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Abstract. Secret-sharing schemes are an important tool in cryptogra-
phy that is used in the construction of many secure protocols. However,
the shares’ size in the best known secret-sharing schemes realizing gen-
eral access structures is exponential in the number of parties in the access
structure, making them impractical. On the other hand, the best lower
bound known for sharing of an `-bit secret with respect to an access
structure with n parties is Ω(`n/ log n) (Csirmaz, EUROCRYPT 94).
No major progress on closing this gap has been obtained in the last
decade.
Faced by our lack of understanding of the share complexity of secret
sharing schemes, we investigate a weaker notion of privacy in secrets
sharing schemes where each unauthorized set can never rule out any se-
cret (rather than not learn any “probabilistic” information on the secret).
Such schemes were used previously to prove lower bounds on the shares’
size of perfect secret-sharing schemes. Our main results is somewhat sur-
prising upper-bounds on the shares’ size in weakly-private schemes.
– For every access structure, we construct a scheme for sharing an `-bit

secret with (`+c)-bit shares, where c is a constant depending on the
access structure (alas, c can be exponential in n). Thus, our schemes
become more efficient as ` – the secret size – grows. For example,
for the above mentioned access structure of Csirmaz, we construct a
scheme with shares’ size ` + n log n.

– We construct efficient weakly-private schemes for threshold access
structures for sharing a one bit secret. Most impressively, for the 2-
out-of-n threshold access structure, we construct a scheme with 2-bit
shares (compared to Ω(log n) in any perfect secret sharing scheme).

1 Introduction

Secret-sharing schemes are a tool used in many cryptographic protocols. A secret-
sharing scheme involves a dealer who has a secret, a finite set of n participants,
and a collection A of subsets of the set of participants called the access structure.
A perfect secret-sharing scheme for A is a method by which the dealer distributes
shares to the parties such that: (1) any subset in A can reconstruct the secret
from its shares, and (2) any subset not in A can never reveal any partial infor-
mation on the secret (in the information theoretic sense). Secret-sharing schemes
were first introduced by Blakley [10] and Shamir [44] for the threshold case, that
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is, for the case where the subsets that can reconstruct the secret are all the
sets whose cardinality is at least a certain threshold. Secret-sharing schemes for
general access structures were introduced by Ito, Saito, and Nishizeki [28]. More
efficient schemes were presented in, e.g., [9,45,15,30,46,25]. Originally motivated
by the problem of secure information storage, secret-sharing schemes have found
numerous other applications in cryptography and distributed computing, e.g.,
Byzantine agreement [42], secure multiparty computations [8,18,19], threshold
cryptography [23], access control [40], and attribute based encryption [26].

A major problem with secret-sharing schemes is that the shares’ size in the
best known secret-sharing schemes realizing general access structures is exponen-
tial in the number of parties in the access structure (e.g., in the schemes based on
monotone span programs [30] presented in 1993). Thus, the known constructions
for general access structures are impractical. This is true even for explicit access
structures (e.g., access structures whose characteristic function can be computed
by a small uniform circuit). On the other hand, the best known lower bounds
on the shares’ size for sharing a secret with respect to an access structure (e.g.,
in [31,9,17,12,24,20,21,11,41]) are far from the above upper bounds. The best
lower bound was proved by Csirmaz [20] in 1994, proving that, for every n, there
is an access structure with n parties such that sharing an `-bit secrets requires
shares of length Ω(`n/ log n). The question if there exist more efficient schemes,
or if there exists an access structure that does not have (space) efficient schemes
remains open. The following widely believed conjecture was made by the first
author in 1996 [3]:

Conjecture 1. There exists an ε > 0 such that for every positive integer n there
is an access structure with n parties, for which every secret sharing scheme
distributes shares of length exponential in the number of parties n, that is, 2εn.

Proving (or disproving) this conjecture is one of the most important open ques-
tions concerning secret sharing. No major progress on proving or disproving this
conjecture has been obtained in the last decade.

Faced by our lack of understanding of the share complexity of secret sharing
schemes, we investigate a weaker notion of privacy of secrets sharing schemes
where each unauthorized set can never rule out any secret (rather than not learn
any “probabilistic” information on the secret). Our belief is that studying these
schemes will shed light on perfect secret-sharing schemes and the techniques
needed to prove lower bounds and upper bounds for them. Our main results is
somewhat surprising upper-bounds on the shares’ size in weakly-private secret-
sharing schemes.

Weakly-private scheme were studied implicitly and explicitly in previous pa-
pers. They were first studied in [16], where it is proved that ideal weakly-private
secret-sharing schemes are perfect (a scheme is ideal if the domain of shares of
each party is the same as the domain of shares). Thus, relaxing the privacy re-
quirement does not help for ideal schemes. The relation between perfect secret
sharing and weakly-private secret sharing was further discussed in [29]. Lower
bounds for secret-sharing schemes were proved in [35] using combinatorial ar-
guments; their results actually apply to weakly-private schemes. In particular,
they show that the size of the share of each (non-redundant) party in a weakly-
private scheme is at least the size of the secret (such result was proved for perfect



schemes in [31]). Weakly-private secret-sharing schemes were used in [43,7] to
prove lower bounds on the shares’ size of perfect secret-sharing schemes of a
certain (matroidial) access structure.

Our main motivation studying weakly-private secret-sharing schemes is to un-
derstand what makes them hard (if they are hard). The strongest lower bounds
for secret-sharing schemes [17,12,24,20,21] consider the shares as random vari-
ables and use entropy arguments to prove the lower bounds. In particular, the
proofs rely on the perfectness (or near perfectness) of the schemes. We raise
the question if this requirement is essential for proving lower bounds for secret-
sharing schemes. This can help in understanding what techniques can be used
to prove such lower bounds. While more direct combinatorial methods used to
prove lower bounds for weakly-private secret-sharing schemes (e.g., in [43,35,7])
are more intuitive, they might not be strong enough to prove super-polynomial
lower-bounds.

To understand this question, let us consider two additional cryptographic
protocols. Blundo et al. [13] proved a lower bound on the size of the shares in
perfectly private key distribution schemes using entropy arguments. Beimel and
Chor [5] showed that the same lower bound holds even for weakly-private key
distribution schemes. A similar phenomenon is true for 2-party secure computa-
tion in the honest-but-curious model. Kushilevitz [36] characterizes the functions
that can be computed privately in this model; in particular, a function can be
computed in the honest-but-curious 2-party model with weak privacy if and only
if it can be computed with perfect privacy.3 As we have seen that weak privacy
suffices for proving lower bounds and impossibility results for some cryptographic
tasks, it is natural to ask if this is the case for secret-sharing schemes.

1.1 Our Results

Our main results in this paper are somewhat surprising upper-bounds on the
shares’ size in weakly-private secret-sharing schemes. In addition we prove some
lowers bounds.

A generic construction of weakly-private schemes. For every access structure,
we construct a scheme for sharing an `-bit secret with (` + c)-bit shares, where
c is a constant depending on the access structure (alas, c can be exponential in
n – the number of the parties in the access structure). For comparison, in the
best known constructions of perfect secret-sharing schemes realizing an arbitrary
access structure, the size of the shares is `c′, where c′ is a constant (which can
also be exponential in n).

Let us consider a few examples. Capocelli et al. [17] proved that there is an
access structures with 4 parties such that in every perfect secret-sharing scheme
realizing it with `-bit secrets, the shares of at least one party is at least 1.5`-bit
strings. In contrast, we show how to realize this access structures by a weakly-
private scheme with (` + 2)-bit shares. Csirmaz [20] proved that for every n ∈ N
3 The notion of weak privacy in [36] is different than ours; however, the impossibility
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there is an access structures An with n parties such that in every perfect secret-
sharing scheme realizing An with `-bit secrets, the shares of at least one party
are Ω((n/ log n)`)-bit strings. In contrast, we show how to realize this access
structures by a weakly-private scheme in which the shares are (` + n log n)-bit
strings. In particular, if we take ` = n log n, then in any perfect scheme the shares
are Ω(`2/ log2 `)-bit strings, while in the weakly-private schemes we construct
the shares are 2`-bit strings.

As discussed above, one of the motivations for weakly-private secret-sharing
schemes is for proving lower bounds on perfect schemes. For example, Kurosawa
and Okada [35] have used combinatorial arguments to prove an inferior version
of the above mentioned result of [17]. However, their proof applies to weakly-
private schemes and our results show that using weakly-private schemes one
cannot hope to prove a lower bound of `+ω(1). Beimel and Livne [7] (improving
on Seymour [43]) proved lower bounds of the shares’ size in a matroidial access
structure M with 7 parties. On one hand, the shares in the best known perfect
secret-sharing scheme realizingM with with `-bit secrets are 1.5`-bit strings [38].
On the other hand, by our result, there is secret-sharing scheme realizingM with
with `-bit secrets and (` + 16)-bit shares. Thus, if the lower bound for perfect
scheme realizing M can be improved to ` + ω(1), then such proof must use the
fact that the scheme is perfect (e.g., generalize the combinatorial proof of [7] to
use some additional ideas).

In addition, we present a construction, due to Yuval Ishai [27], giving efficient
weakly-private secret-sharing schemes for a doubly exponential number of access
structures. Specifically, for every n ∈ N, there are 22n

access structures with 2n
parties that have a weakly-private scheme for sharing a 1-bit secret using shares
of length O(n3). This should be contrasted with perfect secret sharing schemes
where efficient schemes for sharing a 1-bit secret are known only for exponentially
many access structures.

Weakly-private threshold schemes for sharing one bit. The most important secret-
sharing schemes are threshold secret-sharing schemes. Shamir [44] shows that
there are very efficient perfect t-out-of-n secret-sharing schemes for sharing `-
bit secrets when ` ≥ log n, namely the shares are `-bit strings as well. How-
ever, the best known perfect t-out-of-n schemes for sharing a 1-bit secret (when
2 ≤ t ≤ n − 1) use log n-bit shares (e.g., in Shamir’s scheme).4 Kilian and
Nisan [32] proved that this is unavoidable when t ≤ αn for some constant α < 1;
they prove that the shares are at least log(n− t + 2)-bit strings.

In contrast, we construct efficient weakly-private schemes for threshold ac-
cess structures for sharing a 1-bit secret. Our most efficient construction is a
simple weakly-private 2-out-of-n secret-sharing scheme with 1-bit secrets and 2-
bit shares. For larger values of t, we construct weakly-private t-out-of-n schemes
for sharing 1-bit secrets with O(t)-bit shares. In particular, our scheme improves
the share size when t ≤ log n − 2 log log n. These schemes have the additional
nice property that they are anonymous, that is, the reconstruction of the secret
does not depend on the identity of the authorized set. Anonymous secret-sharing
schemes were introduced by [47], and were further studied in [14,33,39].

4 For t = 2 and t = n− 1, we can use the formula-based scheme of [9].



We present an additional construction of weakly-private threshold scheme
that is efficient for big thresholds. When n is a prime-power and n > t/2, we
construct a weakly-private t-out-of-n scheme that is better than the known per-
fect schemes, that is, our scheme uses a domain of shares of size n − 1 when
t ≈ n/2 and a domain of size 3n/4 when t = n − 1 (the size of the domain of
shares in the best known perfect secret-sharing scheme is at least n). We remark
that the size of the shares in the optimal perfect (n − 1)-out-of-n schemes for
sharing a 1-bit secret is unknown as the lower bound of [32] for this case on the
size of the domain of shares is 3, and the upper bound is n.

Our last result is a lower bound on the size of shares in weakly-private t-out-
of-n schemes for sharing a 1-bit secret. We prove that in this case the secrets are
taken from a domain of size min

{
t, Ω( log log(n−t)

log log log(n−t) )
}

. For anonymous weakly-
private t-out-of-n schemes for sharing a 1-bit secret we prove a much stronger
lower bound of min

{
2t,

√
(n− t)/2

}
. This should be compared to the lower

bound of n− t + 2 for perfect t-out-of-n schemes for sharing a 1-bit secret.

Are weakly-private schemes suitable for proving lower bounds? Our results sug-
gest that weakly-private schemes are indeed weaker than perfect schemes. The
ideas used in constructing our weakly-private schemes guarantee the weak pri-
vacy, but they are far from providing perfect privacy or statistical privacy. We
conclude that weakly-private secret-sharing schemes are not useful for proving
lower bounds for large domains of secrets (e.g., for proving that the informa-
tion rate of an access structure is bounded from 1). The situation is less clear
for secret sharing of a 1-bit secret. In this case the share complexity of weakly-
private secret schemes is still open; weakly-private secret-sharing schemes might
be useful for proving lower bounds for perfect scheme for sharing a 1-bit secret.
The efficient weakly-private schemes for the doubly exponential family and the
efficient weakly-private threshold schemes might discourage such belief.

Alternative notions of “weaker” secret sharing. In this work we discuss weakly-
private secret-sharing schemes as a relaxation of perfect secret-sharing schemes.
Below we mention a few other relaxations of perfect secret-sharing schemes;
all these relaxations are incomparable to weakly-private secret-sharing schemes.
A notion that is related is statistical secret-sharing schemes, considered in,
e.g., [6,22]. In these schemes the privacy and possibly also the correctness are
only statistical. Another related notion is computational secret-sharing schemes,
considered in [49,34,2,48]. In these schemes, unauthorized sets of parties cannot
distinguish in polynomial time between the different secrets.

Organization. In Section 2 we define perfect and weakly-private secret-sharing
schemes. In Section 3 we present the construction of the generic weakly-private
secret-sharing scheme for arbitrary access structures, and in Section 4 we describe
efficient weakly-private secret-sharing schemes for doubly exponential number of
access structures. In Section 5 we construct weakly-private threshold schemes for
sharing 1-bit secrets, and in Section 6 we prove lower bounds for them.



2 Definitions and Notations

In this section we define perfect secret sharing and weakly-private secret sharing.
We start by defining an access structure – the collection of sets that should be
able to reconstruct the secret.

Definition 1 (Access Structure). Let U = {P1, . . . , Pn} be a set of parties.
A collection A ⊆ 2U is monotone if B ∈ A and B ⊆ C imply that C ∈ A. An
access structure is a monotone collection A ⊆ 2U of non-empty subsets of U .
Sets in A are called authorized, and sets not in A are called unauthorized.

Definition 2 (Perfect Secret-Sharing Schemes). Let S be a finite set of
secrets, where |S| ≥ 2, and R be a set of random strings. An n-party secret-
sharing scheme Π with domain of secrets S is a mapping from S×R to a set of
n-tuples S1×· · ·×Sn, where Si is called the share-domain of Pi. A dealer shares
a secret s ∈ S among the n parties according to Π by first sampling a random
string r ∈ R (according to some given distribution), computing the vector of
shares Π(s, r) = 〈s1, . . . , sn〉, and then privately communicating each share si to
the party Pi. We say that Π realizes an access structure A ⊆ 2U if the following
two requirements hold:

Correctness. The secret s can be reconstructed by any authorized set of par-
ties. That is, for any set B ∈ A (where B = {Pi1 , . . . , Pi|B|}), there ex-
ists a reconstruction function ReconB : Si1 × · · · × Si|B| → S such that
ReconB(ΠB(s, r)) = s for every s ∈ S, every r ∈ R, and every possible
value of ΠB(s, r), the restriction of Π(s, r) to its B-entries.

Privacy. Every unauthorized set can never learn anything about the secret (in
the information theoretic sense) from their shares. Formally, for any set
C 6∈ A, for every two secrets a, b ∈ S, and for every possible |C|-tuple of
shares 〈si〉Pi∈C : Pr[ ΠC(a, r) = 〈si〉Pi∈C ] = Pr[ ΠC(b, r) = 〈si〉Pi∈C ].

In this work we concentrate on weakly-private secret-sharing schemes, where
an unauthorized set can never rule out any secret.

Definition 3 (Weakly-Private Secret-Sharing Schemes). We say that a
secret-sharing scheme Π weakly realizes an access structure A ⊆ 2U if it satisfies
the correctness requirement of Definition 2 and it satisfies the following weak
privacy requirement:

Weak Privacy. Every unauthorized set can never rule out any secret from its
shares. Formally, for any set C 6∈ A, for every two secrets a, b ∈ S, and for
every possible |C|-tuple of shares 〈si〉Pi∈C : Pr[ ΠC(a, r) = 〈si〉Pi∈C ] > 0 if
and only if Pr[ ΠC(b, r) = 〈si〉Pi∈C ] > 0.

In this work we measure the share complexity of a scheme either as the length
of the strings representing the shares or as the size of the domain of shares. The
latter is used mainly when we discuss threshold schemes.

Definition 4 (Possible Vectors of Shares). Let Π be a secret-sharing scheme
and A be a set of parties. We say that a vector of shares 〈si〉Pi∈A is possible
with secret a for A in Π if Pr[ ΠA(a, r) = 〈si〉Pi∈A ] > 0.



The most important secret-sharing schemes are threshold schemes, where the
authorized sets are all sets whose size is at least some given threshold.

Definition 5 (t-out-of-n Secret Sharing). A secret-sharing scheme Π is
a t-out-of-n secret-sharing scheme if it realizes the access structure At,n

def=
{A ⊆ {P1, . . . , Pn} : |A| ≥ t}. We say that a secret-sharing scheme Π is a weakly-
private t-out-of-n secret-sharing scheme if it weakly realizes At,n.

In the definition of secret-sharing schemes we say that for every set B there
is a reconstruction function ReconB that takes the shares of the parties of B
and reconstructs the secret. That is, the reconstruction function can use the
identities of the parties of B. For example, in Shamir’s scheme the parties in
every set B of size t reconstruct the secret by applying a linear function to their
shares; the coefficients in this linear function depend on the set B. A scheme
is anonymous if the reconstruction is done as a function of the shares without
knowing the identities of the parties in B. The following definition, which is
equivalent to the definition of [14], captures this intuition by requiring that if a
vector of shares is possible given a secret s, then every possible permutation in
the order of the coordinates in this vector is possible given s.

Definition 6 (Anonymous t-out-of-n Secret Sharing). We say that a per-
fect or weakly-private t-out-of-n secret-sharing scheme is anonymous if for ev-
ery s ∈ S, every vector of shares 〈s1, s2, . . . , sn〉, and every permutation π :
{1, . . . , n} → {1, . . . , n}, the vector 〈s1, s2, . . . , sn〉 is possible with secret s for
{P1, . . . , Pn} iff the vector 〈sπ(1), sπ(2), . . . , sπ(n)〉 is possible with secret s for
{P1, . . . , Pn}.

Notation. For a set Σ, let
(

Σ
<t

)
be the collections of subsets of Σ of size less than

t and let
(
Σ
t

)
be the collections of subsets of Σ of size exactly t. For an integer

n ∈ N, let [n] def= {1, . . . , n} .

3 A Generic Construction of Weakly-Private
Secret-Sharing Schemes

In this section we show that weakly-private schemes can be more efficient than
perfect schemes. We construct for every access structure A a weakly-private
secret-sharing scheme realizing A with shares whose size is linear in the size of
the domain of secrets (but possibly exponential in the number of parties).

Theorem 1. For every access structure A with n parties there is some constant
c such that for every ` ∈ N there exists a weakly-private secret-sharing scheme
realizing A with `-bit secrets and (` + c)-bit shares for each party (however, c
may be exponential in n).

The theorem is proven in Lemma 1. For comparison, the size of the shares
in the best known constructions of perfect secret-sharing schemes realizing an
arbitrary access structure, the size of the shares is ` · c′, where c′ is a constant
that can also be exponential in n.



Define the following sets of vectors of shares for a secret s ∈ {0, 1}` are:

{P1}-Vectors: 〈〈a, r〉, 〈a, s〉〉, for every r ∈ {0, 1}` and every a ∈ {0, 1}.
{P2}-Vectors: 〈〈a, s〉, 〈a, r〉〉 for every r ∈ {0, 1}` and every a ∈ {0, 1}.
To share a secret s, choose at random i ∈ {1, 2} and choose a random
vector from the {Pi}-vectors.

Fig. 1. The weakly-private scheme realizing Γ .

A Warmup. Let Γ be the access structure with two participants P1 and P2

and one authorized set {P1, P2}. As a warm up, we describe a weakly-private
scheme realizing Γ . The scheme we describe is inferior to the best perfect scheme
realizing Γ . The main purpose of describing this scheme is to introduce the ideas
of the general scheme.

In the scheme we construct, the secret is an `-bit string and the shares are
(` + 1)-bit strings. The scheme is described in Fig. 1. In this scheme, in each
vector of shares exactly one party holds the secret and the other party holds a
random element. Only both parties together know which party holds the secret,
thus they can reconstruct the secret and each individual party can never rule
out any secret. The vectors of shares are divided to two sets, {P1}-vectors and
{P2}-vectors. The {Pi}-vectors, where Pi holds a random element, disable {Pi}
from ruling out any secret (where i ∈ {0, 1}).

We first explain how P1 and P2, holding shares 〈a1, b2〉 and 〈a2, b2〉 respec-
tively (where ai is a bit and bi is either the secret or a random string), reconstruct
the secret: If a1 = a2, then the secret is b1, otherwise the secret is b2. To argue
that the scheme is weakly private, note that for every secret s ∈ {0, 1}`, Party
Pi can get every share in {0, 1} × {0, 1}` in the {Pi}-vectors.

The construction of the weakly-private schemes. Let A be an access structure
with n parties and ` ∈ N. We first describe a very simple scheme with `-bit
secrets and `-bit shares that has useful properties. To share a secret s, there is
a set of vectors of shares for every maximal unauthorized set C /∈ A, called the
C-vectors, which prevent C from ruling out any secret. In the C-vectors, the
share of every Pi /∈ C is the secret s, while the share of each party in C ranges
over all the possible shares in {0, 1}`. Thus, the number of C-vectors, for a given
secret s, is 2`|C|.

Clearly, weak privacy holds in the above scheme (that is, every unauthorized
set can never rule out any secret). We next argue that every authorized set B
can reconstruct the secret with probability at least 1/|B| ≥ 1/n (even when
` À n). Let B ∈ A be any authorized set holding a vector of shares v. This
vector is a sub-vector of a C-vector for some C /∈ A. Since B is authorized and
C is unauthorized, there must be some Pi ∈ B \ C, thus Pi holds s in v. The
parties in B, which do not know C, choose Pi ∈ B at random and output its
share as the secret.



Let s ∈ {0, 1}` be the secret.

1. Choose at random a maximal unauthorized set C /∈ A.
2. Share the n-bit string representing C using a weakly-private scheme

Πweak realizing A. Let a1, . . . , an be the generated shares.
3. Choose a random bi ∈ {0, 1}` for every Pi ∈ C and set bi = s for

every Pi /∈ C.
4. The share of Pi is (ai, bi).

Fig. 2. A generic weakly-private scheme Πgeneric realizing an access structure A.

In the previous scheme, the authorized set B could not know the set C.
However, to reconstruct the secret with certainty, the set B needs to know C
(or at least some Pi ∈ B \C). Thus, we represent C as an n-bit string and share
this string using a weakly-private scheme realizing A. That is, we reduced the
question of sharing a secret taken from a big domain to sharing a secret from a
domain of size 2n. Such (perfect) schemes, with 2O(n)-bit shares, exist for every
access structure (e.g., [28,9,30]). The formal description of the scheme Πgeneric

appears in Fig. 2. The possible vectors of shares generated in Πgeneric when the
maximal unauthorized set chosen in Step (1) of the scheme is C are called the
C-vectors.

Lemma 1. The generic weakly-private scheme Πgeneric, described in Fig. 2,
weakly realizes the access structure A. Furthermore, if Πgeneric uses a weakly-
private scheme Πweak with n-bit secrets and c-bit shares, then, to share `-bit
secrets, Πgeneric distributes (` + c)-bit shares.

Proof. To prove that Πgeneric weakly realizes A, we prove the correctness and
weak privacy of the scheme. To reconstruct the secret, an authorized set B,
holding shares 〈(ai, bi)〉Pi∈B , reconstructs the set C from the shares 〈ai〉Pi∈B ,
finds some Pi ∈ B \ C, and returns bi.

To argue that the scheme is weakly private, consider a maximal unauthorized
set C holding shares 〈(ai, bi)〉Pi∈C that are possible with some secret s0. These
shares are possible given any secret s: First, the shares 〈ai〉Pi∈B are possible
in Πweak for the set C. Thus, by the definition of the C-vectors, the shares
〈(ai, bi)〉Pi∈B are a restriction of a C-vector that is possible for the secret s. ut
Example 1. Csirmaz [20] proved that for every n ∈ N there is an access structures
An with n parties such that in every perfect secret-sharing scheme realizing An

with `-bit secrets, the shares of at least one party are Ω((n/ log n)`)-bit strings.
The description of the access structure An is somewhat technical. The only
property we need is that in An each party is contained in at most n minimal
authorized sets. Thus, by [28], there is a perfect scheme realizing An for sharing
n-bit secrets using O(n2) bit shares. By Lemma 1, there is a scheme weakly
realizing An with `-bit secrets and (` + n2)-bit shares. If we use Lemma 2 and
Lemma 3 (proved in section 3.1), we get a scheme weakly realizing An with `-bit
secrets and (` + n log n)-bit shares. In particular, if we take ` = n log n, then in
perfect scheme shares are Ω(`2/ log2 `)-bit strings, while in the weakly-private
schemes we construct the shares are 2`-bit strings.



3.1 Improvements of the Generic Scheme

In the generic scheme Πgeneric, presented in Fig. 2, the shares are (` + c)-bit
strings, where c can be large, that is, it is the size of the shares in a scheme
Πweak realizing A with n-bit secrets. In this section we try to reduce the constant
c. We observe that in the proof of Lemma 1, the properties required from the
secret-sharing scheme Πweak are the following:

– Every authorized set B can compute the identity of a party Pi ∈ B \C, and
– Every unauthorized set C can never rule out that the shared set is C.

Next we formally define schemes satisfying these conditions.

Definition 7 (Weakly-Private Sharing of Unauthorized Sets). Let S be
the set of maximal unauthorized sets in A. We say that a secret-sharing scheme
Π with domain of secrets S weakly shares the unauthorized sets of an access
structure A if it satisfies the following two requirements:

– For any set B ∈ A (where B = {Pi1 , . . . , Pi|B|}), there exists a reconstruction
function ReconB : Si1×· · ·×Si|B| → S such that for every maximal C ∈ S,
for every r ∈ R, and for every possible value of ΠB(C, r),

ReconB(ΠB(C, r)) = Pi such that Pi ∈ B \ C.

– Every unauthorized set can never rule out itself from its shares. Formally,
for any maximal unauthorized set C 6∈ A, for every possible |C|-tuple of
shares 〈si〉Pi∈C : If there is some maximal unauthorized set C0 /∈ A such that
Pr[ ΠC(C0, r) = 〈si〉Pi∈C ] > 0 then Pr[ ΠC(C, r) = 〈si〉Pi∈C ] > 0.

In Πgeneric, if we use a scheme that weakly shares the unauthorized sets of
A, then the proof of Lemma 1 remains valid.

Lemma 2. Assume that there is a scheme Πset that weakly shares the unautho-
rized sets of A with cset-bit shares. To share `-bit secrets, the generic weakly-
private scheme Πgeneric, when using Πset instead of Πweak, weakly realizes the
access structure A distributing (` + cset)-bit shares.

We next give an example of weakly-private schemes for sharing unauthorized
sets. We first use ideas similar to Ito, Saito, and Nishizeki [28]. They proved that
if every party is contained in at most d minimal sets of an access structure A,
then there is a scheme perfectly realizing A with `-bit secrets and `d-bit shares.

Lemma 3. Assume A is an access structure such that every party is contained
in at most d minimal authorized sets of A. Then, there is a scheme for weakly
sharing the unauthorized sets of A distributing d dlog ne-bit shares.

Proof. To share a maximal unauthorized set C, for every minimal authorized set
B, choose a random party PjB

∈ B \C, choose |B| random elements 〈si,B〉Pi∈B

such that si,B ∈ {0, . . . , n− 1} and
∑
{i:Pi∈A} si,B ≡ jB (mod n). The share of

Pi is 〈si,B : Pi ∈ B,B ∈ A is a minimal authorized set〉. Clearly, this scheme is
correct. Furthermore, each maximal unauthorized set can never rule out itself
as the parties in C cannot rule out any jB for a minimal authorized set B in
A. ut



4 Upper Bounds for Efficient Weakly-Private Sharing of
Double Exponential Number of Access Structures

In this section we present a construction due to Yuval Ishai [27] giving an efficient
weak secret-sharing schemes with a 1-bit secret for a family of access structures
of a doubly exponential size. We first define this family.

Definition 8 (The Access Structure AC). For every n and every C ⊆
{0, 1}n, we define an access structure AC with 2n parties denoted P 0

1 , P 1
1 , . . . , P 0

n , P 1
n .

For every c = 〈c1, . . . , cn〉 ∈ {0, 1}n define a set Qc
def= {P c1

1 , P c2
2 , . . . , P cn

n }. The
minimal authorized sets in AC are {Qc : c ∈ C} ∪ {{

P 0
j , P 1

j

}
: j ∈ [n]

}
.

Theorem 2. For every C ⊆ {0, 1}n there is a weakly-private secret-sharing
scheme realizing AC with domain of secrets {0, 1} and O(n3)-bit shares.

Proof. The idea, again, is that for every unauthorized set we construct a set
of vectors that prevent the set from ruling out a secret. Towards this goal, we
define the following function: For a, b ∈ {0, 1} and x, y ∈ {0, 1}n, let f(a, b, x, y)
be the function which outputs a if x 6= y and outputs b otherwise. Informally,
the input a of f is the secret we want to share, the input b is a random input,
and if we set x = y = z, we will prevent the set Qz from ruling out the secret b.
To construct the scheme, we use the randomized encodings of Applebaum, Ishai,
and Kushilevitz [1]. Specifically, the function f can be efficiently encoded by a
function f ′((a, b, x, y), r) such that:

1. The output distribution of f ′ induced by a random choice of r reveals the
output of f and no additional information about a, b, x, y, that is, there are
two distributions D0, D1 such that
(a) If f(a, b, x, y) = 0 then f ′((a, b, x, y), r) is distributed according to D0

and if f(a, b, x, y) = 1 then f ′((a, b, x, y), r) is distributed according to
D1, and

(b) The distributions D0 and D1 have a disjoint support.
2. The length of the output of f ′ is O(n3), and
3. Each output bit of f ′ depends on at most a single bit of (a, b, x, y).

In particular, if the ith bit of f ′ depends on xj and we fix r, then we can compute
the ith bit of f ′ from r and xj without knowing the other bits of x (or knowing
a, b, y).

For any subset C ⊆ {0, 1}n, we describe in Fig. 3 a weakly-private scheme
realizing AC . First note that every pair

{
P 0

j , P 1
j

}
can reconstruct the secret

using the shares given in Step (1) of the scheme. Second, consider a set that
contains at most one party from every pair

{
P 0

j , P 1
j

}
and for some j ∈ [n] does

not contain neither P 0
j nor P 1

j . Such set can never rule out any value of s0, hence
can never rule out any value of s. Thus, it remains to prove that a set Qc can
reconstruct the secret if and only if c ∈ C.

If c ∈ C, then in Step (4) of the scheme a w 6= c is chosen. The parties
of Qc together hold the bits of f ′((s1, b, c, w), r), which is an element of Ds1 ,
hence they can also compute f(s1, b, c, w) = s1 (since the support of D0 and the
support of D1 are disjoint). Furthermore, they hold q1, . . . , qn, hence, they can
compute s = s0 ⊕

⊕n
j=1 qj .



To share a secret s ∈ {0, 1}:
1. For every j choose rj ∈ {0, 1} at random, and send to P 0

j the bit rj

and to P 1
j the bit rj ⊕ s,

2. Choose s0 ∈ {0, 1} at random, define s1 ← s⊕ s0,
3. For every j ∈ [n − 1] choose qj ∈ {0, 1} at random, set qn = s0 ⊕Ln−1

j=1 qj , and send to P 0
j and P 1

j the bit qj .

4. Choose w /∈ C at random, choose b ∈ {0, 1} at random, and choose a
random r.

5. Send to player P d
j , for j ∈ [n] and d ∈ {0, 1}, the value of output bits

of f ′((s1, b, x, w), r) that depend on xj assuming that xj = d.
6. All bits of f ′((s1, b, x, w), r) that do not depend on bits of x are sent

to all parties.

Fig. 3. A weakly-private scheme realizing AC .

For any z /∈ C, the set of n players Qz can never rule out any value of s1:
When w = z and b = 0 are chosen in Step (4) of the scheme, the parties of Qz

can compute a random element of D0 and when w = z and b = 1 are chosen in
Step (4) of the scheme they can compute a random element of D1. Thus, the
parties do not know if w 6= z and they got an element of Ds1 or w = z and
b = s1 and they got an element of Ds1 . ut

5 Upper Bounds for Weakly-Private Threshold Sharing
of One Bit

In this section we construct weakly-private t-out-of-n secret-sharing schemes for
sharing one bit. We first present a simple weakly-private 2-out-of-n scheme in
which the size of the domain of shares of each party is 4. Generalizing the ideas
of this scheme we present a 3-out-of-n scheme in which the size of the domain
of shares of each party is 6, and a t-out-of-n scheme in which the size of the
domain of shares of each party is Õ(2t). Finally, we present a different scheme,
based on Shamir’s scheme, in which the size of domain of shares is roughly
n− t/(2(n− t+1)) (when n is a prime-power). The best known perfect t-out-of-
n schemes use domain of shares of size n. By a lower bound of [32], the size of the
domain of shares in every perfect t-out-of-n schemes is at least n− t. Thus, our
weakly-private t-out-of-n secret-sharing schemes are more efficient than every
perfect t-out-of-n secret-sharing schemes when t < log n − 2 log log n and more
efficient than known schemes when t > n/2.

5.1 The Weakly-Private Scheme for t = 2

Lemma 4. There exists an anonymous weakly-private 2-out-of-n secret-sharing
scheme with domain of secrets {0, 1} in which the size of the domain of shares
of every party is 4.

Proof. To prove the claim we describe a scheme with domain of shares {0, 1, 2, 3}
for each party.



– To share the secret 0, choose a random index i ∈ [n] and choose a random
σ ∈ {2, 3}. The share of Pi is σ. The share of Pj , for j 6= i, is 0 if σ = 2 and
1 if σ = 3.

– To share the secret 1, choose a random index i ∈ [n] and choose a random
σ ∈ {0, 1}. The share of Pi is σ. The share of Pj , for j 6= i, is 3 if σ = 0 and
2 if σ = 1.

The 2-out-4 scheme is explicitly described in Example 2.
On one hand, the reconstruction of the secret by any two parties is simple:

If the shares are {0, 0}, {0, 2}, {1, 1} , or {1, 3}, then the secret is 0. Otherwise
the secret is 1. On the other hand, each value is possible for each coordinate for
each secret, thus, the scheme is weakly private. ut
Example 2. We explicitly describe the weakly-private 2-out-4 anonymous secret-
sharing scheme. The shares for the secret 0 are randomly chosen from 〈0, 0, 0, 2〉,
〈0, 0, 2, 0〉, 〈0, 2, 0, 0〉, 〈2, 0, 0, 0〉 and 〈1, 1, 1, 3〉, 〈1, 1, 3, 1〉, 〈1, 3, 1, 1〉, 〈3, 1, 1, 1〉.
The shares for the secret 1 are randomly chosen from 〈2, 2, 2, 1〉, 〈2, 2, 1, 2〉,
〈2, 1, 2, 2〉, 〈1, 2, 2, 2〉 and 〈3, 3, 3, 0〉, 〈3, 3, 0, 3〉, 〈3, 0, 3, 3〉, 〈0, 3, 3, 3〉.

5.2 Weakly-Private Schemes for t < log n

We now describe a generalization of the above scheme for larger thresholds.
Specifically, in the scheme we design: (1) the scheme is anonymous (as defined
in Definition 6), (2) in each vector of shares all but at most t−1 coordinates are
equal, and (3) every vector of values in Σt−1 is possible for every t − 1 parties
for every secret (where Σ is the domain of shares of each party).

We will first describe a generic way to construct a weakly-private t-out-of-n
scheme based on the existence of two functions f0, f1 with certain properties.
Roughly speaking, these functions take an arbitrary vector of shares of length t−
1 and stretch it to a vector of shares of length n. The exact properties we require
from these functions are sufficient for proving the correctness of the scheme
(however, weaker conditions may also be sufficient for proving correctness). We
show a simple construction of f0, f1 satisfying these properties for t = 3 with
domain of size 6. We then show that certain combinatorial structure can be
used to construct such functions f0 and f1, and show that such structures exist
implying a t-out-of-n scheme with domain of shares of size O(t22t).

Lemma 5. Let t be an integer, Σ be a finite domain, and Σ0 and Σ1 be a
partition of Σ. Assume there are two functions f0, f1, where fs :

(
Σs

<t

) → Σs

for s ∈ {0, 1} satisfying

∀A0⊆Σ0,A1⊆Σ1such that |A0|+|A1|≤t f0(A1) /∈ A0 ∨ f1(A0) /∈ A1. (1)

Then, for every n ≥ t there is an anonymous weakly-private t-out-of-n scheme
with domain of secrets {0, 1} and domain of shares Σ for each party.

Proof. We describe the scheme using the given functions f0 and f1. To share the
secret s ∈ {0, 1}, do the following:

1. Choose t − 1 random distinct indices i1, . . . , it−1 ∈ [n] and choose t − 1
random values σ1, . . . , σt−1 for the parties Pi1 , . . . , Pit−1 respectively.



2. Let As be the set of elements of Σs in σ1, . . . , σt−1. For every ` /∈ {i1, . . . , it−1},
the share of P` is fs(As).

The privacy is guaranteed since every t− 1 parties can be chosen in Step 1.
We next argue that Property (1) implies the correctness of the scheme. That
is, every vector of t shares is possible for at most one secret. Assume towards
contradiction that b = 〈b1, . . . , bt〉 is possible both for the secret 0 and for the
secret 1. For s ∈ {0, 1}, let Bs be the set of elements of Σs in the vector b (without
repetition). As b is possible for a secret s ∈ {0, 1}, in Step 1 of the scheme some
vector σ = 〈σ1, . . . , σt−1〉 could have been chosen, where As are the elements
of Σs in this vector (without repetition). The vector b is obtained by taking a
sub-vector of σ and completing it to a vector of length t with the value fs(As)
(possibly with repetitions). Therefore, the following conditions must hold:

1. Bs ⊆ As,
2. Let ns be the number of times that fs(As) appears in b. Thus,

ns ≥ |As| − |Bs|+ 1 ≥ 1. (2)

In particular, fs(As) appears at least once in b.

Thus, f0(A1) ∈ B0 ⊆ A0 and f1(A0) ∈ B1 ⊆ A1. Furthermore, |B0| + |B1| ≤
t−n0−n1 +2 (since f0(A1) appears n0 times in b and f1(A0) appears n1 times
in b), thus |A0|+ |A1| ≤ t (by (2)). This contradicts Property (1), and thus the
scheme is correct. ut

We next reformulate Lemma 5 using only one function f0.

Lemma 6. Let t be an integer, Σ be a finite domain, and Σ0 and Σ1 be a
partition of Σ. Assume there is a function f0 :

(
Σ1
<t

) → Σ0 such that for every
A0 ⊆ Σ0, where |A0| < t,

⋃
{A1 ⊆ Σ1 : |A0|+ |A1| ≤ t and f0(A1) ∈ A0} ( Σ1. (3)

Then, for every n ≥ t there is an anonymous weakly-private t-out-of-n scheme
with domain of secrets {0, 1} and domain of shares Σ for each party.

Proof. We show that there is a function f1 such that f0, f1 satisfy Property (1)
of Lemma 5. For every A0 ⊆ Σ0 define f1(A0) as any element σ in

Σ1 \
(⋃

{A1 ⊆ Σ1 : |A0|+ |A1| ≤ t and f0(A1) ∈ A0}
)

.

Now, if f0(A1) ∈ A0, then σ /∈ A1, thus, f0, f1 satisfy Property (1). ut

Specific implementation for t = 3

Lemma 7. There exists an anonymous weakly-private 3-out-of-n secret-sharing
scheme with domain of secrets {0, 1} in which the size of the domain of shares
of every party is 6.



Proof. We show how to implement the functions f0, f1 satisfying Property (1)
of Lemma 5 with Σ0 = {0, 1, 2}, Σ1 = {3, 4, 5}, and Σ = Σ0∪Σ1. Define f0 and
f1 as follows:

A1 f0(A1)
∅ 0
{3} 0
{4} 1
{5} 2
{3, 4} 1
{3, 5} 0
{4, 5} 2

A0
A1 s.t. |A0|+ |A1| ≤ t

and f0(A1) ∈ A0
f1(A0)

∅ − 3
{0} ∅, {3} , {3, 5} 4
{1} {4} , {3, 4} 5
{2} {5} , {4, 5} 3
{0, 1} ∅, {3} , {4} 5
{0, 2} {3} , {5} 4
{1, 2} {4} , {5} 3

As indicated by the table, Property (3) holds for f0; the function f1 is constructed
using Lemma 6. ut
Remark 1. We next explain why we need a share domain of size six in the above
3-out-of-n scheme. Assume, f0, f1 satisfy Property (1). Thus, for example, if
f1({0, 1}) = σ we require f0({σ}) 6= 0, 1, and |Σ0| ≥ 3. Similarly, |Σ1| ≥ 3.

Generic implementation using set-systems

To construct the weakly-private t-out-of-n secret-sharing schemes for larger
values of t we use a set-system with specific properties. The existence of such
set-system is basically equivalent to the existence of a function f0 satisfying
Property (3) in Lemma 6. The definition of the set-system we use is similar to
the definition used in [37] and the construction we present is the same as theirs.

Definition 9. Let C = {C1, . . . , Cm} be a collection of m sets and B =
⋃m

i=1 Ci.
We say that C is an (`,m, b) set-system if the following three requirements hold:

1. |C| = m and |B| ≤ b,
2. The union of every ` sets in C is properly contained in B. That is, for every

A0 ⊂ [m], where |A0| = `, ⋃

i∈A0

Ci ( B,

3. Every subset of A1 ⊆ B of size ` is contained in at least one Ci, that is,
A1 ⊆ Ci.

It is easy to satisfy one of the above Conditions 2 and 3. For example, to
satisfy Conditions 2 we can partition B to ` + 1 disjoint non-empty sets. To
satisfy Conditions 3 we can take C = {B}. The difficulty is to satisfy the two
conditions simultaneously.

Example 3. Let B = [`2 + 1] and C be the collection of all subsets of size ` of B.
Then, C is an (`,m, `2 + 1) set-system, where m

def=
(
`2+1

`

)
= 2O(` log `). Clearly,

Items 1 and 3 of Definition 9 hold. To prove that Item 2 holds, notice that the
size of B is `2 + 1 and the size of each set in C is `, thus the size of the union of
` subsets is at most `2, that is, there exists at least one element of B that is not
in the union of the ` sets.



Lemma 8. If there is a (t − 1, m, b) set-system, then there is an anonymous
weakly-private t-out-of-n secret-sharing scheme with domain of secrets {0, 1} and
domain of shares of size m + b.

Proof. Let C1, . . . , Cm be a (t − 1,m, b) set-system and B =
⋃m

i=1 Ci. Without
loss of generality, assume that B∩ [m] = ∅. Let Σ0 = [m] and Σ1 = B. We define
f0 :

(
[Σ1]
<t

) → Σ0 satisfying the condition of Lemma 6: For every A1 ⊂ B of size
at most t− 1, we define f0(A1) as the smallest i such that A1 ⊆ Ci. By Item 3
such i exists.

We prove that a stronger condition that Property (3) of Lemma 6 holds,
namely, we prove that for every A0 ⊆ Σ0

⋃
{A1 ⊆ Σ1 : |A1| ≤ t− 1 and f0(A1) ∈ A0} ( Σ1. (4)

Notice that⋃
{A1 ⊆ Σ1 : |A1| ≤ t− 1 and f0(A1) ∈ A0}

=
⋃

i∈A0

(⋃
{A1 ⊆ Σ1 : |A1| ≤ t− 1 and f0(A1) = i}

)
.

However, f0(A1) = i implies that A1 ⊆ Ci. Thus,
⋃
{A1 ⊆ Σ1 : |A1| ≤ t− 1 and f0(A1) ∈ A0} ⊆

⋃

i∈A0

Ci ( Σ1

(by Item 2 of Definition 9). By Lemma 6, there is a secret-sharing scheme with
the parameters promised in the lemma. ut

We show the existence of an (`,m, m) set-system using a probabilistic proof
provided that ` = O(log m). The construction is simple; we choose m subsets
independently with uniform distribution.

Lemma 9. Let m = 2`+1`2. There exists an (`,m, m) set-system.

Proof. We show the existence using a probabilistic proof. Define B = [m]. Pick
m sets C1, . . . , Cm ⊂ B where each set is chosen independently with uniform
distribution (in particular, Pr[j ∈ Ci] = 1/2 for every i and j).

We prove that with positive probability Conditions 2 and 3 hold, thus, there
exists a “good” choice such that {C1, . . . , Cm} is an (`,m, m) set-system.

We first prove that Condition 2 holds with probability greater than 0.5. First
fix a set A0 ∈ [m] of size `. For every index j ∈ [m], the probability that
for at least one i ∈ A0 the index j is in Ci is 1 − 2−`. The probability that
∪i∈A0Ci = B is the probability that for every j ∈ [m] for at least one i ∈ A0 the
index j is in Ci. This probability is (1 − 2−`)m ≤ e−m/2`

. Thus, by the union
bound, the probability that there exists a set A0 violating Condition 2 is at most(
m
`

)
e−m/2`

< e` ln m−m/2`

. By our choice of m, this probability is less than half.
The same calculations show that Condition 3 holds with probability greater

than 0.5. First fix a set A1 ⊂ B of size `. The probability that A1 ⊆ Ci for a fixed
i is 2−`. Thus, the probability that A1 6⊆ Ci for every i ∈ [m] is (1 − 2−`)m ≤
e−m/2`

. By the union bound, the probability that there exists a set A1 violating
Condition 3 is at most

(
m
`

)
e−m/2`

< e` ln m−m/2`

< 1/2. ut



To share a secret s ∈ {0, 1} using a domain of shares Σ ⊆ GF(q) of size
bq − (q − 1)(2(n− t + 1))c+ 1, where q ≥ n is a prime-power:

1. Pick random s1, . . . , st−1 ∈ Σ, and let a ← s.
2. Compute the unique polynomial Qa of degree at most t− 1 such that

– Qa(i) = si for every 1 ≤ i ≤ t− 1.
– The coefficient of xt−1 in Qa is a.

3. If Qa(i) /∈ Σ for some t ≤ i ≤ n, then a ← a + 2; Goto Step 2.
4. (∗ We found an a such s ≡ a (mod 2) and Qa(i) ∈ Σ for 1 ≤ i ≤ n ∗)

The share of Pi is Qa(i).

Fig. 4. A t-out-of-n secret-sharing scheme with domain of shares of size
bq − (q − 1)(2(n− t + 1))c+ 1.

Theorem 3. There is an anonymous weakly-private t-out-of-n secret-sharing
scheme with domain of secrets {0, 1} in which the size of the domain of shares
of each party is 2(t− 1)22t.

In the full version of this paper, we discuss the restriction that we used in
the construction of the above scheme. In particular, we prove that in every t-
out-of-n scheme implementing Lemma 5 the size of the domain is 2Ω(t), thus our
implementation in Theorem 3 is almost optimal.

5.3 Weakly-Private Schemes for t ≥ n/2

We next present weakly-private t-out-of-n secret-sharing schemes for large values
of t. For example, when n is a prime-power, we construct an (n − 1)-out-of-n
scheme with share domain of size roughly 0.75n for every party. For t ≈ n/2,
we construct a scheme with domain of shares of size n − 1. In our scheme, we
restrict the domain of shares in a variant of Shamir’s scheme [44] to a subset
of the field. In this variant of Shamir’s scheme, the secret is the coefficient of
xt−1 in the polynomial (compared to x0 in Shamir’s scheme). The advantage of
this variant is that it reduces the size of the field by 1 (yielding the best known
perfect t-out-of-n scheme for sharing 1-bit secrets). Unlike the previous schemes
for t < log n, the scheme we present in this section is not anonymous.

Theorem 4. Let n ∈ N be integer and q ≥ n be a prime-power. For every
1 < t < n there is a weakly-private t-out-of-n secret-sharing scheme in which the
size of the domain of shares of each party is

⌊
q − q−1

2(n−t+1)

⌋
+ 1.

Proof. We describe the scheme in Fig. 4. All arithmetic in the scheme is in
GF(q). To simplify the notations, we assume that the elements of GF(q) are
{0, . . . , q − 1}. In the proof below of the weak privacy, we prove that for every
s1, . . . , st−1 ∈ Σ there exists at least one value a satisfying the conditions of
Step 4, thus the scheme terminates. We say that a polynomial Q passes through
a share si of Pi if Q(i) = si.

The reconstruction of the secret by t parties is done as in Shamir’s scheme:
the parties compute the unique polynomial Q of degree t−1 that passes through



their shares, compute the coefficient a of xt−1 in Q, and output a mod 2. We
next prove the weak privacy of the scheme, that is, every t−1 parties are unable
to rule out either secret. Fix any set C of t−1 parties, fix any t−1 values 〈si〉Pi∈C

in Σ as the shares of C, and fix a secret s ∈ {0, 1}. There are at least (q − 1)/2
values a such that a ≡ s mod 2. If for one such a the unique polynomial Q of
degree t−1 with coefficient a of xt−1 that passes through the shares of C satisfies
Q(i) ∈ Σ for every i /∈ C, then the shares 〈si〉Pi∈C are possible for C given s. We
will show that every party Pi /∈ C eliminates at most q−|Σ| < q−1

2(n−t+1) values of
a and there are n− t+1 parties not in C. Thus, since (n− t+1) q−1

2(n−t+1) ≤ q−1
2 ,

there is at least one a that survives.
To complete the proof, we fix Pi /∈ C, and prove that Pi eliminates at most

q − |Σ| values of a. For each value si ∈ {0, . . . , q − 1} \ Σ, there is a unique
polynomial of degree t − 1 that passes through the shares of C ∪ {Pi}. Thus,
such value si only eliminates the coefficient of xt−1 in this polynomial. ut

6 Lower Bounds for Weakly-Private Threshold Schemes

We state lower bounds on the size of domain of shares in weakly-private t-out-
of-n schemes. The proofs of these results appear in the full version of this paper.

Lemma 10. Let n ≥ 9. In every weakly-private 2-out-of-n secret-sharing scheme
with domain of secrets {0, 1}, the size of the domain of shares of at least one
party is at least 4.

Theorem 5. In every anonymous weakly-private t-out-of-n secret-sharing scheme
with domain of secrets {0, 1}, the size of the domain of shares of at least one
party is at least min

{
2t,

√
(n− t)/2

}
.

Theorem 6. In every weakly-private t-out-of-n secret-sharing scheme with do-
main of secrets {0, 1}, the size of the domain of shares of at least one party is at
least min

{
t, log log(n−t)

2 log log log(n−t)

}
. Furthermore, if n > t−1+(t−1)(2t−1)2((2t−1)t−1),

in every weakly-private t-out-of-n secret-sharing scheme with domain of secrets
{0, 1}, the size of the domain of shares of at least one party is at least 2t.
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