
Semi-Honest to Malicious Oblivious Transfer
The Black-Box Way

Iftach Haitner

Dept. of Computer Science and Applied Math., Weizmann Institute of Science,
Rehovot, Israel. iftach.haitner@weizmann.ac.il

Abstract. Until recently, all known constructions of oblivious transfer
protocols based on general hardness assumptions had the following form.
First, the hardness assumption is used in a black-box manner (i.e., the
construction uses only the input/output behavior of the primitive guar-
anteed by the assumption) to construct a semi-honest oblivious transfer,
a protocol whose security is guaranteed to hold only against adversaries
that follow the prescribed protocol. Then, the latter protocol is “com-
piled” into a (malicious) oblivious transfer using non-black techniques
(a Karp reduction is carried in order to prove an NP statement in zero-
knowledge).
In their recent breakthrough result, Ishai, Kushilevitz, Lindel and Pe-
trank (STOC ’06) deviated from the above paradigm, presenting a black-
box reduction from oblivious transfer to enhanced trapdoor permuta-
tions and to homomorphic encryption. Here we generalize their result,
presenting a black-box reduction from oblivious transfer to semi-honest
oblivious transfer. Consequently, oblivious transfer can be black-box re-
duced to each of the hardness assumptions known to imply a semi-honest
oblivious transfer in a black-box manner. This list currently includes be-
side the hardness assumptions used by Ishai et al., also the existence of
families of dense trapdoor permutations and of non trivial single-server
private information retrieval.

1 Introduction

Since most cryptographic tasks are impossible to achieve with absolute,
information-theoretic security, modern cryptography tries to design protocols
that are infeasible to break. Namely, their security is based on computational
hardness assumptions. These assumptions typically come in two flavors: spe-
cific hardness assumptions like discrete log, factoring and RSA, and gen-
eral hardness assumptions like the existence of one-way functions. In this
paper we refer to general hardness assumptions and how they are used. Prim-
itives assumed to carry some hardness assumption can be used to construct a
provably secure cryptographic tasks in two possible ways: “black-box usage”,
where the construction uses only the input/output behavior of the primitive,
and “non-black-box usage”, where the construction uses the internal structure
of the primitive, e.g., its code. The above is formalized via the notion of black-
box reductions. A black-box reduction from a primitive P to a primitive Q, is



an efficient construction of P out of Q that ignores the internal structure of the
implementation of Q and merely uses it as a “subroutine” (i.e., as a black-box).
Such a reduction is fully-black-box [25] if the proof of security (showing that
an adversary that breaks the implementation of P implies an efficient adversary
that breaks the implementation of Q), is black-box as well. That is, the internal
structure of the adversary that breaks the implementation of P is ignored. See
Section 2.2 for more details.

Staring from the seminal paper of Impagliazzo and Rudich [16], a rich line of
works tries to draw the border between possibility and impossibility for black-box
reductions in cryptography. Currently, for most cryptographic tasks we either
have a black-box reduction to a commonly believed hardness assumption, or
have shown the impossibility of such a reduction. There are several important
tasks, however, for which we have failed to apply the above black-box classi-
fication. Very interestingly, for most of those tasks we do have non-black-box
reductions (typical examples are the reductions from oblivious transfer to semi-
honest oblivious transfer [12], and from public-key encryption schemes secure
against chosen cipher-text attack to semantically-secure encryption schemes [8,
20, 26]). In their recent breakthrough result, Ishai et al. [17] presented the first
black-box reduction from oblivious transfer to “low-level” primitives (to homo-
morphic encryption and to enhanced trapdoor permutations). Yet, the question
whether there exists a black-box reduction from oblivious transfer to semi-honest
oblivious transfer, remained open.

A better understanding of the above might help up to resolve the intrigu-
ing question whether non-black-box techniques are superior to black-box ones
also in the setting of reductions between cryptographic primitives. 1 On a more
practical level, we mention that the non-black-box reductions of the above tasks
are using Karp reductions for the purpose of using a (general) zero-knowledge
proof/argument. Such reductions are highly inefficient and unlikely to be used in
practice. Furthermore, in most cases the communication complexity in the result-
ing protocols depends on the complexity of computing the underlying primitive
(i.e., of the trapdoor permutations), where black-box reductions, unaware of the
inner structure of the underlying primitive, do not suffer from this phenomenon
(see [17] for more details).

In this paper, we study the above issues w.r.t. oblivious transfer. Oblivious
transfer, introduced by Rabin [24], is a fundamental primitive in cryptography
and has several equivalent formulations [3, 5, 4, 6, 9, 24]. The version we study
here, defined by Even, Goldreich and Lempel [9], is that of one-out-of-two
oblivious transfer. This version is an interactive protocol between a sender
and a receiver. The sender gets as an input two secret bits: σ0 and σ1 and
the receiver gets an index i ∈ {0, 1}. At the end of the protocol, R learns σi.
Informally, the security of the oblivious transfer states that the receiver does
not learn σ1−i and the sender does not learn i. Oblivious transfer is known to

1 The superiority of non-black-box techniques was demonstrated by Barak [1] in the
settings of zero-knowledge arguments for NP. In these settings, however, the black-
box access is to the, possibly cheating, verifier and not to any underlying primitive.



imply key-agreement signing contracts protocols [2, 9, 24] and, more generally,
secure multiparty computation in the presence of malicious majority [12, 18, 28].
We sometimes add the term malicious to the above definition, to differentiate
it from definitions that guarantee weaker security.

1.1 Defensible Privacy

The notion of defensible privacy, introduced by Ishai et al. [17], is a natural
bridging step between semi-honest privacy and fully-fledged one. Informally, a
two-party protocol (A, B) is defensibly private w.r.t. A and a function f defined
over the parties’ inputs (denoted as (A, f)-defensibly-private), if at the end of
the interaction even a cheating A∗ cannot simultaneously prove that it has acted
honestly (i.e., as the honest party would) and learn the value of f . 2 [17] showed
how to use enhanced trapdoor permutation (or homomorphic encryption) to
construct defensible oblivious transfer. Where the latter is a protocol with
the oblivious transfer functionally, which is defensibly-private w.r.t. to the sender
and the input bit of the receiver, and w.r.t. to the receiver and the other secret
of the sender. That is, it is (S, fS) and (R, fR) defensibly-private, where S and R

stand for sender and the receiver respectively, fS(σ0, σ1, i)
def= i and fR(σ0, σ1, i)

def=
σ1−i. [17] then show how to use such a defensible oblivious transfer to derive
their main result.

1.2 Our Result

A two-party protocol (A,B) is (A, f)-semi-honest-private, if at the end of the
interaction the semi-honest A does not learn the value of f . Our main technical
contribution is the following theorem.

Theorem 1. Let π = (A, B) be a two-party protocol and let fA, fB : {0, 1}k ×
{0, 1}k 7→ {0, 1}∗ be two functions defined over the parties’ inputs. Assume that
π is (A, fA) and (B, fB) semi-honest private. Then there exists a fully-black-box
reduction from a protocol π′ = (A,B) that has the same functionality as π and
is (A, fA) and (B, fB) defensibly-private, to π and one-way functions.

Since one-way functions can be black-box reduced to semi-honest oblivious trans-
fer (see Theorem 4), we obtain the following corollary.

Corollary 1. There exists a fully-black-box reduction from defensible oblivious
transfer to semi-honest oblivious transfer.

Combining the above with the reduction of [17] from malicious oblivious transfer
to derisible one, we derive our main result.

Theorem 2. There exists a fully-black-box reduction from oblivious transfer to
semi-honest oblivious transfer.
2 The above generalizes the definition of [17], which was only stated w.r.t. oblivious

transfer protocols.



As a corollary of Theorem 2, we have that there exists a fully-black-box reduc-
tion from oblivious transfer to each of the assumptions that known to imply
semi-honest oblivious transfer in a fully-black-box manner. This list currently
includes families of dense/enhanced trapdoor permutations [9, 13], homomorphic
encryption [19, 27] and non-trivial single-server private-information retrieval [7].
In addition, Kilian [18] tells us that secure multiparty computation can be black-
box reduced to oblivious transfer. Hence, we also have the following corollary.

Corollary 2. There exist fully-black-box reductions from protocols for securely
computing any multiparty functionality with an honest-minority and in the pres-
ence of static malicious adversaries, to semi-honest oblivious transfer.

1.3 Our Technique - From Semi-honest to Defensible Privacy

Given a protocol π = (A, B) that is (A, fA) and (B, fB) semi-honest-private, and
assuming that one-way functions exist, we create the protocol π′ = (A,B) that is
(A, fA) and (B, fB) defensibly-private. Our reduction is carried out in two steps.
First, we create a protocol (A,B) with the same functionality as (A,B), which is
(A, fA)-defensibly-private and (B, fB)-semi-honest-private. Then, we apply the
same transformation on (A,B), to strengthen also the privacy w.r.t. fB. In what
follows we describe how to obtain the first step (the second step is analogous), but
first let us describe what a commitment scheme is. In a commitment scheme the
sender interacts with the receiver to commit to a private value; informally
the commitment is binding if the sender cannot open the commitment into
a different value than the one it had committed to, where the commitment
is hiding if before the decommitment stage the receiver does not learn the
committed value. Fully-black-box reductions from commitment schemes to one-
way functions were given by [15, 21] and [14, 23].

In the new protocol (A,B), we embed an execution of (A, B) while using
a commitment scheme in order to enforce the “defensible behavior” of A. Let
iA, iB and rA, rB be the inputs and random-coins of A and B respectively. We
define (A(iA, rA),B(iB, r1

B, r
2
B)) as follows. First, A commits to (iA, rA) using a

commitment scheme, followed by B sending r1
B over to A. Then the two parties

execute (A(iA, rA ⊕ r1
B), B(iB, r2

B)), where A and B act as A and B respectively.
The hiding property of the commitment scheme yields that before the embedded
execution of (A, B) starts, B does not learn any information about the input and
random-coins that A uses in this execution. Thus, the semi-honest privacy of
(A,B) w.r.t. B and fB, follows by the semi-honest privacy of (A, B) w.r.t. B and
fB. In order to prove that (A,B) is (A, fA)-defensibly-private, we first note that
a valid defense of A must include a valid opening of the commitment. Thus, the
binding property of the commitment scheme yields that even a dishonest A∗ can
only provide a valid defense if it has acted in the embedded execution of (A, B)
as A whose input and random-coins are set to iA and rA ⊕ r1

B would. Namely, if
it has acted as A whose input was decided before the execution has started, and
its random-coins are chosen at random would. Hence, the defensible privacy of



the protocol w.r.t. A and fA, follows by the semi-honest privacy of (A, B) w.r.t.
A and fA. 3

1.4 Paper Organization

Section 2 contains the notations and definitions used in this paper. In Section 3
we present our general transformation from semi-honest privacy to defensible
one (Theorem 1) and in Section 4 we use this transformation to derive our main
result (Theorem 2).

2 Preliminaries

2.1 Notation

We denote by Un the random variable uniformly chosen in {0, 1}n. Given a
distribution D, we denote its support by Supp(D). We adopt the convention
that when the same random variable occurs several times in an expression, all
occurrences refer to a single sample. For example, Pr[f(Un) = Un] is defined
to be the probability that when x ← Un, we have f(x) = x. Given a vector
v of dimension n, we denote by v[i1, ..., ik], where i1, . . . , ik ∈ [n], the vector
(v[i1], . . . , v[ik]). A function µ : N → [0, 1] is negligible, denoted µ = neg, if
for every polynomial p we have that µ(n) < 1/p(n) for large enough n. Two
distribution ensembles Dn and ξn are computationally-indistinguishable (denoted
Dn ≈c ξn), if no efficient algorithm distinguishes between them with more then
negligible probability. Given a two-party protocol π = (A, B), we denote the
inputs and random-coins of A and B by iA and iB, and by rA and rB respec-
tively. We denote by Viewπ

A((iA, rA), (iB, rB)) the view of A after the execution
of π on ((iA, rA), (iB, rB)). This view consists on iA, rA and the messages A re-
ceived thought the protocol. We denote by Viewπ

A(iA, iB), the random variable
Viewπ

A((iA, RA), (iB, RB)), where RA and RB are uniformly chosen among all
strings of the right length.

2.2 Black-Box Reductions

A reduction from a primitive P to a primitive Q consists of showing that if there
exists an implementation C of Q, then there exists an implementation MC of
P . This is equivalent to showing that for every adversary that breaks MC , there
exists an adversary that breaks C. Such a reduction is semi-black-box if it
ignores the internal structure of Q’s implementation, and it is fully-black-box
if the proof of correctness is black-box as well, i.e., the adversary for breaking Q

3 In their construction of defensible oblivious transfer from enhanced families of trap-
door permutations, [17] are using (perfectly-binding) commitment schemes for a
similar purpose. More specifically, they employ the semi-honest oblivious transfer of
[9] and use a commitment scheme for forcing the receiver to sample one of the two
random elements it has to choose in the permutation domain honestly, i.e., choosing
it as a random output of the domain sampler.



ignores the internal structure of both Q’s implementation and of the (alleged)
adversary breaking P . A taxonomy of black-box reductions was provided by [25],
and the reader is referred to their paper for a more complete and formal view
of these notions. All the reduction considered in this paper are fully-black-box
ones.

2.3 Different Notions of privacy

In the following we present the two privacy measures we use in this paper.
Semi-honest privacy
In the standard definitions of semi-honest privacy (c.f, [11]), it is required that the
semi-honest party does not learn any information about the other party’s input,
save but the part it suppose to get according to the prescribed functionality. Here
we present a natural relaxation to the above, defining the notion of semi-honest
privacy w.r.t. a function. Namely, we only require that the semi-honest party
does not learn a predefined function of the parties’ inputs. 4

Definition 1 (semi-honest privacy w.r.t. a function). Let π = (A,B) be a
two-party protocol getting security parameter 1n and let f : {0, 1}k × {0, 1}k 7→
{0, 1}∗ be a function defined over the parties’ inputs. We say that π is (A, f)-
semi-honest-private, if for every efficiently samplable input iA ∈ {0, 1}k it holds
that

(Viewπ
A(iA, Uk), f(iA, Uk)) ≈c (Viewπ

A(iA, Uk), f(iA, U ′
k))

Defensible privacy

Definition 2 (defense). Let π = (A,B) be a two-party protocol and let t be a
transcript of an interaction between some party A∗ and B. We say that d is a
good defense for t (w.r.t. A’s role in π), if A whose input, including its random-
coins, is set to d would have sent the same messages that A∗ does in t. We use
the following notations: given v = View(A∗,B)

A∗ (·), we let Defense(v) be the defense
that A∗ locally output in the end of the interaction (set to ⊥ is no such defense
is given) and let the predicate IsGoodDefπ,A(v) to be one if Defense(v) is a good
defense for (the transcript embedded in) v.

Definition 3 (defensible privacy w.r.t. a function). Let π and f be as in
Definition 1. We say that π is (A, f)-defensibly-private, if the following holds for
every ppt A∗:

Γ (View(A∗,B)
A∗ (Uk), f(idA, Uk)) ≈c Γ (View(A∗,B)

A∗ (Uk), f(idA, U ′
k)) ,

where Γ (x, y) equals (x, y) if IsGoodDefπ,A(x) = 1 and equals ⊥ otherwise, and
idA is the value of A’s input in Defense(View(A∗,B)

A∗ (Uk)). 5

4 We have chosen to work with this weaker form of semi-honest privacy, since we have
found it simpler to handle and yet strong enough when considering semi-honest
oblivious transfer protocols.

5 It immediately follows that being (A, f)-defensibly-private implies being (A, f)-semi-
honest-private. In Section 3, we show that the other direction is also true.



Remark 1. It seems natural to extend the above definition to a simulation based
one. Namely, a protocol is defensibly private if a party that gives a valid
defense learns nothing (in the simulation sense) other than the prescribed func-
tionality. It is then seems tempting to try to reduce the above defensible privacy
to semi-honest privacy (according to [11]). Namely, to prove that any semi-honest
private protocol implies a defensibly private version of this protocol. We hope
to address this issue in the full version.

2.4 Oblivious transfer

Oblivious transfer is an interactive protocol between a sender, S, and a receiver,
R. The sender gets as an input two secret bits: σ0 and σ1 and the receiver gets
an index i ∈ {0, 1}, in the end of the protocol R locally outputs a single bit. We
make the following correctness requirement: for all n and all valid values of σ0,
σ1 and i, with save but negligible probability the output of R in the interaction
(S(σ0, σ1),R(i)) is σi.

Let (S, R) be a protocol that computes the oblivious transfer functionality, let
fS(σ0, σ1, i)

def= i and let fR(σ0, σ1, i)
def= σ1−i. We say that (S, R) is a semi-honest

[resp. defensible] oblivious transfer if it is (S, fS) and (R, fR) semi-honest pri-
vate [resp. defensibly private]. The protocol (S, R) is (malicious) oblivious
transfer if its computation is secure according to the real/ideal simulation
paradigm (see [11, Chapter 7] for formal definition). The following is implicit
in [17].

Theorem 3 ([17]). There exists a fully-black-box reduction from oblivious
transfer to defensible oblivious transfer.

2.5 Commitment Schemes

A commitment scheme is a two-stage protocol between a sender and a receiver.
In the first stage, called the commit stage, the sender commits to a private
string σ. In the second stage, called the reveal stage, the sender reveals σ
and proves that it was the value to which she committed in the first stage. We
require two properties of commitment schemes. The hiding property says that
the receiver learns nothing about σ in the commit stage. The binding property
says that after the commit stage, the sender is bound to a particular value of σ;
that is, she cannot successfully open the commitment to two different values in
the reveal stage. See [10] for a more formal definition. Fully-black-box reductions
from commitment schemes to one-way functions were given by [15, 21] and [14,
23].

2.6 One-way Functions

Definition 4. Let f : {0, 1}∗ 7→ {0, 1}∗ be a polynomial-time computable func-
tion. f is one-way if the following is negligible for every ppt A,

Pr[A(1n, Un) ∈ f−1(f(Un))].



3 Reducing Semi-Honest Protocols to Defensible Ones

Our transformation from semi-honest privacy to defensible privacy (Theorem 1)
immediately follows by applying the next lemma twice. The lemma informally
states that it is possible to “upgrade” the security of a protocol w.r.t. one of its
parties while maintaining the initial security w.r.t. the other party.

Lemma 1. Let π = (A, B) be a two-party protocol and let fA, fB : {0, 1}k ×
{0, 1}k 7→ {0, 1}∗ be two functions defined over the parties’ inputs. Assume that
π is (A, fA)-semi-honest-private and (B, fB)-x-private, where x stands for ‘semi-
honest’ or ‘defensibly’. Then there exists a fully-black-box reduction from a pro-
tocol π′ = (A,B) that has the same functionality as π and is (A, fA)-defensibly-
private and (B, fB)-x-private, to π and one-way functions.

Proof. In the following definition of π′ we are using a commitment scheme, Com.
Recall that by [15, 22] and by [14, 23], there exists a fully-black-box reduction
from Com to one-way functions.

Protocol 1 [The defensible protocol π′ = (A,B)]

Common input: 1n.
A’s inputs: iA ∈ {0, 1}k and rA = (r1

A, r
2
A).

B’s inputs: iB ∈ {0, 1}k and rB = (r1
B, r

2
B, r

3
B).

1. A commits using Com to (iA, r2
A), where the security parameter of the com-

mitment is set to 1n and A and B are using the random-coins r1
A and r1

B
respectively.

2. B sends r3
B to A.

3. The two parties execute the protocol (A(1n, iA, r2
A⊕ r3

B), B(1n, iB, r2
B)), with A

and B acting as A and B respectively.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Clearly π′ has the same functionality as π. Lemma 2 states that π′ maintains
the same privacy w.r.t. B and fB. The heart of our proof is in Lemma 3, where
we show that π′ has defensible privacy w.r.t. A and fA.

Lemma 2. Assume that π is (B, fB)-x-private, then π′ is (B, fB)-x-private.

Proof. We assume that π is (B, fB)-semi-honest-private and prove that π′ is
(B, fB)-semi-honest-private (the proof for the defensibly-private case is analo-
gous). We first note that the hiding property of Com yields that for every iB ∈
{0, 1}k, the distribution (Viewπ′

B (Uk, iB), fB(Uk, iB)) is computationally indistin-
guishable from (ViewCom

B (0`),Viewπ
B(Uk, iB), fB(Uk, iB)). By the semi-honest pri-

vacy of π w.r.t. B and fB, we have that (Viewπ′
B (Uk, iB), fB(Uk, iB)) is computa-

tionally indistinguishable from (ViewCom
B (0`), Viewπ

B(Uk, iB), fB(U ′
k, iB))). Using

the hiding property of Com once more, we have that (Viewπ′
B (Uk, iB), fB(Uk, iB))

is computationally indistinguishable from (Viewπ′
B (Uk, iB), fB(U ′

k, iB)). Namely,
we have proved that π′ is (B, fB)-semi-honest-private.



Lemma 3. Assume that π is (A, fA)-semi-honest-private, then π′ is (A, fA)-
defensibly-private.

Proof. Assume toward a contradiction the existence of an efficient adver-
sary A∗ and a distinguisher D that violate the defensible privacy of π
w.r.t. A and fA. Namely, there exists a polynomial p such that for in-
finitely many n’s D distinguishes with advantage at least 1

p(n) between

Γ (View(A∗,B)
A∗ (Uk), fA(idA, Uk)) and Γ (View(A∗,B)

A∗ (Uk), fA(idA, U
′
k)), where Γ (x, y)

equals (x, y) if IsGoodDefπ′,A(x) = 1 and equals ⊥ otherwise, and idA is the value
of A’s input in Defense(View(A∗,B)

A∗ (Uk)). In the following we use A∗ and D to
present an efficient distinguisher D with oracle access to A∗ and D that violates
the semi-honest privacy of (A, B) w.r.t. A and fA. Recall that in order to violate
the semi-honest privacy of (A, B), algorithm D should first sample an input ele-
ment iA for A. Then upon getting A’s view from the execution of (A(iA), B(Uk)),
algorithm D has to distinguish between fA(iA, Uk) and fA(iA, U ′

k). In order to
make the dependencies between its two stages explicit, D uses the variable z to
transfer information from its first stage to its second stage.

Algorithm 1 [The distinguisher D]

Sampling stage:
Input: 1n

1. Choose uniformly at random rA∗ and r1
B and fix A∗’s random-coins to rA∗ .

2. Simulate the first line of (A∗,B) (i.e., the execution of Com), where B uses
r1
B as its random coins.

3. Do the following np(n) times:
(a) Simulate the last two lines of (A∗,B), choosing B’s input and random-

coins (i.e., iB, r2
B and r3

B) uniformly at random.
(b) If A∗ outputs a valid defense d, set iA = iA and z = (rA∗ , r1

B, r
2
A), where

iA and r2
A are the values of these inputs variables in d, and return.

4. Set z =⊥ and an arbitrary value for iA.

Predicting stage:
Input: z, vπ

A - randomly chosen from Viewπ
A(iA, Uk), and c ∈ Im(fA)

1. If z =⊥, output a random coin and return.
2. Fix the random-coins of A∗ to z[rA∗ ].
3. Simulate the first line of (A∗,B) (i.e., the execution of Com), where B uses

z[r1
B] as its random coins.

4. Simulate the second line of (A∗,B), where B sends r3
B = vπ

A [rA]⊕z[r2
A] to A∗.

5. Simulate the last line of (A∗,B), where B sends the same messages that B
sends in vπ

A.
6. Let vA∗ be the view of A∗ at the end of above simulation,

if IsGoodDefπ′,A(vA∗) = 1 output D(vA∗ , c),
otherwise output a random coin.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



It is easy to verify that D is efficient given oracle access to A∗ and D, in the
following we prove that D violates the semi-honest privacy of π w.r.t. A and fA.
We consider a random execution of (A, B, D) with security parameter 1n and
define the random variable Simn = (iA, iB, rA∗ , rB, trans) as A and B’s inputs in
the real execution of π, concatenated with A∗ and B’s views in the simulation
of π′ done in D’s predicting stage. More precisely, iA = vπ

A[iA], iB = vπ
A[iB],

rA∗ = z[rA∗ ], rB = (z[r1
B], v

π
A [rB], vπ

A[rA] ⊕ z[r2
A]) (set to ⊥ if z =⊥) and finally

trans is the transcript of the simulation of π′ done in the D’s predicting stage
(set to ⊥ if no such simulation occurs).

Let Defense(x) and IsGoodDef (x) be Defense(x[rA∗ , trans]) and
IsGoodDefπ′,A(x[rA∗ , trans]) respectively. For c ∈ Im(fA) let OutD(x, c)
be the output bit of D given x and c, note that OutD(x, c) is a random
variable that depends on the random-coins used by D to invoke D. Fi-
nally, let AdvD(x) be the advantage of D in predicting fA given x. That is,
AdvD(x) def= Pr[OutD(x, fA(x[iA], x[iB])) = 1] − Pr[OutD(x, fA(x[iA], Uk)) = 1].
It is easy to verify that |Exx←Simn [AdvD(x)]| is exactly the advantage of D in
breaking the semi-honest privacy of π w.r.t. A and fA.

We would like the relate the above success probability to that of D in pre-
dicting fA after a random execution of π′. We define the distribution Realn =(
idA, iB, rA∗ , rB, trans

)
induced by a random execution of (A∗,B) with security

parameter 1n, where idA is the value of this variable in the defense of A∗ (set to
⊥ is no good defense is given). Let OutD(x, c) be the output bit of D given x
and c, and let AdvD(x) be the advantage of D in predicting fA given x. It is easy
to verify that |Exx←Realn [AdvD(x)]| is exactly the advantage of D in breaking
the defensible privacy of π′ w.r.t. A and fA. The following claim helps up to
relate the advantage of D in breaking the semi-honest privacy of π to that of D
in breaking the defensible privacy of π′.

Claim. The following hold:

1. For every n ∈ N and x ∈ Supp(Realn), it holds that Simn(x) ≤ Realn(x)
2. For large enough n there exists a set

Ln ⊆ {x ∈ Supp(Realn) : IsGoodDef (x) = 1} for which the following hold:
(a) Prx←Realn [IsGoodDef (x) ∧ x /∈ Ln] ≤ 1

4p(n)

(b) For every x ∈ Ln it holds that Simn(x) ≥ (1− 1
4p(n) ) ·Realn(x)

Proof. When drawing a random XR = (idA, iB, rA∗ , rB, trans) from Realn, its value
is fully determined by the value of XR[iB, rA∗ , rB], where the latter value is
uniformly distributed over all strings of the right length. On the other hand,
when drawing a random XS from Simn, the value of XS [iB, rA∗ , rB] is uniformly
distributed over all strings, only when conditioning that IsGoodDef (XS) = 1.
Where otherwise, XS [iB, rA∗ , rB] = (∗, ∗,⊥), a value that is never obtained by an
element in Supp(Realn). In particular, for every x ∈ Supp(Realn) it holds that

Simn(x) = Pr
[
XS [iA, iB, rA∗ , rB, trans] = x[idA, iB, rA∗ , rB, trans]

]

≤ Pr
[
XS [rA∗ , iB, rB] = x[rA∗ , iB, rB]

]

≤ Pr
[
XR[rA∗ , iB, rB] = x[rA∗ , iB, rB]

]
= Realn(x) ,



proving the first part of the claim. For x ∈ Supp(Realn), let Decom(x) be
the decommitment of Com given in Defense(x) (we set it to ⊥ if no valid
defense is given). For S ⊆ {0, 1}∗, we let Wx(S) be the probability that
the commitment embedded in x is decommitted to a value in S, conditioned
only on the random-coins in x used for the commitment (and not on all x).
That is, Wx(S) = Pr

[
Decom(XR) ∈ S | XR[r1

B, rA∗ ] = x[r1
B, rA∗ ]]. Finally, let

Heaviest(x) = argmaxσ∈{0,1}∗ Wx(α), breaking ties arbitrarily (say, by choos-
ing the lexicographic smallest α) and let Others(x) = {0, 1}∗\ {Heaviest(x)}.
We define Ln = {x ∈ Supp(Realn) : IsGoodDef (x) = 1 ∧ Wx(Others(x)) <

1
8np(n)2 ∧Wx(Heaviest(x)) > 1

8p(n) ∧Decom(x) = Heaviest(x)}. In the following
we prove the two properties of Ln.

Proving 2(a). We first observe that for every polynomial q, it holds that
Pr[WXR

(Others(XR)) > 1
q(n) ] < 1

q(n) . Assume otherwise, then we can design
an adversary for breaking the binding Com. In the commit stage, the adversary
acts as A∗ does in the first line of Protocol 1. Then it simulates the rest of the
protocol twice (with the same prefix) and outputs the two decommitments im-
plied by A∗’s defenses. Thus, whenever Pr[WXR

(Others(XR)) > 1
q(n) ] > 1

q(n) ,
our adversary breaks the binding of Com with probability Ω( 1

q(n)3 ).

Since Decom(x) 6=⊥ only if x yields a good defense, it follows that
Pr[IsGoodDef (XR) ∧ (Wx(Heaviest(x)) + Wx(Others(x))) < 1

q(n) ] < 1
q(n) for

every polynomial q. We conclude that

Pr [IsGoodDef (XR) ∧XR /∈ Ln]

≤ Pr
[
WXR

(Others(XR)) >
1

8np(n)2

]
+ Pr

[
IsGoodDef (XR)

∧ (Wx(Heaviest(x)) + Wx(Others(x))) <

(
1

8p(n)
+

1
8np(n)2

)]

+ Pr
[

Decom(x) 6= Heaviest(x) | IsGoodDef (XR) ∧Wx(Heaviest(x)) >
1

8p(n)

∧ WXR
(Others(XR)) ≤ 1

8np(n)2

]

<
1

8np(n)2
+

1
7p(n)

+
8p(n)

8np(n)2
<

1
4p(n)

Proving 2(b). Let x ∈ Ln, and let X be a random variable drawn from Simn con-
ditioned that X[rA∗ , r1

B] = x[rA∗ , r1
B]. Recall that in order to sample X, algorithm

D keeps sampling (up to np(n) times) a random element x′ in Realn conditioned
that x′[rA∗ , r1

B] = x[rA∗ , r1
B], until Decom(x′) 6=⊥. It then set (X[iA], z[r2

A]) to
Decom(x′), where z is the “state” that D transfers from its sampling stage to
its predicting stage (the stage where the other parts of X are chosen). In order
to keep notations simple, we define X[r2

A] as z[r2
A]. By the above description it



follows that

Pr[X[iA, r2
A] 6= Decom(x)] (1)

≤ Pr[Decom(X) =⊥] + Pr[Decom(X) /∈ {Decom(x)∪ ⊥}]
≤ neg(n) +

np(n)
8np(n)2

<
1

4p(n)
,

where the second inequality holds since x ∈ Ln. Since the value of X[iB, r2
B, r

3
B] is

induced by a the parties’ inputs and random-coins in a random execution of π,
it follows that X[iB, r2

B, r
3
B] is uniformly distributed conditioned on X[iA, r2

A] 6=⊥
and every value of X[iA, rA∗ , r1

B, r
2
A]. Recall that the value of XR is fully deter-

mined by the value of XR[iB, rA∗ , rB] and that the latter is uniformly distributed
over all possible strings. Hence,

Pr[XS [iB, rA∗ , rB] = x[iB, rA∗ , rB] ∧XS [iA, r2
A] = Decom(x)] (2)

≥ (1− 1
4p(n)

) · Pr [XR[iB, rA∗ , rB] = x[iB, rA∗ , rB]]

= (1− 1
4p(n)

) ·Realn(x)

Let X[rA] be the value of rA in vπ
A as chosen in the sampling process of X

and let x[r2
A] be the value of r2

A in Defense(x). Since IsGoodDef (x) = 1, A∗
acts in the embedded execution of π in x, as A(x[idA], x[r2

A] ⊕ x[r3
B]) would.

Thus, XS [rA∗ , iB, rB] = x[rA∗ , iB, rB] and XS [iA, r2
A] = Decom(x) implies that A∗

acts in the embedded execution of π as A(XS [iA], XS [r2
A]⊕XS [r3

B]) would, that
is as A(XS [iA], XS [rA]). Hence, XS [rA∗ , iB, rB] = x[rA∗ , iB, rB] and X[iA, r2

A] =
Decom(x) implies that XS [trans] = x[trans], and we conclude that

Pr[XS = x]
= Pr[XS [rA∗ , iB, rB] = x[rA∗ , iB, rB] ∧XS [iA, r2

A] = Decom(x)]

≥ (1− 1
4p(n)

) ·Realn(x)

¤

Back to the proof the lemma. Let n be large enough be large enough so
that Claim 3 holds and assume w.l.o.g. that Ex[AdvD(XR)] > 1

p(n) . Since D
gains no advantage when IsGoodDef (XR) = 0, it follows that Ex[AdvD(XR) ·
IsGoodDef (XR)] > 1

p(n) as well. We first observe that

Ex[AdvD(XS)] = Ex[AdvD(XS) · IsGoodDef (XS)]
≥ Ex[AdvD(XS) · 1XS∈Ln ]− Pr[IsGoodDef (XS) ∧XS /∈ Ln]
= Pr

[
OutD(XS , fA(XS [iA, iB])) = 1) ∧XS ∈ Ln

]

− Pr
[
OutD(XS , fA(XS [iA], Uk)) = 1) ∧XS ∈ Ln

]

− Pr[IsGoodDef (XS) ∧XS /∈ Ln] ,



where 1x∈Ln
is one if x ∈ Ln and zero otherwise, and the first equality holds

since OutD(x, c) is a random coin if IsGoodDef (x) = 0. By Claim 3 we have that

Pr[IsGoodDef (x) ∧XS /∈ Ln] (3)

≤ Pr[IsGoodDef (XR) ∧XR /∈ Ln] ≤ 1
4p(n)

Since OutD(x, c) = OutD(x, c) for every x ∈ Supp(Realn) such that
IsGoodDef (x) = 1, Claim 3 also yields that

Pr[OutD(XS , fA(XS [iA], Uk)) = 1 ∧XS ∈ Ln] (4)
≤ Pr[OutD(XR, fA(XR[idA], Uk)) = 1 ∧XR ∈ Ln]

and that

Pr[OutD(XS , fA(XS [iA, iB])) = 1 ∧XS ∈ Ln] (5)

≥ (1− 1
4p(n)

) · Pr[OutD(XR, fA(XR[idA, iB])) = 1 ∧XR ∈ Ln]

We conclude that

Ex[AdvD(XS)]

≥ (1− 1
4p(n)

) · Pr[OutD(XR, fA(XR[idA, iB])) = 1 ∧XR ∈ Ln]

− Pr[OutD(XR, fA(XR[idA], Uk)) = 1 ∧XR ∈ Ln]− 1
4p(n)

≥ (1− 1
4p(n)

) · Ex[AdvD(XR) · IsGoodDef (XR)]− 1
4p(n)

− 1
4p(n)

≥ (1− 1
4p(n)

) · 1
p(n)

− 1
2p(n)

>
1

4p(n)

Since the above holds for infinitely many n’s, it concludes the proof of Lemma 3
and thus the proof of Theorem 1.

4 Achieving the Main Result

In the following we prove Theorem 2, the main result of this paper. As corollary
of Theorem 1, we have that there exists a fully-black-box reduction from defen-
sible oblivious transfer to semi-honest oblivious transfer and one-way functions.
This corollary together with Theorem 3, yields the existence of a fully-black-box
reduction from malicious oblivious transfer to semi-honest oblivious transfer and
one-way functions. Thus, the proof of the Theorem 2 is concluded by the follow-
ing folklore theorem (proof given in the full version).

Theorem 4. There exists a fully-black-box reduction from one-way functions to
semi-honest oblivious transfer.
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6. C. Crépeau and M. Sántha. On the reversibility of oblivious transfer. In EURO-
CRYPT ’91, 1991.

7. G. Di Crescenzo, T. Malkin, and R. Ostrovsky. Single database private information
retrieval implies oblivious transfer. In EUROCRYPT ’00, 2000.

8. D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. JACM, 30(2):391–
437, 2000.

9. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
Communications of the ACM, 28(6):637–647, 1985.

10. O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, 2001.

11. O. Goldreich. Foundations of Cryptography – Volume 2: Basic Applications. Cam-
bridge University Press, 2004.

12. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a
completeness theorem for protocols with honest majority. In 19th STOC, pages
218–229, 1987.

13. I. Haitner. Implementing oblivious transfer using collection of dense trapdoor
permutations. In 1st TCC, pages 394–409, 2004.

14. I. Haitner and O. Reingold. Statistically-hiding commitment from any one-way
function. In 39th STOC, 2007.

15. J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SICOMP, 28(4):1364–1396, 1999.

16. R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way
permutations. In 21st STOC, pages 44–61. ACM Press, 1989.

17. Y. Ishai, E. Kushilevitz, Y. Lindell, and E. Petrank. Black-box constructions for
secure computation. In 38th STOC, 2006.

18. J. Kilian. Founding cryptography on oblivious transfer. pages 20–31, 1988.
19. E. Kushilevitz and R. Ostrovsky. Replication is NOT needed: SINGLE database,

computationally-private information retrieval. In 38th FOCS, pages 364–373, 1997.
20. Y. Lindell. A simpler construction of CCA2-secure public-key encryption under

general assumptions. J. Cryptology, 19(3):359–377, 2006.



21. M. Naor. Bit commitment using pseudorandomness. J. of Crypto., 4(2):151–158,
1991.

22. M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung. Perfect zero-knowledge
arguments for NP using any one-way permutation. J. of Crypto., 11(2):87–108,
1998.

23. M. Nguyen, S. J. Ong, and S. Vadhan. Statistical zero-knowledge arguments for
NP from any one-way function. In 47th FOCS, pages 3–14, 2006.

24. M. O. Rabin. How to exchange secrets by oblivious transfer. TR-81, Harvard,
1981.

25. O. Reingold, L. Trevisan, and S. P. Vadhan. Notions of reducibility between cryp-
tographic primitives. In 1st TCC, pages 1–20, 2004.

26. A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In 40th FOCS, pages 543–553, 1999.

27. J. P. Stern. A new and efficient all-or-nothing disclosure of secrets protocol. In
ASIACRYPT ’98, 1998.

28. A. C. Yao. How to generate and exchange secrets. In 27th FOCS, pages 162–167,
1986.


