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Abstract. We address the question of whether or not semantically se-
cure public-key encryption primitives imply the existence of chosen ci-
phertext attack (CCA) secure primitives. We show a black-box separa-
tion, following the methodology introduced by Impagliazzo and Rudich
[23], for a large non-trivial class of constructions. In particular, we show
that if the proposed CCA construction’s decryption algorithm does not
query the semantically secure primitive’s encryption algorithm, then the
proposed construction cannot be CCA secure.

1 Introduction

Public-key encryption primitives (PKEP) are used in numerous cryptographic
protocols. Two frequently used definitions of security for PKEP in the crypto-
graphic literature are semantic and chosen ciphertext attack security. Semantic
security (SS) was introduced by Goldwasser and Micali [21] and guarantees that
encrypted messages sent over a network are confidential to passive adversaries
that are limited to eavesdropping (we provide formal definitions of this and the
following notions in the next section). Unfortunately, in practice most adver-
saries are not limited to passive eavesdropping, and they can actively control
and manipulate network traffic. This is especially true on the modern Internet,
where it is particularly easy to manipulate traffic. Therefore, a strengthened se-
curity definition was needed. Naor and Yung [29] introduced Chosen Ciphertext
Attack (CCA1) security, in which the adversary is allowed temporary access to
a decryption oracle prior to the adversary’s attempt to decrypt a message of
interest. While this definition is substantially stronger than that of semantic
security, it is still not strong enough for many network purposes. Therefore, an
even stronger definition of CCA security was introduced by Rackoff and Simon
[31] that gives the adversary continuous access to a deprecated decryption oracle
that is restricted only in that it will not decrypt ciphertexts of direct interest
to the adversary. This security is called CCA2 (or adaptive chosen ciphertext
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attack) security, and is the security standard that most PKEP need to meet
in many of today’s cryptographic protocols. The first CCA2 secure PKEP was
given by Dolev, Dwork, and Naor [11], followed by a large body of research on
developing such protocols and understanding the security notion (c.f. [35, 10, 27,
7, 12]).

There are many known constructions of SS PKEPs based on general cryp-
tographic assumptions such as trapdoor predicates[21], trapdoor functions[20,
21], and trapdoor permutations[9]. In addition, these constructions are black-
box and are relatively efficient. In contrast, all known constructions of CCA1
[29] and CCA2 [11, 27, 35] secure PKEPs from general cryptographic assumptions
are based on only the existence of enhanced trapdoor permutations and are both
non-black-box and inefficient due to their use of ZK or WI proofs.

In this paper we address the question of whether the weaker security require-
ment (semantic security) for public-key encryption, is in fact equivalent to the
stronger requirement (chosen ciphertext attack security). That is, can any SS
PKEP be used (without any further assumptions) to construct a CCA PKEP?

This is a natural question which is one of major open problems in cryptog-
raphy in the last several years. To the best of our knowledge, the first explicit
published posing of this as a problem is by Bellare et al. [4], while the most
recent one is by Pass, shelat, and Vaikuntanathan [30]. In fact, the latter work
addresses a similar problem, and establishes a reduction from any SS PKEP to
non-malleable SS PKEP, without any further assumptions (and in a non-black
box way). Non-malleable PKEP is a somewhat weaker security requirement than
that of CCA2 (in particular, it is equivalent [8] to a definition where the adver-
sary is allowed a single, parallel CCA2 query). As the authors of [30] discuss,
their result does not generalize to a construction for general CCA security, which
remains an interesting open question.

In sum, the current state of knowledge regarding the question we study, is
that there is a construction of CCA PKEP from SS PKEP with additional as-
sumptions, as well as a (non-black-box) construction of (the weaker) NM PKEP
from SS PKEP without any further assumptions. It is not known whether there
is an equivalence (whether through a black-box or a non-black-box construction)
between SS PKEP and CCA PKEP.

As will be explained below, we show a black-box separation between semantic
and CCA1 security for a large interesting class of constructions. This can be
interpreted as evidence toward a negative answer to our question, or as guidance
toward a positive answer (a reduction).

1.1 Black-Box Reductions and Separations

The existence of most modern cryptographic primitives implies P 6= NP, and
thus is currently too difficult to prove unconditionally. Instead, cryptographers
put a great deal of effort into constructing more complex primitives from simpler
ones that are assumed to exist. In such constructions (reductions), if we assume
primitives of type P exist and wish to show that a primitive of type Q exists,
then we provide a construction C such that C(MP ) is an implementation of Q



whenever MP is an implementation of P . This is proved by showing that any
supposed adversary AQ breaking C(MP ) as an implementation of Q, can be
used for an adversary algorithm AP breaking MP as an implementation of P .

However, almost all constructions in modern cryptography are black-box (for
example, the equivalence of one-way functions, weak one-way functions, PRNG’s,
PRFG’s, PRPG’s and digital signatures [19, 22, 26, 28, 33].) This means, intu-
itively,4 that the construction C of Q uses the implementation MP of P as a
black box (or oracle), without using the algorithmic description (actual code)
of the construction. Moreover, the proof constructs the adversary AP which
uses the adversary AQ in a black-box manner (again, using it just as an oracle,
without looking at its actual code).

While it is not clear how to prove a negative result, namely that there exist
no reduction of primitive Q to primitive P , Impagliazzo and Rudich [23] initi-
ated a methodology for proving that no black-box reductions exist. Specifically,
their methodology involved proving that no relativizing reduction exists (note
that black box reductions must relativize). This is done by exhibiting an ora-
cle relative to which an implementation of P exists, while an implementation
of Q does not.5 Using this methodology, [23] proved a black-box separation be-
tween key agreement and one-way functions. A line of subsequent works used
this methodology or new variants to show black-box separations among vari-
ous other cryptographic primitives (c.f. [34, 6, 36, 24, 16, 17]), and to show that
black-box constructions suffer from inherent efficiency limitations [25, 14, 15].

Non-Black-Box Constructions. We note that while the vast majority of con-
structions in cryptography are black-box, there are several results that are non-
black-box (importantly, all known constructions of CCA secure PKEP from
generic assumption are non-black-box). Many of these constructions are based
on using Zero-Knowledge (ZK) or Witness Indistinguishable (WI) proofs (both
interactive and non-interactive) in the construction.6 These proofs are often used

4 There are actually several subtleties and different types of black-box reductions
of varying strengths, c.f. [32]. However, this intuitive description suffices for our
presentation purposes here.

5 Even here it’s not immediately clear how to make this approach work, since the
construction and its proof of security could always ignore the presence of the oracle
and independently realize the primitive Q. To address this problem, Impagliazzo and
Rudich [23] give a model in which one can prove separations modulo some major
results in complexity theory. In their model they begin by assuming that P = NP,
and adding an oracle O relative to which P exists and Q does not, implying that a
black-box reduction would yield a proof that P 6= NP. Subsequent work, starting
with Simon [36], used a stronger approach that embeds a PSPACE complete portion
into the oracle O before proving that relative to O P exists but Q does not. This
yields an unconditional proof that no relativizing (and thus no black-box) reductions
exist. Other subsequent work (e.g. [17]) relaxed this approach to obtain a weaker
black-box separation methodology.

6 Perhaps the only exception is the works of Barak [2, 3] who has shown the existence of
some protocols that are non-black-box, and that do not make use of ZK techniques.



to prove some property about the circuit description of a cryptographic primi-
tive, and thus require the primitive to have a circuit description, and so are not
black-box. Examples of such constructions include the development of PKEP
that are secure against chosen ciphertext attacks [29, 35], assuming (enhanced)
trapdoor permutations exist7. Unfortunately, the protocols that perform such
proofs are invariably far too inefficient for practical deployment of the resulting
cryptographic primitive (although, they are still polynomial time, they are of
a degree that is too large to be practical), thus further justifying the quest for
black-box constructions.

The Meaning of Black-Box Separations in Cryptography and Our Scenario In
general, a black-box separation can be interpreted as evidence that a reduction
of Q to P is unlikely using current techniques, or at least that it is unlikely to
be efficient (as black-box reductions seem to be much more efficient than non-
black-box ones). Such results may also be viewed as guiding which approaches
to take when trying to actually prove a reduction exists. We refer the reader
to the previous literature on black-box separations, e.g. [23, 32], for a more in-
depth discussion of the meaning and importance of black-box separations in
cryptography.

In the particular scenario of the black-box constructions of CCA secure
PKEP from SS secure ones, we can view a separation as pointing to several
possibilities:

– The need to develop some form of appropriate ZK or WI proofs based on
semantic security (and such a direction is attempted in [30]), but such con-
structions are still likely to be inefficient.

– The need to develop more non-black-box techniques that are more efficient
and applicable to the scenario of public-key encryption.

– In the failure of the latter two points, any construction of a CCA secure
primitive derived solely from the hardness of a SS secure PKEP will be
inefficient, or need to take into account specifics of the assumption that
are not generic. For instance, any CCA cryptosystem based on SS PKEP
proposed by Ajtai and Dwork [1], that results from the assumed hardness
of a lattice problem, will either be too inefficient to be practically useful
due to the need to use inefficient non-black-box techniques, or will require
a unique construction whose proof of security relies on specific properties of
the lattice assumption. This direction might include finding efficient ZK or
WI proofs based on the specific hardness assumption under consideration.

1.2 Our Contributions

We prove the following:

7 Both of these results actually only need the requirement that certain types of non-
interactive zero-knowledge proofs exist, and these proofs are known to exist relative
to enhanced trapdoor permutations



Theorem (informal statement): There exists no black box reduction that
from a given SS PKEP (g, e, d) constructs a CCA1 secure scheme (Gg,e,d, Eg,e,d, Dg,d)

We call such reductions (where the new primitive’s decryption algorithm does
not query the underlying primitive’s encryption algorithm) shielding reductions.
Our result, then, rules out any shielding black box reductions of CCA1 PKEP to
SS PKEP. Consequently, the only possible constructions of a CCA1 (and thus
also of CCA2) secure PKEP from a SS PKEP must either be non-black-box,
or have its decryption algorithm use the encryption algorithm of the underlying
scheme in an essential way.

Our Model and Proof Technique. The proof essentially follows the IR [23]
methodology, showing that there is no (shielding) black-box reduction. This
is done by introducing an oracle O relative to which there exists a SS PKEP
O = (g, e,d), but no CCA secure PKEP (GO,EO,Dg,d) exists relative to O.8

Our oracle O includes (g, e,d), where g, e are random functions. If there were
no other parts to the oracle, the proof of semantic security would be immediate,
but then O would in fact be CCA secure as well. Thus, we add more “weak-
ening” components to O, which make the proof of semantic security a little
harder but still relatively simple, but make O and any other candidate scheme
(GO,EO,Dg,d) vulnerable to CCA1 attacks. The latter is the technical heart
of the proof, which is quite complex. We chose to expand on the intuition and
main ideas of the proof. The full proof with all technical detail appears at [18].

For clarity of presentation, we start by thinking of all participants as be-
ing computationally unlimited, but restricted to making a polynomial number
of polynomial sized oracle queries to the oracle O. This already gives an in-
teresting result, and encompasses all the main issues in the proof. Because the
constructed adversary in the proof only uses more than a polynomial amount
of time (i.e. its computationally unlimited powers) to search for and randomly
choose efficiently verifiable strings, it is therefore possible to remove the require-
ment of computationally unlimited parties and replace it with the ability of
randomly choosing NP witnesses. The proof can then be extended to support
computationally bounded parties, by adding a PSPACE complete component to
the oracle (or assuming P = NP), achieving the standard separation model of
[23] and most subsequent work.

It may seem that if a construction of a CCA secure scheme (G,E,D) from
any SS scheme (g, e,d) exists, it would be unnatural for D to call e. After all,
e is intended to be used by parties that do not require knowledge of any secret
keys, thus using it in an essential way for a decryption algorithm seems counter
intuitive.

However, we show that relative to our oracle O, there is in fact a CCA2
secure scheme, where D uses e (namely a non-shielding black-box construction).

8 This does not exactly follow the IR methodology, because it does not rule out any rel-
ativizing reductions (as the new primitive’s (G,E,D) algorithms do not have access
to the entire oracle O, only to the underlying primitive’s algorithms). Nonetheless,
it rules out all (shielding) black box reductions.



The basic idea behind this scheme is the following (full details can be found
in the full version [18]). To encrypt a message bit b with a random string r,
first encrypt b using e with a public-key pk (and the randomness provided by
the string r), and then encrypt all the individual bits of r as well using the
same public-key, using new random strings derived deterministically from r (for
example r + 1, r + 2, . . .).

This CCA2 secure (relative to our oracle) primitive implies that the shielding
limitation on the decryption algorithm in our theorem is inherent for our oracle
(and not just a gap in our proof analysis). On the other hand, note that this
scheme is artificial, and makes heavy use of the fact that e is a random function,
by using new random strings deterministically derived from r (this technique is
legitimate when the encryption function is truly random, but does not work in
general). In fact, based on standard hardness assumptions, it is easy to show
that there exist semantically secure PKEP relative to which the above construc-
tion does not achieve CCA2 security. Similarly, the construction of Fujisaki and
Okamoto [13], which is a black-box construction of CCA PKEP from SS PKEP
in the random oracle model, is also non-shielding, but this again heavily relies
on the random oracle property.

This leaves open the possibility of using the weaker form of black-box sep-
aration of [17] to separate CCA1 security from semantic security without any
restrictions on the black box reduction.9

We feel that closing this gap and answering whether a black box reduction
where the CCA decryption algorithm does invoke the SS encryption algorithm
exists, is a very interesting and non-trivial problem for future research. While
our work does not completely answer the question of whether CCA secure PKEP
can be constructed from SS ones without any further assumptions, we do make
significant progress toward that direction.

Organization. In Section 2 we formally define the notion of PKEP and the
definitions of semantic, CCA1 and CCA2 security. This is followed in Section 3
by a description of our oracle construction, and a proof sketch that relative to
such oracles with overwhelming probability there is an SS PKEP. In Section 4
we present our separation theorem and sketch its proof. In Section 5 we provide
an example construction on which the various parts of the CCA1 attack are
demonstrated, and in Section 6 we briefly discuss why our result transfers to
the more tradition model that assumes P = NP or that includes a PSPACE
oracle.
9 In fact, using this weaker separation model of [17], we can show that there are no

black-box reductions of CCA1 to semantic security for another non-trivial class of
constructions, which includes the artificial example mentioned above. Specifically,
this is the class where D does invoke e in a certain way, where for every suc-
cessful decryption query d(sk , c) ∈ {0, 1} there is a corresponding invocation of
e(g(sk), ∗, ∗) = c (or very roughly, when D invokes e“in every possible opportu-
nity”). The difficult case for which we do not know how to prove a separation, is the
intermediate case where D (roughly) must invoke e in an essential way sometimes,
but not other times.



2 Preliminaries and Definitions

2.1 Notation

Given a set S we use the notation x ∈R S to denote the process of choosing x
uniformly at random from S. Given a function f : N→ R, we say it is negligible
if for all sufficiently large n ∈ N and for all c ∈ N: f(n) ≤ n−c.

2.2 Definitions of PKEPs

Below we give the formal definitions of PKEPs and the notions of semantic,
CCA1 and CCA2 security.

Definition 1 (PKEP). A public-key encryption primitive is a triple of (G, E, D)
of algorithms: G and E are probabilistic while D is deterministic. Let p1 and p2

be polynomials specified by the PKEP.

– for every n, for every r ∈ {0, 1}n G(r) outputs a pair of keys (sk , pk).
– for every m ∈ {0, 1}p1(n), each string r′ ∈ {0, 1}p2(n) of coin tosses of

E and pair (sk , pk) output by G on some input r ∈ {0, 1}n, it holds that
D(sk , E(pk ,m, r′)) = b.

We note that while this definition requires correct decryption our proof can be
easily modified to allow for some error in decryption in any purported CCA1
construction.

Next, we give the definitions of semantic, CCA1 and CCA2 security. The
definitions are presented concurrently.

Definition 2. Let EP = (G, E, D) be a PKEP. Let A = (A1, A2) be a proba-
bilistic adversary that is described in two parts, each of which has access to an
oracle.

The PKEP EP is atk-secure, where atk ∈ {SS,CCA1,CCA2}, if there exists
a negligible function µ such that for every adversary A = (A1, A2) and for all
sufficiently large n ∈ N:

Pr
s∈R{0,1}n,(pk ,sk)←G(s)

(x0,x1,σ)←A
O1
1 (pk)

b∈R{0,1};r∈R{0,1}p2(n)c←E(pk ,xb,r)

[AO2
2 (σ, c) = b] ≤ 1

2
+ µ(n),

where σ represents state information communicated between the parts of the
adversary, c represents a challenge ciphertext and :

– if atk=SS then O1 and O2 are the null oracle: the oracles give the empty
response, ⊥, to all queries;

– if atk=CCA1 then O1(·) = D(sk , ·), and O2 is the null oracle;
– if atk=CCA2 then O1(·) = D(sk , ·), and O2(·) = D(sk , ·) but modified on

the encryption challenge so that O2(c) = ⊥.



In the case of SS and CCA1 security it is known that there are black-box reduc-
tions in both directions between PKEP that encrypt 1-bit messages and PKEP
that encrypt n-bit messages (for the direction going from encrypting 1 to n bits,
it is easy to see that the concatenation of independent encryptions works as a
construction). We make use of this fact in our result, and focus on primitives
that encrypt the message space of only one bit. Clearly the above definitions
simplify slightly in this case (i.e. x0 = 0 and x1 = 1).

3 The Oracle

We define an experiment that produces an oracle that effectively implements a
PKEP that is semantically secure but not CCA1 secure. We think of the oracle
as consisting of 5 sub-oracles (g, e,d,w,u), but this can easily be unified into one
oracle by appropriate coding. This security of the oracle if achieved by effectively
defining g, e to be appropriate random length increasing functions, and defining
d appropriately, so that it can appropriately decrypt these function. This easily
gives a secure PKEP, alas it is too secure (CCA2). Therefore, in order to weaken
its security a fourth component of the oracle w is added which given a public-
key pk for (g, e, d) will output an encrypted version of the secret-key. This is
of no use to the adversary in the SS definition of security, but makes it trivial
for a CCA adversary to break the primitive’s security. Finally, a fifth sub-oracle
u is added that gives the adversary the ability to determine the legitimacy of
public-keys and ciphertexts (i.e., those that could legitimately be output by g
and e); this sub-oracle is not necessary for the result, but substantially simplifies
an already technical proof.

Definition 3 (Oracle Distribution). Let O = (g, e,d,w,u) ← Υ denote an
oracle that is chosen randomly according to the distribution described below. For
each n ∈ N let:

g: {0, 1}n → {0, 1}3n be a random one-to-one function. (g generates public-keys
given secret-keys.)

e: {0, 1}3n×{0, 1}×{0, 1}n → {0, 1}3n where for every pk, the function e(pk , ·, ·)
is a uniformly at random selected one-to-one function. (e takes a public-key,
a message bit and a random string, and outputs a ciphertext.)

d: {0, 1}n × {0, 1}3n → {0, 1,⊥} where for every sk , c and b set d(sk , c) = b if
there exists an r such that e(g(sk), b, r) = c; otherwise set d(sk , c) = ⊥. (d
takes a secret-key and ciphertext and outputs the corresponding decryption.)

w: {0, 1}3n × {0, 1}n → {0, 1}3n×n where for each pk and j set w(pk , j) = ⊥
if g−1(pk) is undefined; otherwise, if g−1(pk) = sk

defn
= (sk1, ..., skn), set

w(pk , j) = e(pk , sk1, rpk ,1,j), . . . , e(pk , skn, rpk ,n,j), where for 1 ≤ k ≤ n let
rpk ,k,j ∈R {0, 1}n. (w takes a public-key and an index as input, and outputs
a bit-by-bit encryption of the public-key’s corresponding secret-key.)

u: {0, 1}3n×{0, 1}3n → {>,⊥} where for each pk and c set u(pk , c) = > if there
exists an sk , b and r such that g(sk) = pk and e(pk , b, r) = c; otherwise, set
u(pk , c) = ⊥. (u takes a public-key and a string, and determines if the string
corresponds to an encryption relative to the public-key.)



Notation: In order to ease discussions of queries to an oracle O, we briefly
introduce some notation. Given an oracle O we often say that O = (O, R)
where O = (g, e,d) denotes the sub-oracles corresponding to the encryption
primitive, and R = (u,w) corresponds to the security weakening sub-oracle
w and the helper oracle u. We denote by (o, q) the query q to the sub-oracle
o ∈ {g, e,d,w,u} in O. For example, we denote by (g, sk) the query g(sk).
Similarly, we denote by the pair (< o, q >, r) the response r to the query q
made to the sub-oracle o. We call such a pair a query/response, and say a
query/response (< o, q >, r) is consistent with o if o(q) = r. In cases where
a query q = (v1, .., vi) is represented by several semantically different strings
v1, .., vi we denote by (< o, v1, .., vj−1, ∗, vj+1, ..vi >, r) the fact that there exists
a vj such that the oracle query o(v1, v2, ..., vi) was made and the response was
r. For example (< e, (pk , ∗, r) >, c) represents the notion that there exists a bit
b ∈ {0, 1} such that (< e, (pk , b, r) >, c) represents a query/response consistent
with the sub-oracle e.

The following theorem states that this oracle provides semantic security for
the PKEP (g, e,d).

Theorem 1. For every oracle adversary A limited to a polynomial number of
oracle queries, there exists a negligible function µ such that for all sufficiently
large n:

Pr
O←Υ

[
Pr[AO(pk , c) = b] ≤ 1/2 + µ(n)

]
≥ 1− 1/2n/2

where the interior probability is over the choice of sk ∈R {0, 1}n, b ∈R {0, 1}, r ∈R

{0, 1}n and any coin flips performed by A. Further, pk = g(sk) and c = e(pk , b, r).

Proof Sketch:If O consisted of only the sub-oracles g, e and d, then security
would follow directly from their probabilistic construction (in a way which is by
now standard, c.f. [23, 16]). To ensure that w and u do not destroy this security,
it is shown that the adversary can effectively simulate the responses of these
oracles. An adversary can simulate the response to a query u(pk , c) by outputting
b if there has been a previous query/response (< e, pk , b, ∗ >, c), and otherwise
outputting ⊥. When b is output the simulation is clearly correct, and when
outputting ⊥ the simulation is correct with high probability, as the ability of the
adversary to find a value c such that e(pk , ∗, ∗)−1(c) 6= ∅ is negligible (in n) due
to the random selection of e (again, following a standard argument). Similarly,
w(pk , i) can be simulated if there has previously been a query/response of the
form (< g, sk >, pk) by outputting a random encryption of sk , and otherwise
outputting ⊥.

It is not hard to verify that (g, e,d) is not secure against a CCA1 attack: The
adversary A1 takes the input pk , queries w(pk , 0) to get an encrypted version
of sk , and then uses its CCA1 access to the decryption oracle to decrypt sk .
sk is then passed to A2, which uses it to evaluate and output d(sk , c). In the
next section we show that in fact any shielding construction is vulnerable to a
(possibly much more complex) CCA1 attack.



4 The Separation

4.1 A Large Class of Constructions: Shielding Reductions

In order to state a proper theorem that provably restricts the class of black-
box constructions capable of being CCA1 secure, this class needs to be formally
defined. Let O = (g, e,d) be a semantically secure PKEP. We will consider
constructions (GO,EO,DO) of PKEPs that are purportedly CCA1 secure. We
require that there exist constants ρ0, ρ1, ρ2 and ρ3 such that for all sufficiently
large n ∈ N we have:

– GO : {0, 1}n → {0, 1}nρ0 × {0, 1}nρ1 . (GO(S) = (SK ,PK ))
– EO : {0, 1}nρ1 × {0, 1} × {0, 1}nρ2 → {0, 1}nρ3 (EO(PK ,M,R) = C)
– DO : {0, 1}nρ0 × {0, 1}nρ3 → {0, 1} ∪ {⊥}. (DO(SK , C) = M)

In the above definition we consider n the security parameter for the PKEP.
We make several assumptions without loss of generality: each of the algorithms
on inputs corresponding to security parameter n make exactly nq queries to O
of size at most ns, that no duplicate queries are made, that G never queries
d (it can predict the responses itself), and that the triple satisfies the PKEP
correctness property so long as O does (i.e., all ciphertexts decrypt properly,
but again this assumption can be weakened so that random encryptions decrypt
properly with some probability greater than 1/2.).

The important assumption we make is that D does not query e; this is for-
mally what we mean by a shielding construction. This assumption does result
in loss of generality and is what is responsible for the restriction in our sep-
aration of CCA1 and Semantic Security. This assumption is required in order
for latter hybridization experiments to go through. Further, as discussed in the
introduction, using the oracle given in this paper, it is possible to construct a
non-shielding CCA2 secure PKEP, implying that this assumption is necessary
for our oracle.

4.2 Separation Theorem

From this point on, fix an arbitrary PKEP construction (G,E,D) that satisfies
all of the assumptions of Section 4.1 (in particular, it is shielding).

Theorem 2. There exists a CCA1 adversary A = (A1, A2) for which it’s the
case that for all sufficiently large n:

Pr
O=(O,R)←Υ

S∈R{0,1}n,M∈R{0,1},R∈R{0,1}n
ρ2(n)

(PK ,SK )←GO(S),C←EO(PK ,M,R)

[
A

DO(SK ,·),O
1 (PK )→ σ;AO2 (σ,C) = M

]
≥ 1−1/n.

A simple averaging argument then shows that for almost every selection of O,
the adversary breaks the CCA1 security of the PKEP. Combining this with a



simple counting argument shows that there exists a specific oracle relative to
which O = (g, e,d) is semantically secure, but where (G,E,D) is not.

The main idea behind our oracle separation is as follows. since we want to
construct a CCA1 attack, where the adversary only has access to the decryption
oracle before it receives the challenge ciphertext, this access cannot be used to
learn something specific about the challenge. Therefore, the goal of our adversary
will be to use the decryption oracle access to learn enough information on the
secret key, that will allow it to later decrypt the challenge ciphertext with good
probability. This will be done by reconstructing a secret-key SK ′, corresponding
to its public-key, which will later be used with the decryption algorithm D to
decrypt the challenge ciphertext.

In our black-box model, where parties are computationally unlimited but
limited in the number of oracle queries they can make, all security of the con-
structed primitive (G,E,D) must stem from the oracle PKEP (g, e,d). There-
fore, it seems intuitive that the only secret and usable information that an ex-
ecution of GO(S) → (PK ,SK ) embeds in SK are the strings sk for which the
corresponding strings pk = g(sk) have been embedded in PK (It is known by
the work of Impagliazzo and Rudich [23] that the construction needs to use the
’trapdoorness’ of the oracle if it hopes to be secure, as a random-oracle —such
as that provided simply by using only the sub-oracles g and e— is insufficient
to achieve even semantic security). Therefore, our adversary’s goal will be to
retrieve such sk strings by using the decryption oracle. Clearly, the adversary
will additionally have to make use of the sub-oracle w, for without the presence
of this oracle, the scheme (g, e,d) is CCA1 secure. Once such embedded sk are
retrieved, the adversary must learn how to use them to actually construct an
appropriate SK ′ and decrypt the challenge ciphertext. Unfortunately, most of
these steps are non-trivial, and the adversary is not able to generate a key SK ′

that can decrypt every ciphertext. Instead, we focus on the ability of finding an
SK ′ that can be used to decrypt the average ciphertext generated by an exe-
cution of EO(PK ,M,R) for randomly chosen M and R, as this is exactly the
distribution from which the adversary’s challenge ciphertext will come. Below
we give a very high-level description of the steps an adversary must perform to
decrypt a challenge ciphertext for the given PKEP.

The large probabilistic experiment (CCA1 attack) that the adversary will
perform is broken to the following three parts (given in more detail below).

– In the first part, the adversary uses its input PK to learn the relevant public
keys pk and ciphertexts c that are embedded in it.

– In the second part, the adversary’s goal is to learn secret keys sk corre-
sponding to the keys pk recovered in the first stage. Note that for each pk ,
access to w gives the adversary an encrypted version of sk (encrypted with
respect to e(pk , ∗, ∗)). The adversary also has access to a decryption oracle
D(SK , ∗, ∗). Thus, the goal in this stage will be to ’embed’ the encryptions
of sk into useful ciphertexts C that can be fed to the decryption oracle, and
whose decryptions can be translated back to decryptions of sk . We do not
necessarily achieve this goal for all the sk that correspond to pk collected in



the first part. However, we achieve it for enough such sk that make the third
part go through.

– In the third part, the adversary uses the keys sk constructed in the second
part, in order to construct an SK ′ such that D(SK ′, C) decrypts correctly
with high probability for randomly chosen ciphertexts C.

The technical heart of the proof is in the second and third parts, where enough
sk should be retrieved to enable a good construction of SK ′. Below we provide
more technical detail on each of these parts, sketching some of the obstacles
encountered and their solutions. The experiment is then described in Section 5
for a specific PKEP construction example that demonstrates several different
cases in the proof.

A Caveat We point out that the description here assumes that certain highly
unlikely probabilistic events never occur. Examples of such events are the adver-
sary making queries of the form d(sk , c) 6= ⊥ when there has never previously
been a query of the form g(sk) = pk or a query e(pk , ∗, ∗) = c; or that estima-
tions of specific values retrieved through sampling deviate substantially from the
actual value they estimate. In the full version, these bad events are specified, and
their possibility of occurring is taken into account in the analysis. To simplify
presentation here, it is simply assumed they do not occur.

The Environment & the First Part of the Experiment: Learning about
PK Define the environment that the adversary is operating in to consist of the
oracle O = (O, R) that was chosen by Υ in the probabilistic statement of the
theorem, as well as the seed S selected to generate the public- and secret-key
pair (PK ,SK ) = GO(S), where PK is given to the adversary, and access to the
decryption oracle DO(SK , ·) is initially given to the adversary. These are fixed
for the remainder of the description of all three parts.

The first part of the experiment learns some basic facts about the semanti-
cally secure PKEP O, and it learns which pk ∈ g({0, 1}∗) are ’embedded’ in the
public-key PK . The determination of these pk is done by sampling a large num-
ber of executions of EO(PK ,M,R) for randomly chosen M and R and looking
for queries of the form (e, pk , ∗, ∗). If such queries are made, then it is reasonable
to assume that pk might be embedded into PK . Note there are two issues that
immediately arise here: first, there might be values of pk retrieved that have
been arrived at during the execution of E by the response to some query g(sk)
(rather than being embedded in PK). However, such values can easily by filtered
out by monitoring queries to g. The other issue is that there might very well be
pk embedded in PK that are never retrieved by this sampling process, but we
can safely ignore them, as the fact that they do not show up in this sampling
suggests that they are not used during most encryptions of EO(PK ,M,R) for
randomly chosen M and R. Let KS be the set of public-keys pk retrieved in the
first part of the experiment.

The final thing done in this part of the experiment is that a set E of specific
encryptions output by e during the executions of E is created. This is done



because some specific encryption c output by e may be consistently embedded
into encryptions C produced by E (i.e, this information is encoded into PK ).
Later, the decryption algorithm D(SK , ·) may check for the presence of the
embedding of c in C, and refuse to decrypt C if c is missing. Knowledge of such
c ∈ E will be necessary in the second and third parts of the experiment.

To summarize, at the end of the first stage the adversary has a list KS of
public keys pk and a list E of ciphertexts c (with respect to the system O =
(g, e,d)), that were encountered during a large number of random executions of
the encryption protocol EO(PK , ∗, ∗). Intuitively, KS corresponds to the public
keys pk embedded into PK , and E include ciphertexts embedded into PK .

The Second Part of the Experiment: retrieving sk embedded in SK
In the second part of the experiment the adversary attempts to retrieve a subset
of g−1(KS ) to be used to later construct the alternate secret-key SK ′. Again,
the intuition is that the values in g−1(KS ) that are embedded in SK must be
responsible for the purported security of the primitive (G,E,D).

Note that for any pk ∈ KS , the adversary can query w(pk , 0) = (e1, ..., en),
where the response (e1, . . . , en) represents the bit-wise encryption of sk (with
respect to pk). Thus, the adversary’s goal is to embed these bit encryptions ei

into ciphertexts C whose decryption (obtained from the decryption oracle) helps
decrypt ei to obtain sk . This is done using the following idea (presented in an
over simplified form).

Imagine that during the execution of a random encryption of the message M
made by EO(PK ,M,R) there is a query made to e(pk, b, r) in order to encrypt
a bit b for a pk ∈ KS , but which has the property that when one replaces
the query’s response with a random encryption e(pk , 1 − b, ∗) of the bit 1 − b,
the resulting ciphertext C ′ output by E will decrypt to something other than
M (we say that it decrypts improperly since M is not output); but when one
replace the query’s response with a random encryption e(pk , b, ∗) the resulting
ciphertext C ′′ decrypts to M (respectively, we say it decrypts properly). Call
such a query e(pk , b, r) decisive with respect to pk . If we can find such decisive
queries, then the adversary can use the decryption oracle in conjunction with
the encryptions (e1, . . . , en) obtained from w, to retrieve sk = g−1(pk). This is
done by re-executing E(PK ,M,R) n times, where in the ith iteration it replaces
the response to the query e(pk , b, r) with ei. In the ith case call the output of E
Ci. If Ci decrypts to M (as discovered with the adversary’s decryption oracle),
then the adversary knows that the ith bit of sk is b and otherwise it is 1 − b.
Therefore, it can retrieve sk = g−1(pk).

The question is how does the adversary find such decisive queries. There are
actually two issues here: how does the adversary know which pk have decisive
queries, and assuming it knows that a pk has decisive queries, which query
e(pk, ∗, ∗) made during a random encryption EO(PK ,M,R) is decisive. Assume
for the moment that we know that with high probability over the choice of M and
R that there is (on average) a decisive query with respect to pk made during an
execution of EO(PK ,M,R). The adversary can perform nq (the largest number



of queries made by E) hybridization experiments, where in the ith experiment a
large number of encryptions E(PK ,M ′, R′) are performed (for randomly chosen
M ′ and R′) but in each of these the first i responses to queries of the form
e(pk , b, ∗) are replaced with random encryptions of bits e(pk , b′, r′) (b′ and r′

randomly chosen), and the responses to the remainder of the queries e(pk , ∗, ∗)
are left unaltered. Since we have assumed that such a decisive query must exist,
then there will be an i < nq such that there is a significant increase in the
fraction of improper decryptions in the ith and the (i+1)th experiments. In this
case, we can think of the ith query of the form e(pk , ∗, ∗) as being decisive in an
execution of EO(PK ,M,R). Of course this is only true on average, so we cannot
deduce the value of any bit of g−1(pk) with a single call to the decryption oracle
using the decisive encryption. However, for each bit of sk , we can perform a
sampling experiment to retrieve it.

Note that it is the creation of these hybrid ciphertexts that requires us to
introduce the shielding restriction. If the construction were not shielding, there
is no guarantee that any of the hybrid ciphertexts would decrypt, and therefore
the experiment would be useless for retrieving keys. The reason is that, roughly
speaking, the reduction being shielding means that in the process of encrypting
E(PK ,M,R), replacing one random encryption of e(pk , b, r) with another ran-
dom encryption e(pk , b, r′) of the same bit b, should not be noticeable to the
decryption algorithm D, and thus still result in a proper decryption (while re-
placing with an encryption of another bit may result in an improper decryption).

The above explanation assumes that the adversary already knows that a
particular pk ∈ KS will have (on average) a decisive query during a random
execution of EO(PK ,M,R). But this presents a serious challenge: how does the
adversary even know whether any pk has a decisive query, let alone figure out
which pk has one? And what to do about pk that do not have decisive queries?
In fact, it is possible that no individual pk has any decisive queries. Consider for
example a scheme E where the message is encrypted three times with respect to
three different public keys pk1, pk2, pk3, and the decryption algorithm D calls
d on each of them, and outputs the majority.10 Then, it is clear that for any
pk i, even if we replace all encryptions e(pk i, b, ∗) with arbitrary encryptions, the
final ciphertext will decrypt correctly, as long as encryptions with respect to the
other two public keys are unaltered.

We solve the above problems by adding a layer of an hybridization experiment
performed on the set of pk , where at each stage encryptions with respect to
all public keys up to the current one are replaced with random encryptions,
while other encryptions are executed correctly. Specifically, we consider two sets
of keys: a bad key set BKS and a good key set GKS . BKS contains pk that
are embedded in PK , but for which g−1(pk) is unknown. Initially, this is set
to be the set KS . GKS contains those pk that were initially in BKS , but for
which sk = g−1(pk) has been previously retrieved by the adversary. Initially,
GKS = ∅. Given BKS we perform the following hybridization experiments over

10 A more detailed example, including this and several other parts demonstrating var-
ious aspects of the overall experiment, is presented in Section 5.



keys in BKS to find a decisive key pk , and then using the methodology described
earlier to retrieve sk = g−1(pk). We can then remove pk from BKS and insert it
in GKS . The hybridization experiment over BKS is then repeated until enough
secret-keys corresponding to decisive pk embedded into PK have been retrieved.

Suppose BKS = {pk1, ..., pk `}, then l hybridization experiments are per-
formed where in the ith experiment we sample the percentage of times a mod-
ified execution of EO(PK ,M,R) produces a ciphertext that decrypts properly,
when all queries of the form e(pkk, b, r) for (k ≤ i) are replaced with queries of
random encryptions e(pkk, b′, r′) for randomly chosen b′ and r′. Clearly in the
zeroth experiment, by the correctness property of the PKEP, all encryptions will
properly decrypt, and we expect that as we go through the experiments there
will be some experiment i, where the percentage of encryptions that decrypt
properly drops substantially. This is because we expect that some bits that E is
using to encode M are encoded in encryption e(pk , ∗, ∗) for pk ∈ BKS . If there
is no such substantial drop in the percentage of proper decryptions by the final
hybridization experiment, then this intuitively corresponds to the case where
enough sk that are embedded in SK have been retrieved that are sufficient to
construct an alternate decryption key SK ′. Note that this does not mean that
all of the embedded sk have been retrieved, only that those that have will suffice
to construct an SK ′ that can be used to decrypt an average ciphertext generated
by PK .

To illustrate this, consider again the example mentioned above, where the
decryption algorithm outputs the majority of decryptions with respect to three
keys pk1, pk2, pk3. Here, the first hybridization experiment will identify pk2 as
having some decisive query j, and find sk2 = g−1(pk2) (by replacing encryptions
with respect to pk1, as well as the first j − 1 encryptions with respect to pk2,
with random encryptions; maintaining encryptions with respect to pk3, as well as
encryptions j +1 and on with respect to pk2 correctly, and replacing the j’th en-
cryption with respect to pk2 with the encrypted bit of sk2). It will then move pk2

to GKS and perform the hybridization experiment again on BKS = {pk1, pk3}
(where encryptions with respect to pk2 are now always done correctly). It will
identify pk3 as having a decisive query and find sk3 in a similar manner, ending
up with BKS = {pk1}, for which it will not succeed to retrieve a corresponding
sk1 (because once encryptions with respect to pk2, pk3 are performed correctly,
there is no decisive query for pk1). Nonetheless, having sk2, sk3 is sufficient to
decrypt the challenge ciphertexts.

Finally, we note that the hybridization experiments described above must
take into account the lists obtained in the first stage. In that stage the adver-
sary constructed a set of encryptions E that had the property that they might
be embedded into encryptions E(PK ,M ′, R′) (for random M ′ and R′), and the
decryption algorithm D(SK , ·) checked for the presence of these embeddings.
Because of this, when performing the hybridization experiments that were pre-
viously described, it is essential that the response to a query e(pk, b, r) is replace
only if e(pk , b, r) 6∈ E .



A More Formal Look. We now give a slightly more formal presentation of
the second part of the experiment, to give an idea of technicalities involved.
In Figure 1 pseudo-code is given for the second part of the experiment and
for a helper function Ê, which is a modified version of the encryption algo-
rithm E. This encryption algorithm takes as additional arguments a set BKS
of bad-keys for which responses to encryption queries can be modified, a set E
of encryption queries that cannot be modified, and a series of 2nq ciphertexts
for each pk ∈ BKS , where cpk ,b

i is used to answer the ith oracle query of the
form e(pk , b, ∗) made by E, when pk ∈ BKS and (e, pk , b, r) /∈ E . By properly
modifying the input values to this series, hybridization experiments can easily be
performed. Recall that nq is, by assumption, the largest number of queries that
E makes. To aid future discussion, we say that the input c

pkj ,b

` corresponds to a
correct encrypted bit if c

pkj ,b

` = e(pk j , b, ∗), and otherwise it corresponds an in-
correct encrypted bit. The algorithm Ê is not called directly by the second part
of the experiment, rather a function called ApproxErrorRate(t,PK , ES,BKS )
is introduced to repeatedly call Ê on a distribution of inputs—which will be
specified momentarily— and returns an estimate of the probability that cipher-
texts from that distribution decrypt properly. This estimate is achieved by us-
ing the decryption oracle to determine the fraction of ciphertexts output by
Ê that decrypt properly. The distribution of inputs to Ê is specified by call-
ing Ê(PK ,M,R,BKS , E , c′1, ..., c′t, ct+1, ..., c2|BKS |nq ) where M and R are chosen
randomly, c′1, ..., c

′
t are encryptions of random-bits under the appropriate pk ’s,

and ct+1...c2|BKS |nq are encryptions of correct encrypted bits. Therefore, by call-
ing ApproxErrorRate with an increasing value of t we can perform a hybridization
experiment in the second part of the experiment.

To summarize, at the end of the second stage the adversary has a list GKS of
public keys (which is a subset of the list KS from the first stage), together with
a corresponding sk = g−1(pk) for each pk in GKS . Intuitively, these g−1(GKS )
are the ’essential’ secret keys sk (with respect to the system O = (g, e, d)) which
are embedded into the secret key corresponding to PK and are used for proper
decryption (in the system (GO,EO,DO)).

The Third Part of the Experiment: Constructing SK ′ Next, we specify
how to use the secret-keys in g−1(GKS ) in order to construct a secret-key SK ′.
Given a specific example of a PKEP, this can often be a trivial task, but we
require a uniform procedure that is guaranteed to work for all possible construc-
tions that are considered by the statement of the theorem. Further, there is no
guarantee that GKS = KS , so there may very well be a secret-key sk embed-
ded into SK , for which g(sk) 6∈ GKS . From the second part of the experiment
we know that g−1(GKS ) contains enough secret-keys embedded into SK to de-
crypt properly, but not necessarily those that are necessary to reconstruct SK .
For an example of the difficulty of constructing a uniform protocol for construct-
ing SK ′, consider two PKEP that completely ignore the oracle O, and therefore
fall into the theorem’s specification of acceptable constructions: an RSA based
and a Quadratic Residuosity based PKEP. In both cases there would be no sk



bEO(PK ,M,R,BKS, E, cpk1,01 , ..., c
pk1,0
nq

, c
pk1,1
1 , ..., c

pk1,1
nq

, · · · , , c
pk|BKS|,1
1 , ..., c

pk|BKS|,1
nq

)

∀ pk′ ∈ BKS, b′ ∈ {0, 1} set δ
pk′,b′ ← 0

Simulate Execution EO(PK ,M,R)
On query (g, sk) reply with g(sk).
On query (d, sk, c) reply with d(sk, c).
On query (e, pk, b, r)

If pk /∈ KS or (e, pk, b, r) ∈ E reply with e(pk, b, r).
otherwise

δpk,b ← δpk,b + 1

reply with cpk,b
δpk,b

Output result of simulation

Exp2(PK ,KS, E)
(1) Let BKS ← KS
(2) Let GKS ← ∅
(3) Repeat |KS| times
(4) w ← 2|BKS|nq
(5) for t = 0 to w
(6) Let pt = ApproxErrorRate(t, PK , E,BKS)
(7) ∆ ← {j| 1 ≤ j ≤ w and |pj − pj−1| >

1
nα6 } (computed gaps)

(8) If ∆ = ∅ then Output (BKS,GKS) and FINISH EXPERIMENT
(9) ` ← min∆
(10) Let e(pkj , b, ∗) correspond to the correct encrypted bit of the `th ciphertext

input to bE.
(11) ψ ← |pk|/3
(12) For each k (1 ≤ k ≤ ψ) set Dk ← ∅
(13) for z = 1 to n2α4
(14) (d1, ..., dψ) ← w(pk, z) (we consider z a binary string)
(15) For each k (1 ≤ k ≤ ψ) set Dk ← Dk ∪ {dk}
(16) for k = 1 to ψ

(17) πk ← ApproxErrorRate′(`, PK , E,BKS,Dk)
(18) If |πk − p`−1| ≥ 1/nα5 then skk ← 1 − b otherwise skk ← b

(19) Let sk = (sk1, ..., skψ)

(20) GKS ← GKS ∪ {(pk, sk)}
(21) BKS ← BKS \ {pk}

Fig. 1.

embedded in the secret-keys of either PKEP and so this should in theory be an
easy case, but based on the public-keys of each respective PKEP the adversary
must generate corresponding secret-keys. To solve this problem, in order to find
corresponding secret-keys a massive search is used.

We make use of the unlimited computational power of the adversary and
have it enumerate all possible pairs of oracles O∗ generated by Υ and seeds S∗

that are consistent with our knowledge of O and SK , and create a set of Valid
Environments. Note that this step does not actually require the adversary to
query the oracle O, for it is simply enumerating all possible environments and
checking to see which are consistent. An oracle O∗ and seed S∗ are consistent if
GO

∗
(S∗) = (PK ,SK ∗) for some SK ∗, this execution of G queries g∗(sk ′) = pk

for each pk ∈ KS , and sk ′ = g−1(pk) for each pk ∈ GKS . Further, O∗ is
consistent with any queries and responses that have been made to O by the
adversary, and DO

∗
(SK ∗, ·) is consistent with any queries that have been made

to the decryption oracle DO(SK , ·).
Because of the random process Υ by which O was selected and the random

selection of S, each pair (O∗, S∗) in the set of Valid Environment is equally likely
to be the environment (O, S) that the adversary is actually in. Therefore, the
adversary uniformly at random selects one such pair (O′, S′), and lets SK ′ be the
reconstructed secret-key where GO

′
(S′) = (PK ,SK ′). At this point SK ′ contains



the secret-keys in g−1(GKS ), but while O and O′ agree on all of the queries that
have previously been made by the adversary, they probably agree on little else.
Therefore, we consolidate the oracles O′ and O into a new oracle Ô. This is done
so that O and Ô agree on nearly all queries (and in particular any queries that
are likely to be made during calls to C = EO(PK ,M,R) and DO(SK , C)), but
relative to which it is still the case that GbO(S′) = (SK ′,PK ). This is achieved
by taking O and modifying so that it is consistent with any queries that would
have been made during the execution of GO′(S′) = (SK ′,PK ) and DO′(SK ′, C)
for every decryption C made by the adversary so far to the decryption oracle
DO(SK , ·).

SinceO and Ô agree on nearly all queries, with high probability EO(PK ,M,R) =
EbO(PK ,M,R) = C and therefore M = DbO(SK ′, C) = DO(SK , C). Therefore,
if the adversary could execute DbO(SK ′, ·) we’d be done, and the adversary could
break the CCA1 security of the PKEP with high probability, by simply decrypt-
ing the challenge ciphertext. Unfortunately, the adversary cannot construct the
oracle Ô with a polynomial number of queries toO. It will instead simulate access
to Ô using O and u. The largest problem in simulating Ô during an execution
of DbO(SK ′, C) is in simulating queries d̂(sk , c) for ĝ(sk) = pk ∈ BKS , because
e(pk , b, r) = ê(pk , b, r) = c for most b and r, but most likely sk 6= g−1(pk),
and therefore d̂(sk , c) = b but d(sk , c) = ⊥. However, it is exactly such queries
whose responses were found not to be necessary for the decryption algorithm,
because pk ∈ BKS . Therefore, on such queries d̂(sk , c) the adversary simply flips
a coin and outputs the result as the response to the query. This is where we use
u to make sure that indeed a bit in {0, 1} should be output, as opposed to ⊥.
Using this simulation, DbO(SK , C) is likely to decrypt properly for an encryp-
tion EO(PK ,M,R) for randomly chosen M and R, and thus the adversary can
decrypt its challenge ciphertext.

5 An Example

We consider an example of a simple (and artificial) PKEP construction to help
ground and clarify the different parts of the experiment. Fix n ∈ N. Define:

– G
O(S): let S = (S0, ..., ..., S8), where each Si ∈ {0, 1}n. Query g(Si) = pk i

for each i, 0 ≤ i ≤ 6. Compute k1 = e(pk6, 0, S8), and outputs PK =
(pk0, .., pk5, pk6, S8) and SK = (sk0 = S0, ..., sk5 = S5, sk6 = S6, k1).

– E
O(PK ,M,R): let PK be as noted, M ∈ {0, 1} and R = (R0, ..., R6)

where each Ri ∈ {0, 1}n. Compute ci = e(pk i,M,Ri) for each 1 ≤ i ≤ 5.
Compute k1 = e(pk6, 0, S8). If R6 is the bit-string of all zeros, then query
e(pk0,M,R0) = c0 and output C = (0, k1, 03n, 03n, 03n, 03n, c0); otherwise,
output C = (1, k1, c1, c2, . . . , c5).

– D
O(SK , C): Let C = (b, k′1, c1, c2, . . . , c5) where b ∈ {0, 1}, k′1 ∈ {0, 1}n and

each ci ∈ {0, 1}n. Let SK be as noted. If k′1 6= k1 output ⊥. Otherwise, if
d(sk6, k

′
1) 6= 0 output ⊥. Otherwise, If b = 0, then output d(sk0, c0). Other-

wise, let Mi = d(sk i, ci) for each i ≤ 5, and output Majority(M1, ...,M5),



Now consider a (PK, SK) generated by GO(S) as described above, and a CCA
adversary attempting break the security of the scheme (G,E,D) as prescribed
by our experiments.

In the first part of our experiment the adversary will perform a large number
of encryptions EO(PK, M, R) for randomly chosen M and R, and will observe
queries of the form e(pk i, ∗, ∗) made during such executions for 1 ≤ i ≤ 6, but it is
unlikely that queries e(pk0, ∗, ∗) are observed. Thus it is unlikely the adversary
will need pk0 to decrypt the challenge ciphertext and it can be ignored. The
adversary also will observe the query e(pk6, 0, S8) with response k1, and note
that it will have to ensure the key it later constructs is consistent with this
query/response.

In the second part of the experiment the adversary will attempt to determine
sk i for 1 ≤ i ≤ 6. This will be done by encrypting random messages by executing
E

O(PK ,M,R), but replacing responses of queries of the form e(pk i, b, r) with
responses to e(pk i, b

′, r′) where b′ and r′ are chosen randomly in a hybridization
experiment. In this case the hybridization is over the pk i. In such an experiment,
the resulting ciphertexts C ′ will either decrypt to the appropriate message M
that was originally encrypted or it will not (note the adversary uses the decryp-
tion oracle to check this).

In our toy example, randomizing only the responses to all queries epki , i ∈
{1, 2}, will result in proper decryptions, as the Majority function in D acts as a
form of error-correcting code. However, when responses to all queries of the form
epki , i ∈ {1, 2, 3}, are randomized, the result is occasional improper decryptions.
The occasional improper decryption allows the adversary to determine sk3. This
is because the oracle w will provide a number of random encryptions of sk3

that can injected into modified executions of EO(PK ,M,R) as in the hybrid
experiment. By determining if the ciphertexts produced by these executions of
E decrypt properly the bits of sk3 can be retrieved. By the end of the second part
of the experiment the adversary will have retrieved sk i for 3 ≤ i ≤ 6. Note that
sk i, 0 ≤ i ≤ 2 will not be retrieved because of the error-correcting properties
of the Majority function in D. Still, this is sufficient to decrypt on average and
thus all the adversary will ask.

In the third part of the experiment the adversary must reconstruct the secret-
key. Since it does not know sk0, ..., sk2 it cannot reconstruct SK , but it can con-
struct an SK ′ that is satisfactory to decrypt the challenge ciphertext. From ob-
servation it is clear that a secret-key of the form SK ′ = (sk ′0, sk

′
1, sk

′
2, sk3, ..., sk6, k1)

will decrypt the challenge ciphertext with high probability, only possibly failing
in the unlikely event that the first bit of the challenge ciphertext is 0. The issue
is automating the above construction. In order to do so the adversary essentially
searches through all oracle/seed pairs (Ô, Ŝ) in which the oracles are consistent
with everything the adversary knows about O (i.e. g(sk i) = pk i for 3 ≤ i ≤ 6
and e(pk6, 0, S8) = k1) and that GbO(Ŝ) = (ŜK,PK ). Such a ŜK is then used
by the adversary to decrypt its challenge ciphertext.



6 The Complexity Theoretic Statements

A quick review of the experiment the adversary performs shows that the only
situation in which the adversary uses more than a polynomial amount of com-
putation is when it must select uniformly at random an oracle and seed pair
(O′, S′) from the set of Valid Environments. It selects such oracles and seeds
based on them satisfying a polynomial number of local consistency constraints
that are efficiently verifiable. Further, once this is done almost all of the oracle
O′ is thrown out when the adversary consolidates O with O′. Therefore, the
process of randomly selecting an oracle and seed could alternately be thought
of as selecting an oracle ’stub’ with corresponding seeds, where the oracle stub
only specifies the oracle’s values on those queries that are necessary to satisfy
the constraints mentioned. Once such a stub had been selected, the oracle can be
randomly extended to a full oracle if needed without changing the distribution.
However, choosing such stubs can be thought of as uniformly at random select-
ing an NP witness. Bellare, Goldreich and Petrank [5] show that if P = NP
then one can efficiently and uniformly at random select NP-Witnesses. There-
fore, we can consider this result in the more traditional model of Impagliazzo
and Rudich[23], and state the theorem in the traditional computational model,
based on the assumption that P = NP. Alternatively, following the lead of Si-
mon [36], we can further embed a PSPACE oracle into our final oracle O. Since
PPSPACE = NPPSPACE we get a restriction on black-box result in the standard
computational model.
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