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Abstract. We provide new and tight lower bounds on the ability of
players to implement equilibria using cheap talk, that is, just allowing
communication among the players. One of our main results is that, in
general, it is impossible to implement three-player Nash equilibria in a
bounded number of rounds. We also give the first rigorous connection
between Byzantine agreement lower bounds and lower bounds on imple-
mentation. To this end we consider a number of variants of Byzantine
agreement and introduce reduction arguments. We also give lower bounds
on the running time of two player implementations. All our results ex-
tended to lower bounds on (k, t)-robust equilibria, a solution concept
that tolerates deviations by coalitions of size up to k and deviations by
up to t players with unknown utilities (who may be malicious).

1 Introduction

The question of whether a problem in a multiagent system that can be solved
with a trusted mediator can be solved by just the agents in the system, without
the mediator, has attracted a great deal of attention in both computer science
(particularly in the cryptography community) and game theory. In cryptography,
the focus on the problem has been on secure multiparty computation. Here it
is assumed that each agent i has some private information xi. Fix functions
f1, . . . , fn. The goal is have agent i learn fi(x1, . . . , xn) without learning anything
about xj for j 6= i beyond what is revealed by the value of fi(x1, . . . , xn). With
a trusted mediator, this is trivial: each agent i just gives the mediator its private
value xi; the mediator then sends each agent i the value fi(x1, . . . , xn). Work on
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multiparty computation (see [18] for a survey) provides conditions under which
this can be done. In game theory, the focus has been on whether an equilibrium
in a game with a mediator can be implemented using what is called cheap talk—
that is, just by players communicating among themselves (see [28] for a survey).

There is a great deal of overlap between the problems studied in computer
science and game theory. But there are some significant differences. Perhaps
the most significant difference is that, in the computer science literature, the
interest has been in doing multiparty computation in the presence of possibly
malicious adversaries, who do everything they can to subvert the computation.
On the other hand, in the game theory literature, the assumption is that players
have preference and seek to maximize their utility; thus, they will subvert the
computation iff it is in their best interests to do so. Following [1], we consider
here both rational adversaries, who try to maximize their utility, and possibly
malicious adversaries (who can also be considered rational adversaries whose
utilities we do not understand).

1.1 Our Results

In this paper we provide new and optimal lower bounds on the ability to im-
plement mediators with cheap talk. Recall that a Nash equilibrium σ is a tuple
of strategies such that given that all other players play their corresponding part
of σ then the best response is also to play σ. Given a Nash equilibrium σ we
say that a strategy profile ρ is a k-punishment strategy for σ if, when all but k
players play their component of ρ, then no matter what the remaining k players
do, their payoff is strictly less than what it is with σ. We now describe some
highlights of our results in the two simplest settings: (1) where rational players
cannot form coalitions and there are no malicious players (this gives us the solu-
tion concept of Nash equilibrium) and (2) where there is at most one malicious
player. We describe our results in a more general setting in Section 1.2.

No bounded implementations: In [1] it was shown that any Nash equilibrium
with a mediator for three-player games with a 1-punishment strategy can be im-
plemented using cheap talk. The expected running time of the implementation
is constant. It is natural to ask if implementations with a bounded number of
rounds exist for all three-player games. Theorem 2 shows this is not the case,
implementations must have infinite executions and cannot be bounded for all
three-player games. This lower bound highlights the importance of using ran-
domization. An earlier attempt to provide a three-player cheap talk implementa-
tion [8] uses a bounded implementation, and hence cannot work in general. The
key insight of the lower bound is that when the implementation is bounded, then
at some point the punishment strategy must become ineffective. The details turn
out to be quite subtle. The only other lower bound that we are aware of that
has the same flavor is the celebrated FLP result [15] for reaching agreement in
asynchronous systems, which also shows that no bounded implementation exists.
However, we use quite different proof techniques than FLP.



Byzantine Agreement and Game Theory: We give the first rigorous connection
between Byzantine agreement lower bounds and lower bounds on implemen-
tation. To get the lower bounds, we need to consider a number of variants of
Byzantine agreement, some novel. The novel variants require new impossibility
results. We have four results of this flavor:

1. Barany [6] gives an example to show that, in general, to implement an equi-
librium with a mediator in a three-player game, it is necessary to have a
1-punishment strategy. Using the power of randomized Byzantine agreement
lower bounds we strengthen his result and show in Theorem 4 that we cannot
even get an ε-implementation in this setting.

2. Using the techniques of [7] or [17], it is easy to show that any four-player
game Nash equilibrium with a mediator can be implemented using cheap talk
even if no 1-punishment strategy exists. Moreover, these implementations
are universal ; they do not depend on the players’ utilities. In Theorem 3
we prove that universal implementations do not exist in general for three-
player games. Our proof uses a nontrivial reduction to the weak Byzantine
agreement (WBA) problem [24]. To obtain our lower bound, we need to
prove a new impossibility result for WBA, namely, that no protocol with a
finite expected running time can solve WBA.

3. In [1] we show that for six-player games with a 2-punishment strategy,
any Nash equilibrium can be implemented even in the presence of at most
one malicious player. In Theorem 5 we show that for five players even ε–-
implementation is impossible. The proof uses a variant of Byzantine agree-
ment; this is related to the problem of broadcast with extended consistency
introduced by Fitzi et al. [16]. Our reduction maps the rational player to a
Byzantine process that is afraid of being detected and the malicious player
to a standard Byzantine process.

4. In Theorem 8, we show that for four-player games with at most one malicious
player, to implement the mediator, we must have a PKI setup in place, even
if the players are all computationally bounded and even if we are willing to
settle for ε–implementations. Our lower bound is based on a reduction to a
novel relaxation of the Byzantine agreement problem.

Bounds on running time: We provide bounds on the number of rounds needed
to implement two-player games. In Theorem 9(a) we prove that the expected
running time of any implementation of a two-player mediator equilibrium must
depend on the utilities of the game, even if there is a 1-punishment strategy.
This is in contrast to the three-player case, where the expected running time
is constant. In Theorem 9(b) we prove that the expected running time of any
ε–implementation of a two-player mediator equilibrium for which there is no 1-
punishment strategy must depend on ε. Both results are obtained using a new
two-player variant of the secret-sharing game. The only result that we are aware
of that has a similar spirit is that of Boneh and Naor [9], where it is shown that
two-party protocols with “bounded unfairness” of ε must have running time that
depends on the value of ε. The implementations given by Urbano and Vila [31,32]



in the two-player case are independent of the utilities; the above results show
that their implementation cannot be correct in general.

1.2 Our results for implementing robust and resistant mediators

In [1] (ADGH from now on), we argued that it is important to consider devia-
tions by both rational players, who have preferences and try to maximize them,
and players that can be viewed as malicious, although it is perhaps better to
think of them as rational players whose utilities are not known by the other
players or mechanism designer. We considered equilibria that are (k, t)-robust ;
roughly speaking, this means that the equilibrium tolerates deviations by up to
k rational players, whose utilities are presumed known, and up to t players with
unknown utilities (i.e., possibly malicious players). We showed how (k, t)-robust
equilibria with mediators could be implemented using cheap talk, by first show-
ing that, under appropriate assumptions, we could implement secret sharing in a
(k, t)-robust way using cheap talk. These assumptions involve standard consider-
ations in the game theory and distributed systems literature, specifically, (a) the
relationship between k, t and n, the total number of players in the system; (b)
whether players know the exact utilities of other players; (c) whether there are
broadcast channels or just point-to-point channels; (d) whether cryptography is
available; and (e) whether the game has a (k + t)-punishment strategy ; that is,
a strategy that, if used by all but at most k + t players, guarantees that every
player gets a worse outcome than they do with the equilibrium strategy. Here we
provide a complete picture of when implementation is possible, providing lower
bounds that match the known upper bounds (or improvements of them that we
have obtained). The following is a high-level picture of the results. (The results
discussed in Section 1.1 are special cases of the results stated below. Note that
all the upper bounds mentioned here are either in ADGH, slight improvements
of results in ADGH, or are known in the literature; see Section 3 for the de-
tails. The new results claimed in the current submission are the matching lower
bounds.)

– If n > 3k + 3t, then mediators can be implemented using cheap talk; no
punishment strategy is required, no knowledge of other agents’ utilities is
required, and the cheap-talk strategy has bounded running time that does
not depend on the utilities (Theorem 1(a) in Section 3).

– If n ≤ 3k+3t, then we cannot, in general, implement a mediator using cheap
talk without knowledge of other agents’ utilities (Theorem 3). Moreover,
even if other agents’ utilities are known, we cannot, in general, implement
a mediator without having a punishment strategy (Theorem 4) nor with
bounded running time (Theorem 2).

– If n > 2k+ 3t, then mediators can be implemented using cheap talk if there
is a punishment strategy (and utilities are known) in finite expected running
time that does not depend on the utilities (Theorem 1(b) in Section 3).

– If n ≤ 2k + 3t, then we cannot, in general, ε-implement a mediator using
cheap talk, even if there is a punishment strategy and utilities are known
(Theorem 5).



– If n > 2k + 2t and we can simulate broadcast then, for all ε, we can ε-
implement a mediator using cheap talk, with bounded expected running time
that does not depend on the utilities in the game or on ε (Theorem 1(c) in
Section 3). (Intuitively, an ε-implementation is an implementation where a
player can gain at most ε by deviating.)

– If n ≤ 2k+2t, we cannot, in general, ε-implement a mediator using cheap talk
even if we have broadcast channels (Theorem 7). Moreover, even if we assume
cryptography and broadcast channels, we cannot, in general, ε-implement a
mediator using cheap talk with expected running time that does not depend
on ε (Theorem 9(b)); even if there is a punishment strategy, then we still
cannot, in general, ε-implement a mediator using cheap talk with expected
running time independent of the utilities in the game (Theorem 9(a)).

– If n > k + 3t then, assuming cryptography, we can ε-implement a mediator
using cheap talk; moreover, if there is a punishment strategy, the expected
running time does not depend on ε (Theorem 1(e) in Section 3).

– If n ≤ k + 3t, then even assuming cryptography, we cannot, in general,
ε-implement a mediator using cheap talk (Theorem 8).

– If n > k + t, then assuming cryptography and that a PKI (Public Key
Infrastructure) is in place, 4 we can ε-implement a mediator (Theorem 1(d) in
Section 3); moreover, if there is a punishment strategy, the expected running
time does not depend on ε (Theorem 1(e) in Section 3).

The lower bounds are existential results; they show that if certain conditions
do not hold, then there exists an equilibrium that can be implemented by a medi-
ator that cannot be implemented using cheap talk. There are other games where
these conditions do not hold but we can nevertheless implement a mediator.

1.3 Related work

There has been a great deal of work on implementing mediators, both in com-
puter science and game theory. The results above generalize a number of results
that appear in the literature. We briefly discuss the most relevant work on im-
plementing mediators here. Other work related to this paper is discussed where
it is relevant.

In game theory, the study of implementing mediators using cheap talk goes
back to Crawford and Sobel [11]. Barany [6] shows that if n ≥ 4, k = 1, and t = 0
(i.e., the setting for Nash equilibrium), a mediator can be implemented in a game
where players do not have private information. Forges [17] provides what she calls
a universal mechanism for implementing mediators; essentially, when combining
her results with those of Barany, we get the special case of Theorem 1(a) where
k = 1 and t = 0. Ben-Porath [8] considers implementing a mediator with cheap
talk in the case that k = 1 if n ≥ 3 and there is a 1-punishment strategy.
He seems to have been the first to consider punishment strategies (although

4 We can replace the assumption of a PKI here and elsewhere by the assumption that
there is a trusted preprocessing phase where players may broadcast.



his notion is different from ours: he requires that there be an equilibrium that
is dominated by the equilibrium that we are trying to implement). Heller [22]
extends Ben-Porath’s result to allow arbitrary k. Theorem 1(b) generalizes Ben-
Porath and Heller’s results. Although Theorem 1(b) shows that the statement
of Ben-Porath’s result is correct, Ben-Porath’s implementation takes a bounded
number of rounds; Theorem 2 shows it cannot be correct. 5 Heller proves a
matching lower bound; Theorem 5 generalizes Heller’s lower bound to the case
that t > 0. (This turns out to require a much more complicated game than that
considered by Heller.) Urbano and Vila [31,32] use cryptography to deal with the
case that n = 2 and k = 1; 6 Theorem 1(e)) generalizes their result to arbitrary
k and t. However, just as with Ben-Porath, Urbano and Vila’s implementation
takes a bounded number of rounds; As we said in Section 1.1, Theorem 9(a)
shows that it cannot be correct.

In the cryptography community, results on implementing mediators go back
to 1982 (although this terminology was not used), in the context of (secure)
multiparty computation. Since there are no utilities in this problem, the focus
has been on essentially what we call here t-immunity : no group of t players can
prevent the remaining players from learning the function value, nor can they
learn the other players’ private values. Results of Yao [33] can be viewed as
showing that if n = 2 and appropriate computational hardness assumptions are
made, then, for all ε, we can obtain 1-immunity with probability greater than
1−ε if appropriate computational hardness assumptions hold. Goldreich, Micali,
and Wigderson [19] extend Yao’s result to the case that t > 0 and n > t. Ben-Or,
Goldwasser, and Wigderson [7] and Chaum, Crépeau, and Damgard [10] show
that, without computational hardness assumptions, we can get t-immunity if
n > 3t; moreover, the protocol of Ben-Or, Goldwasser, and Wigderson does not
need an ε “error” term. Although they did not consider utilities, their protocol
actually gives a (k, t)-robust implementation of a mediator using cheap talk if
n > 3k+ 3t; that is, they essentially prove Theorem 1(a). (Thus, although these
results predate those of Barany and Forges, they are actually stronger.) Rabin
and Ben-Or [29] provide a t-immune implementation of a mediator with “error”
ε if broadcast can be simulated. Again, when we add utilities, their protocol
actually gives an ε–(k, t)-robust implementation. Thus, they essentially prove
Theorem 1(c). Dodis, Halevi, and Rabin [12] seem to have been the first to apply
cryptographic techniques to game-theoretic solution concepts; they consider the
case that n = 2 and k = 1 and there is no private information (in which case the
equilibrium in the mediator game is a correlated equilibrium [5]); their result is
essentially that of Urbano and Vila [32] (although their protocol does not suffer
form the problems of that of Urbano and Vila).

Halpern and Teague [21] were perhaps the first to consider the general prob-
lem of multiparty computation with rational players. In this setting, they essen-

5 Although Heller’s implementation does not take a bounded number of rounds, it
suffers from problems similar to those of Ben-Porath.

6 However, they make somewhat vague and nonstandard assumptions about the cryp-
tographic tools they use.



tially prove Theorem 1(d) for the case that t = 0 and n ≥ 3. However, their focus
is on the solution concept of iterated deletion. They show that there is no Nash
equilibrium for rational multiparty computation with rational agents that sur-
vives iterated deletion and give a protocol with finite expected running time that
does survive iterated deletion. If n ≤ 3(k + t), it follows easily from Theorem 2:
that there is no multiparty computation protocol that is a Nash equilibrium, we
do not have to require that the protocol survive iterated deletion to get the result
if n ≤ 3(k + t). Various generalizations of the Halpern and Teague results have
been proved. We have already mentioned the work of ADGH. Lysanskaya and
Triandopoulos [27] independently proved the special case of Theorem 1(c) where
k = 1 and t+ 1 < n/2 (they also consider survival of iterated deletion); Gordon
and Katz [20] independently proved a special case of Theorem 1(d) where k = 1,
t = 0, and n ≥ 2.

In this paper we are interested in implementing equilibrium by using standard
communication channels. An alternate option is to consider the possibility of
simulating equilibrium by using much stronger primitives. Izmalkov, Micali, and
Lepinski [23] show that, if there is a punishment strategy and we have available
strong primitives that they call envelopes and ballot boxes, we can implement
arbitrary mediators perfectly (without an ε error) in the case that k = 1, in the
sense that every equilibrium of the game with the mediator corresponds to an
equilibrium of the cheap-talk game, and vice versa. In [26,25], these primitives are
also used to obtain implementation that is perfectly collusion proof in the model
where, in the game with the mediator, coalitions cannot communicate. (By way
of contrast, we allow coalitions to communicate.) Unfortunately, envelopes and
ballot boxes cannot be implemented under standard computational and systems
assumptions [25].

The rest of this paper is organized as follows. In Section 2, we review the rel-
evant definitions. In Section 3, we briefly discuss the upper bounds, and compare
them to the results of ADGH. In Section 4, we prove the lower bounds.

2 Definitions

We give a brief description of the definitions needed for our results here. More
detailed definitions and further discussion can be found in [3].

We are interested in implementing mediators. Formally, this means we need
to consider three games: an underlying game Γ , an extension Γd of Γ with a me-
diator, and a cheap-talk extension Γct of Γ . Our underlying games are (normal-
form) Bayesian games. These are games of incomplete information, where players
make only one move, and these moves are made simultaneously. The “incom-
plete information” is captured by assuming that nature makes the first move and
chooses for each player i a type in some set Ti, according to some distribution
that is commonly known. Formally, a Bayesian game Γ is defined by a tuple
(N, T , A, u, µ), where N is the set of players, T = ×i∈NTi is the set of possible
types, µ is the distribution on types, A = ×i∈NAi is the set of action profiles,



and ui : T ×A is the utility of player i as a function of the types prescribed by
nature and the actions taken by all players.

Given an underlying Bayesian game Γ as above, a game Γd with a mediator
d that extends Γ is, informally, a game where players can communicate with the
mediator and then perform an action from Γ . The utility of player i in Γd depends
just on its type and the actions performed by all the players. Although we think
of a cheap-talk game as a game where players can communicate with each other
(using point-to-point communication and possibly broadcast), formally, it is a
game with a special kind of mediator that basically forwards all the messages it
receives to their intended recipients. We assume that mediators and players are
just interacting Turing machines with access to an unbiased coin (which thus
allows them to choose uniformly at random from a finite set of any size). Γct
denotes the cheap-talk extension of Γ .

When considering a deviation by a coalition K, one may want to allow the
players in K to communicate with each other. If Γ ′ is an extension of an under-
lying game Γ (including Γ itself) and K ⊆ N , let Γ ′ +CT (K) be the extension
of Γ where the mediator provides private cheap-talk channels for the players in
K in addition to whatever communication there is in Γ ′. Note that Γct+CT (K)
is just Γct; players in K can already talk to each other in Γct.

A strategy for player i in a Bayesian game Γ is a function from i’s type to an
action in Ai; in a game with a mediator, a strategy is a function from i’s type
and message history to an action. We allow behavior strategies (i.e., randomized
strategies); such a strategy gets an extra argument, which is a sequence of coin
flips (intuitively, what a player does can depend on its type, the messages it has
sent and received if we are considering games with mediators, and the outcome
of some coin flips). We use lower-case Greek letters such as σ, τ , and ρ to denote
a strategy profile; σi denotes the strategy of player i in strategy profile σ; if
K ⊆ N , then σK denotes the strategies of the players in K and σ−K denotes the
strategies of the players not in K. Given a strategy profile σ a player i ∈ N and a
type ti ∈ Ti let ui(ti, σ) be the expected utility of player i given that his type is ti
and each player j ∈ N is playing the strategy σj . Note that a strategy profile—
whether it is in the underlying game, or in a game with a mediator extending
the underlying game (including a cheap-talk game)—induces a mapping from
type profiles to distributions over action profiles. If Γ1 and Γ2 are extension of
some underlying game Γ , then strategy σ1 in Γ1 implements a strategy σ2 in
Γ2 if both σ and σ′ induce the same function from types to distributions over
actions. Note that although our informal discussion in the introduction talked
about implementing mediators, the formal definitions (and our theorems) talk
about implementing strategies. Our upper bounds show that, under appropriate
assumptions, for every (k, t)-robust equilibrium σ in a game Γ1 with a mediator,
there exists an equilibrium σ′ in the cheap-talk game Γ2 corresponding to Γ1 that
implements σ; the lower bounds in this paper show that, if these conditions are
not met, there exists a game with a mediator and an equilibrium in that game
that cannot be implemented in the cheap-talk game. Since our definition of games
with a mediator also allow arbitrary communication among the agents, it can



also be shown that every equilibrium in a cheap-talk game can be implemented
in the mediator game: the players simply ignore the mediator and communicate
with each other.

The utility function in the games we consider is defined on type and action
profiles. Note that we use the same utility function both for an underlying game
Γ and all extensions of it. As usual, we want to talk about the expected utility of
a strategy profile, or of a strategy profile conditional on a type profile. We abuse
notation and continue to use ui for this, writing for example, ui(tK , σ) to denote
the expected utility to player i if the strategy profile σ is used, conditional on
the players in K having the types tK . Since the strategy σ here can come from
the underlying game or some extension of it, the function ui is rather badly
overloaded. We sometimes include the relevant game as an argument to ui to
emphasize which game the strategy profile σ is taken from, writing, for example,
ui(tK , Γ ′, σ).

We now define the main solution concept used in this paper: (k, t)-robust
equilibrium. The k indicates the size of coalition we are willing to tolerate, and
the t indicates the number of players with unknown utilities. These t players are
analogues of faulty players or adversaries in the distributed computing literature,
but we can think of them as being perfectly rational. Since we do not know
what actions these t players will perform, nor do we know their identities, we
are interested in strategies for which the payoffs of the remaining players are
immune to what the t players do.

Definition 1. A strategy profile σ in a game Γ is t-immune if, for all T ⊆ N
with |T | ≤ t, all strategy profiles τ , all i /∈ T , and all types ti ∈ Ti that occur
with positive probability, we have ui(ti, Γ + CT (T ), σ−T , τT ) ≥ ui(ti, Γ, σ).

Intuitively, σ is t-immune if there is nothing that players in a set T of size at
most t can do to give the remaining players a worse payoff, even if the players
in T can communicate.

Our notion of (k, t)-robustness requires both t-immunity and the fact that,
no matter what t players do, no subset of size at most k can all do better by
deviating, even with the help of the t players, and even if all k+ t players share
their type information.

Definition 2. Given ε ≥ 0, σ is an ε–(k, t)-robust equilibrium in game Γ if σ
is t-immune and, for all K,T ⊆ N such that |K| ≤ k, |T | ≤ t, and K ∩ T = ∅,
and all types tK∪T ∈ TK∪T that occur with positive probability, it is not the case
that there exists a strategy profile τ such that

ui(tK∪T , Γ + CT (K ∪ T ), τK∪T , σ−(K∪T )) > ui(ti, Γ + CT (T ), τT , σ−T ) + ε

for all i ∈ K. A (k, t)-robust equilibrium is just a 0–(k, t)-robust equilibrium.

Note that a (1, 0)-robust equilibrium is just a Nash equilibrium, and an ε–
(1, 0)-robust equilibrium is what has been called an ε-Nash equilibrium in the
literature. The notion (k, 0)-robust equilibrium is essentially Aumann’s [4] no-
tion of resilience to coalitions, except that we allow communication by coalition



members (see [3] for a discussion of the need for such communication). Heller [22]
used essentially this notion. The notion (0, t)-robustness is somewhat in the spirit
of Eliaz’s [13] notion of t fault-tolerant implementation. Both our notion of (0, t)-
robustness and Eliaz’s notion of t-fault tolerance require that what the players
not in T do is a best response to whatever the players in T do (given that all
the players not in T follow the recommended strategy); however, Eliaz does not
require an analogue of t-immunity.

In [1] we considered a stronger version of robust equilibrium. Roughly speak-
ing, in this stronger version, we require that, if a coalition deviates, only one
coalition member need be better off, rather than all coalition members. In [3]
we formally define this stronger notion and discuss its motivation. We note that
all our lower and upper bounds works for both notions; we focus on Defini-
tion 1 here because it is more standard in the game theory literature. (Other
notions of equilibrium have been considered in the literature; see the appendix
for discussion.)

In this paper, we are interested in the question of when a (k, t)-robust equi-
librium σ in a game Γd with a mediator extending an underlying game Γ can
be implemented by an ε–(k, t)-robust equilibrium σ′ in the cheap-talk extension
Γct of Γ . If this is the case, we say that σ′ is an ε–(k, t)-robust implementation
of σ. (We sometimes say that (Γct, σ

′) is an ε–(k, t)-robust implementation of
(Γd, σ) if we wish to emphasize the games.)

3 The Possibility Results

Definition 3. If Γd is an extension of an underlying game Γ with a mediator
d, a strategy profile ρ in Γ is a k-punishment strategy with respect to a strategy
profile σ in Γd if for all subsets K ⊆ N with |K| ≤ k, all strategies φ in Γ +
CT (K), all types tK ∈ TK , and all players i ∈ K:

ui(tK , Γd, σ) > ui(tK , Γ + CT (K), φK , ρ−K).

If the inequality holds with ≥ replacing >, ρ is a weak k-punishment strategy
with respect to σ.

Intuitively, ρ is k-punishment strategy with respect to σ if, for any coalition K
of at most k players, even if the players in K share their type information, as
long as all players not in K use the punishment strategy in the underlying game,
there is nothing that the players in K can do in the underlying game that will
give them a better expected payoff than playing σ in Γd.

The notion of utility variant is used to make precise that certain results do
not depend on knowing the players’ utilities (see [3] for details).

Theorem 1. Suppose that Γ is Bayesian game with n players and utilities u, d
is a mediator that can be described by a circuit of depth c, and σ is a (k, t)-robust
equilibrium of a game Γd with a mediator d.



(a) If 3(k + t) < n, then there exists a strategy σct in Γct(u) such that for
all utility variants Γ (u′), if σ is a (k, t)-robust equilibrium of Γd(u′), then
(Γct(u′), σct) implements (Γd(u′), σ). The running time of σct is O(c).

(b) If 2k + 3t < n and there exists a (k + t)-punishment strategy with respect to
σ, then there exists a strategy σct in Γct such that σct implements σ. The
expected running time of σct is O(c).

(c) If 2(k + t) < n and broadcast channels can be simulated, then, for all ε > 0,
there exists a strategy σεct in Γct such that σεct ε-implements σ. The running
time of σεct is O(c).

(d) If k + t < n then, assuming cryptography and that a PKI is in place, there
exists a strategy σεct in Γct such that σεct ε-implements σ. The expected
running time of σεct is O(c) · f(u) · O(1/ε) where f(u) is a function of the
utilities.

(e) If k+ 3t < n or if k+ t < n and a trusted PKI is in place, and there exists a
(k + t)-punishment strategy with respect to σ, then, assuming cryptography,
there exists a strategy σεct in Γct such that σεct ε-implementers σ. The
expected running time of σεct is O(c) · f(u) where f(u) is a function of the
utilities but is independent of ε.

We briefly comment on the differences between Theorem 1 and the corre-
sponding Theorem 4 of ADGH. In ADGH, we were interested in finding strate-
gies that were not only (k, t)-robust, but also survived iterated deletion of weakly
dominated strategies. For part (a), in ADGH, a behavioral strategy was used
that had no upper bound on running time. This was done in order to obtain a
strategy that survived iterated deletion. However, it is observed in ADGH that,
without this concern, a strategy with a known upper bound can be used. As we
observed in the introduction, part (a), as stated, actually follows from [7]. Part
(b) here is the same as in ADGH. In part (c), we assume here the ability to
simulate broadcast; ADGH assumes cryptography. As we have observed, in the
presence of cryptography, we can simulate broadcast, so the assumption here
is weaker. In any case, as observed in the introduction, part (c) follows from
known results [29]. Parts (d) and (e) are new, and will be proved in [2]. The
proof uses ideas from [19] on multiparty computation. For part (d), where there
is no punishment strategy, ideas from [14] on getting ε-fair protocols are also
required. Our proof of part (e) shows that if n > k+ 3t, then we can essentially
set up a PKI on the fly. These results strengthen Theorem 4(d) in ADGH, where
punishment was required and n was required to be greater than k + 2t.

4 The Impossibility Results

No bounded implementations

We prove that it is impossible to get an implementation with bounded running
time in general if 2k + 3t < n ≤ 3k + 3t. This is true even if there is a pun-
ishment strategy. This result is optimal. If 3k + 3t < n, then there does exist a



bounded implementation; if 2k + 3t < n ≤ 3k + 3t there exists an unbounded
implementation that has constant expected running time.

Theorem 2. If 2k + 3t < n ≤ 3k + 3t, there is a game Γ and a strong (k, t)-
robust equilibrium σ of a game Γd with a mediator d that extends Γ such that
there exists a (k+t)-punishment strategy with respect to σ for which there do not
exist a natural number c and a strategy σct in the cheap talk game extending Γ
such that the running time of σct on the equilibrium path is at most c and σct
is a (k, t)-robust implementation of σ.

Proof. We first assume that n = 3, k = 1, and t = 0. We consider a family of
3-player games Γn,k+t3 , where 2k+3t < n ≤ 3k+3t, defined as follows. Partition
{1, . . . , n} into three sets B1, B2, and B3, such that B1 consists of the first bn/3c
elements in {1, . . . , n}, B3 consists of the last dn/3e elements, and B2 consists
of the remaining elements.

Let p be a prime such that p > n. Nature chooses a polynomial f of degree
k + t over the p-element field GF (p) uniformly at random. For i ∈ {1, 2, 3},
player i’s type consists of the set of pairs {(h, f(h)) | h ∈ Bi}. Each player wants
to learn f(0) (the secret), but would prefer that other players do not learn the
secret. Formally, each player must play either 0 or 1. The utilities are defined as
follows:

– if all players output f(0) then all players get 1;
– if player i does not output f(0) then he gets −3;
– otherwise players i gets 2.

Consider the mediator game where each player is supposed to tell the medi-
ator his type. The mediator records all the pairs (h, vh) it receives. If at least
n − t pairs are received and there exists a unique degree k + t polynomial that
agrees with at least n− t of the pairs then the mediator interpolates this unique
polynomial f ′ and sends f ′(0) to each player; otherwise, the mediator sends 0
to each player.

Let σi be the strategy where player i truthfully tells the mediator his type and
follows the mediator’s recommendation. It is easy to see that σ is a (1, 0)-robust
equilibrium (i.e., a Nash equilibrium). If a player i deviates by misrepresenting
or not telling the mediator up to t of his shares, then everyone still learns; if
the player misrepresents or does not tell the mediator about more of his shares,
then the mediator sends the default value 0. In this case i is worse off. For if 0
is indeed the secret, which it is with probability 1/2, i gets 1 if he plays 0, and
−3 if he plays 1. On the other hand, if 1 is the secret, then i gets 2 if he plays 1
and −3 otherwise. Thus, no matter what i does, his expected utility is at most
−1/2. This argument also shows that if ρi is the strategy where i decides 0 no
matter what, then ρ is a 1-punishment strategy with respect to σ.

Suppose, by way of contradiction, that there is a cheap-talk strategy σ′ in
the game Γct that implements σ such that any execution of σ′ takes at most
c rounds. We say that a player i learns the secret by round b of σ′ if, for all
executions (i.e., plays) r and r′ of σ′ such that i has the same type and the



same message history up to round b, the secret is the same in r and r′. Since we
have assumed that all plays of σ′ terminate in at most c rounds, it must be the
case that all players learn the secret by round c of σ′. For if not, there are two
executions r and r′ of σ′ that i cannot distinguish by round c, where the secret
is different in r and r′. Since i must play the same move in r and r′, in one case
he is not playing the secret, contradicting the assumption that σ′ implements
σ. Thus, there must exist a round b ≤ c such that all three players learn the
secret at round b of σ′ and, with nonzero probability, some player, which we can
assume without loss of generality is player 1, does not learn the secret at round
b − 1 of σ′. This means that there exists a type t1 and message history h1 for
player 1 of length b− 1 that occurs with positive probability when player 1 has
type t1 such that, after b−1 rounds, if player 1 has type t1 and history h1, player
1 considers it possible that the secret could be either 0 or 1. Thus, there must
exist type profiles t and t′ that correspond to polynomials f and f ′ such that
t1 = t′1, f(0) 6= f ′(0) and, with positive probability, player 1 can have history h1

with both t and t′, given that all three players play σ′.

Let h2 be a history for player 2 of length b−1 compatible with t and h1 (i.e.,
when the players play σ′, with positive probability, player 1 has h1, player 2 has
h2, and the true type profile is t); similarly, let h3 be a history of length b−1 for
player 3 compatible with t′ and h1. Note that player i’s action according to σi is
completely determined by his type, his message history, and the outcome of his
coin tosses. Let σ′2[t2, h2] be the strategy for player 2 according to which player
2 uses σ′2 for the first b − 1 rounds, and then from round b on, player 2 does
what it would have done according to σ′2 if its type had been t2 and its message
history for the first b−1 rounds had been h2 (that is, player 2 modifies his actual
message history by replacing the prefix of length b−1 by h2, and leaving the rest
of the message history unchanged). We can similarly define σ′3[t′3, h3]. Consider
the strategy profile (σ′1, σ

′
2[t2, h2], σ′3[t′3, h3]). Since σ′i[ti, hi] is identical to σ′i for

the first b − 1 steps, for i = 2, 3, there is a positive probability that player 1
will have history h1 and type t1 when this strategy profile is played. It should
be clear that, conditional on this happening, the probability that player 1 plays
0 or 1 is independent of the actual types and histories of players 2 and 3. This
is because players 2 and 3’s messages from time b depend only on i’s messages,
and not on their actual type and history. Thus, for at least one of 0 and 1, it
must be the case that the probability that player 1 plays this value is strictly
less than 1. Suppose without loss of generality that the probability of playing
f(0) is less than 1.

We now claim that σ′3[t′3, h3] is a profitable deviation for player 3. No-
tice that player 3 receives the same messages for the first b rounds of σ′ and
(σ′1, σ

′
2, σ
′
3[t′3, h3]). Thus, player 3 correctly plays the secret no matter what the

type profile is, and gets payoff of at least 1. Moreover, if the type profile is t,
then, by construction, with positive probability, after b− 1 steps, player 1’s his-
tory will be h1 and player 2’s history will be h2. In this case, σ′2 is identical to
σ′2[t2, h2], so the play will be identical to (σ′1, σ

′
2[t2, h2], σ′3[t′3, h3]). Thus, with



positive probability, player 1 will not output f(0), and player 3 will get payoff
2. This means player 3’s expected utility is greater than 1.

For the general case, suppose that 2k + 3t < n ≤ 3k + 3t. Consider the n-
player game Γn,k,t, defined as follows. Partition the players into three groups,
B0, B1, and B2, as above. As in the 3-player game, nature chooses a polynomial
f of degree k+ t over the field GF (p) with a prime p > n uniformly at random,
but now player i’s type is just the pair (i, f(i)). Again, the players want to
learn f(0), but would prefer that other players do not learn the secret, and must
output a value in F . The payoffs are similar in spirit to the 3-player game:

– if at least n− t players output f(0) then all players that output f(0) get 1;
– if player i does not output f(0) then he gets −3;
– otherwise player i gets 2.

The mediator’s strategy is essentially identical to that in the 3-player game
(even though now it is getting one pair (h, vh) from each player rather than a set
of such pairs from a single player). Similarly, each player i’s strategy in Γn,k,td ,
which we denote σni , is essentially identical to the strategy in the 3-player game
with the mediator. Again, if ρni is the strategy in the n-player game where i plays
0 no matter what his type, then it is easy to check that ρn is a (k+t)-punishment
strategy with respect to σn.

Now suppose, by way of contradiction, that there exists a strategy σ′ in the
cheap-talk extension Γn,k,tct of Γn,k,t that is a (k, t)-robust implementation of σn

such that all executions of σ′ take at most c rounds. We show in [3] that we
can use σ′ to get a (1, 0)-robust implementation in the 3-player mediator game
Γn,k+t3,d , contradicting the argument above. ut

Byzantine Agreement and Game Theory

In [1] it is shown that if n > 3k+3t, we can implement a mediator in a way that
does not depend on utilities and does not need a punishment strategy. Using
novel connections to randomized Byzantine agreement lower bounds, we show
that neither of these properties hold in general if n ≤ 3k + 3t.

We start by showing that we cannot handle all utilities variants if n ≤ 3k+3t.
Our proof exposes a new connection between utility variants and the problem
of Weak Byzantine Agreement [24]. Lamport [24] showed that there is no de-
terministic protocol with bounded running time for weak Byzantine agreement
if t ≥ n/3. We prove a stronger lower bound for any randomized protocol that
only assumes that the running time has finite expectation.

Proposition 1. If max{2, k + t} < n ≤ 3k + 3t, all 2n input values are equally
likely, and P is a (possibly randomized) protocol with finite expected running
time (that is, for all protocols P ′′ and sets |T | ≤ k+ t, the expected running time
of processes PN−T given (PN−T , P ′′T ) is finite), then there exists a protocol P ′

and a set T of players with |T | ≤ k + t such that an execution of (PN−T , P ′T ) is
unsuccessful for the weak Byzantine agreement problem with nonzero probability.



The idea of our impossibility result is to construct a game that captures weak
Byzantine agreement. The challenge in the proof is that, while in the Byzantine
agreement problem, nature chooses which processes are faulty, in the game, the
players decide whether or not to behave in a faulty way. Thus, we must set up the
incentives so that players gain by choosing to be faulty iff Byzantine agreement
cannot be attained, while ensuring that a (k, t)-robust cheap-talk implementation
of the mediator’s strategy in the game will solve Byzantine agreement.

Theorem 3. If 2k + 2t < n ≤ 3k + 3t, there is a game Γ (u) and a strong
(k, t)-robust equilibrium σ of a game Γd with a mediator d that extends Γ such
that there exists a (k + t)-punishment strategy with respect to σ and there does
not exist a strategy σct such that for all utility variants Γ (u ′) of Γ (u), if σ
is a (k, t)-robust equilibrium of Γd(u ′), then (Γct(u ′), σct) is a (k, t)-robust
implementation of (Γd(u ′), σ).

Theorem 3 shows that we cannot, in general, get a uniform implementation if
n ≤ 3k + 3t. As shown in Theorem 1(b)–(e), we can implement mediators if
n ≤ 3k + 3t by taking advantage of knowing the players’ utilities.

We next prove that if 2k + 3t < n ≤ 3k + 3t, although mediators can be
implemented, they cannot be implemented without a punishment strategy. In
fact we prove that they cannot even be ε–implemented without a punishment
strategy. Barany [6] proves a weaker version of a special case of this result, where
n = 3, k = 1, and t = 0. It is not clear how to extend Barany’s argument to the
general case, or to ε–implementation. We use the power of randomized Byzantine
agreement lower bounds for this result.

Theorem 4. If 2k+2t < n ≤ 3k+3t, then there exists a game Γ , an ε > 0, and
a strong (k, t)-robust equilibrium σ of a game Γd with a mediator d that extends
Γ , for which there does not exist a strategy σct in the CT game that extends Γ
such that σct is an ε–(k, t)-robust implementation of σ.

We now show that the assumption that n > 2k+3t in Theorem 1 is necessary.
More precisely, we show that if n ≤ 2k+3t, then there is a game with a mediator
that has a (k, t)-robust equilibrium that does not have a (k, t)-robust implemen-
tation in a cheap-talk game. We actually prove a stronger result: we show that
there cannot even be an ε–(k, t)-robust implementation, for sufficiently small ε.

Theorem 5. If k+2t < n ≤ 2k+3t, there exists a game Γ , a strong (k, t)-robust
equilibrium σ of a game Γd with a mediator d that extends Γ , a (k+t)-punishment
strategy with respect to σ, and an ε > 0, such that there does not exist a strategy
σct in the CT extension of Γ such that σct is an ε–(k, t)-robust implementation
of σ.

The proof of Theorem 5 splits into two cases: (1) 2k + 2t < n ≤ 2k + 3t and
t ≥ 1 and (2) k + 2t < n ≤ 2k + 2t. For the first case, we use a reduction to a
generalization of the Byzantine agreement problem called the (k, t)-Detect/Agree
problem. This problem is closely related to the problem of broadcast with extended
consistency introduced by Fitzi et al. [16].



Theorem 6. If 2k + 2t < n ≤ 2k + 3t and t ≥ 1, there exists a game Γ , an
ε > 0, a strong (k, t)-robust equilibrium σ of a game Γd with a mediator d that
extends Γ , and a (k + t)-punishment strategy with respect to σ, such that there
does not exist a strategy σct in the CT extension of Γ which is an ε–(k, t)-robust
implementation of σ.

We then consider the second case of Theorem 5, where k+ 2t < n ≤ 2k+ 2t.
Since we do not assume players know when other players have decided in the
underlying game, our proof is a strengthening of the lower bounds of [30,22].

Theorem 7. If k+2t < n ≤ 2k+2t, there exist a game Γ , an ε > 0, a mediator
game Γd extending Γ , a strong (k, t)-robust equilibrium σ of Γd, and a (k + t)-
punishment strategy ρ with respect to σ, such that there is no strategy σct that
is an ε–(k, t)-robust implementation of σ in the cheap-talk extension of Γ , even
with broadcast channels.

Our last lower bound using Byzantine agreement impossibility results gives
a lower bound that matches the upper bound of Theorem 1(e) for the case that
n > k + 3t. We show that a PKI cannot be set up on the fly if n ≤ k + 3t. Our
proof is based on a reduction to a lower bound for the (k, t)-partial broadcast
problem, a novel variant of Byzantine agreement that can be viewed as capturing
minimal conditions that still allow us to prove strong randomized lower bounds.

Theorem 8. If max(2, k + t) < n ≤ k + 3t, then there is a game Γ , a strong
(k, t)-robust equilibrium σ of a game Γd with a mediator d that extends Γ for
which there does not exist a strategy σct in the CT game that extends Γ such that
σct is an ε–(k, t)-robust implementation of σ even if players are computationally
bounded and we assume cryptography.

Tight bounds on running time

We now turn our attention to running times. We provide tight bounds on the
number of rounds needed to ε–implement equilibrium when k+ t < n ≤ 2(k+ t).
When 2(k + t) < n then the expected running time is independent of the game
utilities and independent of ε. We show that for k + t < n ≤ 2(k + t) this is
not the case. The expected running time must depend on the utilities, and if
punishment does not exist then the running time must also depend on ε.

Theorem 9. If k + t < n ≤ 2(k + t) and k ≥ 1, then there exists a game Γ , a
mediator game Γd that extends Γ , a strategy σ in Γd, and a strategy ρ in Γ such
that

(a) for all ε and b, there exists a utility function u b,ε such that σ is a (k, t)-robust
equilibrium in Γd(u b,ε) for all b and ε, ρ is a (k, t)-punishment strategy with
respect to σ in Γ (u b,ε) if n > k + 2t, and there does not exist an ε–(k, t)-
robust implementation of σ that runs in expected time b in the cheap-talk
extension Γct(ub,ε) of Γ (ub,ε);



(b) there exists a utility function u such that σ is a (k, t)-robust equilibrium in
Γd(u) and, for all b, there exists ε such that there does not exist an ε–(k, t)-
robust implementation of σi that runs in expected time b in the cheap-talk
extension Γct(u) of Γ (u).

This is true even if players are computationally bounded, we assume cryptography
and there are broadcast channels.

Note that, in part (b), it is not assumed that there is a (k, t)-punishment strategy
with respect to σ in Γ (u). With a punishment strategy, for a fixed family of utility
functions, we can implement an ε–(k, t)-robust strategy in the mediator game
using cheap talk with running time that is independent of ε; with no punishment
strategy, the running time depends on ε in general.
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