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Abstract. We construct public-key systems that support comparison
queries (x ≥ a) on encrypted data as well as more general queries such
as subset queries (x ∈ S). Furthermore, these systems support arbitrary
conjunctive queries (P1 ∧ · · · ∧ P`) without leaking information on indi-
vidual conjuncts. We present a general framework for constructing and
analyzing public-key systems supporting queries on encrypted data.

1 Introduction

Queries on encrypted data are easiest to explain with an example. Consider a
credit card payment gateway that observes a stream of encrypted transactions,
say encrypted under Visa’s public key. The gateway needs to flag all transac-
tions satisfying a certain predicate P . Say, all transactions whose value is over
$1000. Storing Visa’s secret key on the gateway is a bad idea for both security
and privacy concerns. Instead, Visa wishes to give the gateway a token TKP

that enables the gateway to identify transactions satisfying P without learning
anything else about these transactions. Of course, generating the token TKP

will require Visa’s secret key.
As another example, consider a mail server that receives a stream of email

messages encrypted under the recipients public key. If the email message satisfies
a certain predicate P the mail server should forward the email to the recipient’s
pager. If the email satisfies some other predicate P ′ the server should just discard
the email. Otherwise, the server should place the email in the recipient’s inbox.
The recipient does not want to give the mail server the full private key. Instead,
she wants to give the server two tokens TKP and TKP ′ enabling the server to
test for the predicates P and P ′ without learning any other information about
the email.

Our goal is to build a public-key system that supports a rich set of query pred-
icates. In our payment gateway example one can imagine comparison queries such
as (value > 1000) or even conjunctions such as (value > 1000) and (Transaction
Time > 5pm). The gateway should learn no information other than the value
of the conjunctive predicate. In case a conjunction P1 ∧ P2 is false, the gateway
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should not learn which of the two conjuncts P1 or P2 is false. In our second
example involving a mail server one can imagine testing for subset queries such
as (sender ∈ S) where S is a set of email addresses. Conjunctive queries such
as (sender ∈ S) and (subject = urgent) also make sense. Perhaps in the distant
future, when highly complex queries on encrypted data are possible, one can
imagine running an anti-virus/anti-spam predicate on encrypted emails. The
mail server learns nothing about incoming encrypted email other than its spam
status.

Unfortunately, until now, only simple equality queries on encrypted data
were possible. Song et al. [19] developed a mechanism for equality tests on data
encrypted with a symmetric key system. Boneh et al. [8] constructed equality
tests in the public-key settings.

Our results. We present a general framework for analyzing and constructing
searchable public-key systems for various families of predicates. We then con-
struct public-key systems that support comparison queries (such as greater-than)
and general subset queries. We also support arbitrary conjunctions. We evalu-
ate our results based on ciphertext size and token size. Let T = {1, 2, . . . , n}
and suppose we encrypt a tuple x = (x1, . . . , xw) ∈ Tw. Say x1 is a transaction
value, x2 is a card expiration date, and so on. The following table summarizes
our results at a high level.

Ciphertext Token
Query Type Source Size Size

Equality query: (xi = a) for any a ∈ T [19, 17, 8, 1] O(1) O(1)

Comparison query: (xi ≥ a) for any a ∈ T [10, 12]3 O(
√

n) O(
√

n)

Subset query: (xi ∈ A) for any A ⊆ T This paper O(n) O(n)

Equality conjunction: (x1 = a1) ∧ . . . ∧ (xw = aw) This paper O(w) O(w)

Comparison conjunction: (x1 ≥ a1) ∧ . . . ∧ (xw ≥ aw) This paper O(nw) O(w)

Subset conjunction: (x1 ∈ A1) ∧ . . . ∧ (xw ∈ Aw) This paper O(nw) O(nw)

Here (a1, . . . , aw) is an arbitrary vector that defines a conjunctive equality or
a comparison predicate. Similarly, A1, . . . , Aw are arbitrary subsets of {1, . . . , n}
that define a conjunctive subset query predicate. We emphasize that when a
conjunction predicate is false, the system does not leak which of the w conjuncts
caused it.

Prior to these results the best systems for comparison and subset queries
were the trivial brute-force systems that we discuss in Section 3. For comparison
queries these systems generate a ciphertext of size O(nw) and for subset queries
they generate a ciphertext of size O(2nw). Note that even without conjunction,

3 Both papers [10, 12] focus on traitor tracing, but as we show in the full version of
our paper [11], their approach directly gives a comparison searching system without
conjunctions.



namely for w = 1, our subset query construction generates ciphertexts that are
exponentially shorter than the best known previous solution (O(n) vs. O(2n)).

The main tool used in these constructions is a new primitive we call Hidden
Vector Encryption or HVE for short. This primitive can be viewed as an extreme
generalization of Anonymous Identity Based Encryption (AnonIBE) [8, 1, 13].
We show how HVE implies all the results in the table.

A natural question is to look for public key systems that support larger classes
of predicates, such as regular expressions. Ultimately, one would like a public-
key system that supports searches for any predicate computable by a poly-size
circuit. Presently, this appears to be a difficult open problem.

Related work. Equality tests on encrypted data were considered in [19, 8]. Equal-
ity searches on an encrypted audit log were proposed in [20]. Equality tests in the
symmetric key settings are closely related to oblivious RAM techniques [17, 14].
Equality tests in the public key settings are closely related to Anonymous Iden-
tity Based Encryption (AnonIBE) [8, 1, 13]. Conjunctive equality queries were
first studied in [15]. Equality searches on streaming data that hide the requested
predicate were discussed in [18] and [4]. Efficient equality searches in databases
were recently presented in [2]. Bethencourt et al. [3] recently gave a construc-
tion for efficient range queries in a weaker security model. That is, when the
encrypted index falls in the specified range, the search token reveals the index.

2 Definitions

We begin by defining a general framework for queries on encrypted data. Let Σ be
a finite set of binary strings. A predicate P over Σ is a function P : Σ → {0, 1}.
We say that I ∈ Σ satisfies the predicate if P (I) = 1.

2.1 Searchable encryption

Let Φ be a set of predicates over Σ. A Φ-searchable public key system comprises
of the following algorithms:

Setup(λ) A probabilistic algorithm that takes as input a security parameter
and outputs a public key PK and secret key SK.

Encrypt(PK, I, M) Encrypts the plaintext pair (I,M) using the public key PK.
We view I ∈ Σ as the searchable field, called an index, and M ∈M as the
data.

GenToken(SK, 〈P 〉) Takes as input a secret key SK and the description of a
predicate P ∈ Φ. It outputs a token TKP .

Query(TK, C) Takes a token TK for some predicate P ∈ Φ as input and a
ciphertext C. It outputs a message M ∈ M or ⊥. Roughly speaking, if C
is an encryption of (I,M) then the algorithm outputs M when P (I) = 1
and outputs ⊥ otherwise. The precise requirement is captured in the query
correctness property below.



Correctness. The system must satisfy the following correctness property:

– Query correctness: For all (I,M) ∈ Σ ×M and all predicates P ∈ Φ:

Let (PK,SK) R← Setup(λ), C
R← Encrypt(PK, I,M),

and TK R← GenToken(SK, 〈P 〉).

If P (I) = 1 then Query(TK, C) = M .

If P (I) = 0 then Pr[Query(TK, C) = ⊥] > 1− ε(λ) where ε(λ) is a
negligible function.

Suppose that given a ciphertext C ← Encrypt(PK, I, M) we are only inter-
ested in testing whether a predicate P (I) is satisfied. In this case the message
spaceM can be set to a singleton, sayM = {true}. Algorithm Query(TK, C) will
return true when P (I) = 1 and ⊥ otherwise. A larger message spaceM is useful
if TK is intended to unlock some M ∈ M whenever the predicate P (I) = 1.
For example, when the transaction value is over $1000 we may want the pay-
ment gateway to obtain more information about the transaction. Otherwise, the
gateway should learn nothing.

Notice that a Φ-searchable system does not provide a Decrypt algorithm that
uses SK to decrypt a ciphertext C and outputs (I,M). One can always add this
capability by also encrypting (I,M) under a standard public key system. There
is no need for the searchable system to explicitly provide this capability.

An example – comparison queries. Before defining security, we first give a moti-
vating example using comparison queries. Let Σ = {1, . . . , n} for some integer n.
For σ ∈ {1, . . . , n} let Pσ be the following comparison predicate:

Pσ(x) =

{
1 if x ≥ σ,
0 otherwise

Let Φn = {P1, . . . , Pn} be the set of all n comparison predicates. Suppose the
adversary has the tokens for predicates Pσ1 , Pσ2 , . . . , Pσw

where σ1 < σ2 <
· · · < σw. Lets x, y, z be some integers as in Figure 1. Clearly the adversary
can distinguish Encrypt(PK, x,m) from Encrypt(PK, y,m) using the token for
the predicate Pσ2 . However, the adversary should not be able to distinguish
Encrypt(PK, y,m) from Encrypt(PK, z, m). Indeed, separating an encryption of
y from an encryption of z is information that should not be exposed by the tokens
at the adversary’s disposal. Our definition of security captures this property
using the general framework.

2.2 Security

We define security of a Φ-searchable system E using a query security game
that captures the intuition that tokens TK reveal no unintended information
about the plaintext. The game gives the adversary a number of tokens and
requires that the adversary cannot use these tokens to deduce unintended infor-
mation. The game proceeds as follows:



σ1 σ2 σ3 σ41 n

x y z

Fig. 1. Tokens for σ1, σ2, σ3, σ4 given to the adversary

– Setup. The challenger runs Setup(λ) and gives the adversary PK.
– Query phase 1. The adversary adaptively outputs descriptions of predi-

cates P1, P2, . . . , Pq1 ∈ Φ. The challenger responds with the corresponding
tokens TKj ← GenToken(SK, 〈Pj〉). We refer to such queries as predicate
queries.

– Challenge. The adversary outputs two pairs (I0,M0) and (I1,M1) subject
to two restrictions:
• First, Pj(I0) = Pj(I1) for all j = 1, 2, . . . , q1.
• Second, if M0 6= M1 then Pj(I0) = Pj(I1) = 0 for all j = 1, 2, . . . , q1.

The challenger flips a coin β ∈ {0, 1} and gives C∗
R← Encrypt(PK, Iβ ,Mβ)

to the adversary.
The two restrictions ensure that the tokens given to the adversary do not
trivially break the challenge. The first restriction ensures that tokens given to
the adversary do not directly distinguish I0 from I1. The second restriction
ensures that the tokens do not directly distinguish M0 from M1.

– Query phase 2. The adversary continues to adaptively request tokens for
predicates Pq1+1, . . . , Pq ∈ Φ, subject to the two restrictions above. The chal-
lenger responds with the corresponding tokens TKj ← GenToken(SK, 〈Pj〉).

– Guess The adversary returns a guess β′ ∈ {0, 1} of β.

We define the advantage of adversaryA in attacking E as the quantity QU AdvA =
|Pr[β′ = β]− 1/2|.

Definition 1. We say that a Φ-searchable system E is secure if for all polyno-
mial time adversaries A attacking E the function QU AdvA is a negligible function
of λ.

Another example – equality queries. Let Σ be some finite set. For σ ∈ Σ let
Pσ(x) be an equality predicate, namely

Pσ(x) =

{
1 if x = σ,
0 otherwise

Let Φeq = {Pσ for all σ ∈ Σ}. Then a Φeq-searchable encryption supports equal-
ity queries on ciphertexts. It is easy to see that a secure Φeq-searchable encryp-
tion is also an anonymous IBE system [8, 1, 13] — an Identity Based Encryp-
tion system where a ciphertext reveals no useful information about the iden-
tity that was used to create it. This should not be too surprising since it was
previously shown [8, 1] that anonymous IBE is sufficient for equality searches.
A Φeq-searchable encryption system (Setup,Encrypt,GenToken,Query) gives an
anonymous IBE as follows:



– SetupIBE(λ) runs Setup(λ) and outputs IBE parameters PK and master key
SK.

– EncryptIBE(PK, I,M) where I ∈ Σ outputs Encrypt(PK, I,M).
– ExtractIBE(SK, I) where I ∈ Σ outputs TKI ← GenToken(SK, 〈PI〉).
– DecryptIBE(TKI , C) outputs Query(TKI , C).

The correctness property ensures that if C is the result of Encrypt(PK, I,M)
then Query(TKI , C) will output M since PI(I) = 1. It is not difficult to see
that the Φeq-security game ensures semantic security for both the message and
the identity. Hence, the resulting system is an anonymous IBE.

By considering larger classes of predicates Φ we obtain more general searching
capabilities. The challenge is then to build secure encryption schemes that are
Φ-searchable for the most general Φ possible.

Chosen ciphertext security. Definition 1 easily extends to address chosen cipher-
text attacks (CCA), but we do not pursue that here.

2.3 Selective security

We will also need a slightly weaker security definition in which the adversary
commits to the search strings I0, I1 at the beginning of the game. Everything
else remains the same. The game proceeds as follows:

– Setup. The adversary outputs two strings I0, I1 ∈ Σ. The challenger runs
Setup(λ) and gives the adversary PK.

– Query phase 1. The adversary adaptively outputs descriptions of predi-
cates P1, P2, . . . , Pq1 ∈ Φ. The only restriction is that

Pj(I0) = Pj(I1) for all j = 1, 2, . . . , q1 (1)

The challenger responds with the corresponding tokens TKj ← GenToken(
SK, 〈Pj〉).

– Challenge. The adversary outputs two messages M0,M1 ∈ M subject to
the restriction that:

if M0 6= M1 then Pj(I0) = Pj(I1) = 0 for all j = 1, 2, . . . , q1 (2)

The challenger flips a coin β ∈ {0, 1} and gives C∗
R← Encrypt(PK, Iβ ,Mβ)

to the adversary.
– Query phase 2. The adversary continues to adaptively request query to-

kens for predicates Pq1+1, . . . , Pq ∈ Φ, subject to the two restrictions (1)
and (2). The challenger responds with the corresponding tokens TKj ←
GenToken(SK, 〈Pj〉).

– Guess The adversary returns a guess β′ ∈ {0, 1} of β.

The advantage of adversary A in attacking E is the quantity sQU AdvA =
|Pr[β′ = β]− 1/2|.
Definition 2. We say that a Φ-searchable system E is selectively secure if
for all polynomial time adversaries A attacking E the function sQU AdvA is a
negligible functions of λ.



3 The Trivial Construction

Let Σ be a finite set of binary strings. We build a Φ-searchable public key system
ETR, for any set of (polynomial time computable) predicates Φ. We refer to this
system as the brute force Φ-searchable system.

The brute force system. Let E = (Setup′,Encrypt′,Decrypt′) be a public-key
system. Let Φ = {P1, P2, . . . , Pt} The Φ-searchable system ETR is defined as
follows:

Setup(λ) Run Setup′(λ) t times to obtain

PK← (PK1, . . . ,PKt) and SK← (SK1, . . . ,SKt)

Output PK and SK.
Encrypt(PK, I, M) For j = 1, . . . , t define:

Cj
R←

{
Encrypt′(PKj , M) if Pj(I) = 1,
Encrypt′(PKj , ⊥) otherwise.

Output C ← (C1, . . . , Ct). Note that the length of C is linear in n.
GenToken(SK, 〈P 〉) Here 〈P 〉 (the description of a predicate P ) is the index j

of P in Φ. Output TK← (j, SKj).
Query(TK, C) Let C = (C1, . . . , Ct) and TK = (j, SKj).

Output Decrypt′(SKj , Cj).

The following lemma proves security of this construction. The proof is a
straightforward hybrid argument and is given in Appendix A.

Lemma 1. The system ETR above is a secure Φ-searchable encryption system
assuming E is a semantically secure public key system against chosen plaintext
attacks.

3.1 A third example — conjunctive comparison predicates

Suppose Σ = {1, . . . , n}w for some n, w. Let Φn,w be the set of nw predicates

Pa1...aw
(x1, . . . , xw) =

{
1 if xj ≥ aj for all j = 1, . . . , w,
0 otherwise

for all ā = (a1 . . . aw) ∈ {1, . . . , n}w. Then |Φn,w| = nw.
The trivial system in this case produces ciphertexts of length O(nw). Essen-

tially, the system uses a unary encoding of the w columns and assigns a private
key to each cell in this n by w matrix. We will construct a much better system
in Section 6.



4 Background on pairings and complexity assumptions

Our goal is to construct Φ-searchable systems for a large class of predicates Φ
that is much better than the trivial construction. To do so we will make use of
bilinear maps.

4.1 Bilinear groups of composite order

We review some general notions about bilinear maps and groups, with an em-
phasis on groups of composite order. We follow [9] in which composite order
bilinear groups were first introduced.

Let G be a an algorithm called a group generator that takes as input a security
parameter λ ∈ Z>0 and outputs a tuple (p, q, G, GT , e) where p, q are two distinct
primes, G and GT are two cyclic groups of order n = pq, and e is a function
e : G2 → GT satisfying the following properties:

– (Bilinear) ∀u, v ∈ G, ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab.
– (Non-degenerate) ∃g ∈ G such that e(g, g) has order n in GT .

We assume that the group action in G and GT as well as the bilinear map e
are all computable in polynomial time in λ. Furthermore, we assume that the
description of G and GT includes generators of G and GT respectively.

To summarize, G outputs the description of a group G of order n = pq with
an efficiently computable bilinear map. We will use the notation Gp, Gq to denote
the respective subgroups of order p and order q of G and we will use the notation
GT,p, GT,q to denote the respective subgroups of order p and order q of GT .

4.2 The bilinear Diffie-Hellman assumption

First we review the standard Bilinear Diffie-Hellman assumption, but in groups
of composite order. For a given group generator G define the following distribu-
tion P (λ):

(p, q, G, GT , e) R← G(λ), n← pq, gp
R← Gp, gq

R← Gq

a, b, c
R← Zn

Z̄ ←
(
(n, G, GT , e), gq, gp, ga

p , gb
p, gc

p

)
T ← e(gp, gp)abc

Output (Z̄, T )

For an algorithm A, define A’s advantage in solving the composite bilinear
Diffie-Hellman problem for G as:

cBDH AdvG,A(λ) :=
∣∣∣∣Pr[A(Z̄, T ) = 1]− Pr[A(Z̄, R) = 1]

∣∣∣∣
where (Z̄, T ) R← P (λ) and R

R← GT,p.



Definition 3. We say that G satisfies the composite bilinear Diffie-Hellman as-
sumption (cBDH) if for any polynomial time algorithm A we have that the func-
tion cBDH AdvG,A(λ) is a negligible function of λ.

4.3 The composite 3-party Diffie-Hellman assumption

Our construction makes use of an additional assumption in composite bilinear
groups. For a given group generator G define the following distribution P (λ):

(p, q, G, GT , e) R← G(λ), n← pq, gp
R← Gp, gq

R← Gq

R1, R2, R3
R← Gq

a, b, c
R← Zn

Z̄ ←
(
(n, G, GT , e), gq, gp, ga

p , gb
p, gab

p ·R1, gabc
p ·R2

)
T ← gc

p ·R3

Output (Z̄, T )

For an algorithm A, define A’s advantage in solving the composite 3-party
Diffie-Hellman problem for G as:

C3DH AdvG,A(λ) :=
∣∣∣∣Pr[A(Z̄, T ) = 1]− Pr[A(Z̄, R) = 1]

∣∣∣∣
where (Z̄, T ) R← P (λ) and R

R← G.

Definition 4. We say that G satisfies the composite 3-party Diffie-Hellman as-
sumption (C3DH) if for any polynomial time algorithm A we have that the func-
tion C3DH AdvG,A(λ) is a negligible function of λ.

The assumption is formed around the intuition that it is hard to test for
Diffie-Hellman tuples in the order p subgroup if the elements to be tested have
a random order q subgroup component.

5 Hidden Vector Encryption

We construct a Φ-searchable encryption system for a general class of equality
predicates. We call such systems Hidden Vector Systems or HVEs for short. We
then show in Section 6 that our HVE system leads to comparison and subset
queries far more efficient than the trivial system.

5.1 HVE Definition

Let Σ be a finite set and let ∗ be a special symbol not in Σ. Define Σ∗ = Σ∪{∗}.
The star ∗ plays the role of a wildcard or “don’t care” value. In our subset and



range query applications we typically set Σ = {0, 1}. Note that here we use the
symbol Σ differently than how it was used in Section 2.1.
For σ = (σ1, . . . , σ`) ∈ Σ`

∗ define a predicate PHVE
σ over Σ` as follows. For

x = (x1, . . . , x`) ∈ Σ` set:

PHVE
σ (x) =

{
1 if for all i = 1, . . . , ` : (σi = xi or σi = ∗),
0 otherwise

In other words, the vector x matches σ in all the coordinates where σ is not ∗.
Let ΦHVE = {PHVE

σ for all σ ∈ Σ`
∗}. We refer to ` as the width of the HVE.

Definition 5. A Hidden Vector System (HVE) over Σ` is a selectively secure
ΦHVE-searchable encryption system.

The case ` = 1 degenerates to the example discussed in Section 2.2 where
we showed equivalence to anonymous IBE [8, 1, 13]. For larger ` we obtain a
more general concept that is much harder to build. In particular, the wildcard
character ‘∗’ — which is essential for the applications we have in mind — makes
it challenging to construct a ΦHVE-searchable system. We construct an HVE with
the following parameters:

CT-size = O(`) and TK-size = O( weight(σ) )

where weight
(
σ = (σ1, . . . , σ`)

)
is the number of coordinates where σi 6= ∗.

5.2 Construction

For our particular HVE construction we will let Σ = Zm for some integer m.
We set Σ∗ = Zm ∪ {∗}. We describe an HVE where the payload M is in a small
subset M of GT , namely |M| < |GT |1/4. This is not a serious restriction since
the payload M is typically a short symmetric message key. Our HVE system
works as follows:

Setup(λ) The setup algorithm first chooses random primes p, q > m and creates
a bilinear group G of composite order n = pq, as specified in Section 4.1.
Next, it picks random elements

(u1, h1, w1), . . . , (u`, h`, w`) ∈ G3
p , g, v ∈ Gp , gq ∈ Gq.

and an exponent α ∈ Zp. It keeps all these as the secret key SK.
It then chooses 3` + 1 random blinding factors in Gq:

(Ru,1, Rh,1, Rw,1), . . . , (Ru,`, Rh,`, Rw,`) ∈ Gq and Rv ∈ Gq.

For the public key, PK, it publishes the description of the group G and the
values

gq, V = vRv, A = e(g, v)α,

0B@ U1 = u1Ru,1, H1 = h1Rh,1, W1 = w1Rw,1

...
U` = u`Ru,`, H` = h`Rh,`, W` = w`Rw,`

1CA
The message space M is set to be a subset of GT of size less than n1/4.



Encrypt(PK, I ∈ Z`
m, M ∈M ⊆ GT ) Let I = (I1, . . . , I`) ∈ Z`

m. The en-
cryption algorithm works as follows:
– choose a random s ∈ Zn and random Z, (Z1,1, Z1,2), . . . , (Z`,1, Z`,2) ∈

Gq. (The algorithm picks random elements in Gq by raising gq to random
exponents from Zn.)

– Output the ciphertext:

C =

„
C′ = MAs, C0 = V sZ,

0B@ C1,1 = (UI1
1 H1)

sZ1,1, C1,2 = W s
1 Z1,2

...

C`,1 = (U
I`
` H`)

sZ`,1, C`,2 = W s
` Z`,2

1CA «

GenToken(SK, I∗ ∈ Σ`
∗) The key generation algorithm will take as input the

secret key and an `-tuple I∗ = (I1, . . . , I`) ∈ {Zm ∪ {∗}}`. Let S be the set
of all indexes i such that Ii 6= ∗. To generate a token for the predicate PHVE

I∗
choose random (ri,1, ri,2) ∈ Z2

p for all i ∈ S and output:

TK =
“
I∗, K0 = gα Q

i∈S(uIi
i hi)

ri,1w
ri,2
i , ∀i ∈ S : Ki,1 = vri,1 , Ki,2 = vri,2

”
Query(TK, C) Using the notation in the description of Encrypt and GenToken

do:
– First, compute

M ← C ′ /

(
e(C0,K0) /

∏
i∈S

e(Ci,1,Ki,1) e(Ci,2,Ki,2)

)
(3)

– If M 6∈ M output ⊥. Otherwise, output M .

Correctness Before proving security we first show that the system satisfies the
correctness property defined in Section 2.1. Let (I,M) be a pair in Σ`×M and
let B∗ ∈ Σ`

∗. This B∗ defines a predicate PB∗ in ΦHVE.

Let (PK,SK) R← Setup(λ), C
R← Encrypt(PK, I,M),

and TK R← GenToken( SK, B∗).

– If PB∗(I) = 1 then a simple calculation shows that Query(TK, C) = M .
This uses in a crucial way the fact that e(hp, hq) = 1 for all hp ∈ Gp and
hq ∈ Gq.

– If PB∗(I) = 0 the following lemma shows that when the message space M
satisfies |M| < n1/4 then Pr[Query(TK, C) 6= ⊥] is negligible.
Here the probability is over the random bits used to create the ciphertext.

Lemma 2. With the notation as above, and assuming |M| < n1/4, whenever
PB∗(I) = 0 the quantity Pr[Query(TK, C) 6= ⊥] is negligible.
The probability is over the random bits used to create the ciphertext.



Proof. Let I = (I1, . . . , I`) ∈ Σ and let B∗ = (B1, . . . , B`) ∈ Σ`
∗. Let S be the

set of all indexes i such that Bi is not a wildcard ∗ at index i. Since PB∗(I) = 0
we know that there is some i ∈ S such that Bi 6= Ii. Then the decryption
equation (3) contains a factor

e(C0,K0) / e(Ci,1,Ki,1) e(Ci,2,Ki,2) = e(v, ui)(Bi−Ii)·sri,1

which is a uniformly distributed value in GT,p and is independent of the rest
of the equation. Since the message space is of size n1/4 and the size of GT,p is
approximately n1/2, the false positive probability is at most 1/n1/4, which is
negligible in the security parameter as required. ut

We note that in practice there is no need to use a small message space
M ⊆ GT to determine if decryption succeeded. We only use M to simplify the
description of the system. In practice, one could do the following. The encryp-
tor first picks a random k ∈ GT and derives two uniform and independent b-bit
symmetric keys (k0, k1) from k. It encrypts the payload M using a symmetric en-
cryption system under key k0 to obtain C1. Next, it runs our Encrypt(PK, I, k)
to obtain C. The final ciphertext is the tuple (C,C1, k1). Now, our Query algo-
rithm works as follows. It first recovers a k′ from C using the given token TK.
Next, it derives (k′0, k

′
1) from k′ and outputs ⊥ if k′1 6= k1. Otherwise, it outputs

the decryption of C1 under k′0 using a symmetric system. Lemma 2 shows that
the false error probability is now 1/2b. Alternatively, if the symmetric encryp-
tion system provides authenticated encryption, then one could decide if Query
produced the right value based on whether symmetric decryption succeeded.

Extensions In our description above we limited the index space Σ to be Zm.
We can expand this space to all of {0, 1}∗ by taking a large enough m to con-
tain the range of a collision-resistant hash function. Then Encrypt(PK, I ∈
({0, 1}∗)`, M ∈ GT ) first hashes all the coordinates of I into Zm using the
collision resistant hash and then applies the Encrypt algorithm described above.

5.3 Proof of Security

We prove our scheme selectively secure (as defined in Section 2.3) under the
composite 3-party Diffie-Hellman assumption and the bilinear Diffie-Hellman
assumption. We give the high-level arguments of the proof in this section and
defer the proofs of some lemmas to the full version of our paper [11].

Suppose the adversary commits to vectors L0, L1 ∈ Σ` at the beginning of
the game. Let X be the set of indexes i such that L0,i = L1,i and X be the set
of indexes i such that L0,i 6= L1,i.

The proof uses a sequence of 2`+2 games to argue that the adversary cannot
win the original security game of Section 2.3 which we denote by G. We begin
by slightly modifying the game G into a game G′. Games G and G′ are identical
except for how the challenge ciphertext is generated. In G′ if M0 6= M1 then
the adversary multiplies the challenge ciphertext component C ′ by a random
element of GT,p. The rest of the ciphertext is generated as usual. Additionally,
if M0 = M1 then the challenge ciphertext is generated correctly.



Lemma 3. Assume that the Bilinear Diffie-Hellman assumption holds. Then
for any polynomial time adversary A the difference of advantage of A in game
G and game G′ is negligible.

The proof is in the full version of our paper [11].
Next, we define a game G̃. In this game the adversary will give two challenge

messages, M0,M1. If M0 6= M1 then the challenger outputs a random element
of GT as the C ′ component of the challenge ciphertext. The rest of ciphertext
is constructed as normal. If M0 = M1 the challenger outputs the challenge
ciphertext as normal.

Lemma 4. Assume that the Composite 3-party Diffie-Hellman assumption holds.
Then for any polynomial time adversary A the difference of advantage of A in
game G′ and game G̃ is negligible.

The proof is in the full version of our paper [11].
Finally, we define two sequences of hybrid games Gj and G′

j for j = 1, . . . , |X|.
We define the game Gj as follows. Let X̃ be a set containing the first j indexes in
X. The challenger creates the challenge ciphertext components C0 and Ci,1, Ci,2

as normal for all i /∈ X̃. However, for all i ∈ X̃ the challenger creates Ci,1, Ci,2

as completely random group elements in G. Additionally, if M0 6= M1 then C ′

is replaced by a completely random element from GT (otherwise it is created as
normal).

We define a game G′
j as follows. Let X̃ be a set containing the first j indexes

in X and let δ be the (j + 1)-th index in X. In the challenge ciphertext the
challenger creates C0 and Ci,1, Ci,2 as normal for all i /∈ X̃ and i 6= δ. For all
i ∈ X̃ the challenger creates Ci,1, Ci,2 as completely random group elements in
G. Finally, the challenger chooses a random s′ and creates

Cδ,1 = (uIδ
p hp)s′g

zδ,1
q , Cδ,2 = gs′

p g
zδ,2
q .

Additionally, if M0 6= M1 then C ′ is replaced by a completely random element
from GT (otherwise it is created as normal).

Observe that for all i in X̃ the challenge ciphertext contains no information
about Lβ,i. Therefore the adversary’s advantage in game G|X| is 0. Additionally,
game G0 is equivalent to G̃. We state the following two lemmas whose proofs
are given in the full version of our paper [11].

Lemma 5. Assume the Composite 3-party Diffie-Hellman assumption holds.
Then for all j and any polynomial time adversary A the difference of advan-
tage of A in game Gj and game G′

j is negligible.

Lemma 6. Assume the Composite 3-party Diffie-Hellman assumption holds.
Then for all j and any polynomial time adversary A the difference of advan-
tage of A in game G′

j and game Gj+1 is negligible.



It now follows that if the Composite 3-party Diffie-Hellman and Bilinear
Diffie-Hellman assumptions hold then no polynomial-time adversary can break
our scheme with non-negligible advantage. This follows from the sequence of
hybrid games starting with the original game G:

G, G̃, G′
0, G1, G1′ , G2, G2′ , . . . , G|X|.

The adversary’s advantage in the game G|X| is 0 and the difference in adversary’s
advantage between any two consecutive hybrid games is negligible by the lemmas
above. Hence, no polynomial adversary can win game G with non-negligible
advantage.

6 Applications of HVE

We show how HVE leads to efficient systems for subset queries and conjunctive
comparison queries. Throughout the section we let Σ01 = {0, 1} and Σ01∗ =
{0, 1, ∗}.

Conjunctive comparison queries. In Section 3.1 we defined conjunctive com-
parison queries and the predicate family Φn,w. We use HVE to build a Φn,w-
searchable encryption system with ciphertext size O(nw) and token size O(w).

Let (SetupHVE, EncryptHVE, GenTokenHVE, QueryHVE) be a secure HVE
over Σnw

01 . Thus, the width of this HVE is ` = nw. We construct a Φn,w-
searchable system as follows:

– Setup(λ) is the same as SetupHVE(λ).
– Encrypt(PK, I, M) where I = (x1, . . . , xw) ∈ {1, . . . , n}w. Build a vector

σ(I) = (σi,j) ∈ Σnw
01 as follows:

σi,j =

{
1 if j ≥ xi,
0 otherwise

(4)

Then output EncryptHVE(PK, σ(I), M) which gives a ciphertext of size
O(nw). For example, for w = 2 and I = (x1, x2) the vector σ(I) looks like:

0 · · · 0 1 1 · · · 1 0 · · · 0 1 1 · · · 1
1 x1 n 1 x2 n

σ(S) = ∈ {0, 1}2n

– GenToken(SK, 〈Pā〉) where ā = (a1, . . . , aw) ∈ {1, . . . , n}w. Define σ∗(ā) =
(σi,j) ∈ Σnw

01∗ as follows:

σi,j =

{
1 if xi = j,
∗ otherwise

(5)

Output TKā
R← GenTokenHVE(SK, σ∗(ā)) which gives a token of size O(w).

For example, for w = 2 and ā = (x1, x2) the vector σ∗(ā) looks like:



∗ · · · ∗ 1 ∗ · · · ∗ ∗ · · · ∗ 1 ∗ · · · ∗
1 x1 n 1 x2 n

σ∗(ā) = ∈ {0, 1, ∗}2n

– Query(TKā, C) output QueryHVE(TKā, C)

To argue correctness and security, observe that for a predicate Pā ∈ Φn,w and an
index I ∈ {1, . . . , n}w we have that: Pā(I) = 1 if and only if PHVE

σ∗(ā)(σ(I)) = 1.
Therefore, correctness and security follow from the properties of the HVE. We
thus obtain the following immediate theorem.

Theorem 1. (Setup,Encrypt,GenToken,Query) is a selectively secure Φn,w- search-
able system assuming (SetupHVE,EncryptHVE,GenTokenHVE,QueryHVE) is an
HVE over Σnw

01 .

Conjunctive range queries. We note that a system that supports comparison
queries can also support range queries. To search for plaintexts where x ∈ [a, b]
the encryptor encrypts the pair (x, x). The predicate then tests x ≥ a ∧ x ≤ b.

6.1 Subset queries

Next, we show how to search for general subset predicates. Let T be a set of size
n. For a subset A ⊆ T we define a subset predicate as follows:

PA(x) =

{
1 if x ∈ A

0 otherwise

We wish to support searches for any subset predicate. More generally, we wish
to support searches for conjunctive subset predicates over Tw. That is, let σ =
(A1, . . . , Aw) be a w-tuple where Ai ∈ T for all i = 1, . . . , w. Then σ is an
elements of (2T )w. Define the predicate Pσ : Tw → {0, 1} as follows:

Pσ

(
(x1, . . . , xw)

)
=

{
1 if xi ∈ Ai for all i = 1, . . . , w,
0 otherwise

Let Φ = { Pσ for all σ ∈ (2T )w}. Note that Φ is huge — its size is 2nw.
The Φ-searchable system is as follows:

– Encrypt(PK, I,M) where I = (x1, . . . , xw) ∈ Tw. Build a vector σ(S) =
(σi,j) ∈ Σnw

01 as:

σi,j =

{
1 if xi = j,
0 otherwise

(6)

Then output EncryptHVE(PK, σ(I),M). The ciphertext size is O(nw) as was
the case for comparison queries.



– GenToken(SK, 〈Pα〉) where α = (A1, . . . , Aw). Define σ∗(α) = (σi,j) ∈ Σnw
01∗

as follows:

σi,j =

{
0 if j 6∈ Ai,
∗ otherwise

(7)

Output TKα
R← GenTokenHVE(SK, σ∗(α)). The token size is O(nw), which

is bigger than tokens for comparison queries.
– Setup and Query are the same algorithms from the HVE system, as for

comparison queries.

It is easiest to see how this works in the one dimensional setting, namely w = 1.
We encrypt a value x ∈ T using an HVE vector

0 · · · 0 1 0 · · · 0
1 x n

σ(x) = ∈ {0, 1}n

Consider a predicate PA where, for example, A = {2, 3, n} ⊆ T . We generate a
token for PA by calling GenTokenHVE(SK, σ∗(A)) using the HVE vector

0 ∗ ∗ 0 0 · · · 0 ∗
1 2 3 4 5 n

σ∗(A) = ∈ {∗, 1}n

The main point is that x ∈ A if and only if PHVE
σ∗(A)(σ(x)) = 1. Therefore, cor-

rectness and security follow from the properties of the HVE. We obtain a secure
system for subset queries for arbitrary subsets.

Theorem 2. (Setup,Encrypt,GenToken,Query) is a selectively secure Φ- search-
able system assuming (SetupHVE,EncryptHVE,GenTokenHVE,QueryHVE) is an
HVE over Σnw

01 .

Note that the trivial system of Section 3 for subset queries produces cipher-
texts of size O(2n). The construction above generates ciphertexts of size O(n).

Subset queries on large domains using Bloom filters. So far we considered subset
queries over a domain of size n. In Section 1 we presented examples where one
wishes to test a subset relation over a large domain. For example, we discussed
email filtering queries of type (sender ∈ S) where S is a set of email addresses.
To use our construction one would first hash email addresses to a set {1, . . . , n}
for some n, using a publicly known hash function, and then use the HVE for
small domain.

Unfortunately, by hashing into a small domain there is some chance for false
positives, namely Query may output M even though (sender 6∈ S). False posi-
tives result from hash collisions. The false positive probability can be reduced
by a standard application of Bloom filters [5]. Instead of using one hash func-
tion, we use multiple functions H1, . . . ,Hd : {0, 1}∗ → T . Again, consider the
one-dimensional case, namely w = 1. To encrypt a word W ∈ {0, 1}∗ the
encryptor creates a vector σ(W ) ∈ {0, 1}n that contains a ‘1’ at positions



H1(W ), . . . ,Hd(W ) and ‘0’ everywhere else. The encryptor then runs Encrypt(
PK, σ(W ),M).

To generate a token for a set A = {W1, . . . ,Ws} the GenToken algorithm
builds a vector σ∗(A) ∈ {0, ∗}n that contains ∗ at positions Hi(Wj), for all
i = 1, . . . , d and j = 1, . . . , s, and contains ‘0’ everywhere else. By choosing n
and d appropriately, the false positive probability can be made arbitrarily small.

Another subset query application. In our subset query application we identified
a ciphertext with an element x and a user’s token with a set A. This allowed us
to test whether x ∈ A. We observe that we can easily apply HVE to achieve the
opposite semantics where a user’s key is associated with an element x and the
ciphertext with a set A. This could be used by a gateway to test if a particular
user was one of the (possibly) many receivers of an email. We expect there to
be several other applications that one can build with HVE.

7 Extensions

Privacy for search queries. In some cases one may want the token TKP not to
identify which predicate P is being queried. For example, in the anti-spam exam-
ple from the introduction, the user may not want to reveal his anti-spam predi-
cate to the server. A similar problem was studied by Ostrovsky and Skeith [18]
and is related to Private Information Retrieval [16]. For public-key systems sup-
porting comparison queries this is clearly not possible since, given TKP the
server can identify the threshold in P with a simple binary search. It is an open
problem to convert our system to a symmetric-key system where TKP does not
expose P . One approach is to simply keep the public key secret from the server;
however, this is not sufficient in our system.

Validating ciphertexts. Throughout the paper we assumed that the encryptor is
honestly creating ciphertexts as specified by the encryption system. For some
applications discussed in the introduction (e.g. spam filtering) this may not be
the case. By creating malformed ciphertexts an attacker may generate false-
positive or false-negatives for the server using the tokens.

Fortunately, in some settings including a payment gateway or spam filter, this
is easily avoidable. Briefly, one technique is as follows. The recipient who has
SK will also publish a regular public-key PK1 and ask the encryptor to encrypt
the plaintext (I, M) with both the searchable system and with PK1. The result-
ing ciphertext is the pair C =

(
Encrypt(PK, I, M), EncryptPKE(PK1, (I,M))

)
.

When the recipient receives a ciphertext C = (C0, C1) it recovers (I,M) from
C1 and uses SK to test that C0 is a valid encryption of (I,M). If not then
the ciphertext is immediately rejected. In doing so, the recipient automatically
drops invalid ciphertexts. More precisely, a Φ-searchable system could provide
an algorithm Test(C, I, M, SK) that outputs true when C is a valid encryption
of (I,M) and false otherwise. Our HVE system supports this type of test.



Alternatively, one could require the encryptor to prove that his ciphertext
is well formed, for example to prove that C0 is consistent with C1. This can be
done using non-interactive proof techniques [6, 7].

8 Conclusion

In public key systems supporting queries on encrypted data a secret key can pro-
duce tokens for testing any supported query predicate. The token lets anyone
test the predicate on a given ciphertext without learning any other information
about the plaintext. We presented a general framework for analyzing security of
searching on encrypted data systems. We then constructed systems for compar-
isons and subset queries as well as conjunctive versions of these predicates.

The underlying tool behind these new constructions is a primitive we call
HVE. The one-dimensional version of HVE (namely ` = 1) is essentially an
Anonymous IBE system. For large ` we obtain a new concept that is extremely
useful for a large variety of searching predicates. We note that by setting ` = 1
in our HVE construction we obtain a new simple anonymous IBE system secure
without random oracles.

This work posses many challenging open problems. For example, the best
non-conjunctive (i.e. w = 1) comparison system we currently have requires ci-
phertexts of size O(

√
n) where n is the domain size. In principal it should be

possible to improve this to O(log n), but this is currently a wide open prob-
lem that will require new ideas. Similarly, for non-conjunctive subset queries
the best we have requires ciphertexts of size O(n). Again, can this be improved
to O(log n)? Our results mostly focus on conjunction. Are there similar results
for disjunctive queries? More generally, what other classes of predicates can we
search on?
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A Proof of Lemma 1

We prove that the trivial system presented in Section 3 is secure.

Proof. Showing that QU AdvA is negligible is a straight forward hybrid argument.
Let A be an adversary playing the query security game. For i = 1, . . . , n + 1 we
define experiment number i as follows:



– The challenger runs Setup(λ) to obtain

PK← (PK1, . . . ,PKn) and SK← (SK1, . . . ,SKn)

It gives PK to A. Next, A is given the tokens for any predicates of its choice.
– Then A outputs two pairs (I0,M0) and (I1,M1) subject to the restrictions

of the query security game challenge phase. For j = 1, . . . , n the challenger
constructs the following ciphertexts:

Cj
R←


Encrypt′(PKj , M0) if Pj(I0) = 1 and j ≥ i,
Encrypt′(PKj , M1) if Pj(I1) = 1 and j < i,
Encrypt′(PKj , ⊥) otherwise

The challenger gives C ← (C1, . . . , Cn) to A.
– The adversary continues to adaptively request query tokens subject to the

restrictions of the query security game. Finally, A outputs a bit β′ ∈ {0, 1}.
We let EXP(i)

QU[A] denote the probability that β′ equals 1.

This completes the description of experiment i. A standard argument shows that

2 · QU AdvA =
∣∣∣EXP(1)

QU[A]− EXP(n+1)
QU [A]

∣∣∣ ≤ n∑
i=1

∣∣∣EXP(i)
QU[A]− EXP(i+1)

QU [A]
∣∣∣

But
∣∣∣EXP(i)

QU[A]− EXP(i+1)
QU [A]

∣∣∣ is clearly negligible assuming E is semantically
secure against chosen plaintext attacks.


