
Multi-Authority Attribute Based Encryption

Melissa Chase

Computer Science Department
Brown University

Providence, RI 02912
mchase@cs.brown.edu

Abstract. In an identity based encryption scheme, each user is identi-
fied by a unique identity string. An attribute based encryption scheme
(ABE), in contrast, is a scheme in which each user is identified by a set
of attributes, and some function of those attributes is used to determine
decryption ability for each ciphertext. Sahai and Waters introduced a
single authority attribute encryption scheme and left open the question
of whether a scheme could be constructed in which multiple authorities
were allowed to distribute attributes [SW05]. We answer this question in
the affirmative.
Our scheme allows any polynomial number of independent authorities to
monitor attributes and distribute secret keys. An encryptor can choose,
for each authority, a number dk and a set of attributes; he can then
encrypt a message such that a user can only decrypt if he has at least dk

of the given attributes from each authority k. Our scheme can tolerate
an arbitrary number of corrupt authoritites.
We also show how to apply our techniques to achieve a multiauthority
version of the large universe fine grained access control ABE presented
by Gopal et al. [GPSW06].

1 Introduction

Identity based encryption(IBE), introduced by Shamir [Sha85], is a variant of
encryption which allows users to use any string as their public key (for example,
an email address). This means that the sender can send messages knowing only
the recipient’s identity (or email address), thus eliminating the need for a sep-
arate infrastructure to distribute public keys. The first IBE systems were given
by Boneh and Franklin [BF01] and Cocks [Coc01], and IBE has received a lot of
attention in the literature since then [CHK03,BB04,Wat05].

However, this scenario may not be entirely realistic, since we don’t neces-
sarily have a unique string identifier for each person. Instead, we often identify
people by their attributes. We might want to send a message to the secretary
in accounting in charge of travel reimbursements, or send a question to a nurse
in a particular hospital who is knowledgeable about prescriptions, or announce
a party to anyone living in town who is either a student or between the ages
of 18 and 25. Thus, Sahai and Waters gave a fuzzy IBE scheme which could be
used for attribute based encryption. In this model, a recipient is defined not by

2

a single string, but by a set of attributes [SW05]. Sahai and Waters describe a
scheme (from here on referred to as SW) in which a sender can encrypt a mes-
sage specifying an attribute set and a number d so that only a recipient who has
at least d of the given attributes can decrypt the message. For example, a sender
could encrypt a message to be decryptable by anyone who has 2 out of 3 of: a
Rhode Island driver’s license, Rhode Island voter registration, or a student ID
from Brown University. Thus, their scheme allows the sender to encrypt a mes-
sage for more than one recipient, and to specify who should be able to decrypt,
using attributes alone.

There is, however, one major limitation to the SW scheme. In their scheme,
as in every IBE scheme, the user must go to a trusted party and prove his identity
in order to obtain a secret key which will allow him to decrypt messages. In this
case, each user must go to the trusted server, prove that he has a certain set of
attributes, and then receive secret keys corresponding to each of those attributes.
However, this means we must have one trusted server who monitors all attributes
– who keeps records of driver’s licenses, voter registration, and college enrollment.
In reality, we have 3 different entities responsible for maintaining this information
(the RI DMV, the RI Board of Elections, and the University office), so we would
want to be able to entrust each of these to a different (and perhaps not entirely
trusted) server. Thus, Sahai and Waters presented the following challenge: Is
it possible to construct an attribute based encryption scheme in which many
different authorities operate simultaneously, each handing out secret keys for a
different set of attributes?

Our Results We resolve this problem in the affirmative. We give an efficient
scheme for multiauthority attribute based encryption. We allow the sender to
specify for each authority k a set of attributes monitored by that authority and
a number dk so that the message can be decrypted only by a user who has at
least dk of the given attributes from every authority. We allow any number of
attribute authorities to be corrupted, and guarantee the security of encryption
as long as the required attributes cannot be obtained exclusively from those
authorities and the trusted authority remains honest.

We also provide several extensions to our basic multiauthority scheme. We
describe techniques to allow the encryptor to determine for each ciphertext how
many attributes to require from each authority. We also describe a variant of
our scheme in which the encryptor can specify a number D such that a user
can decrypt if he has sufficient numbers of the given attributes from at least D
authorities. It is this variant that would be used to implement the RI example
above. In this example, we have 3 authorities, and the ciphertext will include
1 attribute from each. However, we only want to require that a user must have
satisfactory attributes from 2 out of the 3 authorities in order to decrypt.

Challenges and Techniques The most challenging aspect of a single author-
ity ABE scheme is preventing collusion. Recall the above example. Now suppose
Alice has a RI driver’s license and Bob is a Brown University student. Together
they have two out of three of the required attributes, but they should not be
able to combine their keys and decrypt the ciphertext. In SW each user’s keys

3

are generated using different random sharings of a secret, so keys generated for
different users cannot be combined.

It might seem that a multiauthority ABE scheme could be formed simply
by letting each authority run its own copy of SW and then combining the re-
sults. However, here we once again run into the problem of collusion. The SW
techniques will prevent collusion within authorities, so different keys obtained
from any one authority cannot be combined. However, suppose we have a ci-
phertext which requires attributes from authority 1 and authority 2. If Alice has
all the appropriate attributes from authority 1 and Bob has all the appropriate
attributes from authority 2, they still should not be able to combine their keys
and decrypt. Note that the SW techniques cannot be directly applied here: in
SW, a single authority sees all the attributes requested by a user and gives a
secret key, so it can easily rerandomize the secret sharing appropriately. In the
multiauthority case, we would again like to split up a secret in a different way
for each user, this time dividing it between multiple authorities. However, now
we need to do this without any communication between the authorities.

We use two main techniques: The first is to require that every user have some
kind of a global identifier (GID). We require only two properties from this: (1)
no user can claim another user’s identifier, and (2) all authorities can verify a
user’s identifier. Thus, the GID could be a name or SSN or any other identifying
string for which a user has provable credentials, and it seems likely that such
information would be present when users’ attributes are verified. To see why this
is necessary, consider the following two scenarios: In the first Bob requests keys
for attribute set A1 from authority 1 and Alice requests keys for attribute set
A2 from authority 2. In the second Bob requests attribute set A1 from authority
1 and attribute set A2 from authority 2. If the authorities do not communicate,
and Alice and Bob are identified by nothing beyond their attributes, then in the
authorities’ view these scenarios must be identical. The global identifier allows
the authorities to distinguish these two scenarios in order to prevent collusion.

At the same time we still want a user’s ability to decrypt to depend only on
his attributes (this is what distinguishes ABE from traditional IBE schemes).
Thus, we use our second tool: the central authority. Each user will send his
GID to the central authority and receive a corresponding key. Note that the
authority will not get any information about the users’ attributes; it’s purpose
is simply to give a setup key for the user’s GID. We will also require that this
authority be trusted: it will hold the master secret for the system, so it will be
able to decrypt any message. Note that the presence of a trusted party is a fairly
standard requirement: in an IBE scheme, the single authority must obviously be
trusted, and even when this is extended to a hierarchical IBE (HIBE) scheme,
in which many of the lower level authorities can be corrupted, one must require
that the root authority be honest.

Each authority has a pseudorandom function (PRF) which it will use to
randomize the secret keys it gives out. A PRF guarantees that, on the one hand,
the secret keys for each user are derived deterministically, but, at the same time,
that they will appear completely random. When a user requests a secret key, the

4

authority will compute the PRF on the user’s GID and then use the result as
the secret in SW key generation. A user with sufficient attributes can then use
his secret keys to reconstruct this secret for each authority. However, since the
outputs of the PRFs will be different for each user, each user will reconstruct a
different set of secrets. Thus, we need the central authority, who will know all
of the other authorities’ PRFs. For each user, it will compute the extra value
which, when combined with the secrets the user has reconstructed, will result in
a user-independent system decryption value which allows the user to decrypt.

Essentially this lets us break up a constant secret across multiple authorities
based on the user’s GID, in such a way that each authority can compute his part
independently given only the GID. The use of PRFs mean that each user’s secret
keys are independent of any other user’s keys, and collusion is impossible. Then
the central authority gives the added keys necessary to ensure that if we compute
each PRF on the same GID, we can always combine the results to obtain a fixed
value, and thus it allows us to give ciphertexts that are independent of the GID.
For a full description and explanation of this technique, see Section 4.

Other ABE Schemes As mentioned above, our scheme is an extension of the
basic Fuzzy IBE scheme of Sahai and Waters. Their scheme requires that a user
have t out of n of the desired attributes in order to decrypt. More recently,
Gopal et al. presented a scheme for fine grained access control in the Key-Policy
model [GPSW06]. In this model, when a user requests a private key, the authority
determines what combinations of attributes must be present in order for this user
to decrypt and gives the user the corresponding private key.

The main difference is that in this system, the private key no longer corre-
sponds to a simple set of attributes that the user possesses. Instead, each private
key represents a formula describing which sets of attributes must appear on the
ciphertext in order for this user to decrypt. Ciphertexts are encrypted with a
simple set of attributes.

Our techniques can also be applied to this more complex scheme to form
a system in which, in order to decrypt a ciphertext encrypted with a set of
attributes for each authority, a user must have received from each authority a
policy which allows decryption for that set of attributes. Gopal et al. also present
a large universe access structure scheme (an extension of the large universe
scheme in SW). This also can be combined with our techniques to create a
multiauthority large universe access structure scheme. For details, see Section 5.

2 Preliminaries

In our ABE scheme, we assume that the universe of attributes can be partitioned
into K disjoint sets. Each will be monitored by a different authority. As men-
tioned above, we also have one trusted central authority who does not monitor
any attributes.

Note: In the following we use Au to denote the attribute set of user u and AC

to denote the attribute set of a ciphertext. Ak
u and Ak

C are the attributes handled
by authority k in the attribute sets of the user and the ciphertext respectively.

5

A MultiAuthority ABE system is composed of K attribute authorities and
one central authority. Each attribute authority is also assigned a value dk. The
system uses the following algorithms:

Setup : A randomized algorithm which must be run by some trusted party (e.g.
central authority). Takes as input the security parameter. Outputs a public
key, secret key pair for each of the attribute authorities, and also outputs a
system public key and master secret key which will be used by the central
authority.

Attribute Key Generation : A randomized algorithm run by an attribute
authority. Takes as input the authority’s secret key, the authority’s value dk,
a user’s GID, and a set of attributes in the authority’s domain Ak

C . (We will
assume that the user’s claim of these attributes has been verified before this
algorithm is run). Output secret key for the user.

Central Key Generation : A randomized algorithm run by the central au-
thority. Takes as input the master secret key and a user’s GID and outputs
secret key for the user.

Encryption : A randomized algorithm run by a sender. Takes as input a set of
attributes for each authority, a message, and the system public key. Outputs
the ciphertext.

Decryption : A deterministic algorithm run by a user. Takes as input a cipher-
text, which was encrypted under attribute set AC and decryption keys for an
attribute set Au. Outputs a message m if |Ak

C ∩A
k
u| > dk for all authorities

k.

Note that the number of authorities in the system need not be fixed perma-
nently: it is possible to allow the central authority to add additional attribute
authorities to the system at any point. For a discussion of this and other possible
extensions to this scheme, see Section 6.

As in [SW05], our scheme is proved secure in the selective ID (sid) model, in
which the adversary must provide the identity he wishes to attack(the challenge
identity) before receiving the parameters of the system.

Let κ be the security parameter. We require that the number of authorities,
K, and the number of attributes monitored by each authority, nk, be upper
bounded by a number n which is polynomial in κ.

Consider the following game:

Setup

– The adversary sends a list of attribute sets AC = A1
C . . .AK

C , one for
each authority. He must also provide a list of corrupted authorities which
cannot include the central authority.

– The challenger generates parameters for the system and sends them to
the adversary. This means the system public key, public keys for all
honest authorities, and secret keys for all corrupt authorities.

Secret Key Queries

6

– The adversary can make as many secret key queries as he wants to the
attribute authorities or to the central authority. The only requirements
are (1) that for each GID, there must be at least one honest authority k
from which the adversary requests fewer than dk of the attributes given
in Ak

C , i.e. the adversary never requests enough attributes to decrypt the
challenge ciphertext, and (2) that the adversary never queries the same
authority twice with the same GID (see below for discussion).

Challenge

– The adversary sends two messages M0 and M1.

– The challenger chooses a bit b, computes the encryption of Mb for at-
tribute set AC , and sends this encryption to the adversary.

More Secret Key Queries

– The adversary may make more secret key queries subject to the require-
ments described above.

Guess

– The adversary outputs a guess b′ that message Mb′ has been encrypted.

The adversary is said to succeed if he can correctly identify the encrypted mes-
sage, i.e. if b = b′.

Definition 1. A multiauthority attribute scheme is sid-secure if there exists a
negligible furnction ν such that, in the above game any adversary will succeed
with probability at most 1/2 + ν(κ).

Note that our scheme is designed only for static attributes: each authority
will only issue one set of secret keys for each GID. If a user later returns with the
same GID but a different set of attributes, the authority will refuse the request.
However this can easily be converted into a scheme which allows changes in
attributes by allowing each user a range of GID instead of just one. Then when
a user needs to change his attribute set, he simply moves on to a new GID and
requests secret keys from each authority with the new attribute set and new
GID (he must however obtain new secret keys from all authorities).

We have found no obvious attack when this requirement is removed; it seems
to be an artifact of our proof techniques. Essentially, in our reduction, when
we give out secret keys from a certain authority, we need to know whether
the adversary will request sufficient attributes from that authority to decrypt
the challenge ciphertext. Our reduction responses will depend crucially on that
factor. (For more details, see Section 4.)

Definition 2 (Bilinear Diffie-Hellman(BDH) Assumption). Let G be a
group of prime order q and generator g where |q| is proportional to the security
parameter κ. There exists a negligible function ν such that for all adversaries A,
given G, q, g, ga, gb, gc and bilinear map e for randomly chosen a, b, c ← Zq, A
can distinguish e(g, g)abc from e(g, g)R for random R ← Zq with probability at
most ν(κ).

7

3 Single Authority ABE

We will begin by demonstrating how the simplest attribute based encryption
(ABE) scheme, Sahai and Waters’ “Fuzzy IBE” or “Threshold ABE” scheme,
can be converted into a multiauthority scheme. Then in Section 5 we will describe
a multi authority scheme for more complex ABE.

We will now explain some of the intuition behind our scheme. We will incre-
mentally build up to the full robust multiauthority construction. We begin by
examining the single authority case, which was considered by Sahai and Waters
[SW05]. In their scheme, there is one authority giving out secret keys for all of
the attributes. Each encryptor then specifies a list of attributes such that any
user with at least d of those attributes will be able to decrypt. They show that
the scheme they present is sid secure.

We review these results and attempt to explain a possible derivation, building
up to the description of the SW scheme through a series of incomplete schemes.
We will then show how this can be easily converted into a multiauthority scheme.
We hope that once the intuition behind SW is completely clear, the changes
necessary to convert this scheme into a multiauthority one will also be fully
intuitive.

Step One – Feldman VSS

First, let’s consider a very simplified scheme based on the Feldman Verifiable
Secret Sharing scheme [Fel87].

Recall that, given d points p(1), . . . , p(d) on a d − 1 degree polynomial, we
can use Lagrange interpolation to compute p(i) for any i. However, given only
d−1 points, any other points are information theoretically hidden. According to
the Lagrange formula, p(i) can be computed as a linear combination of d known
points. Let ∆j(i) be the coefficient of p(j) in the computation of p(i). Then
p(i) =

∑
j∈S p(j)∆j(i) where S is a set of any d known points and ∆j(i) =∏

k∈S,j 6=k(i − k)/(j − k). Note that any set of d random numbers defines a
valid polynomial, and given these numbers we can find any other point on that
polynomial.

Furthermore, if we are instead given gp(1), . . . , gp(d), we can similarly compute
gp(i) for any i, and the hiding property mentioned above still applies.

This suggests a technique for attribute based encryption: If a user has at-
tribute i, his secret key will include gp(i), for some degree d − 1 polynomial p.
We can encrypt a message m by giving gp(0)m. Then any user with at least d
attributes can interpolate to obtain the secret gp(0) and thus discover m. How-
ever, to any user without d attributes gp(0) is information theoretically hidden
and thus finding m will be impossible.

Note that we can easily extend this to prevent collusion: If we give all our
users points from the same polynomial, any group with at least d attributes
between them would be able to combine their keys to find p(0). However, if
we instead give each user u a different polynomial pu (but still with the same
zero point pu(0) = p(0)), then one user’s points will give no information on the
polynomial held by the other (as long as neither has more than d−1 points). To

8

see this, note that, given any d−1 points on polynomial p1 and any d−1 points
on polynomial p2, with the requirement that these polynomials must intersect
at 0, it is still the case that any value for y = p1(0) = p2(0) will define a valid
pair of polynomials. Thus, y is information theoretically hidden. Then our first
scheme runs a follows:

Init First fix y ← Zq.
SK for user u: Choose a random polynomial p such that p(0) = y. SK: {Di =

gp(i)}∀i∈Au .
Encryption: E = gym.
Decryption: Use d SK elements Di to interpolate to obtain Y = gp(0) = gy.

Then m = E/Y .

Step Two – Specifying attributes

If we take this approach, any user with any d attributes will be able to
decrypt. But we want each encryptor to be able to give a specific subset of
attributes such that at least d are necessary for decryption.

In order to do this, we need an extra tool: bilinear maps. Recall that for
bilinear map e, g ∈ G1, and a, b ∈ Zq, e(ga, gb) = e(g, g)ab.

Now, suppose instead of giving each user gp(i) for each attribute i, we choose
a random value ti and give gp(i)/ti . If the user knew gti for at least d of these
attributes, he could compute e(g, g)p(i) for each i and then interpolate to find the
secret e(g, g)p(0). Then if our encryption includes e(g, g)p(0)m, the user would be
able to find m. Thus, the encryptor can specify which attributes are relevant by
providing gti for each attribute i in the desired set.

Suppose we only give one secret key to one user u. Now, for i ∈ Au, i /∈ AC

the ti values appear only once: when we give gp(i)/ti . Thus, since ti was chosen at
random, p(i) is still information theoretically hidden. The only attributes i for
which user u has any information on p(i) are those where i ∈ Au ∩AC . As long
as there are less than d of these, p(0) (and thus e(g, g)p(0)) must be information
theoretically hidden.

If we allow multiple secret key queries, this is no longer the case. However
given the BDH Assumption, we can show that e(g, g)p(0) is still hidden as long
as no user has more than d− 1 attributes in common with the ciphertext. This
will be a special case of the proof in the next step. The resulting scheme is as
follows:

Init First fix y, t1, . . . , tn ← Zq. Let Y = e(g, g)y.
SK for user u: Choose a random polynomial p such that p(0) = y. SK:{Di =

gp(i)/ti}∀i∈Au .
Encryption for attribute set AC : E = Y m and {Ei = gti}∀i∈AC .
Decryption: For d attributes i ∈ AC ∩ Au, compute e(Ei, Di) = e(g, g)p(i).

Interpolate to find Y = e(g, g)p(0) = e(g, g)y. Then m = E/Y .

Step Three: Multiple Encryptions

There are several obvious problems with this scheme. First, we would like to
be able to encrypt multiple times without the decryptor needing to get a new

9

secret key each time. But, once a user has obtained e(g, g)p(0), he can decrypt
any subsequent encryptions whether or not he has the appropriate attribute set.

What if instead of giving e(g, g)p(0)m in our encryption, we give e(g, g)p(0)sm,
where s is a different random number for each encryption? If we also give {Ei =
gtis}∀i∈AC instead of {Ei = gti}, the above process will allow a user with the
appropriate attributes to find e(g, g)p(0)s, and thus to decrypt m. Note that now
our secret e(g, g)p(0)s is different for each ciphertext.

This also solves another of our problems: it gives us a way to compute the
ciphertext. Before, computing the ciphertext required knowing the gti values and
e(g, g)p(0), which was in turn enough to decrypt any message. Now, decrypting a
message requires knowing gtis for the appropriate attributes i and the appropri-
ate s. Thus, we can now publish Ti = gti and Y = e(g, g)p(0) as the public key,
and each encryptor can choose his own random s to compute {Ei = T s

i }∀i∈AC ,
and Y sm.

Furthermore, we can show that e(g, g)p(0)s is still hidden, even when the user
knows Ti for all i, a set {T s

i }∀i∈AC , and adaptively chose secret keys for user u
with |Au∩AC | at most d−1. Thus, we can show this scheme is sid secure based
on the BDH Assumption. We have now reconstructed the SW scheme:

Init First fix y, t1, . . . , tn ← Zq.
PK for system T1 = gt1 . . . Tn = gtn , Y = e(g, g)y. PK = {Ti}1≤i≤n, Y
SK for user u: Choose a random polynomial p such that p(0) = y. SK: {Di =

gp(i)/ti}∀i∈Au .
Encryption for attribute set AC : E = Y s = e(g, g)ysm and
{Ei = gtis}∀i∈AC .

Decryption: For d attributes i ∈ AC ∩ Au, compute e(Ei, Di) = e(g, g)p(i)s.
Interpolate to find Y s = e(g, g)p(0)s = e(g, g)ys. Then m = E/Y s.

4 Multiple Authorities

Now we consider the multiauthority case. Once again, we will build up our
construction by first considering a series of incomplete schemes.

As a first thought, we might simply have many copies of SW, one for each
authority. We want to require that a user be able to decrypt a ciphertext only
if he has at least d of the specified attributes from each of the K authorities.
Recall that the SW scheme centers around finding enough polynomial shares
e(g, g)p(i)s to reconstruct the secret e(g, g)p(0)s = e(g, g)ys which has been used
to blind the message. (Recall that the encryption includes E = e(g, g)ysm).
Now, if we want each authority to give out its own polynomials, one simple
solution might be to do an additive secret sharing to form the SW secrets (i.e.
the values y such that every random polynomial p is chosen with p(0) = y).
Thus, we pick a random value for the master secret y0 and for each authority
k = 1 . . .K, yk is a share of y0 so

∑
yk = y0. We can output e(g, g)y0 as the entire

system’s public key. Then to encrypt message m, a user gives E = e(g, g)y0sm
and Ek,i = T s

k,i for all i, k where they wish to allow a decryptor to use attribute

10

i from authority k. To decypt, the user has to perform SW decryption for each
authority and find Y s

k = e(g, g)yks, then multiply the results together to get
∏K

k=1 Y s
k =

∏K
k=1 e(g, g)yks = e(g, g)s

PK
k=1 yk = e(g, g)y0s and thus obtain m.

However, if a user does not have enough of the required attributes from one
authority k̂, then the SW secret for that authority: Yk̂ = e(g, g)yk̂s will remain
indistinguishable from random and thus so will e(g, g)y0s and m. Thus our first
attempt Multi Authority Scheme is as follows:

System
Init First fix y1 . . . yk, {tk,i}i=1...n,k=1...K ← Zq. Let y0 =

∑K
k=1 yk.

System Public Key Y0 = e(g, g)y0 .
Attribute Authority k

Authority Secret Key The SW secret key: yk, tk,1 . . . tk,n.
Authority Public Key Tk,i from the SW public key: Tk,1 . . . Tk,n where
Tk,i = gtk,i .
Secret Key for User u from authority k Choose random d − 1 degree
polynomial p with p(0) = yk. Secret Key: {Dk,i = gp(i)/tk,i}i∈Au .

Encryption for attribute set AC Choose random s← Zq. Encryption: E =
Y s

0 m, {Ek,i = T s
k,i}i∈Ak

C ,∀k.

Decryption: For each authority k, for d attributes i ∈ Ak
C ∩ Au, compute

e(Ek,i, Dk,i) = e(g, g)p(i)s. Interpolate to find Y s
k = e(g, g)p(0)s = e(g, g)yks.

Combine these values to obtain
∏K

k=1 Y s
k = Y s

0 . Then m = E/Y s
0 .

There is a problem with the scheme as described above: Suppose an encryptor
encrypts a message to the attribute set AC which includes attributes Ak

C for
each authority k. Now suppose we have a set of K users where each user k
has attribute set Au = Ak

C from authority k, but no attributes from any other
authority. Recall that we want to allow decryption only if the decryptor has
enough of the required attributes from every one of the authorities. However,
if the scheme is as described above, this set of users will be able to collude:
Each user k will use his attribute set to find the SW secret for authority k:
Y s

k = e(g, g)yks. Then the users combine these values to obtain
∏K

k=1 Y s
k =

∏K
k=1 e(g, g)yks = e(g, g)y0s = Y s

0 and thus m.
Clearly, if there is no way to identify users beyond their attribute sets, then

the above collusion is impossible to prevent: to the authorities, k separate users
each with attribute set Ak

C and one user with attribute set AC look identical.
We solve this problem by requiring that each user have a unique global iden-

tifier (GID), as described in Section 1. A user must present the same GID to
each authority in order to receive a coherent set of keys (and presumably prove
to each authority that the GID is valid). However, encryption will, as before,
only specify a set of attributes of which d will be required to decrypt. Thus, the
ability to decrypt is independent of the GID (except in that all secret keys must
have been obtained for the same GID).

Now that we can distinguish different users, we need some way to ensure that
different users cannot combine their results from different authorities. Suppose
we have each authority k choose a different random yk,u value for each user.

11

Let yu,0 be the master secret for user u. If user u finds e(g, g)yk,us and shares
it with user u′ in an attempt to collude, it won’t give user u′ any information
on his master secret e(g, g)y0,u′s =

∏K
k=1 e(g, g)yk,u′s (since yk,u is independent

of yk,u′), so the above collusion will no longer be possible. Recall that the SW
scheme uses different polynomials to split up the secret (y) in a different way
for each user, thus preventing collusion. Now we are using a similar technique
to prevent collusion across authorities: we choose a new set of yk,u values and
divide the secret (y0) among the authorities in a different way for each user.

Note that we need to include
∏K

k=1 e(g, g)yk,u = e(g, g)y0,u in the public key
so that it can be used to form an encryption (E = e(g, g)y0,usm). Moreover,
recall that these ciphertexts must be independent of the identity of the user
– we would like the ability to decrypt to depend only on the attributes. This
means, in order for the encryption/decryption to work with this new addition,

we would need
∏K

k=1 e(g, g)yk,u = e(g, g)y0,u to be the same for all users.
But if all authorities choose yk,u independently, how can we ensure that

∑K
k=1 yk,u = y0 for all u? It would seem that we must need some kind of com-

munication between authorities, and our goal of k autonomous authorities is
impossible with this approach.

An alternative might be to allow our authorities to share some state. If one
of the authorities knew the other authorities’ random choices, he could choose
his yk,u values to ensure that

∑K
k=1 yk,u = y0. However, we don’t necessarily

want to require that any of our attribute authorities be completely trusted, so
we may not want them to share this information.

Thus, we add the additional “central” authority (see Section 1), who handles
no attributes, but who must be fully trusted. This authority will be allowed to
know some of the state of each of the other authorities. In particular, it will
know enough of their secret state to reconstruct yk,u for any user u and for all
authorities k. It will use this information to provide a secret key which, when
combined with a value gs to be given in the encryption and with the “secrets”
Y s

k,u obtained from each of the other authorities, will give user u the “master
secret”: Y s

0 = e(g, g)y0s which can then be used to obtain m. Now we only need
to trust one authority and it need not be one of the attribute authorities. 1

Finally, instead of using truly random values, we have each of our K author-
ities choose the yk,u values using a pseudorandom function (PRF). Thus, now
the central authority has only to store the seeds of all of the PRFs.

Final MultiAuthority Scheme: (changes from previous schemes are under-
lined.)

System
Init Fix prime order groups G, G1, bilinear map e : G→ G1, and generator
g ∈ G. Choose seeds s1, . . . , sK for for all authorities. Also choose

1 Note, we could require that one of the attribute authorities be trusted and have
it maintain the state information of all the other authorities. However, we chose
to separate these functions in order to consider a more general case. The central
authority could easily be combined with a trusted attribute authority.

12

y0, {tk,i}k=1...K,i=1...n ← Zq.
System Public Key Y0 = e(g, g)y0 .

Attribute Authority k
Authority Secret Key sk, tk,1 . . . tk,n.
Authority Public Key Tk,1 . . . Tk,n where Tk,i = gtk,i .
Secret Key for User u Let yk,u = Fsk

(u). Choose random d − 1 degree

polynomial p with p(0) = yk,u. Secret Key: {Dk,i = gp(i)/tk,i}i∈Au .
Central Authority

Central Authority Secret Key sk for all authorities k, y0.
Secret Key for User u Let yk,u = Fsk

(u) for all k. Secret Key: DCA =

g(y0−
PK

k=0 yk,u).
Encryption for attribute set AC Choose random s← Zq. E = Y s

0 m,
ECA = gs, {Ek,i = T s

k,i}i∈Ak
C ,∀k.

Decryption: For each authority k, for d attributes i ∈ Ak
C ∩ Au, compute

e(Ek,i, Dk,i) = e(g, g)p(i)s. Interpolate to find Y s
k,u = e(g, g)p(0)s = e(g, g)yk,us

for each authority k. Compute Y s
CA

= e(ECA, DCA). Combine these values

to obtain Y s
CA
∗

∏K
k=1 Y s

k = Y s
0 . Then m = E/Y s

0 .

Theorem 1. This scheme is sid-secure according to the definition in Section 2.

First we give some main points of intuition behind the reduction. Then we
follow with a more formal proof.

Basis of SW Reduction – We will show that we can reduce the BDH
problem to the problem of breaking our encryption scheme. That means we are
given A = ga, B = gb, C = gc and asked to distinguish e(g, g)abc from e(g, g)R

for a random R← Zq. We assume there exists an adversary that can break the
security properties of our multiauthority system (as defined in Section 2) and
we show that we could use such an adversary to solve this problem.

We want to show that, even given a challenge encryption and adaptively
chosen secret key queries, in our challenge encryption, Mb = E/e(g, g)y0s is
indistinguishable from a random message (which means the adversary can have
no more than negligible probability of correctly identifying b). We will show that
e(g, g)y0s is indistinguishable from a random element of G2. Since we are basing
our reduction on the BDH assumption, this means we want to implicitly set
y0s = abc. We need to be able to output e(g, g)y0 and gs as part of the central
public key, so we will implicitly set s = c and y0 = ab. (These values cannot be
computed, but we will use them to determine the other values in our reduction.)

Extension to Multiple Authorities – Note that the adversary is al-
lowed to request secret keys for a given user u and attribute set Au as long
as there remains one honest authority k such that Ak

C ∩ A
k
u < d, i.e. the

user has insufficient attributes from this authority to decrypt. Thus, in the
worst case, for all but one authority k, the adversary will be able to compute
Y s

k,u = e(g, g)yk,us for additive share yk,u. Every user will also be able to compute

Y s
CA,u = e(gs, DCA) = e(gs, gy0−

P

yk,u). We need
∏

e(g, g)yk,us ∗ e(gs, DCA) =
e(g, g)y0s to be something which the adversary cannot compute (in particular,

13

e(g, g)abc which is indistinguishable from random). Thus, we must “hide” this
incomputable value in the share yk,u for the one authority from which the ad-

versary does not have sufficient attributes. Let k̂ be this authority. Then we will
implicitly set yk̂,u = ab + zk,ub for random zk,u. For all other honest authorities,

we need e(g, g)yk,us to be computable, so we will implicitly set yk,u = zk,ub for
some random zk,u (this particular choice will be explained below). Note that

k̂(u) may be a different authority for each user u. This is where the reduction
will make use of the PRFs. Since to the adversary the PRFs for honest authori-
ties are indistinguishable from true random functions, we can implicitly replace
these PRFs with the necessary values for each user u and authority k = k̂(u)

or k 6= k̂(u), and the result will be indistinguishable. (The values will still be
randomly distributed).

Answering Secret Key Queries– Note that in order for our reduction
to succeed, we need to generate public keys for honest authorities k so that:

– When k = k̂(u), we can output secret keys such that this authority’s secret
(q(0) = Fsk

(u)) is uncomputable (eg. ab + zk,u), given that the user u does
not have sufficient attributes from this authority. This situation is identical
to that in a single authority security reduction.

– When k 6= k̂(u), using the same public keys, we can output secret keys for
users who know (potentially) all of the attributes from this authority as long
as this authority’s secret is generated appropriately. In this case we set the
secret q(0) = Fsk

(u) = zk,ub.

For i ∈ Ak
C , we must be able to output Tk,i = gtk,i in the public key and

Ek,i = T s
k,i = gtk,is = gtk,ic in the challenge ciphertext. Thus, we choose tk,i =

βk,i for known random βk,i. For i /∈ AC , we set tk,i = βk,ib for known random,
βk,i. (Note that for these attributes Ek,i = T s

k,i is not computable).

Consider the second case: We need to output Dk,i = gp(i)/bβk,i and Dk,i =
gp(i)/βk,i , where we require p(0) = bzk,u. If we simply choose p in terms of b, (eg.
p = bρ for known random d− 1 degree polynomial ρ), this is trivial.

The first case, as mentioned above, follows the original single authority reduc-
tion almost exactly. The only difference is that now we have an extra randomizing
term added (Fsk

(u) = ab + zk,ub instead of Fsk
(u) = ab). For up to d− 1 points

(i ∈ Ak
C ∩ A

k
u), we need to give secret keys Dk,i = gp(i)/tk,i = gp(i)/βk,i , where

p(0) = ab+zk,ub. This might seem difficult since we can’t compute gab. However,
recall that, using interpolation, we can pick any d points and use them to define
a polynomial. So, for the attributes i in the challenge, we will set p(i) to be a
random multiple of b. For these attributes Dk,i = gp(i)/βk,i will be a computable
multiple of B. Since we have also fixed p(0), we have now chosen d points on
the polynomial, so now for the remaining attributes, we can interpolate to find
gp(i)/tk,i as a weighted product of gp(0)/tk,i and gp(j)/tk,i for each of the fixed at-
tributes j (those in the challenge ciphertext). Recall that for these attributes, we
have tk,i = βk,ib. Thus, for each of the fixed attributes j, gp(j)/tk,i will be a com-
putable multiple of B, and for p(0), gp(0)/tk,i = g(ab+zk,ub)/bβk,i = g(a+zk,u)/βk,i

14

is a computable combination of A and g. That means Dk,i = gp(i)/tk,i will be
also computable for all i ∈ Ak

u −A
k
C .

Proof (of Theorem 1). Suppose there exists and adversary that plays the secu-
rity game as described in Section 2 and succeeds with nonnegligible probability
ǫ. Then we will show that we can use such an adversary to break the BDH
assumption.

First, we assume that the adversary will still succeed with the same advantage
even when the PRF Fsk

is replaced by a truly random function for each honest
authority k. Note that if this is not the case, then we can distinguish the PRF
from random, contradicting the definition of a PRF.

We need to specify how our reduction responds in each stage of the game (as
described in Section 2). Our reduction will behave as follows:

– Given A = ga, B = gb, C = gc and Z = e(g, g)abc or e(g, g)R for random
R← Zq

– Receive AC and list of corrupted authorities Corr from adversary.
– Init:

• System PK : Y0 = e(A, B) (implicitly set y0 = ab.)
• Honest Authority PK’s: Choose random βk,i; PK: {Tk,i = gβk,i}i∈Au∩Ak

C
,

{Tk,i = Bβk,i}i∈Au−Ak
C

• Corrupt Authority k SK’s: Choose random tk,i ← Zq, random PRF key
sk. SK:sk, {tk,i}

– SK queries: Let k̂(u) be the first authority k queried such that |Ak
u∩A

k
C | < d.

• SK queries for user u to Honest Attribute Authorities k 6= k̂(u) : Recall
that for these authorities we will implicitly set p(0) = Fsk

(u) = zk,ub.
Choose a random zk,u and choose a random polynomial ρ such that
ρ(0) = zk,u. We will implicitly set p(i) = bρ(i). Now for i ∈ Ak

C ,
tk,i = βk,i, so Dk,i = gp(i)/tk,i = gbρ(i)/βk,i = Bp(i)/βk,i . For i /∈ Ak

C ,
tk,i = bβk,i, so Dk,i = gp(i)/tk,i = gbρ(i)/bβk,i = gρ(i)/βk,i . SK: {Dk,i =
Bρ(i)/βk,i}i∈Ak

u∩Ak
C
, {Dk,i = gρ(i)/βk,i}i∈(Ak

u−Ak
C)

• SK queries for user u to Honest Attribute Authorities k = k̂(u) : Recall

that for authority k̂ for user u, we will choose random rk,u and implicitly
set p(0) = Fsk

(u) = ab+zk,ub. Choose d−1 random points vi. For i ∈ Ak
C ,

we will implicitly set p(i) = vib. For these attributes, tk,i = βk,i, so that
means Dk,i = gp(i)/tk,i = gbvi/βk,i = Bvi/βk,i . Recall that we need p(0) =
Fsk

(u) = ab+zk,ub, and we have now set p(i) = vib for d−1 other points.
Thus, p is fully determined, and by interpolation, for any other attribute
i, we have implicitly defined ∆0(i)(ab + zk,ub) +

∑
∆j(i)vjb. For these

attributes tk,i = bβk,i, so Dk,i = gp(i)/tk,i = g
∆0(i)(ab+zk,ub)+

P

∆j(i)vj b

bβk,i =

g∆0(i)a ∗ g
∆0(i)zk,u+

P

∆j(i)vj
βk,i = A∆0(i) ∗ g

∆0(i)zk,u+
P

∆j(i)vj
βk,i

SK: {Dk,i = Bvi/βk,i}i∈Ak
u∩Ak

C
,

{Dk,i = A∆0(i) ∗ g
∆0(i)zk,u+

P

∆j(i)vj
βk,i }i∈(Ak

u−Ak
C).

15

• SK queries for user u to Central Authority:
DCA = g (

P

k/∈Corr
zk,u−

P

k∈Corr
Fsk

(u)))

– Receive M0, M1 and pick a random b.
– Challenge Ciphertext: Zm, E = gs = C, {Cβk,i}i∈AC

– Guess for Z: Receive a guess b′ and If b = b′ guess “e(g, g)abc” otherwise
guess “e(g, g)R”.

After making all his secret key queries, the adversary will send a guess b′ that
the message encrypted was Mb′ . Note that, if Z = e(g, g)abc, then the encryption
given was a valid encryption of Mb, and the adversary should have his usual non-
negligible advantage ǫ of correctly identifying Mb. However, if Z = e(g, g)R, then
the encryption was a completely random value, so the adversary can have no bet-
ter than 1/2 probability of guessing correctly. Thus, if the adversary guesses cor-
rectly, we guess that Z = e(g, g)abc and if he is wrong, we guess that Z = e(g, g)R.
If we analyze the probability that the reduction successfully distinguishes Z, we
find that the reduction has an advantage of ǫ/2. Thus an adversary which breaks
this encryption scheme with advantage ǫ implies an algorithm for breaking the
BDH Assumption with nonegligible advantage ǫ/2. We can conclude that this
encryption scheme is sid-secure.

Remark 1. Note that our reduction relies critically on the fact that, for each
user u that the adversary queries about, we choose exactly one authority for
which that user has less than d of the attributes in the challenge, and this is the
authority for which we set Fsk

(u) = a+zk,ub. Note that, if the adversary requests
at least d attributes for u from this authority, even if none of them appears in
the challenge, the value of Fsk

(u) is completely determined by the secret keys
that the authority returns (although it is not known, since the discrete logs ti of
the public key Ti are not known to the adversary.)

If we allowed the adversary to at some later point request a second set of
attributes from this authority for this user, such that it overlapped by at least
d with the challenge, we would not be able to give these secret keys in such a
way that they would be consistent with the previously determined value of Fsk

.
(Doing so would involve computing gab.)

To prevent this, we require that in order to change his attribute set, a user
must also change his GID. However, our collusion resistance requires that keys
from different authorities for different keys be incompatible. Thus, it is not clear
how we could allow the adversary to change the attribute set for a user without
obtaining a new key from all authorities using a completely new GID. See Section
2 for a discussion of possible ways to get around this problem.

5 MultiAuthority + Large Universe and Complex Access

Structures

In [GPSW06], Goyal et al. showed a Large Universe Access Control Structure
ABE scheme. We can also apply our techniques to this scheme to achieve a
corresponding multiauthority system.

16

A large universe construction has the advantage that the size of the public
keys is dependent only on the maximum number of attributes which can be
required in an encryption. (In contrast, the basic SW scheme has public keys size
proportional to the total number of attributes in the system.) Thus, this method
allows a much larger universe of attributes. A large universe construction was
first presented in [SW05].

Goyal et al. showed how to combine the large universe construction with a
construction (GPSW) which allows the authority to give secret keys correspond-
ing to a more general policy than simple t-out-of-n threshold . In particular,
they allow any policy that can be described by an access tree. In such a tree,
each leaf node corresponds to an attribute, and intermediate nodes are t-out-of-n
gates for arbitrary values of t and n. (Thus, OR and AND gates are possible
as special cases.) If we consider the input at each leaf node to be 1 if and only
if the corresponding attribute is present in a given ciphertext, then evaluating
this circuit will determine whether or not the user should be able to decrypt this
ciphertext.

Below we give a multiauthority large universe access control structure ABE
scheme. In this system, each authority will choose an access structure τk for the
user and give him a corresponding secret key. A user will be able to decrypt
a ciphertext with attribute set AC if and only if all of his access structures τk

output 1 when evaluated on the corresponding subset of the attributes, Ak
C .

We use essentially the same techniques as in the simple multi-authority
scheme. Each authority runs a copy of the single authority protocol, with a
separate copy of the public key (in this case tk,1, . . . tk,n+1). The master secret
for each authority (yk) is replaced by a PRF on the user’s ID, so that the master
secret for the entire system (y0) can be divided among all the authorities in a
different way for each user. Finally, a central authority is necessary to ensure
that, for each user, the PRFs from all authorities can be combined to obtain the
system secret.

MultiAuthority Scheme for Large Universe and Complex Access Structures

System
Init Fix prime order groups G, G1, bilinear map e : G→ G1, and generator
g ∈ G. Choose PRF keys s1 . . . sK and y0 ← Zq, and g2 ← G1.
System Public Key g1 = gy0 .

Attribute Authority k
Authority Secret Key sk

Authority Public Key tk,1 . . . tk,n+1 ← G1.
Let h(x) be the n degree polynomial defined by tk,1, . . . tk,n+1. Also define

Tk(x) = gxn

2 gh(x) = gxn

2

∏n+1
i=1 t

∆i(x)
k,i

Secret Key for User u for access structure τk Let yk,u = Fsk
(u). Now

run the Key Generation from GPSW but with the master secret y = yk,u

and with the points tk,1, . . . tk,n+1, i.e. KeyGeneration(τ , MK = yk,u and
PK = gyk,u , g2, tk,1, . . . tk,n+1): We choose a polynomial qr for the root node
of the tree τk such that qr(0) = yk,u. Then we choose random polynomials
for all other nodes x such that qx(0) = qparent(x)(x). Finally, for the leaf

17

node x, we choose random rk,x and compute secret key elements: Dk,x =

g
qx(0)
2 T (i)rk,x where i = att(x) and Rk,x = grk,x .

SK: Dk,x, Rk,x for all leaf nodes x in τk

Central Authority
Central Authority Secret Key sk for all authorities k, y0.
Secret Key for User u Let yk,u = Fsk

(u) for all k. Secret Key: DCA =

g
(y0−

PK
i=0 yk,u)

2 .

Encryption for attribute set AC Choose random s ← Zq. E = e(g1, g2)
sm,

E′ = gs, {Ek,i = Tk(i)s}i∈Ak
C ,∀k.

Decryption: For each authority k, run the Decryption algorithm as in GPSW,
i.e. run DecryptNode on the root of the tree τk:

For leaf node x if we have Dk,x, this algorithm computes
e(Dk,x,E′)

e(Rk,x,Ek,i)
=

e(g
qx(0)
2 Tk(i)rk,x ,gs)

e(grk,x ,Tk(i)s)
=

e(g
qx(0)
2 ,gs)e(Tk(i)rk,x ,gs)

e(grk,x ,Tk(i)s)
= e(g, g2)

qx(0)s. Then at each

level of the tree, if we have successfully computed DecryptNode for sufficient
children, it combines the results to obtain e(g, g2)

qx(0)s for parent node x.
Finally, if we have sufficient attributes for the tree τk, DecryptNode computes
e(g, g2)

qr(0)s = e(g, g2)
yk,us.

Now decryption proceeds as in the previous multiauthority scheme: If we
have sufficient attributes to decrypt, then for every authority we will have
computed Y s

k,u = e(g, g2)
yk,us. Next, use the key obtained from the central

authority to compute Y s
CA

= e(E′, DCA) = e(gs, g
y0−

PK
i=1 yk,u

2). Combine

these values to obtain Y s
CA
∗

∏K
k=1 Y s

k = e(g, g2)
y0s = Y s

0 . Then m = E/Y s
0 .

We will present only the key intuition for the proof of security. For a full
proof, see the full version.

Basis of Single Authority Reduction – We again want to show a
reduction from BDH, so we want the quantity which we will use to blind the
message, in this case e(g1, g2), to be equal to e(g, g)abc. Thus, we will set g1 =
a, g2 = b, and implicitly, s = c.

Extension to Multiple Authorities – Again here, as in the simple
multiauthority scheme, for each user u, the adversary is allowed to request keys
that are sufficient to decrypt the ciphertext from all but one authority. In this
scheme, in the worst case, for all but one authority k, the adversary will be
able to compute Y s

k,u = e(g1, g2)
yk,us. Every user will also be able to compute

Y s
CA,u = e(gs, DCA) = e(g, g2)

(y0−
P

yk,u)s. And, as mentioned above, we need∏
e(g, g2)

yk,us ∗ e(gs, DCA) = e(g, g2)
y0s to be an uncomputable value (in par-

ticular e(g, g)abc). Thus, again we must “hide” this incomputable value in the

share yk,u for the one authority k̂ from which this user does not have sufficient
attributes. Thus, we set yk̂,u = a + zk̂,u and for all other honest authorities,
yk,u = zk,u for known random zk,u. Once again, we make use of the pseudo-
randomness of the PRFs to claim that, since all these values are distributed
randomly, the result will be indistinguishable from computing the values using
a true PRF.

18

Answering Secret Key Queries– Once again, we must show that, for
all users u, we can form public keys for all honest authorities k such that:

– When k = k̂(u), we can output secret keys such that this authority’s secret
(q(0) = Fsk

(u)) is not known (eg. a + zk,u), given that the user u does not
have sufficient attributes from this authority. This situation is identical to
that in a single authority security reduction.

– When k 6= k̂(u), using the same public keys, we can output secret keys for
users who know (potentially) all of the attributes form this authority as long
as this authority’s secret is generated appropriately. In this case we set the
secret q(0) = Fsk

(u) = zk,u.

We set up the tk,i values for each authority k as in the GPSW reduction. This
is done in such a way that if i ∈ Ak

C , Tk(i)s is computable (recall that this must

be part of the encryption), but Dk,x = g
qx(0)
2 T (i)rk,x , Rk,x = grk,x is computable

if and only if we know qx(0). If i /∈ Ak
C , Tk(i)s will not be computable, but we

will be able to compute Dk,x, Rk,x when given only gqx(0).
Now, in the first situation, we can proceed as in the single authority reduction,

and run the PolyUnsat algorithm [GPSW06] to set the polynomials for each
level of the tree so that at the root r, qr(0) = a + zk,u. At the leaves, this
will make qx(0) completely known for nodes corresponding to i ∈ AC and will
make gqx(0) known for i /∈ AC . According to the setup above, this lets us form
Dk,x, Rk,x for all required leaf nodes x. In the second case, we simply proceed
as in the real protocol.

Finally, the challenge encryption can be formed as E = ZMb, E
′ = C, {Ek,i =

T (i)s} for random bit b. The reduction’s output and the analysis proceed as in
the previous reduction.

Remark 2. Note that we cannot allow changes in a user’s access structure (with-
out corresponding changes in the user’s GID) for the same reason that in the
threshold multiauthority scheme we cannot allow changes in a user’s attribute
set (see Section 4).

6 Extensions

We briefly describe several possible extensions to our scheme. For security proofs,
see full version.

Changing dk SW noted that one could easily extend their scheme to allow d,
the number of attributes in the ciphertext required to decrypt, to vary with
each encryption. Essentially, the scheme would be instantiated with d = dmax,
the maximum overlap one might want to require. We would also extend the
attribute set by adding dmax dummy attributes and each user would get a
secret key element Di for each of these new attributes. We refer to the set of
dummy attributes as AD. If the encryptor wanted to require d′ < dmax of the
attributes in the ciphertext, he could include Ei = T s

i for dmax − d′ dummy
attributes i ∈ AD .

19

Note that in our mulitauthority scheme a similar approach would allow one
to choose exactly how many of the attributes given in the ciphertext to require
from each authority, i.e to vary the values dk. We need only add dmaxk dummy
attributes for each authority k and proceed as described above.

Leaving out authorities In the mulitauthority scheme as stated, each user
must go to every authority before he can decrypt any message. Using the tech-
nique above, an encryptor can allow decryption by someone who has none of
the attributes handled by a specific authority by including all of the dummy
attributes for that authority in the encryption set. However, a user would still
have to go to that authority to obtain secret keys for these dummy values in
order to decrypt. There could be an arbitrarily large number of authorities in
the system, so this might involve a lot of work.

We can remove this requirement by adding one ”authority attribute k” for
each authority. We would add a corresponding TNk = gtNk to the public key and
the central authority would give every user u a secret key for each authority:
DNk = gyk,u/tNk . To encrypt without requiring any attributes from authority k,
the encryptor would include T s

Nk in the encryption. A user could then combine
this with his DNk value and obtain Y s

k,u = e(g, g)yk,us, thus bypassing the need
for any attributes from authority k.

More complicated functions of the authorities Our basic scheme as
described in Section 4 requires that a user have sufficient attributes from all of
the authorities in order to decrypt. However, we might want to allow a user to
decrypt if he had sufficient attributes from at least D of the authorities.

We have to make the following changes to our basic scheme: Our central au-
thority will now choose a random D−1 degree polynomial P with P (0) = y0. For
each authority k he will compute P (k), and then compute a value which com-
bined with Y s

k,u = e(g, g)yk,us = e(g, g)Fsk
(u)s will give e(g, g)P (k)s. If the user

obtains D of these values he can interpolate to find e(g, g)P (0)s = e(g, g)y0s = Y s
0

and then obtain m. Thus, the secret key from the central authority for user u
will be DCA = {gP (k)−Fsk

(u)}k=1...K .

Adding Attribute Authorities We can also allow the central authority to
add additional attribute authorities to the system at any point in the execution
of the scheme.

In the basic scheme, where attributes from all authorities are required for
decryption, this will occur as follows: The central authority will choose a new
system public key Y ′

0 = e(g, g)y′

0, and all future encryption will be relative to this
public key. The central authority will store the PRF seed for the new authority,
and all secret keys it gives out will be computed using y′

0 and the new enlarged
set of PRFs. Note that this means that all users will need to obtain a new key
from the central authority in order to decrypt any messages encrypted under the
new key. However, they will not need to obtain new keys from any of the old
attribute authorities.

In the scheme described in the above section, which uses a threshold over
authorities, the central authority has simply to give each user an additional
value for the new authority k: e(g, g)P (k)−Fsk

(u). Note that in this case, if a user

20

does not intend to use any attributes from this new authority, he need not obtain
a new key from the central authority.

Single Authority CNF Attribute Encryption In [SW05] it was left open
whether decryption ability could be determined by a more complicated function
of a user’s attributes. Looked at differently, our scheme can be viewed as a single
authority scheme in which the attributes necessary for decryption are given by a
CNF formula chosen by the encryptor. In this case, each authority corresponds
to a clause, and dk = 1 for all authorities.

A user would obtain all of his secret keys ({Dk,i} and DCA) from the au-
thority and then would be able to decrypt any message for which he had at least
one of the specified attributes i ∈ Ak

C for each clause k.
The only additional complication is that our multiauthority scheme required

that each authority’s attribute set be disjoint. Thus, the set of attributes allowed
in each clause must be disjoint. To get around this, we create a separate copy of
each attribute for each clause in which it could possibly appear. Thus, if a user
has attribute i, he will have in his secret key Dk,i for every clause k in which
attribute i could appear. Then the encryptor includes T s

1,i if attribute i appears
in the first clause, and T s

2,i if it occurs in the second clause, etc.

Acknowledgements Thanks to Anna Lysyanskaya for advice and encourage-
ment, and to Brent Waters for helpful comments and suggestions. The author is
supported by NSF grant CNS-0374661 and NSF Graduate Research Fellowship.

References

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity based
encryption without random oracles. In Proc. of EUROCRYPT 2004, volume
3027, LNCS, 54–73. Springer.

[BF01] Dan Boneh and Matthew Franklin. Identity-based encryption from the Weil
pairing. In Proc. of CRYPTO 2001, volume 2139, LNCS, 213–229. Springer.

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key
encryption scheme. In Proc. of EUROCRYPT 2003, volume 2656, LNCS,
255–271. Springer.

[Coc01] C. Cocks. An identity based encryption scheme based on quadratic residues.
In Proc. of Cryptography and Coding, 8th IMA International Conference,
volume 2260,LNCS, 360–363. Springer, 2001.

[Fel87] P. Feldman. A practical scheme for non-interactive verifiable secret sharing.
In Proc. of FOCS 1987, 427–437.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-
based encryption for fine-grained access control of encrypted data. In Proc.

of CCS 2006, 89–98, New York. ACM Press.
[Sha85] Adi Shamir. Identity-based cryptosystems and signature schemes. In Proc.

of CRYPTO 1984, volume 196, LNCS, 47–53. Springer.
[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Proc.

of EUROCRYPT 2005, volume 3494, LNCS, 457-473. Springer.
[Wat05] Brent Waters. Efficent identity based encryption without random oracles.

In Proc. of EUROCRYPT 2005, volume 3494, LNCS, 114–127. Springer.

