX
K̃).

1

2

∑

c∈C

|Pr(enc(k, 0) = c)− Pr(enc(k, 1) = c)|

(8)
=

1

2

∑

c∈C

φ(c)(Pr(enc(k, 0) = c)− Pr(enc(k, 1) = c))

=
1

2

∑

c∈C

t∑

i=1

φ(c)(Pr(γi)Pr(enc(k, 0) = c|γi)− Pr(γi)Pr(enc(k, 1) = c|γi))

(8)
=

t∑

i=1

Pr(γi)
1

2

∑

c∈C

|(Pr(enc(k, 0) = c|γi)− Pr(enc(k, 1) = c|γi)|

=

t∑

i=1

Pr(γi)
1

2

∑

c∈C

|Prk∈Ωi
eK(enc(k, 0) = c)− Prk∈Ωi

eK(enc(k, 1) = c)|

(7)

≥
t∑

i=1

Pr(γi)
1

3
=

1

3

�



Proof of Lemma 2: Let S be a source with distributions over K which allows
for perfect 2-2 secret sharing and share2,2 : K×{0, 1} → A×B be an appropriate
sharing (we can wlog. assume that A∩B = ∅). To prove the lemma we first define
a mapping enc : K × {0, 1} → C (where C = A ∪ B), and then prove that it is a
1/2-encryption (i.e. satisfies eq. (3) with δ = 1/2).

For k ∈ K and m ∈ {0, 1} let (am,k, bm,k) = share2,2(k,m), we set

enc(k,m) = am,k if a0,k 6= a1,k and bm,k otherwise

We cannot have a0,k = a1,k and b0,k = b1,k simultaneously as otherwise the
share (a0,k, b0,k) could be a share of either 0 or 1 which is impossible when the
secret sharing is perfect. So we always have enc(k, 0) 6= enc(k, 1) and decryption
is always possible. We will now prove that this enc satisfies eq.(3) with δ ≤ 1/2
(as our plaintext-domain is only one bit we can set m1 = 0 and m2 = 1 in
(3) wlog.). For any Ω ∈ S we have (all probabilities are over k ∈Ω K) using
C = A ∪ B,A ∩ B = ∅

1

2

∑

c∈C

|Pr(enc(k, 0) = c)− Pr(enc(k, 1) = c)| (9)

=
1

2

∑

a∈A

|Pr(enc(k, 0) = a)− Pr(enc(k, 1) = a)| (10)

+
1

2

∑

b∈B

|Pr(enc(k, 0) = b)− Pr(enc(k, 1) = b)| (11)

We will show that the term (9) is ≤ 1/2 (which is exactly the statement of
the Lemma) by showing that (10) is equal to 0 and (11) is ≤ 1/2. Let the
random variables Am, Bm be defined as (Am, Bm) = share2,2(k ∈Ω K,m), and
let K 6= = {k ∈ K|a0,k 6= a1,k}. From (5) we see that in a perfect 2-2 secret sharing
the distribution of the share of each player is independent of the shared secret.
This is used in the first step below (again all probabilities are over k ∈Ω K)

0 =
1

2

∑

a∈A

|Pr(A0 = a)− Pr(A1 = a)| (12)

=
1

2

∑

a∈A

|Pr(k ∈ K 6=)
(
Pr(A0 = a|k ∈ K 6=)− Pr(A1 = a|k ∈ K 6=)

)
(13)

+Pr(k /∈ K 6=)
(
Pr(A0 = a|k /∈ K 6=)− Pr(A1 = a|k /∈ K 6=)

)
︸ ︷︷ ︸

= 0 by the definition of K 6=

| (14)

=
1

2

∑

a∈A

|Pr(k ∈ K 6=)
(
Pr(A0 = a|k ∈ K 6=)− Pr(A1 = a|k ∈ K 6=)

)
| (15)

Here (15) is exactly (10) so (10) is 0. We now show that (11) is ≤ 1/2:

Pr(enc(k, 0) = b) = Pr(B0 = b ∧ k /∈ K 6=) ≤ Pr(B0 = b)



Pr(enc(k, 1) = b) = Pr(B1 = b ∧ k /∈ K 6=) ≤ Pr(B1 = b)

Perfect secret sharing implies Pr(B0 = b) = Pr(B1 = b) and as the difference of
two positive values cannot be larger than any those values we get

1

2

∑

b∈B

|Pr(enc(k, 0) = b)− Pr(enc(k, 1) = b)| ≤
1

2

∑

b∈B

Pr(B0 = b) =
1

2
.

�

4 Some Computational Aspects

Until now we have only considered an information theoretic setting. In particu-
lar, we did not care about whether the primitives, the attacks or the sampling
considered can be efficiently realized. In this section, which we keep rather in-
formal, we examine some computational aspects of the results from the previous
section.

4.1 Computational Version of Theorem 1

The proof of Theorem 1, which states that any source which can be used for
encryption can also be used for secret sharing, easily translates in the computa-
tional setting.

Proposition 3 (Computational version of Theorem 1) (informal)
Any source S over K which allows “computationally secure” encryption of M
allows for “computationally secure” 2-2 secret sharing of M.

In the above proposition we left open what “computationally secure” exactly
means. A direct translation from the information theoretic setting would advise
the following security notion for encryption: the adversary can choose two mes-
sages m0 and m1 and then, given the encryption of mb for a random b, should
not be able to guess b (much better than with prob. 1/2).4 Then the security
achieved for secret sharing is the following: First the adversary can choose two
messages m0 and m1. Then, given one share of mb for random b he cannot guess b
(i.e. which message was shared). A stronger notion for encryption (e.g. semantic
security) will result in a stronger security guarantee for secret sharing.

4.2 Computational Version of Theorem 2

We now take a look at Theorem 2 which follows from the Lemma 2 and Lemma
3. The proof of Lemma 2 translates into the computational setting.

4 This notion is weaker than the notion of semantic security, where the adversary can
additionally ask for encryptions of his choice except for m0 and m1.



Proposition 4 (Computational version of Lemma 2) (informal)
Any source which allows for “computationally secure” 2-2 secret sharing of a bit
allows for “computationally secure” 1/2-encryption of a bit.

As before, “computationally secure” can have several meanings (and a stronger
notion for secret sharing implies a stronger notion for 1/2-encryption). Also the
concept of δ-encryption has a natural meaning in the computational setting,
where it means that the distinguishing advantage of any efficient adversary for
the ciphertexts of two messages m0 and m1 is at most negligibly larger than
1/2 + δ/2.

Lemma 3 states that there is a source with high min-entropy which allows
for 2-2 secret sharing but not for δ-encryption of one bit with δ < 1/3. We can
strengthen this lemma in several ways by considering computational aspects. In
particular, we can require the following properties:

i. The secret sharing is efficient.
ii. For every encryption scheme the source contains an efficiently samplable

distribution, for which the encryption-scheme is not 1/3-secure.
iii. There exists an efficient algorithm which breaks the 1/3-security of the en-

cryption scheme under the efficiently samplable distribution from (ii).
iv. One can efficiently find the distribution from (ii).

We can achieve all four points simultaneously. However, to satisfy properties (ii)
and (iv) we must be able to efficiently compute encryptions (either by getting a
polynomial-size circuit or access to an oracle which computes encryptions given
a key and a message). We now describe how one can adapt the proof of Lemma
3 (which we assume the reader is familiar with) to achieve these additional
properties.

We can encode the key-space (see eq. (6)) as pairs of integers, i.e. K̃ ≡
[1, . . . , t]× [1, . . . , 6]. With this encoding property (i) (efficient secret sharing) is
achieved: recall that the shares of m ∈ {0, 1} under key (i, j) are share2,2(kj ,m)
with share2,2(·, ·) as defined in the proof of Lemma 1, which can be computed in
constant time.

We now describe how to efficiently sample a distribution from our source
which breaks the 1/3-security of enc. The distribution from the lemma is not
efficiently samplable as the φ used to define it cannot be computed efficiently; We
have only shown that a suitable φ exists — where suitable means that at least
⌈t2−6⌉ of the Xi’s are good — using the probabilistic method. The argument
used there was that a random φ satisfies (8) with probability at least 2−6, as the
rhs of (8) is nonzero for at most 6 different c ∈ C. Fortunately for this argument
we don’t need a random φ — in fact, 6-wise independence is enough. Therefore if
τ :W×C → {−1, 1} is an (efficiently computable) 6-wise independent function,
then there is some key w ∈ W such that τ(w, ·) is good for ⌈t2−6⌉ of the Xi’s
(as t2−6 is a lower bound for the expected number of good Xi’s for a 6-wise
independent function).

With this efficient φ(·) = τ(w, ·), we can now efficiently sample a key (using
uniform randomness) according to the distribution of Lemma 3 (i.e. a random
key from the union of all good sets) as follows:



1. Choose an integer i, 1 ≤ i ≤ t uniformly at random.

2. Find a j, 1 ≤ j ≤ 4 (say the smallest) such that Ωi, the uniform distribution
over Xi = Si,j , satisfies (7).

3. Check if this Xi is good, i.e. satisfies (8). If it does not, return to step 1.

4. If |Xi| = 2 then return to step 1 with probability 1/3. (This is done to
equalize the proportional weights of the Xi’s of size 2 and 3.)

5. Output a key chosen uniformly at random from Xi.

Note that this sampling will terminate in expected polynomial time if we can
compute enc (in Step 2) and φ (in Step 3) efficiently.

We now describe an efficient breaking algorithm for enc, thus satisfying prop-
erty (iii). Equation (8) tells us that the encryption of 0 and 1 have statistical
distance at least 1/3, and from (7) we see that given a ciphertext c of a message
m, φ(c) is an optimal guess on m. So if φ(·) can be efficiently computed (which
is the case if we set it to τ(w, ·), as described before), then we can efficiently
break the 1/3 security of enc.

Finally we come to property (iv), which now can be stated as how to find a
key w for our 6-wise independent function τ , such that φ(·) = τ(w, ·) is good for a
1/64 fraction of the Xi’s. Unfortunately, for a given w one can’t efficiently check
if τ(w, ·) is good on a 1/64 fraction as for that we would have to go over all Xi for
i = 1, . . . , t, but t is exponential. But we can efficiently find a w such that τ(w, ·)
will be good on a slightly smaller subset, say a 1/66 fraction, with probability
exponentially close to 1 as follows. Choose a random w and approximate the
fraction on which τ(w, ·) is good by randomly sampling i ∈ [1, . . . , t] and checking
if it is good for Xi. Accept this w if it was good on, say at least a 1/65 fraction, of
the Xi’s. By the Chernoff bound, the probability we will accept a w which is not
good on at least a 1/66 fraction of all Xi’s is exponentially small in the number
of samples we have drawn for the approximation. Further, by the Markov bound
we are guaranteed that we pick a w which is good on at least a 1/65 fraction
after a constant number of tries.

5 Open Problems

There are many interesting open questions considering imperfect sources for var-
ious cryptographic applications. In our opinion the most dazzling one is whether
the reductions from Proposition 2 and Theorem 2 generalize to larger domains.
Already if we only extend the domain of the message space from two to three
we cannot even show a sub-constant bound for the fairness.

Open Problem 1 Is there an ǫ(n) ∈ o(1) such that there exist sources over
{0, 1}n which allow for the encryption (or 2-2 secret sharing) of a trit5 but cannot
be used to extract an ǫ(n)-fair bit (recall that for bits one can show ǫ(n) = 2−n/2).

5 A trit is like a bit but can take three and not just two values.



Authentication. Another interesting primitive we did not consider so far is
authentication. Here, we will only consider the one-bit case, which already leaves
several interesting open questions.

Definition 5 We say that a source S with distributions over some set K allows
for τ -authentication of one bit if there is a mapping auth : K × {0, 1} → A
such that for all distributions Ω ∈ S and k ∈Ω K we have mink H∞(auth(k, 0) |
auth(k, 1)) ≥ − log τ and mink H∞(auth(k, 1) | auth(k, 0)) ≥ − log τ .

Note that τ -authentication of a bit simply means that given the authenticator
auth(k, b) of a bit b ∈ {0, 1} the probability that one can guess auth(k, 1−b) (the
authenticator of the other bit) correctly is at most 2−τ . Authentication is very
undemanding in its randomness requirements, any source whose min-entropy is
large enough will do.

Proposition 5 ([MW97]) The (n + τ)-weak source over {0, 1}2n allows for
τ -authentication of one bit.

The authentication which achieves the above bound is extremely simple: use
the first and the last n bits to authenticate 0 and 1 respectively. Note that
any half has min-entropy at least τ even when given the other half as an n-bit
string has min-entropy of at most n. As such weak-sources are not enough for
encryption (see Proposition 1), this already shows that sources for authentication
do not allow for encryption, and one can easily show that they do not allow for
secret sharing and any other cryptographic primitive requiring privacy we could
think of.

But how about the other direction? Can sources which allow for encryption
or secret sharing always be used for authentication? Recall, in the case of perfect
randomness the result of [DS02] implies that 2n uniform bits are both necessary
and sufficient for achieving n-authentication of 1-bit (in particular, we need at
least 2 bits to do anything non-trivial at all), which means we can only hope
that encryption (or 2-2 secret sharing) of at least 2n-bits might (or might not)
imply n-authentication of even a single bit. More generally,

Open Problem 2 Find a lower bound for τ(n) and an upper bound for γ(n)
in the following statement (bounds for n = 1 only are already interesting):

A source (possibly with some guaranteed min-entropy) which allows for
the encryption (or 2-2 secret sharing) of 2n bits must always allow for
τ(n)-authentication of one bit, but in general not for γ(n)-authentication.

As we remarked, we know that n ≥ γ(n) ≥ τ(n). Interestingly, we observe
below that 3-3 secret sharing does imply authentication. (As a sanity check, in
case of perfect randomness both n-authentication of a bit and 3-3 secret sharing
of n bits need 2n perfectly random bits.)

Claim 3 Any source which allows for perfect 3-3 secret sharing of n bits allows
for n-authentication of a bit.



Proof: This reduction can be achieved as follows: first compute the sharing
(S1, S2, S3) for some constant message, say m = 0n. Now use S1 as the au-
thentication of 0 and S2 as the authentication of 1. We observe that the joint
distribution of shares S1 and S2 when m = 0n is the same as when m is uniform
over {0, 1}n as otherwise the shares S1 and S2 would leak information on which
is the case. So let M be uniform over {0, 1}n and K be chosen according to
a distribution from our source. With the above observation we now must only
prove that

H∞(S1|S2) ≥ n and H∞(S2|S1) ≥ n where (S1, S2, S3) = share3,3(K,M).

Here H∞(S1|S2) ≥ n means that H∞(S1|S2 = s) ≥ n for all s in the support
of S2 (and not as sometimes used that the expectation over S2 is at least n, i.e.
not

∑
s Pr(S2 = s)H∞(S1|S2 = s) ≥ n). Now by the definition of perfect secret

sharing we have

H∞(M |S2S3) = n and H∞(M |S1S2S3) = 0, (16)

which implies H∞(S1|S2S3) ≥ n. To see this assume that this was not true,
i.e. we have for some s1, s2, s3 that Pr(S1 = s1|S2 = s2, S3 = s3) > 2−n, but
then for m = reconstruct3,3(s1, s2, s3) also Pr(m|S2 = s2, S3 = s3) > 2−n which
contradicts H∞(M |S2S3) = n. The desired H∞(S1|S2) ≥ n now easily follows
from H∞(S1|S2S3) ≥ n, and H∞(S2|S1) ≥ n can be shown similarly. �

Now, as encryption implies 2-2 secret sharing and 3-3 secret sharing implies
authentication, a proof that 2-2 secret sharing implies some non-trivial 3-3 secret
sharing would immediately give a non-trivial bound for τ(n) from Open Prob-
lem 2. Moreover, we think that comparing 2-2 secret sharing of 2n bits with
3-3 secret sharing of n bits is interesting in its own right, since it would show
that different t-m secret sharing schemes have (or have not) different require-
ments on the way they utilize randomness, even if the same amount of perfect
randomness is required for them.
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