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Abstract. Parallel repetition is well known to reduce the error prob-
ability at an exponential rate for single- and multi-prover interactive
proofs.
Bellare, Impagliazzo and Naor (1997) show that this is also true for pro-
tocols where the soundness only holds against computationally bounded
provers (e.g. interactive arguments) if the protocol has at most three
rounds.
On the other hand, for four rounds they give a protocol where this is
no longer the case: the error probability does not decrease below some
constant even if the protocol is repeated a polynomial number of times.
Unfortunately, this protocol is not very convincing as the communica-
tion complexity of each instance of the protocol grows linearly with the
number of repetitions, and for such protocols the error does not even
decrease for some types of interactive proofs. Noticing this, Bellare et al.
construct (a quite artificial) oracle relative to which a four round pro-
tocol exists whose communication complexity does not depend on the
number of parallel repetitions. This shows that there is no “black-box”
error reduction theorem for four round protocols.
In this paper we give the first computationally sound protocol where
k-fold parallel repetition does not decrease the error probability below
some constant for any polynomial k (and where the communication com-
plexity does not depend on k). The protocol has eight rounds and uses
the universal arguments of Barak and Goldreich (2001). We also give
another four round protocol relative to an oracle, unlike the artificial
oracle of Bellare et al., we just need a generic group. This group can
then potentially be instantiated with some real group satisfying some
well defined hardness assumptions (we do not know of any candidate for
such a group at the moment).

1 Introduction

Interactive Proofs. In a (single prover) interactive proof a prover P tries
to convince a computationally bounded verifier V that their common input x
is in a language L. The soundness of such a protocol is an upper bound on the
error probability of V , i.e. the probability that V accepts P ’s claim, even though
x 6∈ L. In order to lower the error probability one can repeat the interactive proof
k times, where V accepts the claim if it accepts in all k runs. The protocol can



be repeated either sequentially, here V and P start the ith run of the protocol
only after finishing the (i − 1)th, or in parallel. Although the computational
and communication complexity of parallel and sequential repetition is the same,
parallel repetition has the big advantage of not increasing the round complexity.
For single prover interactive proofs, sequential and parallel repetition reduce the
error at an exponential rate: if a protocol with soundness ε is repeated k times
sequentially or in parallel, the error probability drops to εk.

In general, parallel repetition is more problematic than sequential repetition.
For example: parallel repetition does not preserve the zero-knowledge property
of a protocol [8], and there are two-prover proofs where running the proof twice
in parallel does not decrease the error at all [6]. On the positive side, Raz [12]
shows that k-fold parallel repetition of a two-prover two-round proof system
with soundness ε does decrease the error to εαk where α > 0 is some constant
depending only on the proof system.

Computational Soundness. Interactive arguments are defined like interac-
tive proofs, but where the soundness of the protocol only holds against compu-
tationally bounded provers. Damg̊ard and Pfitzmann [4] show that sequential
repetition lowers the error probability of arguments at an exponential rate.

Bellare et al. [2] show that parallel repetition reduces the error of computa-
tionally sound protocols with three rounds or less at an exponential rate. On the
negative side, they give, for any k, a four round protocol where k-fold parallel
repetition does not decrease the error at all. The communication complexity of
this protocol is linear in k, which leaves open the possibility that parallel rep-
etition does reduce the error if the communication complexity is not allowed
to depend on the number of repetitions. This is a possibility one should con-
sider, as the before-mentioned constant α in Raz’s theorem is inverse in the
communication complexity of the protocol, and this dependence is necessary [7].
So for protocols where the communication complexity grows linearly in k, par-
allel repetition does not imply error reduction at all for two-prover two-round
proofs. Observing that the four-round protocol of Bellare et al. can be restated
as a two-round two-prover protocol (without loosing the property that parallel
repetition does not decrease the error), makes the possibility that unbounded
communication complexity is necessary here even more likely.

Noticing this possibility, Bellare et al. propose another four-round protocol
with fixed communication complexity, which has the property that relative to an
oracle repeating the protocol any polynomial number of times in parallel, does
not decrease the error. This shows that there is no “black-box” error reduction
theorem for this protocol. Bellare et al. see this result as evidence that parallel
repetition does not decrease the error of computationally sound protocols. An-
other interpretation of this result could be that parallel repetition does always
reduce the error, and the reason why there’s no proof of this is that such a proof
would require non black-box techniques. We show that under standard assump-
tions the interpretation of Bellare et al. is indeed correct for protocols with eight
rounds or more, and we give much stronger evidence that this is also true for
protocols with four rounds.



The Verifier’s Secret. Except for Section 3, throughout we consider proto-
cols where the verifier holds no secret and thus its strategy is efficiently com-
putable. The reason is that otherwise there are trivial protocols where parallel
repetition does not decrease the error as observed by Bellare et al. [2], we extend
their observation in Section 3.

1.1 Our Contribution

For n a security parameter, we present the first computationally sound protocol
where k(n)-fold parallel repetition does not decrease the error for any polynomial
k(·). To achieve this we start with the protocol of Bellare et al. whose k-fold
parallel repetition does not decrease the error, but we modify it such that k is
chosen by the prover (in particular, if the prover has to run the protocol k(n)
times in parallel, he can set k = k(n)). As in this protocol the the length of the
second message from the prover to the verifier is linear in k, we must allow a
verifier Vsuper which runs in super-polynomial time, in order for the protocol to
work for any polynomial k(·). We then transform this protocol into one with a
fixed polynomial time verifier Vpoly using the universal arguments due to Barak
and Goldreich [1]. Loosely speaking, the long message is replaced by a hash
value, which then is followed by an interactive proof to Vpoly which shows that
Vsuper would have accepted the message. We get the following theorem.

Theorem 1. There exists an overwhelmingly complete eight round protocol with
error probability 3/4 such that k(·)-fold parallel repetition does not reduce its er-
ror probability below 1/17 for any polynomially bounded k(·), under the assump-
tion that collision-free family of hash functions and CCA2-secure cryptosystem
with respect to superpolynomial adversaries exists.

Unfortunately, the use of an universal argument increases the round complexity
of the protocol from the optimal four to eight.

In Section 5 we propose a new four round protocol relative to an oracle, where
k(n)-fold parallel repetition does not decrease the error for any polynomial k(·).
Unlike the artificial oracle used by Bellare et al., we only need a generic group
which potentially can be instantiated with a concrete group satisfying some
clearly defined hardness assumptions (basically, it must be hard to compute the
inverse of a random element).

More precisely, let p ∈ [2n, 2n+1] be a randomly chosen prime, let φ′ : Zp →
[0, 2K − 1] be a randomly chosen injection and φ(x) def= φ′(x mod p) its natural
extension to the whole of Z. Then denote by O the oracle defined by O(x) = φ(x)
and O(X, Y ) = φ(φ−1(X)+φ−1(Y )) if X, Y ∈ φ(Zp) and ⊥ otherwise. We prove
the following theorem.

Theorem 2. There exists an overwhelmingly complete four round protocol rel-
ative the oracle O with error probability 1/2+negl(n) such that k(·)-fold parallel
repetition does not reduce its error probability below 1/2 + negl(n) for any poly-
nomially bounded k(·).



2 Preliminaries

2.1 Notation

We use Z to denote the integers and Zp to denote the integers modulo p. We
use log to denote the logarithm in base two. We denote by TM the set of Tur-
ing machines. We denote by PT and PT∗ the set of uniform and non-uniform
polynomial time Turing machines respectively. The corresponding sets of oracle
machines are denoted by adding a superscript, e.g. PTO. We use n to denote the
security parameter, and say that a function ε(n) is negligible if for every constant
c there exists a constant n0 such that ε(n) < n−c for n > n0. We use negl(n) to
denote a fixed but unspecified non-negative negligible function. A function f(n)
is overwhelming if 1− f(n) is negligible. If ν : N → N is a function we denote by
PT∗

ν the set of non-uniform Turing machines that executes in time ν(n)p(n) for
some polynomial p. We say that ν is polynomial-time computable if there exists
a Turing machine Mν that on input x ∈ {0, 1}n outputs ν(x) using at most p(n)
steps, for some polynomial p.

We say that a family of hash functions is PT∗
ν-collision-free if it is collision-

free with respect to adversaries in PT∗
ν . Similarly, we say that a cryptosystem is

PT∗
ν-CCA2-secure, if it is CCA2-secure with respect to adversaries in PT∗

ν .
We denote by 〈V (x), P (y)〉(z) the output of V on private input x and common

input z after interacting with P on private input y and common input z. We
denote by kV the sequential repetition of k copies of V and we denote by V k the
parallel repetition of k copies of V . In both cases identical private and common
inputs are given to each instance and the combined verifier accepts if and only
if all instances accept.

2.2 Computationally Sound Protocols

We consider the setting introduced in [2]. Two parties, a prover P and a verifier
V , are communicating. They are both given an initial context λ ∈ {0, 1}∗ and the
length of this string serves as the security parameter. The initial context could
be the output of another protocol or some string in a set-up assumption. Since
we do not mention λ explicitly below, we replace it by the security parameter in
unary representation 1n, but our results hold in the more general setting.

Both parties are also given a common input x which is generated together
with some secret information w by a probabilistic polynomial time instance
generator I that is given input 1n. The secret information w is given to P at the
start of the protocol.

2.3 Universal Arguments

Barak and Goldreich [1] introduce the notion of universal arguments as a special
variant of Micali’s computationally sound proofs [9]. They define the relation
RU as the set of pairs ((M,x, t), w) such that the Turing machine M outputs 1
on input (x, w) within t steps. Denote by TM (x, w) the number of steps made



by M on input (x, w). A key property of their definition is that t is given in
binary. We are mainly interested in two properties of universal arguments: (1)
the complexity of the verifier depends only on the size of the common input and
not on the size of the witness, and (2) the witness used by the prover can be
extracted in a weak sense. The actual definition given by Barak and Goldreich
[1] is duplicated below.

Definition 1 (Universal Argument). A universal-argument system is a pair
of strategies, denoted (P, V ) that satisfies the following properties:

1. Efficient verification. There exists a polynomial p such that for any y =
(M,x, t), the total time spent by the probabilistic verifier strategy V , on com-
mon input y, is at most p(|y|). (In particular, all messages exchanged in the
protocol have length smaller than p(|y|).)

2. Completeness by a relatively efficient prover. For every ((M,x, t), w)
in RU we have Pr[(P (w), V )(M,x, t) = 1] = 1. Furthermore, there exists
a polynomial p such that the total time spent by P (w) on common input
(M,x, t) is at most p(TM (x, w)) ≤ p(t).

3. Computational soundness. For every polynomial-size circuit family
{P ∗

n}n∈N, and every (M,x, t) ∈ {0, 1}n \RU Pr[(P ∗
n , V )(M,x, t) = 1] < µ(n)

for some negligible function µ(n).
4. Weak proof of knowledge. For every positive polynomial p there exists

a positive polynomial p′ and a probabilistic polynomial-time oracle machine
E such that for every polynomial-size circuit family {P ∗

n}n∈N, and every
sufficiently long y = (M,x, t) ∈ {0, 1}∗, if Pr[(P ∗

n , V )(y) = 1] > 1
p(|y|) , then

Pr
r

[∃w ∩ {0, 1}t ∀i ∈ {1, . . . , t} : (x, w) ∈ RU ∧ E
P∗

n
r (y, i) = wi] >

1
p′(|y|)

.

Theorem 3 ([1]). If there exists a family of collision-free hash functions, then
there exists universal arguments with 4 rounds.

3 When the Verifier Holds a Secret

In this section we show that parallel repetition does not decrease the error prob-
ability of computationally sound protocols when the verifier gets any private
information.

Bellare et al. [2] give the following simple example of such a protocol: The
common input is an RSA modulus N = pq and the secret of the verifier is the
factors p and q. The verifier flips a coin. If it is heads it gives the factors to
the prover and otherwise not. It accepts if the prover’s reply is (p, q). An even
simpler example is the following one-round protocol: The verifier has a secret bit
b, and accepts if the message from the prover is b.

Clearly, parallel repetition does not decrease the error probability for the
two protocols above (in fact, for the first protocol it increases), but neither does
sequential repetition. This leaves open the interesting possibility that parallel



repetition does always decrease the error probability of computationally sound
protocols where the verifier can hold a secret, for all protocols where sequential
repetition does reduce the error. Below we show that this is not the case by
giving a natural (four-round) protocol that when repeated sequentially lowers
the error probability, but if repeated in parallel gives error probability essentially
one. Here CS = (Kg,Enc,Dec) denotes a public key cryptosystem.

Protocol 1 (Don’t Do In Parallel (Verifier Holds a Secret)).
Common input: Public key pk .
Private input to both prover and verifier: Private key sk .

1. V chooses b ∈ {0, 1} randomly, computes B = Encpk (b), and hands B to P .
2. P chooses c ∈ {0, 1} randomly, computes C = Encpk (c), and hands C to V .
3. If C 6= B, then V hands c = Decsk (C) to P and otherwise ⊥.
4. P computes b′ = Decsk (B) and hands b′ to V .
5. V accepts if and only if b = b′.

The next two propositions are proved in Appendix A for completeness.

Proposition 1 (Single Instance). The protocol is overwhelmingly complete
and has 4 rounds. If the cryptosystem CS is CCA2-secure, then for every prover
P ∗ ∈ PT∗: Pr(pk ,sk),s[〈Vs(sk , pk), P ∗(pk)〉 = 1] < 1

2 + negl(n).

Proposition 2 (Sequential Repetition). If the cryptosystem CS is CCA2-
secure, then for every polynomially bounded k(·) and every prover P ∗ ∈ PT∗:
Pr(pk ,sk),s[〈kVs(sk , pk), P ∗(pk)〉 = 1] < ( 1

2 )k + negl(n).

Proposition 3 (Parallel Repetition). For every polynomially bounded k(·)
there exists a prover P ∗ ∈ PT such that Pr(pk ,sk),s[〈V k

s (sk , pk), P ∗(pk)〉 = 1] ≥
1− negl(n).

Proof. The prover P ∗ does the following. It waits for Bi from Vi. Then it defines
Ci = Bi+1 mod k and hands it to Vi. With overwhelming probability Ci 6= Bi,
so it is given b′i+1 mod k = Decsk (Ci) from Vi. Then it returns b′i to Vi. Thus,
with overwhelming probability bi = b′i, each Vi accepts, and V k accepts with
overwhelming probability as well, since k is polynomial. ut

4 When the Verifier Holds No Secret

From now on we consider computationally sound protocols where the verifier
holds no secret. In this section we give an eight-round computationally sound
protocol where parallel repetition does not decrease the error.

The Example of Bellare et al. Before we give our counter example we recall
the counter example given by Bellare et al. [2] on which our example is based.
The idea of the protocol is to explicitly allow the prover to make several instances
of it dependent if run in parallel.



Protocol 2 (Don’t Do In k-Parallel, [2]).
Common input: Public key pk .
Private input to prover: Private key sk .

1. V chooses b ∈ {0, 1} and r ∈ {0, 1}n randomly, computes B = Encpk (b, r),
and sends B to P .

2. P computes b = Decsk (B). Then it chooses b′i ∈ {0, 1} and r′i ∈ {0, 1}n for
i = 1, . . . , k − 1 randomly under the restriction that b =

⊕k−1
i=1 b′i, computes

Ci = Encpk (b′i, r
′
i), and hands (C1, . . . , Ck−1) to V .

3. V hands (b, r) to P .
4. P hands ((b′1, r

′
1), . . . , (b

′
k−1, r

′
k−1)) to V .

5. V accepts if Ci = Encpk (b′i, r
′
i), B 6= Ci, and

⊕k−1
i=1 b′i = b.

We have modified the protocol slightly to be more consistent with our counter
example below. In the original the test is b 6=

⊕k−1
i=1 b′i and this is needed if

given a ciphertext the cryptosystem allows construction of a new ciphertext of
an identical plaintext. If we require that the cryptosystem used in the protocol
is CCA2-secure this is not an issue.

Intuitively, if a single instance of the protocol is run, then a prover without
access to sk can only convince the honest verifier with probability 1/2, since it
must commit itself to a guess

⊕k−1
i=1 b′i of b before receiving (b, r) and the cryp-

tosystem is non-malleable (recall that CCA2-security implies non-malleability).
On the other hand, if k instances of the protocol are run in parallel, then the
prover can send the tuple (Ci,1, . . . , Ci,k−1) = (B1, . . . , Bi−1, Bi+1, . . . , Bk) to Vi

and then either all verifier instances accept or all verifier instances fail, the first
event occurring with probability at least 1/2. If there are fewer than k instances
the remaining Ci’s can be defined as ciphertexts of zero.

Why the Example is Unsatisfactory. The example requires that the complexity
of the verifier in each instance grows linearly with the number of instances.
In other words, the example does not imply that k′-parallel repetition of the
protocol for k′ > k does not lower the error probability.

This deficiency motivated Bellare et al. [2] to consider if there exists any
analytical method, i.e, an error-reduction procedure, whereby one can show that
the error probability is lowered by the parallel repetition of a protocol. They
prove that there exists no such black-box error-reduction procedure. Although
we agree that this result is a strong indication that there exists no error-reduction
procedure at all, it does not preclude the possibility of a non-black-box error-
reduction procedure.

4.1 Our Counter Example

The idea of our counter example is to reduce the complexity of the verifier by
making the long messages submitted by the prover in Bellare et al’s protocol
implicit. More precisely, we let the prover choose k on the fly, and hand a hash
value of the list of ciphertext (C1, . . . , Ck−1) instead of sending them explicitly.



It also sends a hash value of (b′1, r
′
1), . . . , (b

′
k−1, r

′
k−1) instead of sending them ex-

plicitly. The problem with this is of course that now the verifier can not perform
the original verification. To solve this problem without increasing the complex-
ity of any instance of the verifier the prover proves using universal arguments
[1] that it knows correct preimages of the hash values. For technical reasons we
replace addition modulo 2 by addition modulo 17. The reader may think of 17
as some constant to be defined in the proof such that the theorem holds.

We assume that there exists a cryptosystem that is chosen ciphertext secure
in the sense of Rackoff and Simon [11] against adversaries in PT∗

ν where ν(·)
is a polynomially computable superpolynomial function (the reader can think
of ν(n) as nlog n). It should be possible to construct such a scheme from any
family of trap-door permutations secure against adversaries in PT∗

ν following
Dolev, Dwork, and Naor [5] or Sahai [13], but we are not aware of any explicit
proof of this. We also assume the existence of a family of hash functions that is
collision-free against adversaries in PT∗

ν .
Denote by Rh the relation consisting of pairs ((B,H, h, k), (C1, . . . , Ck−1))

such that h = H(C1, . . . , Ck−1) and B 6= Ci for i = 1, . . . , k − 1. Denote by
Ra the relation consisting of pairs ((pk ,H, h, b, a, k), ((b′1, r

′
1), . . . , (b

′
k−1, r

′
k−1)))

such that b = −
∑k−1

i=1 b′i mod 17, a = H((b′1, r
′
1), . . . , (b

′
k−1, r

′
k−1)), and

h = H(Encpk (b′1, r
′
1), . . . ,Encpk (b′k−1, r

′
k−1)).

Denote by MRh
a canonical Turing machine that decides Rh in polynomial time

in n and k and correspondingly for MRa .

Protocol 3 (Don’t Do In Parallel).
Common input: Public key pk and collision-free hash function H.
Private input to prover: Private key sk .

1. V chooses b ∈ Z17 and r ∈ {0, 1}n randomly, computes B = Encpk (b, r), and
sends B to P .

2. P computes b′ = Decsk (B). Then it chooses r′ ∈ {0, 1}n randomly, computes
C = Encpk (b′, r′) and h = H(C), and hands (h, k, th) to V , where k = 1 and
th = TMRh

((B,H, h, k), C).
3. If k > ν(n) or th > ν(n), then V outputs 0. Otherwise P and V execute

a universal argument on common input yh = (MRh
, (B,H, h, k), th) and

private input wh = C to the prover.
4. If V accepts the universal argument, then it hands (b, r) to P . Otherwise it

outputs 0.
5. P computes a = H(b′, r′) and ta = TMRa

((pk ,H, h, b, a, k), (b′, r′)) and
hands (a, ta) to V .

6. If ta > ν(n), then V outputs 0. Otherwise P and V execute a universal
argument on common input ya = (MRa

, (pk ,H, h, b, a, k), ta) and private
input wa = (b′, r′).

7. If V accepts the universal argument it outputs 1 and otherwise 0.

We stress that k, th, and ta are encoded in binary. Thus, even though the ad-
versary can choose th and ta larger than any polynomial (as they only have to



be smaller than the superpolynomial ν(n)), the complexity of the verifier can
still be bounded by some fixed polynomial in n as it is polynomial only in n
and log(ν(n)). This means that also k can be larger than any polynomial. This
freedom is needed since we do not want to put any fixed polynomial bound on
the “width” of the parallel repetition. On the other hand this is what forces
us to consider superpolynomial adversaries. The problem is that when reducing
soundness of the protocol to breaking the cryptosystem or the collision-freeness
of the hash function we need to extract the ciphertexts C1, . . . , Ck−1, but we
can not guarantee that a polynomial time adversary can not use implicit such
values, which could give a superpolynomial witness during extraction.

Proposition 4 (Single Instance). The protocol is overwhelmingly complete
and has 8 rounds. Let ν : N → N be a fixed superpolynomial and polynomial-time
computable function, let the hash function be PT∗

ν-collision-free, and let CS be
PT∗

ν-CCA2-secure. Then for every prover P ∗ ∈ PT∗
ν for all sufficiently large n:

Pr(pk ,sk),s[〈Vs(pk), P ∗(pk)〉 = 1] < 3
4 .

The relation between the constants 3/4 and 17 is essentially that in the
reduction we need to “split” the success probability of the adversary twice, giving
a factor 1/8, and we need to extract, giving a factor (3/4)2. Thus, the resulting
adversary has success probability at least 1/16, which is bigger than 1/17.

Before we prove the above theorem we show that its error probability does
not decrease if repeated in parallel. We stress that each instance Vi of the verifier
V k has the same complexity both in terms of computation and communication
independently of k.

Proposition 5 (Parallel Repetition). For every polynomially bounded k(·)
there is a prover P ∗ ∈ PT such that Pr(pk ,sk),s[〈V k

s (pk), P ∗(pk)〉 = 1] > 1
17 −

negl(n).

Proof. We define the prover P ∗ interacting with V k, i.e., the parallel repetition
of k instances of V , as follows. Given the cryptotexts Bi from all Vi it defines
(Ci,1, . . . , Ci,k−1) = (B1, . . . , Bi−1, Bi+1 . . . , Bk). Then it executes the first uni-
versal argument honestly. When it gets (bi, ri) from Vi it defines

((b′i,1, r
′
i,1), . . . , (b

′
i,k−1, r

′
i,k−1))

= ((b1, r1), . . . , (bi−1, ri−1), (bi+1, ri+1), . . . , (bk, rk)) .

If
∑k

i=1 bi 6= 0 mod 17 it fails and stops. Otherwise it executes the rest of the
protocol honestly. With probability 1

17 we have
∑k

i=1 bi = 0 mod 17 and the
probability that Bi = Bj for some i 6= j is negligible. Thus, it follows that the
prover succeeds at least with probability 1

17 − negl(n). ut

Proof (Proposition 4). Completeness follows by inspection. Although the naive
implementation of the protocol has more than eight rounds, it is easy to see that
one can combine the rounds of the universal argument with the main protocol
and achieve eight rounds.



Suppose there exists a prover P ∗ ∈ PT∗
ν with Pr(pk ,sk),s[〈Vs(pk), P ∗(pk)〉 =

1] = δ ≥ 3
4 for n in some infinite index set N . Consider the following experiment.

The adversary is given a public key pk and a challenge ciphertext B = Encpk (b, r)
where b is chosen randomly in Z17. Then it may ask any decryption queries except
B and then output a guess b′ of b. A simple averaging argument implies that if
|Pr[b′ = b]− 1/17| is non-negligible, then the cryptosystem is not CCA2-secure.

The CCA2-Adversary. We define an adversary A ∈ PT∗
ν against the above

experiment run with the cryptosystem CS as follows. It accepts a public key pk
and a challenge B = Encpk (b, r), where b is chosen randomly in Z17. Then it
generates a collision-free hash function H and simulates the honest verifier V
except that it instructs it to use B instead of generating this ciphertext as in the
protocol. If th is too large and V outputs 0, then A outputs 0. The simulation
proceeds until the first universal argument has been executed. Then A invokes
the knowledge extractors of the universal argument to extract C1, . . . , Ck−1 such
that ((B,H, h, k), (C1, . . . , Ck−1)) ∈ Rh. More precisely, it tries a random r
and computes (C1, . . . , Ck−1) = (EP∗

r (yh, 1), . . . , EP∗

r (yh, k − 1)), where yh =
(MRh

, (B,H, h, k), th) and EP∗

r is the extraction algorithm guaranteed by the
weak proof of knowledge property of universal arguments. If wh = (C1, . . . , Ck−1)
does not satisfy (yh, wh) ∈ RU it tries again with a fresh r. This procedure is
repeated at most gh(n) times, where gh(n) is a polynomial to be determined in
the analysis below. If extraction fails it outputs 0. Otherwise it asks its decryption
oracle for b′i = Decsk (Ci) for i = 1, . . . , k − 1 and outputs as its guess of b the
value b′ = −

∑k−1
i=1 b′i mod 17.

We want to show that the CCA2-security of CS is broken by A, since this
contradicts the security of CS. To do that we must argue that extraction succeeds
from the first universal argument, but this is not sufficient. The problem is that
it is conceivable that the adversary uses one set of ciphertext as a preimage of
h in the first universal argument and another set in the second. Intuitively, the
collision-freeness of the hash function prohibits this, but we must prove that this
is so.

Divide the randomness s used by the verifier into three parts: sB is used to
form B, sh is used in the first universal argument, and sa is used in the second
universal argument. Denote by Sgood the set of tuples (H, pk , sk , sB) such that

Pr
sh,sa

[〈V(sB ,sh,sa)(H, pk), P ∗(H, pk)〉 = 1] ≥ δ/2 .

An averaging argument implies Pr[(H, pk , sk , sB) ∈ Sgood ] ≥ δ/2. Note that the
common input yh = (MRh

, (B,H, h, k), th) is defined by (H, pk , sk , sB).

Claim 1. For every f > 0 there is a polynomial gh(n) such that the probability
that A fails to extract wh such that (yh, wh) ∈ RU on a common input yh induced
by (H, pk , sk , sB) ∈ Sgood is bounded by δ2−f .



Proof. From the weak proof of knowledge property of a universal argument fol-
lows that there exists a positive polynomial p′(·) such that

Pr
r

[∃wh∩{0, 1}t ∀i ∈ {1, . . . , t} : (yh, wh) ∈ RU ∧E
P∗

n
r (yh, i) = wh,i] >

1
p′(|yh|)

.

for common inputs yh induced by (H, pk , sk , sB) ∈ Sgood . Thus, for such common
inputs the expected number of repetitions needed to extract a witness is bounded
by p′(|yh|). If we define gh(n) = (2f/δ)p′(|yh|) it follows from Markov’s inequality
that extraction fails with probability bounded by δ2−f for such inputs. ut

We conclude from the union bound that the probability that (H, pk , sk , sB) ∈
Sgood and A succeeds to extract wh such that (yh, wh) ∈ RU is at least (1/2 −
2−f )δ. Then we set c1 = 1/2− 2−f and note that we by choosing f > 0 appro-
priately may set c1 < 1/2 arbitrarily close to 1/2.

A Hypothetical Machine. Unfortunately, the above claim says nothing about the
probability that the negative sum (modulo 17) of the plaintexts of the extracted
C1, . . . , Ck−1 equal the plaintext of B. Intuitively, the problem is that the prover
could use one H-preimage of h in the first universal argument and another one in
the second, but this should of course never happen due to the collision-freeness
of H.

Denote by AC the machine that simulates A until C1, . . . , Ck−1 are extracted
from the first universal argument, or until it outputs 0. Then it chooses sa

randomly and continues the simulation of the interaction of V and P ∗ until
P ∗ hands (a, ta) to V . Then it repeatedly, at most ga(n) times, invokes the
extractors of the second universal argument with fresh randomness in the hope
to extract wa = ((b′1, r

′
1), . . . , (b

′
k−1, r

′
k−1)) such that (ya, wa) ∈ RU , and then

outputs (wh, wa). Otherwise it outputs 0.
Denote by S′

good the set of tuples (H, pk , sk , sB , sh) such that (H, pk , sk , sB) ∈
Sgood and

Pr
sa

[〈V(sB ,sh,sa)(H, pk), P ∗(H, pk)〉 = 1] ≥ δ/4 .

An averaging argument implies that

Pr
sh

[(H, pk , sk , sB , sh) ∈ S′
good | (H, pk , sk , sB) ∈ Sgood ] ≥ δ/4 .

Claim 2. For every f ′ > 0 there is a polynomial ga(n) such that the probability
that AC fails to extract wa such that (ya, wa) ∈ RU on a common input ya

induced by (H, pk , sk , sB , sh) ∈ S′
good is bounded by δ2−f ′ .

Proof. This follows mutatis mutandi from the proof of the previous claim. ut

We conclude that the probability that AC succeeds to extract wa where
(ya, wa) ∈ RU conditioned on (H, pk , sk , sB) ∈ Sgood is at least (1/4 − 2−f ′)δ.
We define c2 = 1/4 − 2−f ′ and note that we by choosing f ′ > 0 appropriately
can set 0 < c2 < 1/4 arbitrarily close to 1/4.



Claim 3. The probability that the output (wh, wa) contains a collision for H, i.e.,
it satisfies (C1, . . . , Ck−1) 6= (Encpk (b′1, r

′
1), . . . ,Encpk (b′k−1, r

′
k−1)), conditioned

on (H, pk , sk , sB) ∈ Sgood is negligible.

Proof. If this was not the case we could define A′
C as the adversary that takes

a description H of a hash function as input and simply simulates AC and out-
puts (C1, . . . , Ck−1) and (Encpk (b′1, r

′
1), . . . ,Encpk (b′k−1, r

′
k−1)). It would break

the collision-freeness of H with non-negligible probability. ut

Conclusion of Proof of Proposition. From our claims follow that the probability
that AC outputs (wh, wa) such that

(C1, . . . , Ck−1) = (Encpk (b′1, r
′
1), . . . ,Encpk (b′k−1, r

′
k−1))

and b = −
∑k−1

i=1 b′i mod 17 is at least (c1δ)(c2δ) − negl(n) ≥ c3δ
2 > 1

16 , where
the constant 0 < c3 < 1/8 may be chosen arbitrarily close to 1/8. This concludes
the proof. ut

5 Parallel Repetition Relative to a Generic Group

In the previous section we gave – under standard assumptions – an eight-round
protocol with constant communication complexity where parallel repetitions
does not decrease the error. In this section we give such a protocol with op-
timal four rounds relative to a generic group oracle.

5.1 The Model

A generic group is a group where the group elements are encoded by random
strings. Access to the encoding and the group operation are provided by a public
oracle O. This model was put forward by Nechaev [10] and extended by Shoup
[14] to prove lower bounds on the running time of the best generic algorithms
to solve the discrete logarithm and related problems. An algorithm is called
generic, if it does not use the representation of the group elements, for example
the baby-step giant-step algorithm for the discrete logarithm problem is generic,
but index-calculus is not. Damg̊ard and Koprowski [3] extend this model to
groups of unknown order, our model is very similar to theirs, the main difference
is that our group oracle does not provide any efficient way to invert elements.3

For ease of notation we write N = 2n.
The distribution of the group oracle is defined as follows. A random prime

p in the range N < p < 2N and a random injection φ′ : Zp → [0, 2N − 1]

3 There is no efficient generic algorithm to find the inverse of an element if a large
prime divides the (unknown) group order. In [3] the oracle explicitly provides the
operation of inverting elements, the reason is that [3] wanted to prove lower bounds
on the hardness of a problem in the RSA-group, where there exists an efficient
(non-generic) algorithm for inversion (Extended Euclid).



are chosen. Let φ(x) def= φ′(x mod p) denote the natural extension of φ′ to the
whole of Z. To find the encoding of an element the oracle is called with a single
argument, i.e., we define O(x) = φ(x). In addition to providing encodings, the
oracle can be called with two arguments from φ(Z) to find their product, i.e,
we define O(X, Y ) = φ(φ−1(X) + φ−1(Y )) if X, Y ∈ φ(Z) and ⊥ otherwise. As
mentioned above, unlike [3] our oracle does not provide the inverse operation
φ(−x mod p) from φ(x), in fact, for our proof it is necessary that computing
φ(−x mod p) given φ(x) is hard.

We will often have to sample a random element from the range of φ(Z),
unfortunately we cannot efficiently sample a uniformly random one, as we do
not know p. We thus use the following observation.

Observation 1. If x is uniformly distributed over [0, N2], then φ(x) is statisti-
cally close to the uniform distribution over φ(Z) for every O with N < p < 2N .

We use a polynomial time computable predicate τ : [0, 2N −1] → {0, 1} such
that |PrX∈φ(Z)[τ(X) = 1]−1/2| is negligible. A simple way4 to construct such a
predicate is to set τ(x) = 1 ⇐⇒ x > N . Due to the random choice of φ it is not
hard to see that it has the required property with overwhelming probability over
the choice of φ. Below we assume that PrX∈φ(Z)[τ(X) = 1] = 1/2 to simplify the
exposition.

5.2 Our Counter Example

We present a protocol which can be seen as an interactive proof that the prover
P “knows” the group order p of the group oracle O. If P indeed knows p, he can
make the verifier V accept with probability 1.

Protocol 4 (Don’t Do In Parallel (Generic Group)).
Common input: A predicate τ .
Private input to prover: A predicate τ and a group order p.

1. V O chooses x ∈ [0, N2] randomly and sends X = φ(x) to PO.
2. PO chooses any y ∈ [0, 2N − 1] which satisfies τ(φ(y)) = 1, computes Z =

φ(y − x), and sends Z to V O.
3. V O sends x to PO.
4. PO sends y to V O.
5. V O accepts if and only if φ(y − x) = Z and τ(φ(y)) = 1.

Note that if the prover computes the messages Z and y as shown in the
protocol, then the verifier accepts. In Step 2 the prover can compute φ(−x mod
p) = φ((p− 1)x) from X in polynomial time using his knowledge of p.

4 Here we are using the fact that the representation is random, i.e., our argument is not
purely generic. A simple way to avoid this is to use the predicate τ ′(x) = τ(PRFs(x))
for some pseudo-random function PRF and public seed s.



Proposition 6 (Single Instance). The protocol is overwhelmingly complete
and has 4 rounds. For every prover PO,∗ ∈ TMO with total query complexity
polynomially bounded in n we have Pr[〈V O(τ), PO,∗(τ)〉 = 1] < 1

2 + negl(n),
where the probability is taken over O, τ , and the internal randomness of V O.

Before we prove the proposition above we show that parallel repetition fails
to reduce the error probability.

Proposition 7 (Parallel Repetition). For every polynomially bounded k(·)
there is a prover PO,∗ ∈ PTO such that Pr[〈(V O)k(τ), PO,∗(τ)〉 = 1] > 1

2 −
negl(n), where the probability is taken over O, τ , and the internal randomness
of V O.

Proof. The prover PO,∗ after receiving the messages Xi = φ(xi), 1 ≤ i ≤ k,
simply computes Zi = φ(

∑
l∈{1,...,k}\{i} xl). Then when it receives x1, . . . , xk

it computes y1 = . . . = yk =
∑k

l=1 xl. Note that Zi can be computed by re-
peated queries to O using only X1, . . . , Xk. By construction we have φ(yi−xi) =
φ(

∑k
l=1 xl−xi) = φ(

∑
l∈{1,...,k}\{i} xl) = Zi for i = 1, . . . , k. The distribution of

φ(y1) is statistically close to uniform, and thus τ(φ(y1)) = 1 with probability at
least 1/2− negl(n). ut

Proof (Proposition 6). Let Q0 = X = φ(x) and for i > 0 we denote by Qi the
answer to the ith oracle query PO,∗ makes to O. We define Qi = {Q0, . . . , Qi}.
Without loss of generality we assume that the replies received by PO,∗ are either
of the form Qi = O(qi) = φ(qi) for some query qi ∈ Z or Qi = O(Qj , Qk) =
φ(φ−1(Qj), φ−1(Qk)) for j, k < i. Note that then each reply Qi is of the form
φ(ai + bix) where PO,∗ knows ai, bi ∈ Z.5 Denote by ` = `(n) the polynomial
number of oracle queries made by the prover. Without loss we assume that
(ai, bi) 6= (aj , bj) for i 6= j, and that Z ∈ Q`. The latter holds, since the proba-
bility that φ(y− x) = Z conditioned on Z 6∈ Q` is easily bounded by 1/(N − `).
We now prove two claims from which the proposition follows.

Claim 4 (Hard to find multiple of p). For any algorithm M ∈ TMO which makes
at most m−1 oracle queries, each of length at most m bits and where the output
is of length at most m bits, we have Pr[MO = v ∧ p | v] ∈ O

(
m2/N

)
(which is

negligible for a polynomially bounded m).

Proof. Denote by P(N) the set of primes in [N, 2N ], by the prime number
theorem |P(N)| = Θ(N/n).

The machine M can choose a sequence t1, t2, . . . , tm−1 of values in Z and
ask the oracle for T1, T2, . . . , Tm−1 where Ti = φ(ti). Moreover we allow M an
additional mth query which must be its output, i.e. v = tm. The ith oracle
query can be either of the form Ti = O(ti) or Ti = O(Tj , Tk) for j, k < i
(then ti = tj + tk). We can upper bound the size of any ti as log(ti) ≤ 2m as

5 Here “knows” means that one can efficiently extract ai, bi given the queries that
PO,∗ makes to O.



follows: if the ith query is of the form O(ti) then log(ti) ≤ m (as no query can
be longer than m bits). If the query is of the form O(Tj , Tk), then log(ti) ≤
1 + max{log(tj), log(tk)}, so for any i ≤ m, log(ti) ≤ m + i ≤ 2m.

Let t =
∏m

i=1 ti. Then we have log(t) ≤
∑m

i=1 log(ti) ≤ 2m2. So at most
2m2/n primes from P(N) divide t, and thus also v = tm. The probability that
p is one of those primes is at most (2m2/n)/|P(N)| = Θ(m2/N). ut

The following claim is very similar to Theorem 1 in [14].

Claim 5 (x close to uniform). Let γ denote the view of the prover PO after step
2. Then with overwhelming probability x is statistically close to uniform (over
[0, N2]) given γ.

Proof. The view γ contains, for some s, the oracle answers Q0, . . . , Qs and (ai, bi)
for i = 1, . . . , s. In fact, we prove the slightly stronger statement where p is also
contained in γ. Recall that Qi = φ(ai + xbi) and note that since Q0 = φ(x) we
have a0 = 0, b0 = 1. Let a′i = ai mod p, b′i = bi mod p.

For (a′i, b
′
i) 6= (a′j , b

′
j) we have Pr[Qi = Qj ] ≤ 2/p as ai +bix = aj +bjx mod p

for at most one x in each interval t ≤ x ≤ t + p− 1. Thus by the union bound,
the probability that there is any nontrivial collision, i.e. Qi = Qj for some
(a′i, b

′
i) 6= (a′j , b

′
j), is at most ε = s(s − 1)/p. So with overwhelming probability

1−ε there is no nontrivial collision, and conditioned on this event, x is uniformly
random over at least a 1− ε fraction of [0, N2]. ut

We can now conclude the proof of the proposition, for this we must show
that

Pr[φ(y − x) = Z ∧ τ(φ(y)) = 1]− 1/2 < negl(n) .

Let Z = φ(ai+bix) for some ai, bi. Then y = ai+(bi+1)x mod p when φ(y−x) =
Z. By Claim 4 we can assume that p - (bi +1). By Claim 5 x is close to uniformly
random for the prover at the point where he must choose ai, bi, thus ai + (bi +
1)x mod p is close to uniformly random over Zp (as bi+1 generates Zp additively).
This implies that Pr[τ(φ(y)) = 1] − 1/2 is negligible, since Pr[τ(φ(u)) = 1] is
negligibly close to 1/2 if u is chosen randomly in [0, N2]. ut
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A Omitted Proofs

Proof (Proposition 1). Completeness is clear and the number of rounds follow by
counting. Suppose the claim is false, i.e., there exists a prover P ∗ that succeeds
with probability at least 1/2 + n−c for n in some infinite index set N . Denote
by A the CCA2-adversary that proceeds as follows. It accepts a public key pk ,
hands the pair of messages (0, 1) to the experiment, and waits for a challenge
ciphertext B. Then it starts a simulation of the interaction between V and P ∗ on
the common input pk and using B. If P ∗ sends C 6= B to the verifier it invokes
its decryption oracle to compute c = Decsk (C) and hands it back. Finally, it
outputs the reply b′ of P ∗ as its guess of the contents of B. It follows that A
breaks the CCA2-security of CS, since when the verifier accepts the guess b′

equal the content of B. ut

Proof (Proposition 2). We use a subscript i with the elements in the ith sequen-
tial execution, i.e., we write (Bi, Ci, ci, b

′
i, bi) for the values in the ith execution.



Denote by Ei the event that the verifier accepts in the ith instance of the pro-
tocol. Thus, we have Pr[Ei] = Pr[b′i = bi] = 1

2 + 1
2 (Pr[b′i = 1 | bi = 0] − Pr[b′i =

1 | bi = 1]).
Suppose there exists a constant c, an infinite index set N , and a prover P ∗

such that Pr(pk ,sk),s[〈kVs(sk , pk), P ∗(pk)〉 = 1] ≥ ( 1
2 )k + n−c for n ∈ N and fix

such a security parameter n. Then we have

Pr[E1] Pr[E2 | E1] Pr[E3 | E2 ∧ E1] · · ·Pr[E3 | ∧k−1
i=1 Ei] ≥ (1/2)k + n−c .

This implies that there exists a fixed l such that Pr[El |
∧l−1

i=1 Ei] ≥ 1
2 + n−c. In

other words |Pr[b′l = 1 | bl = 0∧
∧l−1

i=1 Ei]−Pr[b′l = 1 | bl = 1∧
∧l−1

i=1 Ei]| ≥ n−c/2.
We clearly also have Pr[∧l−1

i=1Ei] ≥ n−c. Denote by A the adversary that accepts
a public key pk and hands the pair of messages (0, 1) to the experiment, and
waits for a challenge ciphertext B. Then it proceeds as follows:

1. It simulates the interaction between kV and P ∗ on common input pk . The
verifier Vi for i = 1, . . . , l−1 is simulated honestly except that it invokes the
decryption oracle to compute ci = Decsk (Ci) if necessary. If any event Ēi

occur for an 1 ≤ i ≤ l − 1 it halts with output 0.
2. Then it defines Bl = B, continues the simulation computing cl using the

decryption oracle if necessary, and outputs the final message b′l of P ∗ in the
lth instance of the protocol.

By construction A never queries its decryption oracle on Bl = B. Thus, it
follows that the CCA2-security of CS is broken. ut


