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Abstract. We study the communication complexity of single-server Pri-
vate Information Retrieval (PIR) protocols that are based on fundamen-
tal cryptographic primitives in a black-box manner. In this setting, we
establish a tight lower bound on the number of bits communicated by the
server in any polynomially-preserving construction that relies on trap-
door permutations. More specifically, our main result states that in such
constructions Ω(n) bits must be communicated by the server, where n is
the size of the server’s database, and this improves the Ω(n/ log n) lower
bound due to Haitner, Hoch, Reingold and Segev (FOCS ’07). There-
fore, in the setting under consideration, the naive solution in which the
user downloads the entire database turns out to be optimal up to con-
stant multiplicative factors. We note that the lower bound we establish
holds for the most generic form of trapdoor permutations, including in
particular enhanced trapdoor permutations.
Technically speaking, this paper consists of two main contributions from
which our lower bound is obtained. First, we derive a tight lower bound
on the number of bits communicated by the sender during the com-
mit stage of any black-box construction of a statistically-hiding bit-
commitment scheme from a family of trapdoor permutations. This lower
bound asymptotically matches the upper bound provided by the scheme
of Naor, Ostrovsky, Venkatesan and Yung (CRYPTO ’92). Second, we
improve the efficiency of the reduction of statistically-hiding commit-
ment schemes to low-communication single-server PIR, due to Beimel,
Ishai, Kushilevitz and Malkin (STOC ’99). In particular, we present a
reduction that essentially preserves the communication complexity of the
underlying single-server PIR protocol.

1 Introduction

A single-server Private Information Retrieval (PIR) scheme is a protocol between
a server and a user. The server holds a database x ∈ {0, 1}n and the user holds an
index i ∈ [n] to an entry of the database. Informally, the user wishes to retrieve
the ith entry of the database, without revealing the index i to the server. The
? Due to space limitations a more complete version is available as [19].



notion of PIR was introduced by Chor, Goldreich, Kushilevitz and Sudan [4] to
model applications that enable users to query public databases without revealing
any information on the specific data that the users wish to retrieve. Chor et al.
showed that in the information-theoretic setting any single-server PIR protocol
has the server communicating at least n bits. Therefore in this setting the naive
solution in which the user downloads the entire database is optimal.

Kushilevitz and Ostrovsky [26] were the first to construct a non-trivial single-
server PIR protocol relying on computational assumptions. Their result initiated
a sequence of papers showing that there exist single-server PIR protocols with
poly-logarithmic communication complexity based on specific number-theoretic
assumptions (see, for example, [2, 3, 12, 26, 28, 40], and a recent survey by Ostro-
vsky and Skeith [35]). The only non-trivial construction based on general com-
putational assumptions is due to Kushilevitz and Ostrovsky [27], and is based
on enhanced trapdoor permutations. In their construction, however, the server
is required to communicate n− o(n) bits to the user.

Motivated by this ever-growing line of work, we study the communication
complexity of single-server PIR protocols that are based on fundamental prim-
itives. We establish a linear lower bound on the number of bits communicated
by the server in constructions that rely on enhanced trapdoor permutations in
a black-box manner. Therefore, in the setting under consideration in this paper,
the naive solution in which the user downloads the entire database turns out to
be optimal up to constant multiplicative factors. In the following paragraphs, we
briefly describe the setting in which our lower bound is proved (a more formal
description is provided in Section 2).

Black-box reductions. As previously mentioned, under widely believed spe-
cific number-theoretic assumptions, there are very efficient single-server PIR
protocols. Therefore, if any of these assumptions holds, the existence of trap-
door permutations implies the existence of efficient single-server PIR protocols
in a trivial sense. Faced with similar difficulties, Impagliazzo and Rudich [22]
presented a paradigm for proving impossibility results under a restricted, yet
very natural and important, subclass of reductions called black-box reductions.
Informally, a black-box reduction of a primitive P to a primitive Q is a construc-
tion of P out of Q that ignores the internal structure of the implementation of
Q and uses it as a “subroutine” (i.e., as a black-box). In addition, in the case of
fully-black-box reductions (see, for example, [36]), the proof of security (show-
ing that an adversary that breaks the implementation of P implies an adversary
that breaks the implementation of Q), is black-box as well, that is, the internal
structure of the adversary that breaks the implementation of P is ignored.

The strength of cryptographic reductions. Luby [30] provides a classifi-
cation of the strength of cryptographic reductions into three classes: linearly-
preserving, polynomially-preserving and weakly-preserving. In our setting, this
classification comes into play when comparing the size of the server’s database
and the domain of the trapdoor permutations. Very informally, a reduction of
single-server PIR for an n-bit database to a family of trapdoor permutations is
linearly-preserving or polynomially-preserving if it uses trapdoor permutations



over Ω(n) bits. Such a reduction is weakly-preserving if it uses trapdoor permu-
tations over Ω(nε) bits for some constant 0 < ε ≤ 1. In linearly-preserving and
polynomially-preserving reductions we are guaranteed that breaking the con-
structed primitive is essentially as hard as breaking the underlying primitive.
However, in weakly-preserving reductions, we are only guaranteed that breaking
the constructed primitive is as hard as breaking the underlying primitive for
polynomially smaller security parameters. We refer the reader to [30] for a more
comprehensive and complete discussion.

1.1 Related Work

Single-server PIR is one of the fundamental primitives in the foundations of cryp-
tography. For example, non-trivial single-server PIR was shown to imply the
existence of Oblivious Transfer protocols [5], and 2-move low-communication
single-server PIR was shown to imply collision-resistant hash functions [23].
Single-server PIR was also shown to be tightly related to several other aspects of
cryptography and complexity theory (see, for example, [6, 20, 24]). We note that
it is far beyond the scope of this paper to present an exhaustive overview of the
ever-growing line of work on single-server PIR, and we refer the reader to the
recent survey of Ostrovsky and Skeith [35] for a more comprehensive discussion.

In the context of black-box reductions, Impagliazzo and Rudich [22] showed
that there are no black-box reductions of key-agrement protocols to one-way per-
mutations, and substantial additional work in this line followed (see, for example,
[7, 13, 14, 37, 38]). Kim, Simon and Tetali [25] initiated a new line of impossibil-
ity results, by providing a lower bound on the efficiency of black-box reductions
(rather than on their feasibility). They proved a lower bound on the efficiency, in
terms of the number of calls to the underlying primitive, of any black-box reduc-
tion of universal one-way hash functions to one-way permutations. This result
was later improved, to match the known upper bound, by Gennaro and Trevisan
[11], which together with Gennaro et al. [8, 9] provided tight lower bounds on
the efficiency of several other black-box reductions. Building upon the technique
developed by [11], Horvitz and Katz [21] provided lower bounds on the efficiency
of black-box reductions of statistically-hiding and computationally-binding com-
mitment schemes to one-way permutations. In the above results the measure of
efficiency under consideration is the number of calls to the underlying primitives.

Di Crescenzo, Malkin and Ostrovsky [5] showed that any single-server PIR
protocol in which the server communicates at most n−1 bits (where n is the size
of the server’s database) can be transformed in a fully-black-box manner to an
Oblivious Transfer protocol. Gennaro, Lindell and Malkin [10] (refining Gertner
et al. [13]) ruled out any black-box reduction of Oblivious Transfer to plain (i.e.,
non-enhanced) trapdoor permutations. The combination of these two results
yields that there are no non-trivial black-box constructions of single-server PIR
from non-enhanced trapdoor permutations. We note that although in this paper
we rule out a more restricted class of constructions (that is, the class of fully-
black-box constructions), our result holds for the most generic form of trapdoor
permutations, including in particular enhanced trapdoor permutations.



Very recently, Haitner et al. [18], improving upon the work of Wee [41], proved
that any polynomially-preserving fully-black-box reduction of a statistically-
hiding bit-commitment scheme to trapdoor permutations has Ω(n/ log n) com-
munication rounds (where n is the security parameter). As a corollary, they
showed that any polynomially-preserving fully-black-box reduction of single-
server PIR to trapdoor permutations has Ω(n/ log n) communication rounds,
where n is the size of the server’s database. In particular, the server is required
to communicate Ω(n/ log n) bits to the user. Haitner et al. also established sim-
ilar lower bounds on the communication complexity of Oblivious Transfer that
guarantees statistical security for one of the parties and for Interactive Hashing.

In a slightly different setting, Ostrovsky and Skeith [34] proved a lower bound
on the communication complexity of single-server PIR protocols with certain al-
gebraic properties. For a class of PIR protocols, referred to as abelian group alge-
braic PIR protocols, with user-side communication complexity g(n) and server-
side communication complexity h(n) they proved that g(n)h(n) = Ω(n).

1.2 Our Results

We study the class of black-box constructions of single-server PIR from trapdoor
permutations, and establish a tight lower bound on the number of bits commu-
nicated by the server in such constructions. Our main result is the following:

Main Theorem (Informal). In any polynomially-preserving fully-black-box
construction of a single-server PIR protocol from trapdoor permutations the
server communicates Ω(n) bits, where n is the size of the server’s database.

As mentioned above, the combination of the results of Di Crescenzo et al. [5]
and of Gennaro et al. [10] rules out the more general class of black-box reductions
of single-server PIR with n−1 bits of communication to trapdoor permutations.
This result, however, does not apply to enhanced trapdoor permutations. We
note that our lower bound holds for the most generic form of trapdoor permu-
tations, and in particular for enhanced trapdoor permutations.1

In addition, we note that our lower bound holds only for constructions which
are polynomially-preserving. The construction of Kushilevitz and Ostrovsky [27],
which is based on enhanced trapdoor permutations in a fully-black-box manner
and in which the server communicates n − o(n) bits, is only weakly-preserving
(i.e., it is significantly easier to break their protocol than to break the security of
the underlying family of trapdoor permutations 2). Thus, the question of whether
a tight linear lower bound can be established for weakly-preserving constructions
as well remains open.
1 Note that enhanced trapdoor permutations are, seemingly, stronger than plain trap-

door permutations. Therefore, although our result is weaker in terms of the class
of reductions and the bound on the communication complexity, it provides the first
evidence that enhanced trapdoor permutations are not sufficient to construct single-
server PIR with sublinear communication (at least from a black-box perspective).

2 Though the security guarantees of the two primitives are still polynomially-related.



The main technical contributions. This paper consists of two main contri-
butions from which our lower bound is immediately obtained. First, we derive
a tight lower bound on the communication complexity of black-box construc-
tions of statistically-hiding bit-commitment schemes from trapdoor permuta-
tions. Very recently, Haitner et al. [18] proved that any polynomially-preserving
fully-black-box construction of statistically-hiding bit-commitment scheme from
a family of trapdoor permutations has Ω(n/ log n) communication rounds, where
n is the security parameter of the scheme. In particular, this implies a lower
bound on the number of bits communicated by the sender. In this paper we
manage to improve their lower bound and prove the following theorem:

Theorem (Informal) 1.1. In any polynomially-preserving fully-black-box con-
struction of a statistically-hiding bit-commitment scheme from a family of trap-
door permutations the sender communicates Ω(n) bits during the commit stage,
where n is the security parameter of the scheme.

This lower bound asymptotically matches the upper bound given by the
statistically-hiding commitment scheme of Naor et al. [31]. In addition, we im-
prove the efficiency of the reduction of statistically-hiding commitment schemes
to single-server PIR, presented by Beimel et al. [1]. Our reduction essentially
uses the reduction of Beimel et al. instantiated with a better extractor, which
enables us to preserve the communication complexity of the underlying single-
server PIR protocol. As stating this result turns out to involve subtle technical
details, here we only state a very informal statement:

Theorem (Informal) 1.2. There is a linearly-preserving fully-black-box reduc-
tion of statistically-hiding commitment schemes to low-communication single-
server PIR, which essentially preserves the communication complexity of the
underlying single-server PIR protocol.

Paper organization. In Section 2 we briefly present the notations and formal
definitions used in this paper. In Section 3 we prove a tight lower bound on
the number of bits communicated by the sender during the commit stage of
statistically-hiding commitment schemes. In Section 4 we describe an improved
reduction of statistically-hiding commitment schemes to single-server PIR. Fi-
nally, in Section 5 we provide some concluding remarks.

2 Preliminaries

We denote by Πn the set of all permutations over {0, 1}n. For an integer n, we
denote by Un the uniform distribution over the set {0, 1}n. For a finite set X, we
denote by x ← X the experiment of choosing an element of X according to the
uniform distribution. Similarly, for a distribution D over a set X, we denote by
x ← D the experiment of choosing an element of X according to the distribution
D. The min-entropy of D is defined as H∞(D) = − log (maxx PrD [x]). The
statistical distance between two distributions X and Y over Ω is defined as
SD(X,Y ) = 1

2

∑
ω∈Ω |PrX [ω]− PrY [ω]|.



Definition 2.1. A function E : {0, 1}n×{0, 1}d → {0, 1}m is a (k, ε)-extractor
if for every distribution X over {0, 1}n with H∞(X) ≥ k, it holds that the dis-
tribution E(X, Ud) is ε-close to uniform. Such a function E is a strong (k, ε)-
extractor if the function E′(x, y) = y ◦ E(x, y) is a (k, ε)-extractor (where ◦
denotes concatenation).

In our construction of a statistically-hiding commitment scheme from single-
server PIR we will be using the following explicit construction of strong extrac-
tors, which is obtained as a corollary of [39, Corollary 3.4].

Proposition 2.1. For any k ∈ ω(log(n)), there exists an explicit construction
of a strong (k, 21−k)-extractor EXT : {0, 1}n × {0, 1}3k → {0, 1}k/2.

Trapdoor permutations. We briefly present the notion of trapdoor permu-
tations, and refer the reader to [15] for a more comprehensive discussion. A
collection of trapdoor permutations is represented by a triplet of the form τ =(
G,F, F−1

)
. Informally, G corresponds to a key generation procedure, which is

queried on a string td (intended as the “trapdoor”) and produces a correspond-
ing public key pk. The procedure F is the actual collection of permutations,
which is queried on a public key pk and an input x. Finally, the procedure F−1

is the inverse of F : If G(td) = pk and F (pk, x) = y, then F−1(td, y) = x. In this
paper, since we are concerned with providing a lower bound, we do not consider
the most general definition of a collection of trapdoor permutations. Instead, we
denote by Tn the set of all triplets τn =

(
Gn, Fn, F−1

n

)
of the following form:

1. Gn ∈ Πn.
2. Fn : {0, 1}n × {0, 1}n → {0, 1}n is a function such that Fn(pk, ·) ∈ Πn for

every pk ∈ {0, 1}n.
3. F−1

n : {0, 1}n × {0, 1}n → {0, 1}n is a function such that F−1
n (td, y) returns

the unique x ∈ {0, 1}n for which Fn(Gn(td), x) = y.

Our lower bound proof is based on analyzing random instances of such col-
lections. A uniformly distributed τn ∈ Tn can be chosen as follows: Gn is chosen
uniformly at random from Πn, and for each pk ∈ {0, 1}n a permutation Fn(pk, ·)
is chosen uniformly and independently at random from Πn.

Definition 2.2. A family τ =
{
τn =

(
Gn, Fn, F−1

n

)}∞
n=1

of trapdoor permuta-
tions is s(n)-hard if for every probabilistic Turing-machine A that runs in time
s(n), and for all sufficiently large n,

Pr
[
Aτ (1n, Gn(td), y) = F−1

n (td, y)
] ≤ 1

s(n)
,

where the probability is taken uniformly over all the possible choices of td ∈
{0, 1}n and y ∈ {0, 1}n, and over all the possible outcomes of the internal coin
tosses of A.



Definition 2.2 refers to the difficulty of inverting a random permutation
F (pk, ·) on a uniformly distributed image y, when given only pk = G(td) and y.
Some applications, however, require enhanced hardness conditions. For example,
it may be required (cf. [16, Appendix C]) that it is hard to invert F (pk, ·) on y
even given the random coins used in the generation of y. Note that our formu-
lation captures such hardness condition as well and therefore the impossibility
results proved in this paper hold also for enhanced trapdoor permutations.3

Single-server Private Information Retrieval. A single-server Private Infor-
mation Retrieval (PIR) scheme is a protocol between a server and a user. The
server holds a database x ∈ {0, 1}n and the user holds an index i ∈ [n] to an
entry of the database. Very informally, the user wishes to retrieve the ith entry
of the database, without revealing the index i to the server. More formally, a
single-server PIR scheme is defined via a pair of probabilistic polynomial-time
Turing-machines (S,U) such that:

– S receives as input a string x ∈ {0, 1}n. Following its interaction it does not
have any output.

– U receives as input an index i ∈ [n]. Following its interaction it outputs a
value b ∈ {0, 1,⊥}.
Denote by b ← 〈S(x),U(i)〉 the experiment in which S and U interact (using

the given inputs and uniformly chosen random coins), and then U outputs the
value b. It is required that there exists a negligible function ν(n), such that for
all sufficiently large n, and for every string x = x1 ◦ · · · ◦ xn ∈ {0, 1}n, it holds
that xi ← 〈S(x),U(i)〉 with probability at least 1− ν(n) over the random coins
of both S and R.

In order to define the security properties of such schemes, we first introduce
the following notation. Given a single-server PIR scheme (S,U) and a Turing-
machine S∗ (a malicious server), we denote by view〈S∗,U(i)〉(n) the distribution
on the view of S∗ when interacting with U(i) where i ∈ [n]. This view consists
of its random coins and of the sequence of messages it receives from U , where
the distribution is taken over the random coins of both S∗ and U .

Definition 2.3. A single-server PIR scheme (S,U) is secure if for every proba-
bilistic polynomial-time Turing-machines S∗ and D, and for every two sequences
of indices {in}∞i=1 and {jn}∞i=1 where in, jn ∈ [n] for every n, it holds that

∣∣Pr
[
v ← view〈S∗,U(in)〉(n) : D(v) = 1

]

−Pr
[
v ← view〈S∗,U(jn)〉(n) : D(v) = 1

]∣∣ ≤ ν(n) ,

for some negligible function ν(n) and for all sufficiently large n.

Commitment schemes. A commitment scheme is a two-stage interactive pro-
tocol between a sender and a receiver. Informally, after the first stage of the
3 A different enhancement, used by [17], requires the permutations’ domain to be

polynomially dense in {0, 1}n. Clearly, our impossibility result holds for such an
enhancement as well.



protocol, which is referred to as the commit stage, the sender is bound to at
most one value, not yet revealed to the receiver. In the second stage, which is
referred to as the reveal stage, the sender reveals its committed value to the
receiver. More formally, a commitment scheme is defined via a triplet of proba-
bilistic polynomial-time Turing-machines (S,R,V) such that:

– S receives as input the security parameter 1n and a string x ∈ {0, 1}k.
Following its interaction, it outputs some information decom (the decom-
mitment).

– R receives as input the security parameter 1n. Following its interaction, it
outputs a state information com (the commitment).

– V (acting as the receiver in the reveal stage4) receives as input the security
parameter 1n, a commitment com and a decommitment decom. It outputs
either a string x′ ∈ {0, 1}k or ⊥.

Denote by (decom|com) ← 〈S(1n, x),R(1n)〉 the experiment in which S and
R interact (using the given inputs and uniformly chosen random coins), and
then S outputs decom while R outputs com. It is required that for all n, ev-
ery string x ∈ {0, 1}k, and every pair (decom|com) that may be output by
〈S(1n, x),R(1n)〉, it holds that V(com, decom) = x.5 In the remainder of the
paper, it will often be convenient for us to identify V with R, and refer to a
commitment scheme as a pair (S,R).

The security of a commitment scheme can be defined in two complemen-
tary ways, protecting against either an all-powerful sender or an all-powerful
receiver. In this paper, we deal with commitment schemes of the latter type,
which are referred to as statistically-hiding commitment schemes. In order to
define the security properties of such schemes, we first introduce the following
notation. Given a commitment scheme (S,R) and a Turing-machine R∗, we de-
note by view〈S(x),R∗〉(n) the distribution on the view of R∗ when interacting
with S(1n, x). This view consists of R∗’s random coins and of the sequence of
messages it receives from S. The distribution is taken over the random coins of
both S and R∗. Note that whenever no computational restrictions are assumed
on R∗, without loss of generality we can assume that R∗ is deterministic.

Definition 2.4. A commitment scheme (S,R) is ρ(n)-hiding if for every deter-
ministic Turing-machine R∗, and for every two sequences of strings {xn}∞i=1 and
{x′n}∞i=1 where xn, x′n ∈ {0, 1}k(n) for every n the ensembles {view〈S(xn),R∗〉(n)}
and {view〈S(x′n),R∗〉(n)} have statistical difference at most ρ(n) for all sufficiently
large n. Such a scheme is statistically-hiding if it is ρ(n)-hiding for some negli-
gible function ρ(n).

Our lower bound for commitment schemes holds in fact under a weaker hiding
requirement. We derive our results even for commitment schemes in which the
4 Note that there is no loss of generality in assuming that the reveal stage is non-

interactive. This is since any such interactive stage can be replaced with a non-
interactive one as follows: The sender sends its internal state to the receiver, who
then simulates the sender in the interactive stage.

5 Although we assume perfect completeness, it is not essential for our results.



sender is statistically protected only against an honest receiver. Such schemes
are referred to as statistically-hiding honest-receiver commitment schemes. For-
mally, it is only required that the statistical difference between the ensembles
{view〈S(xn),R〉(n)} and {view〈S(x′n),R〉(n)} is some negligible function of n.

Definition 2.5. A commitment scheme (S,R,V) is µ(n)-binding if for every
probabilistic polynomial-time Turing-machine S∗ it holds that the probability that
((decom, decom′)|com) ← 〈S∗(1n),R(1n)〉 (where the probability is over the ran-
dom coins of both S∗ and R) such that V(com, decom) 6= V(com, decom′) and
V(com, decom),V(com, decom′) 6= ⊥ is negligible in n for all sufficiently large n.
Such a scheme is computationally-binding if it is µ(n)-binding for some negli-
gible function µ(n), and is weakly-binding if it is (1− 1/p(n))-binding for some
polynomial p(n).

Black-box reductions. A reduction of a primitive P to a primitive Q is a
construction of P out of Q. Such a construction consists of showing that if
there exists an implementation C of Q, then there exists an implementation
MC of P . This is equivalent to showing that for every adversary that breaks
MC , there exists an adversary that breaks C. Such a reduction is semi-black-
box if it ignores the internal structure of Q’s implementation, and it is fully-
black-box if the proof of correctness is black-box as well, i.e., the adversary for
breaking Q ignores the internal structure of both Q’s implementation and of the
(alleged) adversary breaking P . Semi-black-box reductions are less restricted and
thus more powerful than fully-black-box reductions. A taxonomy of black-box
reductions was provided by Reingold, Trevisan and Vadhan [36], and the reader
is referred to their paper for a more complete and formal view of these notions.

We now formally define the class of constructions considered in this paper.
Our results in the current paper are concerned with the particular setting of fully-
black-box constructions of single-server PIR and of statistically-hiding commit-
ment schemes from trapdoor permutations. We focus here on specific definitions
for these particular primitives and we refer the reader to [36] for a more general
definition.

When examining efficiency measures of fully-black-box constructions, an es-
sential parameter for such characterizations, as introduced by Haitner et al. [18],
is the security-parameter-expansion of the construction. Consider, for example, a
fully-black-construction of a commitment scheme from a family of trapdoor per-
mutations. One ingredient of such a construction is a machine A that attempts
to break the security of the trapdoor permutation family given oracle access to
any malicious sender S∗ that breaks the security of the commitment scheme.
Then, A receives a security parameter 1n (and possibly some additional inputs)
and invokes S∗ in a black-box manner. The standard definition does not restrict
the range of security parameters that A is allowed to invoke S∗ on. For exam-
ple, A may invoke S∗ on security parameter 1n2

, or even on security parameter
1Θ(s(n)), where s(n) is the running time of A. In this paper, we will use the notion
`(n)-expanding for short, and note that according to Luby’s classification [30],
any polynomially-preserving reduction is O(n)-expanding in our terminology.



Definition 2.6. A fully-black-box `(n)-expanding construction of a single-server
PIR scheme from an s(n)-hard family of trapdoor permutations is a triplet of
probabilistic oracle Turing-machines (S,U , A) for which the following hold:

1. Correctness: For every family τ of trapdoor permutations, (Sτ ,Uτ ) is a
single-server PIR scheme.

2. Black-box proof of security: For every family of trapdoor permutations
τ =

{
τn =

(
Gn, Fn, F−1

n

)}∞
n=1

and for every probabilistic polynomial-time
Turing-machine S∗, if S∗ with oracle access to τ breaks the security of
(Sτ ,Uτ ), then

Pr
[
Aτ,S∗(1n, Gn(td), y) = F−1

n (td, y)
]

>
1

s(n)
,

for infinitely many values of n, where A runs in time s(n) and invokes S∗
on security parameters which are at most 1`(n). The probability is taken
uniformly over all the possible choices of td ∈ {0, 1}n and y ∈ {0, 1}n, and
over all the possible outcomes of the internal coin tosses of A.

Definition 2.7. A fully-black-box `(n)-expanding construction of a statistically-
hiding (against an honest-receiver) and weakly-binding commitment scheme from
an s(n)-hard family of trapdoor permutations is a triplet of probabilistic oracle
Turing-machines (S,R, A) for which the following hold:

1. Correctness: For every family τ of trapdoor permutations, (Sτ ,Rτ ) is a
statistically-hiding honest-receiver commitment scheme.

2. Black-box proof of binding: For every family of trapdoor permutations
τ =

{
τn =

(
Gn, Fn, F−1

n

)}∞
n=1

and for every probabilistic polynomial-time
Turing-machine S∗, if S∗ with oracle access to τ breaks the binding of
(Sτ ,Rτ ), then

Pr
[
Aτ,S∗(1n, Gn(td), y) = F−1

n (td, y)
]

>
1

s(n)
,

for infinitely many values of n, where A runs in time s(n) and invokes S∗
on security parameters which are at most 1`(n). The probability is taken
uniformly over all the possible choices of td ∈ {0, 1}n and y ∈ {0, 1}n, and
over all the possible outcomes of the internal coin tosses of A.

3 Communication Lower Bound for Statistically-Hiding
Commitment Schemes

In this section we prove a lower bound on the communication complexity of
fully-black-box constructions of statistically-hiding commitment schemes from
trapdoor permutations. We establish a lower bound on the number of bits com-
municated by the sender during the commit stage of any such scheme. Since we
are interested in proving an impossibility result for commitment schemes, it will
be sufficient for us to deal with bit-commitment schemes. We prove the following
theorem:



Theorem 3.1. In any fully-black-box O(n)-expanding construction of a weakly-
binding statistically-hiding honest-receiver bit-commitment scheme from a family
of trapdoor permutations, the sender communicates Ω(n) bits during the commit
stage.

The proof of Theorem 3.1 follows the approach and technique of Haitner at
el. [18] who constructed a “collision-finding” oracle in order to derive a lower
bound on the round complexity of statistically-hiding commitment schemes.
Given any fully-black-box O(n)-expanding construction (S,R, A) of a weakly-
binding statistically-hiding honest-receiver bit-commitment scheme from a fam-
ily of trapdoor permutations τ , we show that relative to their oracle the fol-
lowing holds: (1) there exists a malicious sender S∗ that breaks the binding of
the scheme (Sτ ,Rτ ), and (2) if the sender communicates o(n) bits during the
commit stage of (Sτ ,Rτ ), then the machine A (with oracle access to S∗) fails
to break the security of τ .

3.1 The Oracle

We briefly describe the oracle constructed by Haitner et al. [18] and state its
main property. The oracle is of the form O = (τ, Samτ ), where τ is a family of
trapdoor permutations (i.e., τ = {τn}∞n=1, where τn ∈ Tn for every n), and Samτ

is an oracle that, very informally, receives as input a description of a circuit C
(which may contain τ -gates) and a string z, and outputs a uniformly distributed
preimage of z under the mapping defined by C. As discussed in [18], several
essential restrictions are imposed on the querying of Sam that prevent it from
assisting in inverting τ .
Description of Sam. The oracle Sam receives as input a query of the form
Q = (Cτ

next, C
τ , z), and outputs a pair (w′, z′) where w′ is a uniformly distributed

preimage of z under the mapping defined by the circuit Cτ , and z′ = Cτ
next(w′).

We impose the following restrictions:

1. z was the result of a previous query with Cτ as the next-query circuit (note
that this imposes a forest-like structure on the queries).

2. The circuit Cτ
next is a refinement of the circuit Cτ , where by a refinement

we mean that Cτ
next(w) = (Cτ (w), C̃τ (w)) for some circuit C̃τ and for every

w. In particular, this implies that Cτ and Cτ
next have the same input length.

Given a query Q, we denote this input length by m(Q), and when the query
Q is clear from the context we will write only m.

3. Each query contains a security parameter 1n, and Sam answers queries only
up to depth depth(n), for some “depth restriction” function depth : N → N
which is a part of the description of Sam. The security parameter is set such
that a query with security parameter 1n is allowed to contain circuits with
queries to permutations on up to n bits. Note that although different queries
may have different security parameters, we ask that in the same “query-
tree”, all queries will have the same security parameter (hence the depth of
the tree is already determined by the root query).



In order to impose these restrictions, Sam is equipped with a family sign =
{signk}∞k=1 of (random) functions signk : {0, 1}k → {0, 1}2k that will be used
as “signatures” for identifying legal queries as follows: in addition to outputting
(w′, z′), Sam will also output the value sign(1n, Cτ

next, z
′, dep + 1), where dep is

the depth of the query, 1n is the security parameter of the query, and by applying
the “function” sign we actually mean that we apply the function signk for the
correct input length. Each query of the form Q = (1n, Cτ

next, C
τ , z, dep, sig) is

answered by Sam if and only if Cτ
next is a refinement of Cτ , dep ≤ depth(n) and

sig = sign(1n, Cτ , z, dep).
Finally, Sam is provided with a family of (random) permutations F = {fQ},

where for every possible query Q a permutation fQ is chosen uniformly at random
from Πm(Q). Given a query Q = (1n, Cτ

next, C
τ , z, dep, sig), the oracle Sam uses

the permutation fQ ∈ F in order to sample w′ as follows: it outputs w′ = fQ(t)
for the lexicographically smallest t ∈ {0, 1}m such that Cτ (fQ(t)) = z. Note
that whenever the permutation fQ is chosen from Πm uniformly at random,
and independently of all other permutations in F , then w′ is indeed a uniformly
distributed preimage of z. In this paper, whenever we consider the probability
of an event over the choice of the family F , we mean that for each query Q a
permutation fQ is chosen uniformly at random from Πm(Q) and independently
of all other permutations. A complete and formal description of the oracle is
provided in Figure 1.

On input Q = (1n, Cτ
next, Cτ , z, dep, sig), Samτ,F,sign

depth acts as follows:

1. If Cτ = ⊥, then output (w′, z′, sig′) where w′ = fQ(0m), z′ = Cτ
next(w

′), and
sig′ = sign(1n, Cτ

next, z
′, 1).

2. Else, if Cτ
next is a refinement of Cτ , dep ≤ depth(n) and sig = sign(1n, Cτ , z, dep),

then
(a) Find the lexicographically smallest t ∈ {0, 1}m such that Cτ (fQ(t)) = z.
(b) Output (w′, z′, sig′) where w′ = fQ(t), z′ = Cτ

next(w
′), and sig′ =

sign(1n, Cτ
next, z

′, dep + 1).
3. Else, output ⊥.

Figure 1: The oracle Sam.

Definition 3.1. We say that a circuit A queries the oracle Samτ,F,sign
depth up to

depth d, if for every Sam-query Q = (1n, Cπ
next, C

π, z, dep, sig) that A makes, it
holds that dep ≤ d.

One of the main properties of the oracle Sam, as proved in [18], is the follow-
ing: any circuit with oracle access to Sam that tries to invert a random trapdoor
permutation, fails with high probability. More specifically, Haitner et al. man-
aged to relate this success probability to the maximal depth of the Sam-queries
made by the circuit, and to the size of the circuit. They proved the following
theorem:



Theorem 3.2 ([18]). For every circuit A of size s(n) that queries Sam up to
depth d(n) such that s(n)3d(n)+2 < 2n/8, for every depth restriction function
depth and for all sufficiently large n, it holds that

Pr td←{0,1}n,τ,F
y←{0,1}n,sign

[
Aτ,Samτ,F,sign

depth (Gn(td), y) = F−1
n (td, y)

]
≤ 2

s(n)
.

3.2 Breaking Low-Communication Statistically-Hiding
Commitment Schemes

We show that a random instance of the oracle Sam can be used to break the bind-
ing of any statistically-hiding commitment scheme. Specifically, for every bit-
commitment scheme (S,R) which is (1) weakly-biding, (2) statistically-hiding
against an honest-receiver, and (3) has oracle access to a family τ of trapdoor
permutations, we construct a malicious sender S∗ which has oracle access to
Samτ,F,sign

depth , and breaks the binding of (Sτ ,Rτ ) with sufficiently high probability
over the choices of τ , F and sign. Formally, the following theorem is proved:

Theorem 3.3. For any statistically-hiding bit-commitment scheme (S,R,V)
with oracle access to a family of trapdoor permutations in which the sender com-
municates at most c(n) bits during the commit stage, and for any polynomial
p(n), there exists a polynomial-time malicious sender S∗ such that

Prτ,F
sign,rR


((decom, decom′)|com) ←

〈
S∗ Samτ,F,sign

depth (1n),Rτ (1n, rR)
〉

:

Vτ (com, decom) = 0,Vτ (com, decom′) = 1


 > 1− 1

p(n)

for all sufficiently large n, where depth(n) =
⌈

c(n)
log n

⌉
+ 1.

We note that the above theorem holds even if the commitment scheme is
statistically-hiding only against an honest receiver. In what follows we introduce
the notation used in this section. We proceed with a brief presentation of the
main ideas underlying the proof of Theorem 3.3, which is then followed by a
formal description of the malicious sender S∗.
Notations. Let (S,R) be a bit-commitment scheme with oracle access to a
family of trapdoor permutations. We denote by b ∈ {0, 1} and rS , rR ∈ {0, 1}∗
the input bit of the sender and the random coins of the sender and the receiver,
respectively. We denote by c(n) the maximal number of bits communicated from
the sender to the receiver in the commit stage with security parameter 1n. In
addition we denote by d(n) the number of communication rounds in the scheme
with security parameter 1n, and without loss of generality we assume that the
receiver makes the first move. Each communication round consists of a message
sent from the receiver to the sender followed by a message sent from the sender
to the receiver. We denote by qi and ai the messages sent by the receiver and the
sender in the i-th round, respectively, and denote by ad+1 the message sent by the
sender in the reveal stage. Finally, we let āi = (a1, . . . , ai) and q̄i = (q1, . . . , qi).



Although the sender is a probabilistic polynomial-time Turing-machine, in
order to interact with the oracle Sam we need to identify the sender with a
sequence of polynomial-size circuits S1, . . . , Sd+1 as follows. In the first round,
S sends a1 by computing a1 = S1(b, rS , q1). Similarly, in the following rounds,
S sends ai by computing ai = Si(b, rS , q̄i).

Finally, in order to simplify the notation regarding the input and output
of the oracle Sam, in this section we ignore parts of the input and output of
Sam: we ignore the security parameter and the “signatures” (since our malicious
sender S∗ will only ask legal queries), and consider queries of a simplified form
Q = (Cτ

next, C
τ , z), and answers that consist only of w′ (i.e., an answer consists

only of a uniformly distributed preimage of z under the mapping defined by Cτ ).
In addition, in what follows it will be more intuitive to replace z in the queries
by its preimage w, but this is clearly not essential.

A brief overview. Informally, recall that the oracle Sam described in Section
3.1 acts as follows: Sam is given as input a query Q = (Cnext, C, z), and outputs
a pair (w′, z′) where w′ is a uniformly distributed preimage of z under the map-
ping defined by the circuit C, and z′ = Cnext(w′). In addition, we imposed the
restriction that there was a previous query (C, ·, ·) that was answered by (w, z)
(note that this imposes a forest-like structure on the queries), and we only allow
querying Sam up to depth O(n/ log n).

Given a statistically-hiding bit-commitment scheme in which the sender com-
municates c(n) bits during the commit stage, we assume without loss of general-
ity that the commit stage of the scheme has c(n) communication rounds, where
in each round the sender communicates a single bit to the receiver. The malicious
sender S∗ operates as follows: it chooses a random input w (consisting of random
coins and a random committed bit), and during the first log n rounds it simulates
the honest sender. In these log n rounds, it receives log n messages q1, . . . , qlog n

from the receiver. Then, S∗ constructs the circuit Cq1,...,qlog n
that receives as in-

put the sender’s input w and outputs the log n sender’s messages corresponding
to the receiver’s messages q1, . . . , qlog n. This circuit is used to query Sam for a
random input w1. It may be the case, however, that w1 is not consistent with
the actual messages a1, . . . , alog n that S∗ sent in the first log n rounds. In this
case, S∗ “rewinds” Sam for a polynomial number of times, and since the total
length of the sender’s messages in these log n rounds is only log n bits, then with
sufficiently high probability S∗ will obtain a consistent w1. Now, in the next
log n rounds the malicious sender S∗ simulates the honest sender with input w1,
and at the end of these log n rounds it will query (and rewind) Sam again for
another consistent input wlog n+1, and so on. Finally, after completing the com-
mit stage, S∗ queries Sam to obtain two random inputs wc(n) and w′c(n) which
are consistent with the transcript of the commit stage. Since the commitment
scheme is statistically-hiding, with probability roughly half they can be used to
break the binding of the protocol. A crucial point in this description, is that
S∗ queries Sam only up to depth c(n)/ log n (S∗ used Sam to obtain c(n)/ log n
values w1, wlog n+1, . . . , wc(n)). Therefore, if c(n) = o(n), then an oracle Sam that



answers queries only up to depth c(n)/ log n cannot be used to invert a random
trapdoor permutation, according to Theorem 3.2.

A formal description of S∗. Given a bit-commitment scheme (S,R) in which
the sender communicates c(n) bits during the commit stage, we assume without
loss of generality (and for simplicity of the presentation) that the scheme has
c(n) communication rounds (i.e., d(n) = c(n)) where in each round during the
commit stage the sender communicates a single bit to the receiver (i.e., each of
a1, . . . , ad(n) is one bit). Furthermore, in order to simplify the description of S∗,
we assume that log n is an integral value (where 1n is the security parameter
given as input to S∗) and that c(n) = M · log n+1 for some integer M = M(n).
We stress that these assumptions are not at all essential, but avoiding them will
result in a more complicated description. On input 1n, the malicious sender S∗
with oracle access to Samτ,F,sign

depth interacts with the honest receiver R as follows.

1. The commit stage:
(a) In the first round S∗ receives R’s message q1, and computes the de-

scription of the circuit C1 = S1(·, ·, q1) obtained from the circuit S1 by
fixing q1 as its third input. Then, S∗ queries Samτ,F,sign

depth with (C1,⊥,⊥),
receives an answer w1 = (b1, r1) and sends a1 = S1(b1, r1, q1) to R.

(b) In every round i ∈ {2, . . . , log n}, S∗ simulates the honest sender S
with input w1. That is, S∗ receives R’s message qi and replies with
ai = Si(b1, r1, q̄i).

(c) In round log n + 1, S∗ receives R’s message qlog n+1, and computes
the description of the circuit Clog n+1 = Slog n+1(·, ·, q̄log n+1) obtained
from the circuit Slog n+1 by fixing q̄log n+1 as its third input. Then, S∗
queries Samτ,F,sign

depth with (Clog n+1, C1, w1) for t = 2n5c(n)p(n) times
and receives t answers. If one of these answers is consistent with the
transcript of the protocol so far, then denote the first such answer by
wlog n+1 = (blog n+1, rlog n+1), and in this case S∗ sends the message
alog n+1 = Slog n+1(blog n+1, rlog n+1, q̄log n+1) to R. Otherwise, S∗ aborts
the execution of the protocol.

(d) In the remainder of the commit stage S∗ acts as follows:
i. For every k and in every round i ∈ {(k − 1) log n + 2, . . . , k log n},

the malicious sender S∗ simulates the honest sender S with input
w(k−1) log n+1.

ii. For every integer k and in every round k log n + 1 the malicious
sender S∗ receives R’s message qk log n+1, and computes the descrip-
tion of the circuit Ck log n+1 = Sk log n+1(·, ·, q̄k log n+1) obtained from
the circuit Sk log n+1 by fixing q̄k log n+1 as its third input. Then, S∗
queries Samτ,F,sign

depth with (Ck log n+1, C(k−1) log n+1, w(k−1) log n+1) for
t = 2n5c(n)p(n) times and receives t answers. If one of these answers
is consistent with the transcript of the protocol so far, then denote
the first such answer by wk log n+1 = (bk log n+1, rk log n+1), and in this
case S∗ sends ak log n+1 = Sk log n+1(bk log n+1, rk log n+1, q̄k log n+1) to
R. Otherwise, S∗ aborts the execution of the protocol.



2. The reveal stage:
(a) S∗ queries Samτ,F,sign

depth with (⊥, Cd(n), wd(n)) for n times, and receives

n pairs
{(

b
(j)
d(n)+1, r

(j)
d(n)+1

)}n

j=1
. If there exist j0, j1 ∈ [n] such that

b
(j0)
d(n)+1 = 0 and b

(j1)
d(n)+1 = 1, then S∗ outputs the two values

decom = Sd(n)+1

(
b
(j0)
d(n)+1, r

(j0)
d(n)+1, q̄d(n)

)

decom′ = Sd(n)+1

(
b
(j1)
d(n)+1, r

(j1)
d(n)+1, q̄d(n)

)
.

Otherwise, S∗ aborts the execution of the protocol.

Two minor technical details were omitted from the description. First, accord-
ing to the description of Sam (Section 3.1), whenever Sam is queried multiple
times with the same input, it returns the exact same answer. Thus, whenever S∗
queries Sam more than once with the same input, S∗ has to make sure that the
queries are all different (for example, by artificially embedding the query number
to one of the circuits in the query). Second, in order for S∗’s queries to be legal, it
should hold that the circuit Ck log n+1 is a refinement of the circuit C(k−1) log n+1

for every integer k (as discussed in Section 3.1). This can be done very easily by
embedding the description of each C(k−1) log n+1 inside each Ck log n+1 (i.e., the
output of Ci is the sequence of bits āi instead of only the bit ai).

The formal proof proceeds by arguing that S∗ successfully completes the
commit stage with high probability. Then, given that S∗ has successfully com-
pleted the commit stage, we prove that the transcript of the commit stage is
distributed identically to the transcript of the commit stage in an honest execu-
tion of the protocol. This enables us to use the fact that the commitment scheme
is statistically-hiding, and therefore a random transcript can be revealed both
as a commitment to b = 0 and as a commitment to b = 1, with almost equal
probabilities. Due to space limitations we refer the reader to [19] for a formal
proof, which then immediately implies the correctness of Theorem 3.1.

4 Refining the Relation Between Single-Server PIR and
Commitment Schemes

The relation between single-server PIR and commitment schemes was first ex-
plored by Beimel et al. [1], who showed that any single-server PIR protocol in
which the server communicates at most n/2 bits to the user (where n is the size
of the server’s database), can be used to construct a weakly-binding statistically-
hiding bit-commitment scheme. In particular, this served as the first indication
that the existence of low-communication PIR protocols implies the existence
of one-way functions. In this section, we refine the relation between these two
fundamental primitives by improving their reduction. Informally speaking, our
reduction essentially uses the reduction of Beimel et al. instantiated with a bet-
ter extractor. This enables the following improvements: (1) the communication



complexity of the PIR protocol is essentially preserved, (2) given a single-server
PIR protocol in which the server communicates n− k bits, it is possible to com-
mit to Ω(k) bits while executing the underlying single-server PIR protocol only
once, and (3) whereas the construction of Beimel et al. was presented for single-
server PIR protocols in which the server communicates at most n/2 bits, our
construction can rely on single-server PIR in which the server communicates up
to n− ω(log n) bits.

In what follows we state our main theorem in the current section, and then
turn to formally describe the construction and to provide intuition for its proof.
Due to space limitations we refer the reader to [19] for the formal proof.

Theorem 4.1. Let d(n) ∈ ω(log n), k(n) ≥ 2d(n), and let P be a single-server
PIR protocol in which the server communicates n−k(n) bits, where n is the size
of the server’s database. Then, there exists a weakly-binding statistically-hiding
commitment scheme COMP for d(n)/6 bits, in which the sender communicates
less than n−k(n)+2d(n) bits during the commit stage. Moreover, the construc-
tion is fully-black-box and linearly-preserving.

The construction. Fix d(n), k(n) and P as in Theorem 4.1. In the construc-
tion we use a strong

(
d(n)/3, 21−d(n)/3

)
-extractor EXT : {0, 1}n × {0, 1}d(n) →

{0, 1}d(n)/6 whose existence is guaranteed by Proposition 2.1. Figure 2 describes
our construction of the commitment scheme COMP = (S,R). The correctness
of COMP follows directly from the correctness of P. In addition, notice that
the total number of bits communicated by the sender in the commit stage is the
total number of bits that the server communicates in P plus the seed length and
the output length of the extractor EXT. Thus, the sender communicates less
than n− k(n) + 2d(n) bits during the commit stage.
Proof intuition. The commit stage consists of the sender and the receiver
choosing random inputs x ∈ {0, 1}n and i ∈ [n], respectively, and executing the
PIR protocol P on these inputs. As a consequence, the receiver obtains a bit xi,
which by the correctness of P is the ith bit of x. Now, notice that since the sender
communicated only n − ω(log n) bits, then the random variable corresponding
to x still has ω(log n) min-entropy from the receiver’s point of view (with high
probability). We take advantage of this fact, and exploit the remaining min-
entropy of x in order to hide the committed string s in a statistical manner (note
that since it is required to reveal the seed of the extractor during the commit
stage, we need a strong extractor). The formal proof of the hiding property is
similar to that of Lu [29] in the bounded storage model, which is in turn based
on ideas that were used for constructing pseudorandom generators for space
bounded computations [33]. We note that the proof of hiding does not rely on
any computational properties of the underlying PIR protocol P, but only on the
assumed bound on the number of bits communicated by the server in P. The
binding property follows from the security of the PIR protocol: in the reveal
stage, the sender must send a value x whose ith bit is consistent with the bit
obtained by the receiver during the commit stage – but this bit is not known to
the sender.



Protocol COMP = (S, R)

Joint input: security parameter 1n.
Sender’s input: s ∈ {0, 1}d(n)/6.

Commit stage:
1. S chooses a uniformly distributed x ∈ {0, 1}n.
2. R chooses a uniformly distributed index i ∈ [n].
3. S and R execute the single-server PIR protocol P for database of length n, where
S acts as the server with input x and R acts as the user with input i. As a result,
R obtains a bit xi ∈ {0, 1}.

4. S chooses a uniformly distributed seed t ∈ {0, 1}d(n), computes y = EXT(x, t)⊕ s,
and sends (t, y) to R.

Reveal stage:
1. S sends (s, x) to R.
2. If the ith bit of x equals xi and y = EXT(x, t)⊕ s, then R outputs s. Otherwise,
R outputs ⊥.

Figure 2: A construction of a commitment scheme from any low-communication
single-server PIR protocol.

5 Concluding Remarks

Our result does not rule out weakly-preserving (fully-black-box) constructions
of single-server PIR from trapdoor permutations in which the sender communi-
cates o(n) bits to the user. We note that although weakly-preserving reductions
guarantee much weaker security than polynomially-preserving reductions, in-
vestigating lower bounds for such reductions is still a very interesting research
topic. Even more so as the sole construction to date of a single-server PIR proto-
col from trapdoor permutations uses such a reduction. A possible step towards
tightening our bound is to first provide an improved lower bound on the commu-
nication complexity of statistically-hiding commitment schemes that allow the
sender to commit to more than a single bit. Whereas in Section 4 we proved that
any low-communication single-server PIR implies a statistically-hiding commit-
ment scheme that allows the sender to commit to a relatively long string, our
lower bound on the communication complexity of statistically-hiding commit-
ment schemes in Section 3 serves as a bottleneck: it does not take into consid-
eration the number of committed bits (the lower bound is only in terms of the
security parameter).

It is quite possible that a much tighter lower bound can be proved for string-
commitment schemes. Such a lower bound may extend the result of the current
paper to the setting of weakly-preserving reductions, and prove the optimality
of the single-server PIR protocol of Kushilevitz and Ostrovsky [27]. We note
that the statistically-hiding commitment scheme of Naor et al. [31] (which is
constructed from one-way permutations in a fully-black-box manner) can be



used to commit to O(log n) bits while the sender communicates O(n) bits (see,
for example, [32]).
Acknowledgments. We are grateful to Yuval Ishai and Omer Reingold for
many useful conversations and observations. We also thank the anonymous ref-
erees for their remarks and suggestions.

References

1. A. Beimel, Y. Ishai, E. Kushilevitz, and T. Malkin. One-way functions are essential
for single-server private information retrieval. In 31st STOC, pages 89–98, 1999.

2. C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval
with polylogarithmic communication. In EUROCRYPT ’99, pages 402–414, 1999.

3. Y. Chang. Single database private information retrieval with logarithmic commu-
nication. In 9th ACISP, pages 50–61, 2004.

4. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval.
In 36th FOCS, pages 41–50, 1995.

5. G. D. Crescenzo, T. Malkin, and R. Ostrovsky. Single database private information
retrieval implies oblivious transfer. In EUROCRYPT ’00, pages 122–138, 2000.

6. S. Dziembowski and U. M. Maurer. On generating the initial key in the bounded-
storage model. In EUROCRYPT ’04, pages 126–137, 2004.

7. M. Fischlin. On the impossibility of constructing non-interactive statistically-secret
protocols from any trapdoor one-way function. In CT-RSA, pages 79–95, 2002.

8. R. Gennaro, Y. Gertner, and J. Katz. Lower bounds on the efficiency of encryption
and digital signature schemes. In 35th STOC, pages 417–425, 2003.

9. R. Gennaro, Y. Gertner, J. Katz, and L. Trevisan. Bounds on the efficiency of
generic cryptographic constructions. SIAM J. Comput., 35(1):217–246, 2005.

10. R. Gennaro, Y. Lindell, and T. Malkin. Enhanced versus plain trapdoor permuta-
tions for non-interactive zero-knowledge and oblivious transfer. Manuscript, 2006.

11. R. Gennaro and L. Trevisan. Lower bounds on the efficiency of generic crypto-
graphic constructions. In 41st FOCS, pages 305–313, 2000.

12. C. Gentry and Z. Ramzan. Single-database private information retrieval with
constant communication rate. In 32nd ICALP, pages 803–815, 2005.

13. Y. Gertner, S. Kannan, T. Malkin, O. Reingold, and M. Viswanathan. The re-
lationship between public key encryption and oblivious transfer. In 41st FOCS,
pages 325–335, 2000.

14. Y. Gertner, T. Malkin, and O. Reingold. On the impossibility of basing trapdoor
functions on trapdoor predicates. In 42nd FOCS, pages 126–135, 2001.

15. O. Goldreich. Foundations of Cryptography – Volume 1: Basic Tools. Cambridge
University Press, 2001.

16. O. Goldreich. Foundations of Cryptography – Volume 2: Basic Applications. Cam-
bridge University Press, 2004.

17. I. Haitner. Implementing oblivious transfer using collection of dense trapdoor
permutations. In 1st TCC, pages 394–409, 2004.

18. I. Haitner, J. J. Hoch, O. Reingold, and G. Segev. Finding collisions in interactive
protocols – A tight lower bound on the round complexity of statistically-hiding
commitments. In 48th FOCS, pages 669–679, 2007.

19. I. Haitner, J. J. Hoch, and G. Segev. A linear lower bound on the communica-
tion complexity of single-server private information retrieval. Cryptology ePrint
Archive, Report 2007/351, 2007.



20. D. Harnik and M. Naor. On the compressibility of NP instances and cryptographic
applications. In 47th FOCS, pages 719–728, 2006.

21. O. Horvitz and J. Katz. Bounds on the efficiency of “black-box” commitment
schemes. In 32nd ICALP, pages 128–139, 2005.

22. R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way
permutations. In 21st STOC, pages 44–61, 1989.

23. Y. Ishai, E. Kushilevitz, and R. Ostrovsky. Sufficient conditions for collision-
resistant hashing. In 2nd TCC, pages 445–456, 2005.

24. Y. T. Kalai and R. Raz. Succinct non-interactive zero-knowledge proofs with
preprocessing for LOGSNP. In 47th FOCS, pages 355–366, 2006.

25. J. H. Kim, D. R. Simon, and P. Tetali. Limits on the efficiency of one-way
permutation-based hash functions. In 40th FOCS, pages 535–542, 1999.

26. E. Kushilevitz and R. Ostrovsky. Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In 38th FOCS, pages 364–373, 1997.

27. E. Kushilevitz and R. Ostrovsky. One-way trapdoor permutations are sufficient for
non-trivial single-server private information retrieval. In EUROCRYPT ’00, pages
104–121, 2000.

28. H. Lipmaa. An oblivious transfer protocol with log-squared communication. In
8th ISC, pages 314–328, 2005.

29. C.-J. Lu. Encryption against storage-bounded adversaries from on-line strong
extractors. J. Cryptology, 17(1):27–42, 2004.

30. M. Luby. Pseudorandomness and Cryptographic Applications. Princeton University
Press, 1996.

31. M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung. Perfect zero-knowledge
arguments for NP using any one-way permutation. J. Cryptology, 11(2):87–108,
1998.

32. M.-H. Nguyen, S. J. Ong, and S. P. Vadhan. Statistical zero-knowledge arguments
for NP from any one-way function. In 47th FOCS, pages 3–14, 2006.

33. N. Nisan and D. Zuckerman. Randomness is linear in space. Journal of Computer
and System Sciences, 52(1):43–52, 1996.

34. R. Ostrovsky and W. E. Skeith. Algebraic lower bounds for computing on en-
crypted data. Cryptology ePrint Archive, Report 2007/064, 2007.

35. R. Ostrovsky and W. E. Skeith. A survey of single database PIR: Techniques and
applications. Cryptology ePrint Archive, Report 2007/059, 2007.

36. O. Reingold, L. Trevisan, and S. P. Vadhan. Notions of reducibility between cryp-
tographic primitives. In 1st TCC, pages 1–20, 2004.

37. S. Rudich. Limits on the provable consequences of one-way functions. PhD thesis,
EECS Department, University of California, Berkeley, 1988.

38. D. R. Simon. Finding collisions on a one-way street: Can secure hash functions be
based on general assumptions? In EUROCRYPT ’98, pages 334–345, 1998.

39. A. Srinivasan and D. Zuckerman. Computing with very weak random sources.
SIAM J. Comput., 28(4):1433–1459, 1999.

40. J. P. Stern. A new efficient all-or-nothing disclosure of secrets protocol. In ASI-
ACRYPT ’98, pages 357–371, 1998.

41. H. Wee. One-way permutations, interactive hashing and statistically hiding com-
mitments. In 4th TCC, pages 419–433, 2007.


