
Which Languages Have 4-Round

Zero-Knowledge Proofs?

Jonathan Katz⋆

Department of Computer Science
University of Maryland
jkatz@cs.umd.edu

Abstract. We show that if a language L has a 4-round, black-box, com-
putational zero-knowledge proof system with negligible soundness error,
then L̄ ∈ MA. Assuming the polynomial hierarchy does not collapse, this
means in particular that NP-complete languages do not have 4-round
zero-knowledge proofs (at least with respect to black-box simulation).

1 Introduction

A zero-knowledge proof system [23] for a language L is a protocol that enables
a prover P to convince a polynomial-time verifier V that a given instance x is
indeed a member of L. Roughly speaking, the guarantees provided are:

Completeness: If x ∈ L then the honest prover P will convince the honest
verifier V to accept, except possibly with some small probability. If P always
convinces V to accept when x ∈ L then we say the proof system has perfect
completeness.

Soundness: If x 6∈ L a cheating prover P∗ will be unable to falsely convince
the honest verifier that x is in L, except with some small probability known
as the soundness error.

Zero knowledge: When x ∈ L and the prover is honest, even a malicious
verifier V∗ “learns nothing” beyond the fact that x ∈ L.

There are various ways of formalizing the above properties. In this paper, we are
interested in the case when the soundness property holds against all-powerful
provers — i.e., we focus on proofs rather than arguments [13] — and we are in-
terested in proof systems with negligible soundness error. For the proof system
to be non-trivial, the completeness error should not be too large; we will con-
sider both the case of perfect completeness as well as the case when, for x ∈ L,
the honest verifier accepts with some noticeable (i.e., inverse polynomial) prob-
ability. Finally, we focus on the case of computational zero knowledge (CZK)
where, informally, the requirement is that a non-uniform polynomial-time cheat-
ing verifier learns nothing from the interaction. (Formal definitions are provided

⋆ This work was supported by NSF CAREER award #0447075 and US-Israel Bina-
tional Science Foundation grant #2004240.

in Section 2.) We let CZK denote the class of languages that admit a computa-
tional zero-knowledge proof system.

In this paper we study the round complexity of CZK proof systems, where
a round consists of a message sent from one party to the other and we assume
that the prover and the verifier speak in alternating rounds. We briefly survey
what is known in this regard:

Unconditional constructions. The only languages currently known to be
in CZK unconditionally are those that admit statistical zero-knowledge (SZK)
proofs [23] where, informally, even an all-powerful cheating verifier learns nothing
from its interaction with the prover; we denote the class of languages admitting
statistical zero-knowledge proofs by SZK. While it is not known1 whether all
languages in SZK have constant-round statistical zero-knowledge proof systems,
such proof systems are known for specific languages. In particular, graph non-
isomorphism [21] (cf. [21, Remark 12]) as well as languages related to various
number-theoretic problems [23, 30, 34, 15, 31, 14] have 4-round SZK proof sys-
tems, and graph isomorphism [7] has a 5-round SZK proof system.

Constructions based on one-way functions/permutations. Assuming the
existence of one-way functions, every language in NP has an ω(1)-round CZK
proof system where the honest prover runs in polynomial time given an NP-
witness for the statement being proved [21]. (Actually, this result holds for MA

as well.2) If no computational restrictions are placed on the honest prover, then
any language in AM has an ω(1)-round CZK proof system under the same as-
sumption, and any language in IP = PSPACE has a CZK proof system with
polynomially-many rounds [29, 10].

Assuming the existence of one-way permutations, Feige and Shamir [17] show
a 4-round computational zero-knowledge argument for any language in NP. Their
techniques yield a 5-round CZK argument based on one-way functions, and this
was later improved to 4 rounds by Bellare et al. [6].

Constructions based on stronger assumptions. Assuming the existence
of a two-round statistically-hiding commitment scheme, there exists a 5-round
CZK proof system for any language in NP [19] (or even AM if the honest prover
can be unbounded. (More generally, given a constant-round statistically-hiding
commitment scheme, there exists a constant-round CZK proof system for any
language in AM.(Two-round statistically-hiding commitment schemes, in turn,
can be constructed based on a variety of number-theoretic assumptions [12, 13,
24] or the existence of collision-resistant hash functions [16, 28].

Although statistically-hiding commitment schemes can be constructed from
any one-way function [27], constructions of constant-round statistically-hiding
commitment schemes from one-way functions are unlikely to exist [26].

1 The constant-round proofs in [8], based on specific number-theoretic assumptions,
consider a weaker variant of SZK where the verifier is assumed to run in polynomial
time during its interaction with the prover. See also [35].

2 The class MA is defined in Section 2. AM denotes the class of languages having
constant-round Arthur-Merlin proofs.

Lower bounds. Goldreich and Oren [22] show that 2-round CZK proofs exist
only for languages in BPP. (Their result applies to auxiliary-input zero knowledge
proofs, the type we will be concerned with here as well.) Extending this result,
Goldreich and Krawczyk [20] show that 3-round black-box CZK proofs exist only
for languages in BPP. (A definition of black-box CZK is given in Section 2.) Both
these results hold for arguments as well as proofs.

Pass [33] gives evidence of the difficulty of showing a black-box construction
of a constant-round CZK proof for NP based on any one-way function (even if non
black-box simulation is allowed). We refer to his paper for a precise statement
of this result.

1.1 Our Result

We show that 4-round black-box CZK proofs, even with imperfect completeness,
exist only for languages whose complement is in MA. This result is unconditional,
and holds independent of any cryptographic assumptions one might make. Other
than the fact that the bound holds only with respect to black-box simulation,
this result is essentially the best one could hope for:

– Under widely-believed number-theoretic assumptions, there exist 5-round
CZK proofs for all of NP [19]. Assuming the polynomial hierarchy does not
collapse [11], our result indicates that the round complexity in this case is
optimal.

– Our result applies only to proofs, but not arguments. Indeed, as noted ear-
lier, there exist 4-round CZK arguments for all of NP under relatively weak
assumptions [17, 6].

– There exist unconditional constructions of 4-round CZK proofs for languages
believed to be outside of BPP, such as graph non-isomorphism [21].

We remark also that for the case of uniform zero-knowledge (i.e., protocols which
are zero knowledge for uniform polynomial-time verifiers), a 4-round protocol
for all of NP is possible [19] assuming the existence of 1-round statistically-
hiding commitment schemes (that are computationally binding for uniform ad-
versaries).

Besides shedding further light on the finer structure of the class CZK, our
result indicates that (black-box) 4-round CZK proofs for all of NP are impossible
and so the round complexity of the Goldreich-Kahan protocol [19] is optimal.
Our result also gives an “explanation” as to why the known SZK proof for graph
isomorphism requires five rounds [7] even though graph non-isomorphism has a
4-round SZK proof [21].

Limitations of black-box impossibility results. We prove our result only for
the case of black-box zero-knowledge protocols. The work of Barak [3], however,
shows that black-box impossibility results and lower bounds need not carry over
to the general case.3 Nevertheless, black-box bounds are useful insofar as they

3 Barak’s work gives a constant-round, public-coin, CZK argument for all of NP, some-
thing that was ruled out with respect to black-box simulation by Goldreich and
Krawczyk [20].

rule out a particular approach for solving a problem. We remark further that
many of the known (natural) zero-knowledge proofs are in fact black-box zero
knowledge; in particular, the protocols of Barak [3] as well as those based on
“knowledge of exponent” assumptions [25, 9] are zero-knowledge arguments. On
the other hand, non black-box zero-knowledge proofs using four or fewer rounds
are known to exist based on various non-standard assumptions [5, 32].

Our current ability to prove general (as opposed to black-box) lower bounds
for zero-knowledge protocols is, unfortunately, relatively limited [22, 5].

High-level overview of our technique. Our lower bound for 4-round proto-
cols is proved by extending the Goldreich-Krawczyk lower bound [20] for 3-round
protocols. (We assume familiarity with their proof in what follows.) To prove
their result, Goldreich and Krawczyk consider a cheating verifier V∗ who gener-
ates its message, in the second round of the protocol, using fresh random coins
that are determined as a function of the prover’s first message. On an intuitive
level this means that rewinding is useless because every time V ∗ is rewound, and
a different first message is sent by the simulator, it is as if the protocol execution
is being started again from scratch.

We use the same basic idea, now applied to the verifier’s message sent in
the third round of the protocol. A problem is that the verifier’s first-round mes-
sage may “commit” the verifier, in a computational sense, to only one possible
third-round message. (Roughly speaking, the verifier cannot be committed in an
information-theoretic sense because then an all-powerful prover could guess the
third-round message in advance based on the first-round message alone. This
is one reason why our result applies only to proofs, and not arguments.) For
this reason, we use some “all-powerful” entity to provide the verifier with col-
lisions, i.e., multiple third-round messages consistent with the same first-round
message. This idea was directly inspired by the recent work of Haitner et al. [26],
who use such collisions to prove lower bounds on the round complexity of black-
box constructions of interactive protocols in other settings. In their work, an
oracle provides collisions. Here, we do not have an oracle; instead, we have an
all-powerful prover that provides collisions as part of an interactive MA-proof
for some language. See Section 3 for further intuition, as well as the details of
the proof.

1.2 Outline of the Paper

Standard definitions, as well as some terminology specific to this paper, are
provided in Section 2. In Section 3 we prove our result for the case of CZK proof
systems with perfect completeness. Technical modifications necessary to deal
with the case of imperfect completeness are deferred to Section 4. We conclude
with some open questions in Section 5.

2 Definitions

Given interactive algorithms P and V , we let 〈P(x),V(y)〉 denote the interaction
of P , holding input x, with V , holding input y. We let 〈P(x),V(y)〉 = 1 denote

the event that V outputs 1 in the indicated interaction, where an output of “1” is
interpreted as “accept” and an output of “0” is interpreted as “reject”. We now
give the standard definition of an interactive proof system [23] for a language L.

Definition 1. Interactive algorithms P ,V form an interactive proof system for a
language L if V runs in probabilistic polynomial time and there exist non-negative
functions c, s such that:

– For all x ∈ L, it holds that Pr[〈P(x),V(x)〉 = 1] ≥ c(|x|). (Note that we do
not require P to run in polynomial time.)

– For all x 6∈ L and any P∗ we have Pr[〈P∗,V(x)〉 = 1] ≤ s(|x|).
– There exists a polynomial p such that c(|x|) ≥ s(|x|) + 1/p(|x|).

We call c the acceptance probability, and s the soundness error. If c(|x|) = 1 for
all x, we say the proof system has perfect completeness. If s is negligible, we say
the proof system has negligible soundness error. ♦

We will only consider zero-knowledge proof systems having negligible soundness
error.

A round of an interactive proof system consists of a message sent from one
party to the other, and we assume that the prover and the verifier speak in
alternating rounds. Following [2], we let MA denote the class of languages having
a 1-round proof system and in this case refer to the prover as Merlin and the
verifier as Arthur ; that is:

Definition 2. L ∈ MA if there exists a probabilistic polynomial-time verifier V,
a non-negative function s, and a polynomial p such that the following hold for
all sufficiently-long x:

– If x ∈ L then there exists a string w (that can be sent by Merlin) such that

Pr[V(x, w) = 1] ≥ s(|x|) + 1/p(|x|).

– If x 6∈ L then for all w (sent by a cheating Merlin) it holds that

Pr[V(x, w) = 1] ≤ s(|x|).
♦

In fact, it is known that an equivalent definition is obtained even if we require
perfect completeness and negligible soundness error.

2.1 Zero Knowledge Proof Systems

A distribution ensemble {X(a)}a∈{0,1}∗ is an infinite sequence of probability
distributions, where a distribution X(a) is associated with each value of a. Two
distribution ensembles X and Y are computationally indistinguishable if for all
polynomial-time algorithms D, there exists a negligible function µ such that for
every a we have

∣∣Pr[D(X(a), a) = 1]− Pr[D(Y (a), a) = 1]
∣∣ ≤ µ(|a|).

(We do not need to consider non-uniform distinguishers here since non-uniformity
can be incorporated via the auxiliary input that we will provide to the cheating
verifier, below.)

Given interactive algorithms P ,V∗, we let transV∗〈P(x),V∗(y)〉 denote the
transcript of the indicated interaction; for convenience, this includes both mes-
sages of the prover as well as those of the verifier. (We remark that we do not
need to consider the entire view of V∗ since we will restrict to deterministic
verifiers, as justified below, and the input y of V∗ will be provided to the distin-
guisher as per our definition of computational indistinguishability, above.) We
now review the standard definitions for computational zero-knowledge proofs.

Definition 3. An interactive proof system P ,V for a language L is said to be
a computational zero-knowledge proof system if for any probabilistic polynomial-
time algorithm V∗, there exists an expected polynomial-time simulator S such
that the following distribution ensembles are computationally indistinguishable:

{transV∗〈P(x),V∗(x, z)〉}x∈L,z∈{0,1}∗ and {S(x, z)}x∈L,z∈{0,1}∗ .

♦

The above definition incorporates an auxiliary input z provided to V∗, and we
may therefore restrict our consideration to verifiers V∗ that are deterministic.
Note also that we allow simulation in expected polynomial time; this makes
our results stronger. (Also, constant-round, black-box CZK proofs with strict
polynomial-time simulation are already ruled out by Barak and Lindell [4].)

A computational zero-knowledge proof system (P ,V) is black-box zero knowl-
edge if there exists a “universal” simulator that takes oracle access to the cheat-
ing verifier V∗. That is:

Definition 4. A computational zero-knowledge proof system P ,V is black-box

zero-knowledge if there exists an expected polynomial-time oracle machine Sim

(the black-box simulator) such that for any probabilistic polynomial-time algo-
rithm V∗ the following distribution ensembles are computationally indistinguish-
able:

{transV∗〈P(x),V∗(x, z)〉}x∈L,z∈{0,1}∗ and
{
SimV

∗(x,z)(x)
}

x∈L,z∈{0,1}∗
.

♦

We denote by bbCZK(r) the class of languages that have r-round, black-box,
computational zero-knowledge proof systems with negligible soundness error.

Terminology and simplifying assumptions. We will be concerned with 4-
round CZK proof systems, where (without loss of generality) the verifier sends
the first message and the prover sends the final message. We use α, β, γ, δ to
denote the first, second, third, and fourth messages, respectively. We let Px

(resp., Vx) denote the honest prover (resp., honest verifier) algorithm when the
common input is x.

We let α = Vx(r) denote the first message sent by Vx when its random coins
are fixed to r, and let γ = Vx(α, β; r) denote the third message sent by Vx in
this case. Finally, Vx(α, β, γ, δ; r) is a bit denoting whether the verifier accepts
(i.e., outputs 1) or rejects. We say that (α, β, γ, δ, r) is an accepting transcript
for a given x if Vx(α, β, γ, δ; r) = 1. Note that we do not require the verifier’s
decision to depend on the actual transcript alone, but allow its decision to also
possibly depend on its random coins.

Without loss of generality, we make a number of simplifying assumptions
about the behavior of black-box simulator Sim. The first query of Sim to V∗ will
simply be a “prompt” query to which V∗ responds with α. Subsequent queries
by Sim are all of the form (α, β) (for some β of Sim’s choice), to which V∗

will respond with some γ. (We can assume Sim makes no queries of the form
(α, β, γ, δ) since V∗ can simply refuse to respond to such queries.) We assume Sim

makes a given query only once. Finally, if the simulator outputs the transcript
(α′, β, γ, δ) we assume that α′ = α, and that the simulator previously queried
(α, β) to V∗ and received response γ.

3 CZK Proof Systems with Perfect Completeness

We now state our main result:

Theorem 1. bbCZK(4) ⊆ coMA.

In this section we prove this result in the easier case when the proof system in
question has perfect completeness; we handle the case of imperfect completeness
in the following section.

As intuition for the proof, consider first the case of a malicious verifier V̂ who
acts in the following way: it sends an initial message α, and then in response
to the prover’s second message β it chooses a random message γ consistent
with α. (For now, we do not worry about the fact that this does not necessarily
represent a feasible polynomial-time strategy.) Formally, if we let Rα denote
the set of random coins consistent with α (i.e., r ∈ Rα implies Vx(r) = α),
then in response to β the malicious verifier chooses a random r ∈ Rα and
computes γ = Vx(α, β; r). Intuitively, it will be difficult to simulate an accepting
transcript for such a verifier since each time the simulator “rewinds” V̂ it will
be given a message γ consistent with a different set of random coins. In fact,
we can prove that if x 6∈ L then the simulator will not be able to simulate
an accepting transcript for such a verifier, since the ability to do so with non-
negligible probability could be translated into the ability to violate the soundness
condition of the proof system with non-negligible probability. (A proof of this
fact goes along similar lines as the proof in [20].)

On the other hand, consider the case when x ∈ L. From the perspective of
the honest prover, the behavior of V̂ is identical to that of the honest verifier,
and so the honest prover’s interaction with V̂ leads to an accepting transcript
with probability 1. We would like to claim that the zero-knowledge condition
implies that Sim simulates an accepting transcript for such a verifier with high

probability. Unfortunately, V̂ as described above may not run in polynomial
time, whereas simulation is only guaranteed for polynomial-time verifiers.

It is possible, however, to obtain a polynomial-time cheating verifier with
the desired behavior by providing the verifier as auxiliary input a sequence of
sufficiently-many coins r1, . . . , rs that are all consistent with the same first mes-
sage α. Specifically, consider the verifier V∗ defined as follows: given auxiliary
input r1, . . . , rs (all consistent with the same first message α) and a poly-wise
independent hash function h, send α as the first message. In response to the
prover’s second message β, compute i = h(β) and use ri to compute the next
message γ = Vx(α, β; ri). Note that if r1, . . . , rs are chosen at random (subject
to the constraint that they are all mutually consistent) then the behavior of V∗

is identical to the behavior of V̂ as far as the honest prover is concerned. Since
V∗ runs in polynomial time, we are now able to argue that Sim simulates an
accepting transcript for V∗ with high probability when x ∈ L. Furthermore, it
is still possible to show (using a slightly more complicated argument) that, with
overwhelming probability, Sim fails to simulate an accepting transcript for this
verifier whenever x 6∈ L.

Based on the above, we obtain an MA proof system for L̄: Merlin sends
Arthur a sequence r1, . . . , rs of random coins that are all consistent with the
same first message α, and Arthur simulates an execution of SimV

∗

(x). If this
does not result in an accepting transcript then Arthur accepts, while if it does
lead to an accepting transcript then Arthur rejects.

We now formalize the above intuition and show how to handle various tech-
nicalities that arise. Fix L ∈ bbCZK(4). This means that, for this language, there
exists a prover P , a verifier V , and a black-box simulator Sim satisfying Defini-
tions 1–4 (except that, in this section, we are assuming perfect completeness).
Assume without loss of generality that the second message of the protocol always
has length m(·), and let ℓ(·) denote the number of random coins used by V . Let
T (·) denote an upper-bound on the expected running time of Sim.

Consider the following MA proof system for the language L̄, where Merlin
(i.e., the prover) and Arthur (i.e., the verifier) share in advance an input x of
length n:

Notation: Let ℓ = ℓ(n), m = m(n), and T = T (n). Set s = 50 · T 2; note that s
is polynomial in n.

Merlin’s message: Merlin sends a sequence of s coins r1, . . . , rs ∈ {0, 1}ℓ. (For
the honest Merlin, these are all consistent with the same first message α.)

Arthur’s actions: Arthur proceeds as follows:

1. Set α = Vx(r1). Check that α = Vx(ri) for all 1 < i ≤ s, i.e., that all the
random coins are consistent with the same first message α. If not, reject;
otherwise, go to the next step.

2. Choose a random 5T -wise independent hash function h : {0, 1}m → {1, . . . , s}.
Construct the following deterministic verifier V∗:

(a) Send first message α to the prover.

(b) Upon receiving message β from the prover, compute i = h(β) and send
the message γ = Vx(α, β; ri) to the prover.

3. Run SimV
∗

(x) for at most 5T steps using uniformly-chosen random coins
for Sim. If Sim does not output an accepting transcript within this time
bound, output “accept”. Otherwise, output “reject”. (Formally, output “re-
ject” iff Sim outputs (α, β, γ, δ), within the allotted time bound, such that
Vx(α, β, γ, δ; rh(β)) = 1.)

The following claims show that the above is a valid MA-protocol for L̄, thus
proving Theorem 1 for the case of protocols having perfect completeness.

Claim 1. For any x 6∈ L̄ sufficiently long and for any message r1, . . . , rs sent
by Merlin, the probability that Arthur accepts is at most 2/5.

Proof. Fix some r1, . . . , rs sent by Merlin. Assume Vx(ri) = Vx(rj) for all 1 ≤
i, j ≤ s since, if not, Arthur rejects immediately. When x 6∈ L̄ we have x ∈ L
and, by perfect completeness, the interaction of the honest prover Px with V∗

would result in an accepting transcript with probability 1. (To see this, note
that an execution of V∗ is equivalent to an execution of the honest verifier Vx

using random coins rh(β).) The zero-knowledge condition thus implies that, for x

sufficiently long, SimV
∗

(x) outputs an accepting conversation with probability at
least 4/5. It follows that even the truncated version of Sim, where its execution
is halted after 5T steps, outputs an accepting conversation with probability at
least 3/5. Arthur thus accepts with probability at most 2/5, as claimed.

Claim 2. For any x ∈ L̄ sufficiently long, there exists a message r1, . . . , rs such
that Arthur will accept with probability at least 1/2.

Proof. Fix x ∈ L̄. We show a randomized strategy that allows Merlin to convince
Arthur with probability at least 1/2; this implies the claim.

Merlin proceeds as follows: choose random r1 ∈ {0, 1}ℓ and compute α =

Vx(r1). Define Rα
def
= {r | Vx(r) = α}; i.e., Rα is the set of coins for the honest

verifier consistent with the first message α. Then choose r2, . . . , rs uniformly
from Rα. (These need not be distinct.) Send r1, . . . , rs to Arthur. Let p∗ denote
the probability that Arthur rejects. Note that this is exactly the probability that
SimV

∗

(x) outputs an accepting transcript within the allotted time bound.
We upper-bound p∗ by considering a slightly different experiment involving

an all-powerful cheating prover P∗ attempting to falsely convince the honest
verifier Vx that x ∈ L. The strategy of P∗ is defined as follows:

1. Receive message α from the verifier. Let Rα
def
= {r | Vx(r) = α}.

2. Run Sim using uniformly-chosen random coins, for at most 5T steps. Sim

expects to be given oracle access to a (cheating) verifier, and P∗ simulates
the actions of such a verifier as follows:

(a) Choose a random index q ← {1, . . . , 5T }.
(b) Send α as the verifier’s first message.

(c) In response to the ith simulator message (α, βi) for i 6= q, choose a
random ri ← Rα, compute γi = Vx(α, βi; ri), and give γi to Sim. (Recall
we assume that Sim never makes the same query twice.)

(d) In response to the qth simulator message (α, βq), send βq to the (external)
honest verifier, and receive in return a message γq. Give γq to Sim.

3. If Sim outputs a conversation (α, β, γ, δ) with β = βq within the allotted
time bound, then send δ to the (external) honest verifier.

In the above experiment, each “query” βi of Sim is answered by using a
random element ri ← Rα to compute the response γi = Vx(α, βi; ri). This is
immediate for i 6= q, but is true also for i = q since, from the perspective of
P∗ and Sim, the coins being used by the external, honest verifier are uniformly-
distributed in Rα. Let p̂ denote the probability that Sim outputs an accepting
transcript in this case, within the allotted time bound. Since Sim makes at most
5T queries to its oracle in the above experiment, P∗ convinces the honest verifier
to accept with probability p̂/5T . Since the proof system has negligible soundness
error we have that, for x sufficiently long, p̂ ≤ 1/4.

We return now to consideration of p∗. When Arthur runs SimV
∗

(x), he does
so by first choosing a random h and then answering the simulator’s ith query
(α, βi) by using rh(βi) to compute the response γi = Vx(α, βi; rh(βi)). Since Mer-
lin chooses each of the ri uniformly from Rα, these responses are distributed
identically to the above experiment unless there is a collision in h; that is, unless
there exist some βi 6= βj with h(βi) = h(βj). Because h is chosen in a 5T -wise
independent fashion and Sim is restricted to making only 5T queries, a stan-
dard birthday bound shows that the probability of such a collision is at most
(5T)2/2s = 1/4. Conditioned on a collision not occurring, the probability that

SimV
∗

(x) outputs an accepting conversation is exactly p̂ ≤ 1/4. We conclude
that p∗ ≤ 1/4 + 1/4 = 1/2, and so Arthur rejects with probability at most 1/2
(and accepts with probability at least 1/2).

4 Handling Imperfect Completeness

In the previous section we assumed perfect completeness, and in fact this is
essential for the MA proof system given there. To see the problem, assume P ,V
is such that the honest verifier immediately rejects whenever its random coins
are all 0. Then a cheating Merlin can send r1 = · · · = rs = 0ℓ and this will cause
Arthur to accept with probability 1 even when x 6∈ L̄.

In the modified proof system, we have Arthur “verify” that Merlin sends “rep-
resentative” random coins r1, . . . , rs by checking that SimVx(ri)(x), for a random
element ri in the set sent by Merlin, outputs an accepting transcript with “high”
probability. Then Arthur checks whether SimV

∗(x;r1,...,rs,h)(x) fails to output an
accepting transcript, as in the previous section. Unfortunately, this may make
the honest Merlin’s job harder when x ∈ L̄ since in this case SimVx(ri)(x) might
(legitimately) never output an accepting transcript. But Arthur can easily check

for this by running SimVx(r)(x) using random coins r that it chooses itself.

We remark that if we were content to show inclusion in AM (rather than
MA), the proof could be simplified somewhat.

Before presenting the modified proof system, we introduce some notation.
For a given randomized experiment Expt that can be run in polynomial time,
we let estimateε(Prr[Expt]) denote a procedure that outputs an estimate to the
given probability (taken over randomness r) to within an additive factor of ε,
except with probability at most ε. That is:

Pr
[∣∣estimateε(Prr[Expt = 1])− Prr[Expt = 1]

∣∣ ≥ ε
]
≤ ε.

This can be done in the standard way using Θ(ε−2 log 1
ε) independent executions

of Expt. The important thing to note is that when ε is noticeable, this estimation
can be done in polynomial time. In the experiments we will be considering, some
variables will be fixed as part of the experiment and others will be chosen at
random; we will always subscript those variables being chosen at random (as
done above with the subscripted r).

Below, we let V∗ denote the same malicious verifier as in the previous section.
Specifically, on input x and auxiliary input z = r1, . . . , rs, h, where each ri

represents coins for the honest verifier and h is a hash function, V∗ acts as
follows:

1. Send first message α = Vx(r1) to the prover.
2. Upon receiving message β from the prover, compute i = h(β) and send the

message γ = Vx(α, β; ri) to the prover.
3. Receive final message δ from the prover.

We say an interaction of Px with V∗(x, z) results in an accepting transcript if
(α, β, γ, δ, ri) is an accepting transcript.

Let L ∈ bbCZK(4), and assume L has a 4-round CZK proof system P ,V
with acceptance probability c(·) where c is noticeable (i.e., c = Ω(1/p) for some
polynomial p). Let ℓ, m, and T be as in the previous section. Once again, Merlin
and Arthur share in advance an input x of length n. The MA proof system for
the language L̄ follows:

Notation: Let c = c(n), ℓ = ℓ(n), m = m(n), and T = T (n). Assume n is large
enough so that c > 0. Set ε = c/20, and s = 4T 2ε−3. (Note that ε is noticeable,

and s is polynomial.) Let S̃im denote an execution of Sim for at most 2T/ε steps.

Merlin’s message: Merlin sends a sequence of s coins r1, . . . , rs ∈ {0, 1}ℓ.

Arthur’s actions: Arthur proceeds as follows:

1. Compute

p1 = estimateε

(
Prr′,r

[
S̃im
Vx(r′)

(x; r) outputs an accepting transcript

])
.

If p1 < c− 2ε then accept; otherwise, continue to the next step.
2. Set α = Vx(r1). Check that α = Vx(ri) for all 1 < i ≤ s. If not, reject;

otherwise, continue to the next step.

3. Choose i ← {1, . . . , s} and coins r and run S̃im
Vx(ri)

(x; r). If this does not
result in an accepting transcript, reject; otherwise, continue to the next step.

4. Let H denote a family of 2T/ε-wise independent hash functions h : {0, 1}m →
{1, . . . , s}. Compute

p2 =

estimateε

(
Prh←H,r

[
S̃im
V∗(x;r,h)

(x; r) outputs an accepting transcript

])
,

where r = (r1, . . . , rs). If p2 < c− 10ε accept; else reject.

(It should be clear that we have not attempted to optimize any of the pa-
rameters of the above proof system.) We now prove claims analogous to those
in the previous section.

Claim 3. For any x 6∈ L̄ sufficiently long and for any message r1, . . . , rs sent
by Merlin, the probability that Arthur accepts is at most c− 6ε.

Proof. If x 6∈ L̄ then x ∈ L and so the interaction of Px with Vx results in an
accepting transcript with probability at least c. The zero-knowledge condition
implies that, for x sufficiently long,

Prr′,r[S̃im
Vx(r′)

(x; r) outputs an accepting transcript] ≥ c− ε.

This means that, except with probability at most ε, the value p1 computed by
Arthur satisfies p1 ≥ c−2ε; thus, Arthur accepts in the first step with probability
at most ε.

Fix some r = (r1, . . . , rs) sent by Merlin. We may assume Vx(ri) = Vx(rj)
for all 1 ≤ i, j ≤ s since, if not, Arthur rejects in the second step. Define

p̂ = Pri←{1,...,s},r

[
S̃im
Vx(ri)

(x; r) outputs an accepting transcript

]
.

There are two cases to consider:

Case 1: If p̂ < c− 7ε, then the probability that Arthur does not reject in step 3
is at most c− 7ε.

Case 2: On the other hand, if p̂ ≥ c− 7ε then (again using the zero-knowledge
property)

Pri←{1,...,s},r [〈Px(r),Vx(ri)〉 = 1] ≥ c− 8ε.

By definition of V∗ it holds that

Prh←H,r [〈Px(r),V∗(x, r, h)〉 results in an accepting transcript]

= Pri←{1,...,s},r [〈Px(r),Vx(ri)〉 = 1].

Thus, relying on the zero-knowledge property once again,

Prh←H,r

[
S̃im
V∗(x;r1,...,rs,h)

(x; r) outputs an accepting transcript

]
≥ c− 9ε.

So, except with probability at most ε, the value p2 computed by Arthur satisfies
p2 ≥ c− 10ε; thus, Arthur accepts in the last step with probability at most ε.

Combining the above, we see that Arthur accepts with probability at most
ε + max{c− 7ε, ε}, which is at most c− 6ε.

Claim 4. For any x ∈ L̄ sufficiently long, there exists a message r1, . . . , rs such
that Arthur will accept with probability at least c− 5ε.

Proof. Fix x ∈ L̄. Define

p̂ = Prr′,r

[
S̃im
Vx(r′)

(x; r) outputs an accepting transcript

]
.

There are two cases to consider:

Case 1: If p̂ < c − 3ε then, except with probability at most ε, the value p1

computed by Arthur satisfies p1 < c− 2ε; thus, Arthur accepts in the first step
with probability at least 1− ε ≥ c− 5ε.

Case 2: On the other hand, say p̂ ≥ c− 3ε. As in the proof of Claim 2, Merlin
proceeds as follows: choose random r1 ∈ {0, 1}ℓ and compute α = Vx(r1). Let

Rα
def
= {r | Vx(r) = α}, and choose r2, . . . , rs uniformly from Rα. Send r =

(r1, . . . , rs) to Arthur. We show that Arthur will accept with high probability.
Arthur can reject in either step 3 or step 4. We upper-bound the probability

that Arthur rejects in either of these steps individually, and then apply a union
bound to upper-bound the total probability that Arthur rejects.

Each ri, taken individually, is uniformly distributed in {0, 1}ℓ. Thus, in step 3,
choosing a random i ∈ {1, . . . , s} and using coins ri is equivalent to choosing
uniformly-random coins for Vx. It follows that the probability that Arthur rejects
in step 3 is exactly equal to 1− p̂ ≤ 1− c + 3ε.

We proceed to analyze step 4. As in the proof of Claim 2, say a collision occurs

in an execution of S̃im
V∗(x;r1,...,rs,h)

(x; r) if the simulator makes two distinct
queries (α, βi) and (α, βj) for which h(βi) = h(βj). Let coll denote such an
event. As before, we have

Pr
r,h,r

[
S̃im
V∗(x;r,h)

(x; r) outputs an accepting transcript

]
≤ (1)

Pr
r,h,r

[coll] + Pr
r,h,r

[
S̃im
V∗(x;r,h)

(x; r) outputs an accepting transcript | coll

]
,

where r = (r1, . . . , rs) are chosen by Merlin as described above (and not uni-
formly and independently at random). The probability of a collision is indepen-

dent of r1, . . . , rs, and is upper-bounded by Pr[coll] ≤ (2T/ε)2

2s = ε
2 . As in the

proof of Claim 2, for sufficiently-long x it holds that

Prr,h,r

[
S̃im
V∗(x;r,h)

(x; r) outputs an accepting transcript | coll

]
≤ ε2/2;

this means that, except with probability at most ε, the r1, . . . , rs chosen by
Merlin satisfy

Prh,r

[
S̃im
V∗(x;r1,...,rs,h)

(x; r) outputs an accepting transcript | coll

]
≤ ε/2.

Using Equation (1), we see that except with probability at most ε, the r1, . . . , rs

chosen by Merlin satisfy

Prh,r

[
S̃im
V∗(x;r1,...,rs,h)

(x; r) outputs an accepting transcript

]
≤ ε < c− 11ε.

Assuming the above to be the case, Arthur will reject in step 4 with probability at
most ε. Taken together, this means that Arthur rejects in step 4 with probability
at most 2ε.

Summing the probabilities of rejection in steps 3 and 4, we see that, overall,
Arthur rejects with probability at most 1− c + 5ε, or accepts with probability
at least c− 5ε.

5 Future Directions

Coupled with the obvious fact that bbCZK(4) ⊆ AM, this work shows that
bbCZK(4) ⊆ AM ∩ coMA. Due to the similarity with the fact that SZK ⊆
AM ∩ coAM [18, 1], as well as the fact that the only languages known to be
in 4CZK (under any assumption) are also in SZK, it is natural to conjecture that
bbCZK(4) ⊆ SZK.

Another interesting direction would be to show any broad positive results for
4CZK: say, along the lines of proving that NP ∩ coNP ⊆ 4CZK.

In a slightly different direction, suggested by Hoeteck Wee: can a tighter
bound be shown for languages L having 4-round zero-knowledge proofs of knowl-
edge (beyond the fact that L ∈ NP)?

Finally, is it possible to apply the techniques from [26] to show that there are
no black-box constructions of constant-round (black-box) zero-knowledge proofs
for NP?

Acknowledgments

I would like to thank Hoeteck Wee for many illuminating discussions regarding
the round complexity of zero knowledge in general, and for helpful remarks on a
previous draft of this paper. Thanks also to Dov Gordon and Arkady Yerukhi-
movich for reading and commenting on a preliminary version of this manuscript.
The suggestions of an anonymous member of the ECCC scientific board and the
TCC referees also helped to clarify the presentation.

References

1. W. Aiello and J. H̊astad. Statistical zero-knowledge languages can be recognized
in two rounds. J. Computer and System Sciences, 42(3):327–345, 1991.

2. L. Babai and S. Moran. Arthur-Merlin games: A randomized proof system and a
hierarchy of complexity classes. J. Computer and System Sciences, 36(2):254–276,
1988.

3. B. Barak. How to go beyond the black-box simulation barrier. In Proc. 42nd
Annual Symposium on Foundations of Computer Science (FOCS), pages 106–115.
IEEE, 2001.

4. B. Barak and Y. Lindell. Strict polynomial-time in simulation and extraction.
SIAM J. Computing, 33(4):738–818, 2004.

5. B. Barak, Y. Lindell, and S. Vadhan. Lower bounds for non-black-box zero knowl-
edge. J. Computer and System Sciences, 72(2):321–391, 2006.

6. M. Bellare, M. Jakobsson, and M. Yung. Round-optimal zero-knowledge arguments
based on any one-way function. In Advances in Cryptology — Eurocrypt ’97,
volume 1233 of Lecture Notes in Computer Science, pages 280–305. Springer, 1997.

7. M. Bellare, S. Micali, and R. Ostrovsky. Perfect zero knowledge in constant rounds.
In Proc. 22nd Annual ACM Symposium on Theory of Computing (STOC), pages
482–493. ACM, 1990.

8. M. Bellare, S. Micali, and R. Ostrovsky. The (true) complexity of statistical zero
knowledge. In Proc. 22nd Annual ACM Symposium on Theory of Computing
(STOC), pages 494–502. ACM, 1990.

9. M. Bellare and A. Palacio. The knowledge-of-exponent assumptions and 3-round
zero-knowledge protocols. In Advances in Cryptology — Crypto 2004, volume 3152
of Lecture Notes in Computer Science, pages 273–289. Springer, 2004.

10. M. Ben-Or, O. Goldreich, S. Goldwasser, J. H̊astad, J. Kilian, S. Micali, and P. Ro-
gaway. Everyting provable is provable in zero knowledge. In Advances in Cryptol-
ogy — Crypto ’88, volume 403 of Lecture Notes in Computer Science, pages 37–56.
Springer, 1990.

11. R. Boppana, J. H̊astad, and S. Zachos. Does coNP have short interactive proofs?
Information Proc. Letters, 25(2):127–132, 1987.

12. J. Boyar, S. Kurtz, and M. Krentel. Discrete logarithm implementation of perfect
zero-knowledge blobs. J. Cryptology, 2(2):63–76, 1990.

13. G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge.
J. Computer and Systems Sciences, 37(2):156–189, 1988.

14. R. Cramer, I. Damg̊ard, and P. MacKenzie. Efficient zero-knowledge proofs of
knowledge without intractability assumptions. In Public-Key Cryptography (PKC)
2000, volume 1751 of Lecture Notes in Computer Science, pages 354–372. Springer,
2000.

15. G. Di Crescenzo and G. Persiano. Round-optimal perfect zero-knowledge proofs.
Information Proc. Letters, 50(2):93–99, 1994.

16. I. Damg̊ard, M. Pedersen, and B. Pfitzmann. On the existence of statistically-
hiding bit commitment schemes and fail-stop signatures. J. Cryptology, 10(3):163–
194, 1997.

17. U. Feige and A. Shamir. Zero knowledge proofs of knowledge in two rounds. In
Advances in Cryptology — Crypto ’89, volume 435 of Lecture Notes in Computer
Science, pages 526–544. Springer, 1990.

18. L. Fortnow. The complexity of perfect zero knowledge. In S. Micali, editor, Ad-
vances in Computing Research, volume 5, pages 327–343. JAC Press, Inc., 1989.

19. O. Goldreich and A. Kahan. How to construct constant-round zero-knowledge
proof systems for NP. J. Cryptology, 9(3):167–190, 1996.

20. O. Goldreich and H. Krawczyk. On the composition of zero-knowledge proof sys-
tems. SIAM J. Computing, 25(1):169–192, 1996.

21. O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their
validity, or all languages in NP have zero-knowledge proof systems. J. ACM,
38(3):691–729, 1991.

22. O. Goldreich and Y. Oren. Definitions and properties of zero-knowledge proof
systems. J. Cryptology, 7(1):1–32, 1994.

23. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM J. Computing, 18(1):186–208, 1989.

24. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Computing, 17(2):281–308, 1988.

25. S. Hada and T. Tanaka. On the existence of 3-round zero-knowledge pro-
tocols. In Advances in Cryptology — Crypto ’98, volume 1462 of Lec-
ture Notes in Computer Science, pages 408–423. Springer, 1998. See also
http://eprint.iacr.org/1999/009.

26. I. Haitner, J.J. Hoch, O. Reingold, and G. Segev. Finding collisions in in-
teractive protocols — a tight bound on the round complexity of statistically-
hiding commitments. In Proc. 48th Annual Symposium on Foundations
of Computer Science (FOCS), pages 669–679. IEEE, 2007. Available at
http://eprint.iacr.org/2007/145.

27. I. Haitner and O. Reingold. Statistically-hiding commitment from any one-way
function. In Proc. 39th Annual ACM Symposium on Theory of Computing (STOC),
pages 1–10. ACM, 2007.

28. S. Halevi and S. Micali. Practical and provably-secure commitment schemes from
collision-free hashing. In Advances in Cryptology — Crypto ’96, volume 1109 of
Lecture Notes in Computer Science, pages 201–215. Springer, 1996.

29. R. Impagliazzo and M. Yung. Direct minimum-knowledge computations (extended
abstract). In Advances in Cryptology — Crypto ’87, volume 293 of Lecture Notes
in Computer Science, pages 40–51. Springer, 1988.

30. T. Itoh and K. Sakurai. On the complexity of constant round ZKIP of possession
of knowledge. In Advances in Cryptology — Asiacrypt ’91, volume 739 of Lecture
Notes in Computer Science, pages 331–345. Springer, 1993.

31. K. Kurosawa, W. Ogata, and S. Tsujii. 4-move perfect ZKIP for some promise
problems. IEICE Trans. on Fundamentals of Electronics, Communications, and
Computer Sciences, E78-A(1):34–41, 1995.

32. M. Lepinski. On the existence of 3-round zero-knowledge proofs. Master’s thesis,
MIT, 2002. Available at http://theory.lcs.mit.edu/~cis/cis-theses.html.

33. R. Pass. On Arthur-Merlin games and the possibility of basing cryptography on
NP-hardness. In 21st Annual IEEE Conference on Computational Complexity,
pages 88–95. IEEE, 2006.

34. T. Saito, K. Kurosawa, and K. Sakurai. 4-move perfect SKIP of knowledge with
no assumption. In Advances in Cryptology — Asiacrypt ’91, volume 739 of Lecture
Notes in Computer Science, pages 320–331. Springer, 1993.

35. S. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD thesis, MIT, 1999.

