
The Layered Games Framework
for Specifications and Analysis of Security Protocols

Amir Herzberg and Igal Yoffe

Computer Science Department, Bar Ilan University,
Ramat Gan, 52900, Israel

{herzbea,ioffei}@cs.biu.ac.il

Abstract. The layered games framework provides a solid foundation to
the accepted methodology of building complex distributed systems, as a
‘stack’ of independently-developed protocols. Each protocol in the stack,
realizes a corresponding ‘layer’ model, over the ‘lower layer’. We define
layers, protocols and related concepts. We then prove the fundamental
lemma of layering. The lemma shows that given a stack of protocols
{πi}u

i=1, s.t. for every i ∈ {1, . . . u}, protocol πi realizes layer Li over
layer Li−1, then the entire stack can be composed to a single protocol
πu||...||1, which realizes layer Lu over layer L0.
The fundamental lemma of layering allows precise specification, design
and analysis of each layer independently, and combining the results to
ensure properties of the complete system. This is especially useful when
considering (computationally-bounded) adversarial environments, as for
security and cryptographic protocols.
Our specifications are based on games, following many works in applied
cryptography. This differs from existing frameworks allowing composi-
tions of cryptographic protocols, which are based on simulatability of
ideal functionality.

1 Introduction

The design and analysis of complex distributed systems, such as the Internet and
applications using it, is an important and challenging goal. Such systems are de-
signed in modular fashion, typically by decomposing the system into multiple
layers (or modules-). Some of the well known layered network architectures in-
clude the ‘OSI 7-layers reference model’ and the ‘IETF 5-layers reference model’
(also referred to as the Internet or TCP/IP model); see e.g. Kurose and Ross
[30]. The present work is part of an effort, described in Herzberg and Yoffe [25],
to extend such layered networking architectures, to support secure e-commerce
applications. Figure 1 shows the five IETF layers, together with two optional
security sub-layers, and the four secure e-commerce layers of [25].

Layered (or modular) architectures allow to specify, design, analyze, imple-
ment and test protocols for each layer, independently of protocols for other layers.
This is based on the paradigm of lower layers abstraction: when discussing and
analyzing a protocol πi for layer i, running in multiple nodes, we abstract the

2 Amir Herzberg, Igal Yoffe

Physical

Link (Ethernet)

Network (IP)

 Network-security (IP-SEC)

Evidences

Payment

Application

Order

Transport (TCP)

Transport Security (TLS)

E-commerce
layers

IETF
layers

Fig. 1. IETF and e-commerce layers; (optional) security sub-layers marked with dotted
contour.

satisfactory behaviors of the lower layers by a single abstract layer model Li−1,
and the satisfactory behaviors of layer i into abstract layer model Li. Protocol
πi realizes layer model Li over layer model Li−1, if the behavior of (multiple
instances of) πi running over layer model Li−1, satisfies layer model Li (except

with negligible probability). We write this as: Li `
[

πi

Li−1

]
.

A pair of protocols πi and πi−1, of layers i, i + 1, can be composed into a
single protocol, which we denote as πi||i−1. Our main result is the fundamental
lemma of layering, showing that by composing protocols of multiple layers, we
can implement a high-layer model directly over a low-layer model. Given layer

models {Li}l
i=0, and protocols π1, . . . , πl, where Li `

[
πi

Li−1

]
for i = 1, . . . , l,

their layered composition π1||...||l implements Ll over L0, i.e. Ll `
[π1||...||l

L0

]
. This

provides firm foundations to the security of modular and layered architectures,
as in Figure 1.

For example, in Herzberg and Yoffe [27] we define the delivery evidences layer
model LDE, and the lower communication layer model LComm; and we show a

protocol πDE s.t. LDE `
[

πDE

LComm

]
. Similarly, in Herzberg and Yoffe [26] we define

the orders layer model LOrders, and show protocol πOrder s.t. LOrders `
[

πOrder

LDE

]
.

Using the fundamental lemma of layering, the composite protocol πDE||O realizes

the orders layer directly over the communication layer, i.e. LOrders `
[πDE||O

LComm

]
.

This is illustrated in Figure 2, where we outline the games each of the protocols

The Layered Games Framework 3

(πDE, πOrder and their composition πDE||O, the two lower layers (Comm and DE),
the two experiments protocols (DE and Orders), and the adversary protocol.

LayerComm

ExperimentDE

Adversary

πDE πDE πDE

LayerDE

ExperimentOrders

Adversary

πOrder πOrder πOrder

∧
LayerComm

ExperimentOrders

Adversary

πO||DE πO||DE πO||DE

(a) DE over Comm (b) Orders over DE (c) Orders over Comm

Fig. 2. Layering of realizations of the Order and Delivery Evidences (DE) layers

The layered games framework provides solid foundations to the accepted
methodology, of using layered architectures (also called reference models), to
specify, design, analyze, implement and test each layer independently. In spite of
the extensive use of layered architectures, such foundations did exist prior to this
work. For example, the IP (Internet Protocol) layer is essentially only required to
provide a vaguely-described ‘best effort’ service. Existing proposals and standard
of specifications of layers are only stated informally, often by partial-specification
for the operation of the protocols, rather than to the service the higher layer can
rely on. Composition of protocols is also used without formal definition or proof.

A possible explanation for the fact that layering was not yet based on for-
mal foundations, in spite of its wide use, is the fact that similar compositions
work as expected for many models, often trivially. For example, the composi-
tion of two polynomial time algorithms is trivially also a polynomial time algo-
rithm. However, as [2] argue, composition properties require proof, and may not
hold for all (natural) models. For example, the composition of two polynomial
time interactive Turing machines (ITM), or of an (infinite) state machine with
polynomial-time transition function, may not be polynomial-time, in the natural
setting where the outputs of each machine is considered part of the inputs of
the other. Indeed, in developing the layered games framework, we found that
some definitional choices could have subtle but critical impact on composability.
Details within.

Precise specifications of models for network layers can be hard to write and
analyze, since they depend on many implementation and environment aspects.
However, such rigorous specifications, and analysis, are critical, at least for se-
curity and cryptographic protocols, which must resist adversarial attacks. The
layered games framework allows meaningful models, and analysis of implemen-

4 Amir Herzberg, Igal Yoffe

tations (protocols), using standard reduction techniques and composition of pro-
tocols (layers).

Compositions and reductions are standard techniques in design and analysis
of cryptographic functions and protocols. As noted above, polynomial-time algo-
rithms trivially compose well. However, composition of cryptographic protocols is
more challenging. Several frameworks were shown to ensure secure composition,
including universal composability (UC) by Canetti [14], reactive simulatability
by Backes, Pfitzmann, and Waidner [5], Pfitzmann and Waidner [34], observa-
tional equivalence by Lincoln, Mitchell, Mitchell, and Scedrov [32], and more.
These frameworks all follow the ideal functionality paradigm.

The ideal functionality paradigm is elegant and powerful, and resulted in
many significant results, including proofs that arbitrary functions and func-
tionalities can be computed securely, e.g. Goldreich, Micali, and Wigderson
[21], Canetti [12, 14]. Grossly simplifying, an ‘ideal functionality’ for layer i
is a single program or ITM Fi, which has multiple copies of the interfaces to
layer i + 1. Protocol πi is considered secure, if executions of multiple copies of it
over Fi−1, are indistinguishable from executions of Fi.

However, it may not always be feasible to define an ideal functionality cap-
turing the possible behaviors of a realistic network layer. In fact, even defining
the behaviors of each layer is challenging; transforming this into a program,
would be impractical or impossible, and may result in over-specification. Note
that over-specification of layers (or protocols) is usually considered harmful by
practitioners, see e.g. Bradner [9].

This inability to use ideal functionalities as specifications for networking and
e-commerce layer models, is our motivation in developing the layered games
framework. The layered games framework allows protocol compositions with re-
alistic specifications for network and e-commerce layer models, and with empha-
sis on simplicity and usability, even at some reduction in scope and generality.

As the name implies, the layered games framework is based on the game play-
ing paradigm, instead of following the ideal functionality paradigm. The game
playing paradigm is central to the theory of cryptography, see e.g. Goldreich et al.
[21], Goldreich [20]. Game playing supports strong analytical tools, e.g. Bellare
and Rogaway [8], and may facilitate the use of (semi) automated proof-checking
tools, see e.g. Halevi [24].

In the game-playing paradigm, one specifies an interactive game between a
component and an adversary, where security is defined by the probability of the
adversary winning in the game. With information-theoretic games the adver-
sarial entity is allowed unbounded computational resources, while concrete and
probabilistic polynomial time games assume certain limitations on adversarial
resources, e.g. available time. Game-based specifications are widely used, and
available for many cryptographic primitives such as digital signature and en-
cryption schemes, pseudo-random functions, and much more, e.g., Goldwasser
and Micali [22], Goldwasser, Micali, and Yao [23], Goldreich [20].

Some primitives have secure implementations for game-based specifications,
where the corresponding ideal functionalities are not realizable, see Datta, Derek,

The Layered Games Framework 5

Mitchell, Ramanathan, and Scedrov [17], Canetti, Kushilevitz, and Lindell [11],
Canetti and Fischlin [13]. This provides another motivation for investigating
compositions of protocols satisfying game-playing specifications. However, our
focus is different: allowing realistic models for network layers, without trying to
define them as ‘ideal functionality’.

Further related works. Our execution model is closely related to the execution
models of I/O Automata of Lynch and Tuttle [33], especially the Probabilistic
I/O Automata model of Canetti et al. [15], and to the Reactive Simulatability
framework [5, 6, 35]. In an especially related work, Backes et al. [4] define a re-
laxed notion of conditional reactive simulatability, where simulation is required
only if the environment fulfills some constraints; however, there are significant
differences between the works, most notably their constraints are on the envi-
ronment and not on the lower layers.

The layered games framework follows the computational approach to cryptog-
raphy, which treats protocols and cryptographic schemes as programs/machines,
operating on arbitrary stings (bits). This is in contrast to the symbolic approach,
where cryptographic operations are seen as functions on a space of symbolic (for-
mal) expressions, and security properties are stated as symbolic expressions; see
Dolev and Yao [18], Burrows, Abadi, and Needham [10]. Several works investi-
gate compositions of cryptographic protocols with the symbolic approach, e.g.
Datta et al. [16] and Backes at al. [3]. We believe that it may be possible and
beneficial, to extend the layered games framework to support symbolic/formal
analysis, possibly building on recent results on the relationships between the two
approaches, such as Abadi and Rogaway [1]. This may facilitate the use of veri-
fication tools; notice also that we use state machines as the basic computational
model, which can also be helpful in applying verification tools.

Organization. In Section 2 we define protocols, configurations (of protocols),
and executions (of configurations). In Section 3 we define layer games, models
and realizations. In Section 4 we present and prove the fundamental lemma of
layering. We conclude and discuss future work in Section 5.

For space limitations, the proof and detailed examples of applications of the
framework are deferred to the full version of this paper [28]; see also [27, 26].

2 Protocols, configurations and executions

2.1 Protocols

Our basic element of computation is a protocol. We use protocols to model all
the entities compromising the systems we investigate, including even adversarial
entities (‘the adversary’). Protocols are state machines1 that accept input on one
1 We use state machines, rather than e.g. ITM as in Universal Composability [14],

since we found it simpler, and easier to ensure that an execution involving multi-
ple protocols, some of which are adversarial, will have well-defined scheduling and
distribution of events. Also, in many cases protocols may be represented by finite
state machines, which may have advantages including possible use of automated
verification tools.

6 Amir Herzberg, Igal Yoffe

of few input interfaces, and produce output on one or more output interfaces.
The transition function δ maps the input (interface and value), current state and
random bits, to a new state and to outputs on the different output interfaces.
We use ⊥ to denote a special value which is not a binary string (⊥ 6∈ {0, 1}∗); a
protocol outputs ⊥ on some output interface to signal ‘no output’.

The transition function δ can depend on two additional inputs: random bits
and a security parameter. The random bits may be ignored to define determin-
istic protocols, including analysis of protocols using pseudo-random bits. The
(unary) security parameter, allows to define computational properties of the
protocol and of specifications, such as security against computationally-bounded
adversary. Specifically, we use the security parameter to define a polynomial pro-
tocol

Definition 1 (Protocol). A protocol π is a tuple 〈S, IIN , IOUT , δ〉 where:

1. S is a set of states, where ⊥ ∈ S is the initial state,
2. IIN is a set of input interface identifiers,
3. IOUT is a set of output interface identifiers,
4. δ : IN → OUT is a transition function, with:

– Domain IN = 1∗×S×IIN×{0, 1}∗×{0, 1}∗ (security parameter, current
state, input interface, input value, random bits).

– Range OUT = S ×
∏

i∈IOUT
({0, 1}∗ ∪ {⊥}). The outputs consist of a

new state, denoted δ.S ∈ S, and output values δ.ov[ι] ∈ {0, 1}∗ ∪{⊥} for
each interface ι ∈ IOUT .

The protocol is polynomial if δ is polynomial-time computable, and if the length
of the outputs is the same as the length of the inputs2, plus a polynomial in
the security parameter, i.e. ∃c ∈ N s.t. ∀(1k, s, ιi, x, r) ∈ IN, ιo ∈ IOUT :
|δ.ov[ιo](k, s, ιi, x, r)| ≤ |x|+ |k|c.

Notations:

Π, Πpoly: Let Π denote the set of all protocols, and Πpoly denote the set of
polynomial protocols.

Dot notation: the range of δ is a set of pairs (s, ov[ι]), where s ∈ S is the
new state and ov[ι] ∈ {0, 1}∗ ∪ {⊥} is the output on each output interface
ι ∈ IOUT . To refer directly to the state or the outputs, we use dot notation

2 This restriction of the output length to be the same as input length, plus some ‘over-
head’ which depends only on the security parameter, is a simple method to prevent
exponential blow-up in input and output lengths, as outputs of one protocol become
inputs to another protocol during execution. This restriction is reasonable in prac-
tice, and sufficient for our needs; for example, it allows a protocol to ‘duplicate’ input
from one interface, to multiple output interfaces, but maintains a polynomial bound
on the length of the inputs and outputs on each interface during the execution. More
elaborate ways to to prevent exponential blow-up were presented by Küsters [31] de-
scribing a general model for systems which satisfy certain acyclic conditions, Canetti
[14] and Hofheinz, Müller-Quade, and Unruh [29] for UC, and Backes et al. [6] for
reactive simulatability.

The Layered Games Framework 7

as in δ.s(·) and δ.ov[ι](·) respectively. We similarly use dot notation in other
places, i.e. α.β refers to element β of a record or tuple α.

We can connect protocols, via their interfaces, in different configurations, as
we define next. We can also connect from an output interface of a protocol, to
an input interface of the same protocol; this makes it trivial to compose several
protocols into a single protocol, which is useful (see Section 4). Note that if we
compose several polynomial protocols in this manner, then the resulting protocol
is also polynomial.

2.2 Configuration

We study interactions of multiple protocols, connected via their interfaces; we
call the set of interconnected protocols a configuration. Configuration are a di-
rected graph, whose nodes P are identifiers for protocols, and whose edges are
defined by mappings p′ = nP(p, ι) (for ‘next protocol’) and ι′ = nI(p, ι) (for
‘next interface’), mapping output interface ι ∈ oI(p) of node p, to input interface
ι′ ∈ iI(p) of node p′. Identification of the input and output interfaces, corre-
sponds to the awareness of the network-layer, e.g. of router or firewall, to the
identification of the network interface card on which a packet was received. For
example, Figure 2, shows three (homomorphic) configurations. The definition
follows.

Definition 2 (Configuration). A configuration is a tuple C = 〈P, iI, oI, nP, nI〉,
where:

P is a set of protocol instance identifiers,
iI, oI map identifiers in P to input and output interfaces, respectively,
nP maps from instance identifier p ∈ P and an output interface ι ∈ oI(p), to

p′ = nP(p, ι), where either p′ = ⊥ or p′ ∈ P (another instance),
nI maps from instance identifier p ∈ P and an output interface ι ∈ oI(p), to

input interface ι′, where if nP(p, ι) ∈ P then ι′ ∈ iI(nP(p, ι)),

Above, we defined configurations without any ‘size’ parameter, as required
e.g. to analyze protocols and distributed algorithms designed for networks with a
variable number of parties (and where complexities may depend on the number
of parties). This is for simplicity and to avoid clutter; the extensions to (uniform
or non-uniform) ‘configuration families’ seem quite obvious. Notice that for many
applications, e.g. in [27, 26], it may be sufficient to consider a small fixed set of
parties.

Still, configurations as defined above, are quite general. In particular, we
intentionally avoided assuming any specific communication or synchronization
mechanisms. This allows use of the framework in diverse scenarios, e.g. with or
without assumptions on synchronization, communication and failures.

8 Amir Herzberg, Igal Yoffe

2.3 Executions

An execution is a sequence of events, each event corresponding to one transi-
tion of a protocol π running in one node p ∈ P inside a configuration C =
〈P, iI, oI, nP, nI〉; to define the execution, we use a mapping π = Γ (p) from the
protocol identifiers P to the protocols realizing each node.

An important design goal, is that the set of executions of a given configura-
tion C, with a specific mapping to protocols Γ , would be a well-defined random
variable. This makes it easier to use an execution as a ‘subroutine’, to facilitate
reduction-based reasoning and proofs. To further simplify such reductions, we
require that executions be a deterministic function of explicit random-tape in-
puts. Specifically, the ith event in the execution, denoted ξi, is defined by the
(deterministic) transition function of the protocol Γ (pi) invoked at this event
(where pi is the identifier of that node). We allow the protocol to make random
choices, but only using uniformly-selected random bits Ri ∈R {0, 1}∗, provided
as input to the transition function. Let R = {Ri ≡ {0, 1}∗}i=1,2,... be the se-
quence whose elements are the sets of all binary strings {0, 1}∗; each execution
is a deterministic function of the specific sequence R ∈ R used in that execution
(i.e. R = {Ri}i=1,2,... s.t. (∀i)Ri = {0, 1}∗).

Each protocol instance has its own state, and in each round may decide
to invoke interfaces of multiple other protocol instances; see for example the
configurations in Figure 2. Therefore, some scheduling mechanism for events
is required. To ensure well-defined executions, without any non-deterministic
choice (except for the explicit use of the random input strings R ∈ R), we use a
deterministic schedule S (cf. [15]).

A schedule S of configuration C = 〈P, iI, oI, nP, nI〉, is a sequence of pairs
S = {〈pi, ιi〉}i∈N where pi ∈ P. We (later) require protocols to perform cor-
rectly for any schedule, therefore, the schedule can be considered as adversar-
ial (and not even limited by computational assumptions). On the other hand,
the schedule, is defined in advance and cannot depend on the execution (or on
the random bits R ∈ R); in a sense, we separated the adversarial mechanisms
into a non-adaptive, computationally-unlimited element (the schedule), and an
adaptive, usually computationally-limited element (modeled as a protocol, or
multiple protocols, in the configuration, and aware of only inputs on its inter-
faces). A schedule could, of course, prevent events from happening; to prevent
this from being a trivial method to cause executions where the adversary wins,
our definitions of games (later) consider the adversary as winning only if some
event happens, rather than by the absence of some event.

A similar issue, where we tried to avoid non-determinism, involves how we
handle multiple pending inputs, submitted on the same input interface. Our def-
inition delivers inputs on an interface, in the order in which they were submitted.
We do this by keeping a FIFO queue Q[p, ι], for protocol instance p and input
interface ι, with regular semantics for the enqueue, dequeue, and is non empty
operations. Other choices may be possible.

The Layered Games Framework 9

Definition 3 (Execution). Let C = 〈P, iI, oI, nP, nI〉 be a configuration. Let
S = {〈pi ∈ P, ιi ∈ iI(pi)〉}i∈N be a schedule of C. Let Γ : P → Π be a mapping
of the protocol identifiers P to specific protocols.

The execution Xk(C,Γ,S;R) of security parameter k ∈ 1∗, configuration C,
protocol mapping Γ , schedule S and sequence (of random bits) R = {Ri} ∈ R, is
the sequence of execution events {ξi} = {〈pi ∈ P, ιi ∈ iI(pi), ivi, ovi[·]〉 resulting
from the following process:

For all p ∈ P: s[p] := ⊥;
Q[p1,ι1].enqueue(0); X := {}

For i := 1 to ∞ do:

if (pi ∈ P, ιi ∈ IIN (pi) and Q[pi, ιi].is non empty()) then:
1. ivi := Q[pi, ιi].dequeue();
2. 〈S, IIN , IOUT , δ〉 := Γ (pi).
3. 〈s[pi], ovi[ι ∈ IOUT]〉 := δ(k, s[pi], ιi, ivi;Ri);
4. ∀ ι ∈ IOUT : if ovi[ι] 6= ⊥

then: Q[nP(pi, ι), nI(pi, ι].enqueue(ovi[ι]);

Let Xk(C,Γ,S) be the random variable Xk(C,Γ,S;R) for R ∈R R.
If all protocols in the range of Γ are polynomial, we say that Γ is polyno-

mial. If Γ is polynomial, then Xk(C,Γ,S)[l] is sampleable in time polynomial
in k and l, where Xk(C,Γ,S)[l] denotes the l first events of Xk(C,Γ,S). This
allows a polynomial protocol to run polynomial number of steps of an execution
containing polynomial protocols, as part of its computational process (e.g. for
reduction proofs). We restate this observation in the following proposition.

Proposition 1 (Executions of polynomial protocols are efficiently sam-
pleable). Let C = 〈P, iI, oI, nP, nI〉 be a configuration and Γ : P → Πpoly be
a mapping of the protocol identifiers P to specific polynomial protocols. Then
Xk(C,Γ,S)[l] is sampleable in probabilistic polynomial time (as a function of k
and l).

3 Layer Games, Models and Realizations

From this section, our discussion is focused, for simplicity, on layered architec-
tures, as in Figure 1. We believe that it is not too difficult to generalize our
concepts and results, but that this will cause (mostly technical) complexities,
that may make the resulting definitions less easy to understand and use.

The basic idea of layered architectures, is abstraction. Namely, the designer
of protocol πi for layer i, is oblivious to details of lower layers, and only cares
about the layer model of layer i− 1, denoted Li−1. The layer model Li−1 defines
all possible behaviors observable to layer i, resulting from the operation of layer
i − 1 protocols and of all lower layers. The goal of the designer of protocol πi,

10 Amir Herzberg, Igal Yoffe

for layer i, is to ensure that when instances of πi operate over any instantiation
of Γi−1 of layer model Li−1, the resulting operation satisfies layer model Li.

In the first subsection below, we give a game-based definition of a layer
model, with conditions on the outcomes of the game, defining when a protocol
ΓL is considered to satisfy layer model L; we denote this by L |= ΓL. In the second

subsection, we define the realization relation, denoted LU `
[

πU

LL

]
, indicating that

protocol πU , when running over lower layer LL, realizes layer model LU .

3.1 Layer Models

We define the layer model L, by a simple zero-sum (win-lose) game between
an adversary protocol, with identifier A, and a layer protocol, with identifier IL.
These protocols interact only via a third protocol, the experiment protocol, with
identifier Exp, as shown in Figure 3. The experiment protocol defines the ‘rules
of the game’, and in particular the outcome, which Exp produces on a designated
output interface outcome. Specifically, in every execution, Exp outputs a value
on outcome (at most) once, and this value is a single bit: 1 if the adversary wins
(protocol failed the game), and 0 if the adversary losses (protocol passed the
game). The game includes an expected winning rate α ∈ [0, 1] (typically α = 0
or α = 1

2), defining the expected (or permitted) probability that the adversary
will win, i.e. eventually have 1 on outcome.

IL

Exp

A

Outcome
E2AA2E

E2L
L2E

Fig. 3. Layer Model Configuration. If for every ΓA holds Pr(outcome = 1) ≤ α +
+negl(k), then the layer protocol ΓL satisfies L = (ΓExp, α), or: L |= ΓL.

We later implement layer i over layer i− 1, by multiple instances of protocol
πi, one in each processor in the network. For simplicity, we assume a constant
number of instances n; it seems straightforward to extend the results to allow
n to be a parameter. It is convenient to define a separate input and output
interfaces between the experiment and each instance. Namely, for j ∈ {1, . . . , n},
the configuration includes interface E2Lj from Exp to IL, and interface L2Ej from
IL to Exp. Finally, we use a single interface E2A from Exp to A, and a single
interface A2E from A to Exp. This completes the definition of the layer modeling
game configuration CLM (for some constant number n of instances).

The Layered Games Framework 11

For φ ∈ {Exp,A}, let Γ (φ) = Γφ be the protocol instantiating node φ;
similarly, let Γ (IL) = ΓL be a protocol realizing IL. Given schedule S, let
Exp

ΓExp

ΓA,ΓL,S(k, l;R) denote the output of outcome after l events in the execution
Xk(CLM , Γ,S;R), for R ∈ R, or ⊥ if there was no such output.

Definition 4 (Layer model). A (polynomial) layer model is a pair L = (ΓExp, α),
where ΓExp is a (polynomial) protocol and α ∈ [0, 1]. We say that protocol
ΓL ∈ Πpoly computationally satisfies layer model L, and write L |=poly ΓL, if
for every ΓA ∈ Πpoly, schedule S, polynomial l and large enough k, holds:

Pr
R∈R

(
Exp

ΓExp

ΓA,ΓL,S(k, l(k);R) = 1
)
≤ α + negl(k)

where negl is some negligible function (asymptotically smaller than any strictly
positive polynomial), and Exp

ΓExp

ΓA,ΓL,S(k, l;R) is defined as above.
Protocol ΓL statistically satisfies L, if the above holds when protocols are not

required to be polynomial, and perfectly satisfies L if this holds even when we
remove the negl(k) term. These notions are denoted L |=stat ΓL and L |=perf ΓL,
respectively.

We observe the trivial relation among the three notions of satisfaction.

Proposition 2. For any layer model L and any protocol ΓL holds:

L |=perf ΓL ⇒ L |=stat ΓL ⇒ L |=poly ΓL

Notation: we may write L |= ΓL, when it is obvious that we refer to |=poly.

3.2 Layer Realization Indistinguishability Game

We now define and investigate another game, which we call indistinguishable
layer realization games, which is similar to indistinguishability games used in
many cryptographic definitions, e.g. pseudo-random functions [19], and espe-
cially to the ‘left-or-right indistinguishability’ (LOR) of [7]. Layer realization
games are convenient for the common layered and modular (‘top-down’) design
methodologies. As in previous sections, we had to tradeoff generality for simplic-
ity and ease-of-use.

The configuration of layer realization indistinguishability games is illustrated
in Figure 4. Like in layer model games, the configuration contains nodes A, Exp
and IL, where A and IL are connected only via Exp. There are n + 1 additional
nodes, where n is the (constant) number of instances: n realization nodes (in-
stances) {Rj}j=1,...,n, and one lower layer node ILL.

As in the layer model games, without loss of generality, we use a single input
and output interface from the experiment (or ‘higher layer’) to each instance
in IL, and therefore we will have the interfaces E2Lj , L2Ej , E2A and A2E as
before. The configuration also includes interfaces E2Rj , R2Ej , R2Lj and L2Rj ,
connecting between Exp and R, and between R and ILL. This completes the

12 Amir Herzberg, Igal Yoffe

definition of the layer realization configuration CLR (for a fixed number n of
instances).

All the realization nodes are instantiated by (mapped to) the same protocol
π, which is tested for realization of layer L over lower layer LL. Namely, (∀j ∈
{1, . . . , n})Γ (Rj) = π, where Γ is the mapping we will use in the execution of
the game (with n instances).

In layer realization indistinguishability games, we use a specific experiment
protocol ExpIND, which we define below, i.e. Γ (Exp) = ExpIND. Here are some ba-
sic details about ExpIND. Upon initialization, ExpINDflips a fair coin b ∈R {L,R},
where L stands for either Layer or Left, and R stands for either Realization or
Right. The game ends when ExpIND receives a guess b′ of either L or R from the
adversary A, which arrives on a dedicated Guess input interface. Upon receiving
the guess b′, ExpINDoutputs on its outcome output interface 1 if b = b′, and 0
otherwise.

Given adversary protocol Γ (A) = ΓA, protocols for the two layers Γ (IL) = ΓL,
Γ (ILL) = ΓLL, sequence of random bit sequences R ∈ R and schedule S, let
ExpIND

ΓA,ΓL,ΓLL,π,S(k, l;R) denote the output of outcome after l events in the
execution Xk(CLR, Γ,S;R), or ⊥ if there was no such output.

Definition 5 (Layer realization). Let L, LL be two polynomial layer models.
Protocol π computationally realizes layer model L over layer model LL, which we

denote by L `poly

[
π

LL

]
, if for every polynomial algorithm ΓLL s.t. LL |= ΓLL, there

exists a polynomial algorithm ΓL s.t. L |= ΓL, s.t. every polynomial algorithm ΓA

and for every schedule S and every polynomial l, for sufficiently large k holds

Pr
R∈R

(
ExpIND

ΓA,ΓL,ΓLL,π,S(k, l(k);R) = 1
)
≤ 1

2
+ negl(k)

Protocol π statistically realizes layer model L over layer model LL, which we

denote by L `stat

[
π

LL

]
, if the above holds when protocols are not required to be

polynomial, and perfectly realizes L over LL, which we denote by L `perf

[
π

LL

]
if

this holds even when we remove the negl(k) term.

In summary, protocol π realizes layer model Lover layer model LL, if for every
adversary protocol ΓA and every lower-layer protocol ΓLL, there is some protocol
ΓL satisfying layer L, s.t. the ΓA cannot distinguish between interacting with ΓL

and interacting with π operating over ΓLL, where ΓA interacts only via ExpIND.

Intuitively,
[

π

ΓLL

]
is a good implementation of L, if the adversary A cannot

distinguish between it and between some protocol ΓL which satisfies L, when
interacting via ExpIND, better than the trivial winning rate of 1

2 . To complete
the description, we now present the indistinguishability experiment ExpIND.

Definition 6 (Layer realization indistinguishability experiment). Let
ExpIND= 〈S, IIN , IOUT , δ〉 be the following protocol:

The Layered Games Framework 13

IL

ExpIND

A

Outcome

L2E1-n

A2E1-n

R1

L2E

GuessInitE2A1-n

E2L1-n

... Rn
E2R1

R2En

R2LL1
LL2Rn

ILL

Fig. 4. The Layer Realization Indistinguishability game. Protocol π realizes layer L over
layer LL, if for every adversary ΓA and every lower-layer protocol ΓLL, there is some
protocol ΓL satisfying layer model L, s.t. the adversary cannot distinguish between ΓL

and between the composition of n instances of π over ΓLL.

S = {⊥, testing, done}
IIN = {Init,Guess} ∪ {A2Ej}j=1,...,n ∪ {L2Ej}j=1,...,n ∪ {R2Ej}j=1,...,n

IOUT = {outcome} ∪ {E2Aj}j=1,...,n ∪ {E2Lj}j=1,...,n ∪ {E2Rj}j=1,...,n

δ:
1. In initialization state ⊥, upon any input, select randomly b ∈R {L,R}, and move
to testing state.
2. In testing state, pass all input events on interface A2Ei, for i ∈ {1, . . . , n},
to corresponding output event on output interface E2Li (if b = L) or E2Ri (if
b = R), and all input events on interfaces L2Ei (if b = L) or R2Ei (if b = R), to
corresponding output events on interface E2Ai.
3. When, in testing state, the guess input interface Guess is invoked with input
(guess) b′ ∈ {L,R}, output on outcome the value 1 if b = b′, and 0 otherwise
(b 6= b′). Move to the done state (and ignores all further inputs).

4 The Fundamental Lemma of Layering

We now show the fundamental lemma of layering, allowing compositions of pro-
tocols of multiple layers. This provides firm foundations to the accepted method-
ology of designing, implementing, analyzing and testing of each layer indepen-
dently, yet relying on their composition to ensure expected properties.

We first need to define layering of protocols. We actually consider two different
variants of protocol layering:

14 Amir Herzberg, Igal Yoffe

– Layering of two realization protocols πL, πLL. As discussed, we assumed (for
simplicity) that there are n instantiations of the realization protocol of each
layer; each of these has two input interfaces and two output interfaces, one
for the higher layer and one for the lower layer. We define πLL||L =

[
πL
πLL

]
in

the obvious way.
– Layering of the n instances of the realization protocol πL, on top of a protocol

realizing the lower-layer model ΓLL. We define ΓLL||L =
[

πL

ΓLL

]
in the obvious

way.

Note our convention of using πx for protocols instantiating realizations (of n
instances), and Λx for instantiations of a (lower) layer model. Also, note that if
πL and πLL (or ΓLL) are polynomial, then ΓLL||L is also polynomial.

We first present the ‘composition preserves satisfaction’ lemma, which jus-
tifies considering abstraction of all lower layers, into a single ‘virtual protocol’.
For both this and the fundamental lemma of layering (below), we present only
the computational version (the statistical and perfect versions are similar).

Lemma 1 (Composition preserves satisfaction). Let L, LL be two polyno-
mial layer models, and πL, ΓLL be polynomial protocols, such that πL computa-

tionally realizes L over LL, namely L `poly

[
πL

LL

]
, and and ΓLL computationally

satisfies LL, namely LL |=poly ΓLL. Then the composite protocol ΓLL||L satisfies L,
namely L |=poly ΓLL||L. Or, as a formula:(

L `poly

[
πL

LL

])∧
(LL |=poly ΓLL) ⇒

(
L |=poly ΓLL||L

)
The composite realization lemma shows that we can prove realization of each

layer separately, and the composition of the realizations will be a realization of
the highest layer over the lowest layer. We state the lemma for only three layers
- generalization for an arbitrary stack is immediate.

Lemma 2 (The Fundamental Lemma of Layering). Let L3, L2, L1 be three
polynomial layer models, and π2, π3 be polynomial protocols, such that π3 compu-
tationally realizes L3 over L2, and π2 computationally realizes L2 over L1. Then
π2||3 =

[
π3
π2

]
computationally realizes L3 over L1.

Furthermore, let ΓL1 be a polynomial protocol that computationally satisfies

L1, namely L1 |=poly ΓL1 . Then Γ1||2||3 =
[

π2||3

Γ1

]
satisfies L3, i.e. L3 |=poly Γ1||2||3.

5 Conclusions and Research Directions

In this work, we try to lay solid, rigorous foundations, to the important method-
ology of layered decomposition of distributed systems and network protocols,
particularly concerning security in adversarial settings. The framework is built

The Layered Games Framework 15

on previous works on modeling and analysis of (secure) distributed systems, as
described in the introduction, but it is clearly a very ambitious goal, possibly
overambitious, and certainly beyond the reach of a single publication. There are
many directions that require further research. Here are some:

– The best way to test and improve such a framework, is simply by using
it to analyze different problems and protocols; there are many interesting
and important problems, that can benefit from such analysis. As one impor-
tant example, consider the secure channel layer problem. Many protocols
and applications assume they operate over ‘secure, reliable connections’. In
practice, this is often done using the standard layers in Figure 1, in one of
two methods. In the first method, we use TLS (for security) over TCP (for
reliability) over the ‘best effort’ service of IP. In the second method, we use
TCP (for reliability) over IP-Sec (for security), again over ‘best effort’ (IP).
It would be interesting to define a ‘secure, reliable connection’ layer, and to
analyze these two methods with respect to it.

– There are many desirable extensions to the framework, including: support for
corruptions of nodes, including adaptive and/or mobile corruptions (proac-
tive security and forward security); adaptive control of the number of nodes;
support for side channels such as timing and power.

– In this work, we focused on layered configurations. These are sufficient for
many scenarios. However, there are other scenarios. It would be interesting
to identify important non-layered scenarios, and find appropriate games,
specifications and composition properties, which will support them, possibly
as generalizations of our definitions and results.

– It would be interested to explore the relationships between the layered games
framework, and other formal frameworks for study of distributed algorithms
and protocols (see introdcution).

– The framework is based on the computational approach to security, where
attackers can compute arbitrary functions on information available to it
(e.g. ciphertext). Many results and tools are based on symbolic analysis, see
introduction (and [18, 10, 1]). It can be very useful to find how to apply such
techniques and tools, within the framework.

Acknowledgments

We would like to thank Yehuda Lindell, Ran Canetti, Dominique Unruh, Ale-
jandro Hevia, Mark Manulis and Dennis Hofheinz for interesting discussions and
helpful comments.

Bibliography

[1] Abadi and Rogaway. Reconciling two views of cryptography (the computa-
tional soundness of formal encryption). JCRYPTOL: Journal of Cryptology,
15, 2002.

[2] M. Abadi and L. Lamport. Composing specifications. ACM Trans. Program.
Lang. Syst., 15(1):73–132, 1993.

[3] Backes, Datta, Derek, Mitchell, and Turuani. Compositional analysis of
contract-signing protocols. TCS: Theoretical Computer Science, 367, 2006.

[4] M. Backes, M. Dürmuth, D. Hofheinz, and R. Küsters. Conditional Reactive
Simulatability. In ESORICS 2006, 11th European Symposium on Research
in Computer Security, volume 4189 of Lecture Notes in Computer Science,
pages 424–443. Springer, 2006.

[5] M. Backes, B. Pfitzmann, and M. Waidner. A General Composition Theo-
rem for Secure Reactive Systems. In Theory of Cryptography, First Theory
of Cryptography Conference, TCC 2004, volume 2951 of Lecture Notes in
Computer Science, pages 336–354. Springer, 2004.

[6] M. Backes, B. Pfitzmann, and M. Waidner. Secure Asynchronous Reactive
Systems. Cryptology ePrint Archive, Report 2004/082, 2004. http://
eprint.iacr.org/.

[7] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treat-
ment of symmetric encryption. In Proceedings of the 38th Annual Sym-
posium on Foundations of Computer Science (FOCS-97), pages 394–405,
Los Alamitos, October 20–22 1997. IEEE Computer Society Press. ISBN
0-8186-8197-7.

[8] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Serge Vaudenay, editor,
EUROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages
409–426. Springer, 2006. ISBN 3-540-34546-9. URL http://dx.doi.org/
10.1007/11761679 25.

[9] S. Bradner. Key words for use in RFCs to Indicate Requirement Levels.
RFC 2119 (Best Current Practice), March 1997. URL http://www.ietf.
org/rfc/rfc2119.txt.

[10] Burrows, Abadi, and Needham. A logic of authentication. ACMTCS: ACM
Transactions on Computer Systems, 8, 1990.

[11] Canetti, Kushilevitz, and Lindell. On the limitations of universally com-
posable two-party computation without set-up assumptions. JCRYPTOL:
Journal of Cryptology, 19, 2006.

[12] R. Canetti. Security and Composition of Multiparty Cryptographic Proto-
cols. Journal of Cryptology, 13(1):143–202, 2000.

[13] R. Canetti and M. Fischlin. Universally Composable Commitments. In
CRYPTO ’01: Proceedings of the 21st Annual International Cryptology
Conference on Advances in Cryptology, pages 19–40, London, UK, 2001.
Springer-Verlag.

The Layered Games Framework 17

[14] Ran Canetti. Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols. In IEEE Symposium on Foundations of Computer
Science, pages 136–145, 2001. updated version: Cryptology ePrint Archive,
Report 2000/067.

[15] Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Moses Liskov, Nancy A.
Lynch, Olivier Pereira, and Roberto Segala. Time-bounded task-PIOAs:
A framework for analyzing security protocols. In Shlomi Dolev, editor,
DISC, volume 4167 of Lecture Notes in Computer Science, pages 238–253.
Springer, 2006. ISBN 3-540-44624-9. URL http://dx.doi.org/10.1007/
11864219 17.

[16] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system
and compositional logic for security protocols. J. Comput. Secur., 13(3):
423–482, 2005.

[17] A. Datta, A. Derek, J. C. Mitchell, A. Ramanathan, and A. Scedrov. Games
and the impossibility of realizable ideal functionality. In Theory of Cryp-
tography, 3rd Theory of Cryptography Conference, TCC 2006, volume 3876
of Lecture Notes in Computer Science, pages 360–379. Springer, 2006.

[18] D. Dolev and A. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[19] Goldreich, Goldwasser, and Micali. How to construct random functions.
JACM: Journal of the ACM, 33, 1986.

[20] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, New York, NY, USA, 2004.

[21] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
STOC, pages 218–229. ACM, 1987.

[22] S. Goldwasser and S. Micali. Probabilistic encryption & how to play mental
poker keeping secret all partial information. In STOC ’82: Proceedings of
the fourteenth annual ACM symposium on Theory of computing, pages 365–
377, New York, NY, USA, 1982. ACM Press.

[23] S. Goldwasser, S. Micali, and A. Yao. Strong signature schemes. In STOC
’83: Proceedings of the fifteenth annual ACM symposium on Theory of com-
puting, pages 431–439, New York, NY, USA, 1983. ACM Press.

[24] Shai Halevi. A plausible approach to computer-aided cryptographic proofs.
Report 2005/181, Cryptology ePrint Archive, June 2005. URL http://
eprint.iacr.org/2005/181.pdf.

[25] A. Herzberg and I. Yoffe. Layered Architecture for Secure E-Commerce
Applications. In SECRYPT’06 - International Conference on Security and
Cryptography, pages 118–125. INSTICC Press, 2006.

[26] A. Herzberg and I. Yoffe. On Secure Orders in the Presence of Faults.
In Proceedings of Secure Communication Networks (SCN), volume 4116 of
LNCS, pages 126–140. Springer-Verlag, 2006. New version: Foundations
of Secure E-Commerce: The Order Layer, in Cryptology ePrint Archive,
Report 2006/352.

[27] A. Herzberg and I. Yoffe. The delivery and evidences layer. Cryptology
ePrint Archive, Report 2007/139, 2007. http://eprint.iacr.org/.

18 Amir Herzberg, Igal Yoffe

[28] Amir Herzberg and Igal Yoffe. Layered specifications, design and analysis
of security protocols. Cryptology ePrint Archive, Report 2006/398, 2006.

[29] D. Hofheinz, J. Müller-Quade, and D. Unruh. Polynomial Runtime in Simu-
latability Definitions. In CSFW ’05: Proceedings of the 18th IEEE Computer
Security Foundations Workshop (CSFW’05), pages 156–169, Washington,
DC, USA, 2005. IEEE Computer Society.

[30] J.F. Kurose and K.W. Ross. Computer networking: a top-down approach
featuring the Internet. Addison-Wesley, 2003.

[31] R. Küsters. Simulation-Based Security with Inexhaustible Interactive Tur-
ing Machines. In CSFW ’06: Proceedings of the 19th IEEE Workshop on
Computer Security Foundations, pages 309–320, Washington, DC, USA,
2006. IEEE Computer Society.

[32] P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-
time framework for protocol analysis. In CCS ’98: Proceedings of the 5th
ACM conference on Computer and communications security, pages 112–121,
New York, NY, USA, 1998. ACM Press.

[33] N. A. Lynch and M. R. Tuttle. Hierarchical correctness proofs for distrib-
uted algorithms. In PODC ’87: Proceedings of the sixth annual ACM Sym-
posium on Principles of distributed computing, pages 137–151, New York,
NY, USA, 1987. ACM Press.

[34] B. Pfitzmann and M. Waidner. Composition and integrity preservation of
secure reactive systems. In CCS ’00: Proceedings of the 7th ACM conference
on Computer and communications security, pages 245–254, New York, NY,
USA, 2000. ACM Press.

[35] B. Pfitzmann and M. Waidner. A Model for Asynchronous Reactive Systems
and its Application to Secure Message Transmission. In SP ’01: Proceed-
ings of the 2001 IEEE Symposium on Security and Privacy, pages 184–200,
Washington, DC, USA, 2001. IEEE Computer Society.

