
Saving Private Randomness
in One-Way Functions

and Pseudorandom Generators

Nenad Dedić1,2,4, Danny Harnik3,4, and Leonid Reyzin1,4

1 Boston University, Department of Computer Science, 111 Cummington St.,
Boston, MA 02215. reyzin@cs.bu.edu
2 Google, Inc., 76 9th Ave., 6th Floor,

New York, NY 10011. nenad.dedic@gmail.com
3 IBM Research, Haifa, Israel. danny.harnik@gmail.com
Research conducted while at the Technion, Haifa, Israel.

4 Research conducted, in part, at the Institute for Pure and Applied Mathematics at
UCLA, whose hospitality the authors gratefully acknowledge.

Abstract. Can a one-way function f on n input bits be used with fewer
than n bits while retaining comparable hardness of inversion? We show
that the answer to this fundamental question is negative, if one is limited
black-box reductions.

Instead, we ask whether one can save on secret random bits at the ex-
pense of more public random bits. Using a shorter secret input is highly
desirable, not only because it saves resources, but also because it can
yield tighter reductions from higher-level primitives to one-way func-
tions. Our first main result shows that if the number of output elements
of f is at most 2k, then a simple construction using pairwise-independent
hash functions results in a new one-way function that uses only k secret
bits. We also demonstrate that it is not the knowledge of security of f ,
but rather of its structure, that enables the savings: a black-box reduction
cannot, for a general f , reduce the secret-input length, even given the
knowledge that security of f is only 2−k; nor can a black-box reduction
use fewer than k secret input bits when f has 2k distinct outputs.

Our second main result is an application of the public-randomness ap-
proach: we show a construction of a pseudorandom generator based on
any regular one-way function with output range of known size 2k. The
construction requires a seed of only 2n +O(k log k) bits (as opposed to
O(n log n) in previous constructions); the savings come from the reusabil-
ity of public randomness. The secret part of the seed is of length only k
(as opposed to n in previous constructions), less than the length of the
one-way function input.

1 Introduction

PRG Seed Length It is important to keep the seed required for a pseudoran-
dom generator (PRG) as short as possible, lest the amount of true random

2 N. Dedić, D. Harnik, and L. Reyzin

bits needed to run it exceed the amount of pseudorandom bits its application
requires, thus rendering it pointless. Moreover, in reductions from PRGs (or
other constructs) to one-way functions, the blowup in the input length turns
out to be the most central parameter in determining the security of the con-
struct. It is therefore a major goal to reduce this parameter (as was addressed in
[GIL+90,HL92,HHR06b,Hol06,HHR06a]). The ultimate goal is a linear blowup,
a necessary, although not a sufficient, condition to achieve a reduction with tight
security preservation, i.e. a linear preserving one [HL92,HILL99].

Consider, therefore, the following problem: when is it possible to build a
pseudorandom generator out of a one-way function f while keeping the gener-
ator seed length linear in the one-way function input length n? Certainly this
is possible if f is a permutation—in fact, in the original PRG construction of
[BM82,Yao82] the seed length is equal to the one-way function input length.
However, no broader class of one-way functions satisfying this condition is cur-
rently known: even one-way bijections, if their output range is not easily mapped
to {0, 1}n, are not known to satisfy this condition (the best constructions for
them are the same as for other regular one-way functions, discussed below).

In this paper we demonstrate constructions of PRGs with the linear input
length condition for a large class of known regular one-way functions. Specifically,
if every output of f has α preimages (thus f has 2k distinct outputs where k =
n− log α) and (a lowerbound on) α is known, then we can build a PRG with seed
length 2n +O(k log k). Thus, for functions with high enough degeneracy, where
k = O(n/ log n), our PRG has a linear-length seed, like the Blum-Micali-Yao
PRG built from one-way permutations. The construction, described in Section 4,
builds upon the techniques of Haitner, Harnik and Reingold [HHR06b], which
require longer seed length of O(n log n), but assume only regularity rather than
known regularity.

New Tool: One-Way Functions with Short Secret Inputs We arrive at our pseu-
dorandom generator as part of a study of a more fundamental problem: when
is it possible to reduce the input length of a one-way function while maintain-
ing some of its security? In other words, given a one-way function f with input
length n, when is it possible to build another function g of input length `(n) < n
with comparable security? Indeed, if this were possible, then one could, for ex-
ample, build a pseudorandom generator from g rather than from f , and maintain
a reasonable seed length even if the PRG construction blows up the input size.
However, we show that in general it is impossible to significantly reduce the in-
put length of one-way function in a black-box manner, even for regular one-way
functions (Theorem 5). That is, one must invest essentially the full n random
bits when calling a one-way function.

This result, however, does not doom all efforts of using the one-way func-
tion with a shorter input. The insight is to use the paradigm introduced by
Herzberg and Luby [HL92], which separates public randomness from secret ran-
domness. It turns out to be possible to reduce the amount of secret random-
ness at the cost of additional public randomness. In Theorem 1 we show how

Saving Private Randomness 3

to convert any one-way function f with 2k distinct outputs into a collection
of one-way functions fh with inputs of length k, where the index h into the

fhx

collection is the public randomness. The simple con-
struction uses a pairwise independent family of expand-
ing hash functions. The choice of the function from the
collection is a choice of a hash function h, and we define
fh(x) = f(h(x)). This choice is made using 2n public
random coins, which are available to any potential in-
verter.

One way to achieve such a result is by using a technical Lemma of Dodis
and Smith [DS05, Lemma 12], which shows the same construction secure if it
uses k + 2 log 1

ε + 1 secret input bits, where ε is the additive security loss. In
particular, even if one needs to ensure that extra security loss is exponentially
small, the result of [DS05] requires only linearly more input bits. However, the
linear improvement we achieve over [DS05] is crucial for building our pseudo-
random generator, as we explain shortly. To achieve this improvement, we take
a different path from [DS05]: instead of showing that the distributions (f(x), h)
and (f(h(x)), h) are statistically close, we show they have polynomially related
subset weights, a relation between distributions that we call g-domination.

The secret input to our one-way function need not consist of k uniform inde-
pendent bits: inputs from any distribution of entropy5 k suffice (the same is true
for our pseudorandom generator construction). This is beneficial, because uni-
form random bits may be harder to obtain that simply strings of high entropy.6

Moreover, this enables our pseudorandom generator construction.

Application: The PRG Construction We construct our pseudorandom generator
by applying the randomized iterate construction of [HHR06b] (henceforth called
“the HHR construction”) to fh for a known regular f . Because fh is secure
even when h is public, the coins for h can be given only once and used for all
iterations, resulting in a shorter seed. As compared to the HHR construction,
we replace the need for many large hash functions with one large hash function
(the ĥ used for fĥ), and many small ones (h1, . . . , hk used in the randomized
iterate construction). Our construction is illustrated in Figure 1.

To get some intuition for the construction, observe that if f is regular, then
the number of secret random input bits we require for fh is the entropy of the
output of fh. This enables iteration, because the output of fh has enough entropy
to be used (after an appropriate transformation) as an input to the next fh. We
could not use the result of [DS05], because it requires more input entropy than
is output; nor could we use functions that are not regular, because they produce
less output entropy than the input requires. The proof of pseudorandomness is
5 Specifically, Renyi entropy of order 2, i.e., negative logarithm of collision probability.
6 Of course, almost uniform independent bits can be obtained from a distribution of

high entropy through the use of a strong extractor (whose seed can be public), but
extractors necessarily lose entropy, so this approach would require a secret input with
entropy higher than k, which, as we already pointed out, would create difficulties for
our PRG construction.

4 N. Dedić, D. Harnik, and L. Reyzin

fĥ h1 f h2 … f hkx

br br br br

ĥ ĥ

br

Fig. 1. Our pseudorandom generator on seed x. ĥ is a pairwise-independent hash func-
tion from k bits to n bits; h1, h2, . . . , hk are almost-pairwise independent hash functions
from the output space of f to k bits, generated by a bounded space generator from a
common seed s of length O(k log k); br is the Goldreich-Levin hardcore bit (the same r
is used throughout). ĥ, s and r are included in the output or, equivalently, are public.

not as simple as applying the HHR result to fĥ, because the HHR construction
needs to start with a regular one-way function, and fĥ is not necessarily regular
even if f is.

In Appendix A we show how one can further exploit the knowledge of the
regularity and further shorten the seed of our PRG to 2n+O(k log log k), albeit
at the cost of lowering its security.

In addition to considering the overall PRG seed length, it is also important
to consider how much of the generator seed must be secret, because secret ran-
dom bits tend to be much harder to obtain than nonsecret ones (again, this
was already observed in [HL92]). Our PRG is the first to require a sublinear
number of secret bits, namely, just k (the HHR generator, like the generators
of [BM82,GKL93], requires n secret bits). Moreover, just like for our one-way
function, the secret input to our PRG need not consist of uniform independent
bits, but can come from any distribution of entropy k.

Example: One-way Function and PRG Based on Factoring Consider the prob-
lem of building a one-way function based on the hardness of factoring products
of two b-bit randomly chosen primes. If one is willing to assume a trusted party
with secret coins, then it is easy: the trusted party chooses two secret random
b-bit primes p and q, publishes N = pq, and the function can be, for example,
squaring modulo N .

However, without trusted setup, there is no such easy construction. In order
to work on the domain {0, 1}n, the one-way function needs to include the process
of generating the two random primes. A natural way to do this is to test some
number of random integers for primality. To guarantee that two primes are found
with probability 2−s for some security parameter s, the number of integers tested
should be Θ(sb) (because the probability that a random b-bit integer is prime
is Θ(1/b)). The natural function therefore gets n = Θ(sb2) bits as input, splits
them into Θ(sb) integers of length b each, finds the first two such integers p, q
that are prime (if they do not exist, output 0), and outputs their product N = pq.
We call this function fmult (observe that, for sufficiently large s, it is one-way
under the assumption that factoring is hard).

For reasonably secure values for b (e.g., 2048) and s (e.g., 64), the input length
n of fmult will be on the order of tens of megabytes. To come up with such a

Saving Private Randomness 5

long secret input is, naturally, quite costly. Because the output of fmult is short,
however, we can apply our result on converting one-way functions to families
with shorter secret inputs. Setting k = 2b = o(

√
n), we obtain a family of one-

way functions with secret inputs of length only 2b—as short as the description
of the two primes p and q. To sample a function from this family, one still needs
Θ(n) random bits, but they can be public, and are therefore much less expensive
to obtain (e.g., from adversarially observable sources such as user behavior or
ambient noise). Finally we note that using our techniques, one can generate
a product N = pq of two secret b-bit primes p,q using private randomness of
entropy 2b (and the appropriate amount of public randomness). This can be
used, for example, for generating public/secret key pairs for RSA or Paillier
functions, from a modest amount of private randomness.

Consider now trying to make a PRG out of fmult. The prior most efficient
way (in terms of seed length) to achieve this is to notice that fmult is a regular
one-way function (except the negligible 2−s portion that leads to the 0 output)
and use the HHR construction, which takes a seed of O(n log n) bits with O(n) of
the bits being secret.7 For reasonable parameter settings, it would be useful only
in applications that can afford to gather tens of megabytes of secret randomness
and gigabytes of public randomness before invoking the PRG.

Instead, observe that fmult is also a known8 regular one-way function, with
k < 2b. Applying our PRG construction, we get a pseudorandom generator with
just 2b = o(

√
n) secret seed bits (which is roughly what’s required to describe

the two primes, anyway) and O(n) seed bits total (which is linear in what’s
anyway required as an input to fmult).

Impossibility Results As already mentioned, Theorem 5 shows that the total
input length of a one-way function cannot be reduced in a black-box manner,
thus leading us to use public randomness in order to reduce the amount of
secret randomness. It is natural to ask if this approach can also work for one-
way functions with a large number of outputs. On the positive side, we show in
Theorem 2 that if a sufficiently large portion of the inputs goes to a sufficiently
small portion of the outputs, then the answer is yes. In general, however, this
appears unlikely to be the case, for the following reasons. In Theorem 6 we show
that the number of secret random bits used when calling a one-way permutation
f cannot be reduced to be substantially smaller than n by use of black-box
reductions. This theorem is actually more general, and shows that our positive
result is indeed tight for regular one-way functions, and the number of secret
7 It seems fruitless to try to turn fmult into a permutation to order to apply the

efficient construction of [BM82,Yao82]. Indeed, a natural way to build a bijection
from fmult is to include in the output all the unused bits as well as information on
where p and q were in the sequence. However, this does not make it a permutation,
because the output range (which includes the product of two primes) is not easily
mapped back to the input domain of bit strings. Unfortunately, known solutions for
bijections are not any better than those for regular functions.

8 Our results apply to a weaker notion of “known”: α can be a lower bound on the
regularity of f , rather than its exact value.

6 N. Dedić, D. Harnik, and L. Reyzin

bits cannot be reduced any further in a black-box manner. Moreover, Theorem 7
shows that there is no black-box reduction that takes a one-way function f with
hardness 2s on n input bits and produce a collection of one-way functions on
n − s + O(log n) input bits. Thus, unless f has hardness very close to 2n, in
general the number of secret inputs bits must remain linear if one wants to have
any hardness at all.

Discussion Ideally, one would like to use only as many secret bits as the security
one gets from the one-way function (it is clear that at least that many bits are
necessary: a one-way function with n secret input bits can be easily inverted with
probability 2−n). Indeed, typical conjectured one-way functions, for example,
RSA or discrete logarithm, are known to provide less security than 2n (for the
above examples, at most roughly 2n1/3

). Our negative results show that this is
not possible in general with a black-box reduction (although we do not rule it
out for specific functions such as discrete logarithm, of course). Our positive
result, however, shows that if this weaker than optimal security manifests itself
in a “structural” way, i.e., with the function having fewer outputs (a one-way
function with k output bits can be easily inverted with probability 2−k), then
reduction in the number of inputs bits is possible.

It is natural to ask, of course, if one can not simply use the same one-way
function f on a shorter input. It should be noted that our negative results
do not consider such constructions, and hence do not rule them out. However,
this option is unavailable when f is a fixed-length function secure in a concrete
sense, such as a 128-bit block cipher or a hardware device implementing modular
exponentiation for a 2,048-bit modulus. In this case, our impossibility results
indicate that if we are given a hardware implementation of a one-way function
we should use it with its full input length (unless we can look inside the box and
learn something from there). This last observation adds motivation to results
that take as input an exponentially hard one-way function and construct from
it a pseudorandom generator with weaker security (of nlog n) (e.g., some of the
results stated in [Hol06,HHR06a] and the one in Appendix A in this paper).
These results would be less interesting if there was a direct method of trading
input length for security.

Even when the one-way function has variable input length, using it on a
shorter input will reduce security. Of course, our construction also reduces se-
curity, but the security loss (i.e., security of fh with n-bit f as compared to
security of f on n bits) is polynomial. In contrast, simply using f on a shorter
input can reduce security more than polynomially when the reduction in input
length is superlinear.

Security comparison of the original f and our construction fh depends on
what parameters are set to equal each other. For example, we can compare the
security of f on n bits to the security of fh with a n-bit f (thus equating the input
length to f , and hence the output length and likely most of the computational
cost). In that case, fh incurs a polynomial deterioration in security. Herzberg
and Luby [HL92] advocate equating the secret input length. In that comparison,

Saving Private Randomness 7

our constructions can actually be more secure that f , because f needs all n bits
to be secret, while fh and our PRG need only k < n secret bits.

2 Definitions and Notation

If Y is a set, we denote by Y also the uniform distribution over that set, unless
another distribution on Y is specified. We denote by Un the uniform distribution
over {0, 1}n. Given a distribution X and a function f : X → Y , we denote by
f(X) the induced distribution on Y .

Let P and Q be distributions over some finite domain X. The collision-
probability of P is CP (P) =

∑
x∈X P (x)2. P and Q ε-close (or have statistical

distance ε) if for every A ⊆ X it holds that |Prx←P (A) − Prx←Q(A)| ≤ ε
(equivalently, 1

2

∑
x∈X |PrP [x]− PrQ[x]| ≤ ε).

We assume familiarity with the standard notions of computational indis-
tinguishability, one-way functions and pseudorandom generators (with public
inputs, or equivalently, as public-coin collections), which are given in the full
version of this paper [DHR07].

Definition 1 (Regular functions). A function f : {0, 1}∗ → {0, 1}∗ is regular
if for any x, y ∈ {0, 1}n, |f−1(f(x))| = |f−1(f(y))|. If k(n) = − log(|{f(x) | x ∈
{0, 1}n}|) then f is said to be regular with output entropy k. When k is also
polynomial-time computable on input 1n, f is known-regular.

It is also customary to say that f is an α-regular function (for some α : N→ N)
— this means that f is a regular function with output entropy k(n) = n −
log α(n), i.e. preimage sizes are equal to α(n).

Definition 2 (Family of almost pairwise-independent hash functions).
Let {Xn}n∈N,{Yn}n∈N be two families of subsets of {0, 1}∗. For any n ∈ N let
Hn be a collection of functions where each h ∈ Hn is from Xn to Yn. {Hn}n∈N
is an (efficient) family of δ-almost pairwise-independent hash functions if: 1. there
is a polynomial-time sampler which on n ∈ N outputs a description of randomly
chosen h ∈ Hn, 2. for any h ∈ Hn, |h| (i.e., the description length of h) is
polynomial in log |Xn|, 3. each h ∈ Hn is a polynomially-computable function,
and 4. for all x 6= x′ ∈ Xn and all y, y′ ∈ Yn,∣∣∣∣ Pr

h← Hn

[h(x) = y
∧

h(x′) = y′]− 1
|Yn|2

∣∣∣∣ ≤ δ(n).

A 0-almost pairwise independent family is called simply pairwise independent.

There are various constructions of efficient families of pairwise-independent hash
functions (i.e. δ = 0) for any Xn = {0, 1}n and Yn = {0, 1}`(n) whose description
length (i.e., |h|) is linear in max{n, `(n)} (e.g., [CW77]). It is possible to con-
struct δ-almost pairwise independent families for δ > 0 whose description size
depends very mildly on the input size. In particular, using [CW77], [WC81] and
[NN93] one gets constructions of efficient families of almost pairwise-independent
hash functions for Xn = {0, 1}n and Yn = {0, 1}`(n) whose description length is
O(log(n) + `(n) + log(1/δ)).

8 N. Dedić, D. Harnik, and L. Reyzin

Proposition 1. Let {Hn} be a family of δ-almost pairwise independent hash
functions from Xn to Yn. Then for any n, and any distinct x1, x2 ∈ Xn the
following distributions have statistical distance at most δ|Yn|2/2: 1. uniform on
Yn × Yn, 2. (h(x1), h(x2)) for uniformly random h ∈ Hn.

Proof: For any y1, y2 ∈ Yn,∣∣Prh[(h(x1), h(x2)) = (y1, y2)]− Pr(z1,z2)∈Yn×Yn
[(z1, z2) = (y1, y2)]

∣∣ ≤ δ by defi-
nition. Summing over all y1, y2 ∈ Yn and dividing by 2, we get the desired result.

�
To simplify exposition, we will often work with (almost) pairwise independent

hash functions on some fixed domain and range X and Y (rather than consider
families {Xn}, {Yn}).

Definition 3 (g-Domination). Let B and C be distributions on the same set
Π, and g a real-valued function. We will say that C g-dominates B if ∀S ⊆
Π, PrC [S] ≥ g(PrB [S]) (this is a generalization of the notion of “dominates”
from [Lev86], which contemplated linear g).

Lemma 1. If C g-dominates B for a convex function g, then for any distribu-
tion D on a set Φ, D × C g-dominates D ×B.

Proof: Let E ⊂ Φ×Π. Let p(π), for π ∈ Π, be Prφ← D[(φ, π) ∈ E].

Pr
D×C

[E] = E
π ← C

p(π)

=
∫ 1

0

Pr
π ← C

[p(π) > α] dα (using E(x) =
∫

Pr[x > α] dα)

≥
∫ 1

0

g
(

Pr
π ← B

[p(π) > α]
)

dα

≥ g

(∫ 1

0

Pr
π ← B

[p(π) > α] dα

)
(Jensen’s inequality, since g is convex)

= g
(

E
π ← B

p(π)
)

= g

(
Pr

D×B
[E]

)
. �

A common approach in cryptographic reduction is to focus only on the subset
of B for which p(π) is large, and use Markov’s inequality to obtain g′-domination
of D × B by D × C, for g′ ∈ ω(g). Instead, this lemma, which takes all subsets
into account, saves the increase in g and the corresponding loss of tightness in
reductions.

3 One-way Functions and Public Randomness

Here we show that a one-way function needs only as many secret input bits as
the number of output bits it produces. We state our theorem in terms of bits in
order to get a more concise statement; neither the domain nor the range need
to be restricted to bit strings of a particular length, as shown in Lemma 2.

Saving Private Randomness 9

Theorem 1. Let f : {0, 1}∗ → {0, 1}∗ be a one-way function that on n-bit in-
puts has at most 2k distinct outputs. Let Hk,n be a family of pairwise-independent
functions from {0, 1}k to {0, 1}n. Define the domain-sampled f as fh(x) def=
f(h(x)) for h ∈ Hk,n and x ∈ {0, 1}k. Then {fh}h∈Hk,n

is a public-coin col-
lection of one-way functions.

The theorem is immediate from the following lemma.

Lemma 2. Let f : Y → Z be a function, where |Z| = K. Let X be a distribution
with collision probability at most 1/K, and let HX,Y be a family of pairwise-
independent functions from the elements of X to Y . For every h ∈ HX,Y define
fh : X → Z as fh(x) def= f(h(x)). Then any adversary A that inverts fh with
probability at least ε over x ∈ X and h ∈ HX,Y can be used to invert f on
uniformly random inputs from Y with probability at least ε4/21− 1/(4K2) (ε2/2
if f is regular) in the same running time as A (plus the time required to pick
and evaluate a random hash function from HX,Y).

Proof: Suppose that an algorithm A, when given (fh(x), h) computes x′ such
that fh(x′) = fh(x) with probability ε. That is,

Pr
(x,h)← (X,HX,Y)

[fh(A(fh(x), h)) = fh(x)] ≥ ε

Consider the following procedure MA for inverting f : on input z ∈ Z, choose a
random h′ ∈ HX,Y , let x′ = A(z, h′), and output h′(x′). Note that the notation
h′ in MA, rather than h, emphasizes that the h′ does not necessarily have to
be consistent with z. While there exist many h with x such that z = fh(x), the
chosen h′ might not be one of them.

We will analyze the success probability of MA as follows. The success of A
(and therefore MA) is determined by its internal coin flips and its input (z, h′).
We will show that the distribution of (coinflips, input) pairs that A sees when run
within M g-dominates the distribution for which A is designed, for a polynomial
g; therefore, the probability of the event that MA succeeds in inverting f is
polynomially related to the probability of the event that A inverts the domain-
sampled f . We will first show g-domination for inputs only, ignoring the coinflips,
and take care of the coinflips later.

It is worth comparing the following proposition, about g-domination of in-
puts, to the aforementioned lemma by Dodis and Smith [DS05, Lemma 12],
which analyzes the same construction but with longer inputs to h, showing that
(f(y), h′) is close to (f(h(x)), h). Our proof technique is entirely different and
builds on the technique of [HHR06b].

Proposition 2. For any (not necessarily one-way) f : Y → Z with K distinct
outputs, distribution X with CP (X) ≤ 1/K, and pairwise-independent hash
family HX,Y , the distribution (f(y), h′) (where y ← Y, h′ ← HX,Y) g-dominates
(f(h(x)), h) (where x← X, h← HX,Y), for g(δ) = δ4/21− 1/(4K2), or g(δ) =
δ2/2 if f is regular.

10 N. Dedić, D. Harnik, and L. Reyzin

Proof: We need show that for any S ⊆ Z ×HX,Y ,

Pr
(x,h)← X×HX,Y

[(fh(x), h) ∈ S] ≥ δ ⇒ Pr
(y,h′)← Y×HX,Y

[(f(y), h′) ∈ S] ≥ δ4

21
− 1

4K2

(replace the right-hand-side with δ2/2 if f is regular).
First we give a one-paragraph outline of the proof of this proposition. Call the

points in S good. Let (y, h) ∈ Y × HX,Y be called good if and only if (f(y), h)
is good. We will divide the space Y of inputs to f into K equal-size chunks,
producing a set of chunks called C. Call (c, h) ∈ C ×HX,Y good if ∃y ∈ c such
that (y, h) is good (i.e., a chunk is good if contains a preimage of a good point
in Z). We will show, simply using properties of HX,Y , that the fraction of good
chunks (under the uniform distribution) is at least δ2/2.125. This will imply
that A works on some portion of sufficiently many chunks. Then, using the fact
that f has only K outputs, we will show that A works on a sufficiently large
portion of most of these chunks. The actual proof is in in the full version of this
paper [DHR07]. �

MA succeeds whenever A succeeds; in turn, the success or failure of A de-
pends on the point (z, h′) chosen, and on the coin flips of A. Let Φ, with prob-
ability distribution D, be the space of all coin flips of A. Let Π = Z × HX,Y ,
let B be the distribution on Π obtained by choosing x ← X, h ∈ HX,Y , and
z = fh(x), and let C be the distribution on Π obtained by choosing a uniform
y ∈ Y , h′ ∈ HX,Y , and z = f(y). Applying Lemma 1 below to the event E
that that A succeeds (here g(δ) = δ4/21− 1/4K2, or δ2/2 in the case of regular
functions), we obtain the desired statement. �

3.1 The Case of Many Outputs

Theorem 1 can be used to reduce the number of secret input bits to a one-way
function provided the function has a sufficiently small output range. As we show
in this section, the same technique is useful even if the function has large output
range, as long as an appreciable fraction of the inputs falls into a rather small
subset of the output range. Namely, suppose there is a set of outputs OH of size
2k such that Pry∈{0,1}n [f(y) ∈ OH] ≥ pH . If k <

√
pHn, then it is possible to

reduce the number of secret input bits from n to k2/pH , as follows.
Let X be a distribution of collision probability 1/2k, and HX,Y and fh(x) as

above. In the full version [DHR07], we show that fh(x) is a collection of weak
one-way functions, i.e., is not invertible with probability appreciably more than
1− pH .

We can then use the standard hardness amplification technique of Yao [Yao82]
in order to convert the weak one-way function collection into a strong one. The
technique simply concatenates many independent copies of the weak one-way
function. The number of repetitions needed to reduce the easily invertible frac-
tion of inputs to (negligibly more than) 1/2k from 1−pH is k/pH (thus requiring
k2/pH secret bits) This gives the following result, whose proof is similar to the
proof of Theorem 1 and is outlined in the full version of this paper.

Saving Private Randomness 11

Theorem 2. Let f : {0, 1}∗ → {0, 1}∗ be a one-way function and suppose
for every n there exists a set OH(n) of size k(n) such that Pry∈{0,1}n [f(y) ∈
OH(n)] ≥ pH(n). For every n ∈ N let Hk,n be a family of pairwise-independent
functions from k bits to n bits. Denote ` = k/pH and define fh(x1, . . . , x`)

def=
(fh1(x1), . . . , fh`

(x`)) for h = (h1, . . . , h`) ∈ H`
k,n and x1, . . . , x` ∈ {0, 1}k. Then

{fh}h∈H`
k,n

is a public-coin collection of one-way functions.

4 Pseudorandom Generator Collection from any Known
Regular OWF

In this section we show a construction of a pseudorandom generator collection
from any regular one-way function. Unlike in the randomized iterate construc-
tions of [GKL93,HHR06b], here the underlying function f has known (i.e. effi-
ciently computable) regularity. We use this knowledge to get a PRG collection
with particularly short secret input and little security loss.

Namely, suppose f is a regular OWF with output entropy k(n), and that
(t(n), ε(n)) is the security of f . On secret seed of length sS(n) = k(n), our PRG
collection attains the security of (poly(n) + t(n), poly(ε(n))) (Theorem 3). For
example, if k(n) = n1/3, then we get security comparable to (t(n), ε(n)) using
only n1/3 secret bits. And since, for sufficiently small k, the public index of our
PRG collection is of linear size O(n), one can also view it as a PRG, rather
than collection, with good security preservation: on seed length O(n) it attains
security (poly(n) + t(n), poly(ε(n))).

Our construction in fact requires a somewhat weaker condition on f than
known regularity: f still must be regular, but it is sufficient to have an efficiently
computable upper bound k(n) on the output entropy of f . Note that a more
accurate bound leads to greater savings in the number of secret seed bits.

Theorem 3. Let f be a regular one-way function with security (t(n), ε(n)) and
output entropy at most k(n) (for k computable in time polynomial in n). Then
there is a public-coin PRG collection G, which is (poly(n) + t(n), poly(ε(n)))-
indistinguishable on secret seeds of length sS(n) = k(n) and public seeds of length
sP (n) = 2n+O(k(n) log k(n)). (In particular sP (n) = O(n) if k = O(n/ log n).)

Before the actual construction we present the basic tool of the randomized it-
erate [GKL93,HHR06b]. We define it slightly differently than [GKL93,HHR06b]:
theirs outputs a value in Im(f), and ours outputs a hash function image.

Definition 4 (The mth Randomized Iterate of f). Let f : {0, 1}k → {0, 1}`
and let H be a family of functions from {0, 1}` to {0, 1}k. For input x ∈ {0, 1}k
and h = (h1, . . . , ht) ∈ Ht define the mth Randomized Iterate fm : {0, 1}k×Ht →
Im(f) for every m ∈ [t] recursively as:

fm(x, h) = hm(f(fm−1(x, h)))

where f0(x, h) = x.

12 N. Dedić, D. Harnik, and L. Reyzin

We first show a construction with public seed length 2n + O(k2) and then
describe how it may be reduced to as low as 2n +O(k log k), following the same
technique as in the HHR construction.

Construction 1. The generator takes the following as inputs:
1. A secret random x ∈ {0, 1}k
2. A (public) description of one hash function ĥ from a family Hk,n of pairwise

independent hash functions from k bits to n bits (requires 2n bits).
3. (Public) descriptions of k hash functions h = (h1, . . . , hk) from a family
H`,k of 2−3k-almost pairwise independent hash functions from ` bits to k
bits (requires O(k) bits each).

4. A (public) random string r ∈ {0, 1}k for the Goldreich-Levin [GL89] hardcore
bit br (requires k bits).

The generator is defined as follows:

Gĥ,h,r(x) = br(x), br(f1
ĥ
(x, h)), . . . , br(fk

ĥ
(x, h)) ,

where f i
ĥ

denotes the ith randomized iterate of the function fĥ = ĥ ◦ f (see
Figure 1).

Theorem 4. Suppose f is regular one-way with output entropy at most k(n) and
security (t(n), ε(n)). Then G in Construction 1 is a public-coin pseudorandom
generator collection. It is (poly(n) + t(n), poly(ε(n)))-indistinguishable on secret
seeds of length sS(n) = k(n) (and public seeds of length sP (n) = 2n + O(k2)).
(In particular, sP (n) = O(n) if k(n) = O(

√
n)).

Proof: G takes k bits and outputs k + 1 bits. Thus it is expanding. We must
now prove that it is indistinguishable. It is tempting to first fix ĥ and since by
Theorem 1 fĥ is a one-way function, simply plug fĥ in the HHR construction.
However, the HHR construction relies heavily on the fact that the underlying
function is regular or at least very close to regular. The function fĥ on the other
hand is not guaranteed to be regular once ĥ is fixed, even if f is regular to
begin with. If ĥ were from a k-wise independent family (rather than a pairwise
independent one) then one can prove that with overwhelming probability fĥ is
close to regular. This is not the case with pairwise independent ĥ and on the
contrary, it is likely that with noticeable probability fĥ will deviate too much
from a regular function. Our proof follows the basic structure of the proof of
the HHR construction, so we give a sketch, detailing the parts which differ from
[HHR06b].

As in the previous iterative constructions (such as [BM82,Yao82,Lev87],
[GKL93,HHR06b]), the key to the proof is the unpredictability of the sequence(

fk
ĥ
(x, h), fk−1

ĥ
(x, h), . . . , f1

ĥ
(x, h), x

)
,

even for an adversary who is given (h, ĥ). Once this is shown (Lemma 3), it
follows from the stronger Goldreich-Levin theorem [Lev93], that the output of
the PRG is next-bit unpredictable with essentially the same security. Next-bit

Saving Private Randomness 13

unpredictability is equivalent to indistinguishability with a security loss 1/kO(1)

(see [Gol01], Theorem 3.3.7). Thus the output of G is indeed pseudorandom,
with security essentially the same as of the above sequence. We now turn to the
proof of unpredictability.

Let Supp(n) = Hk
`,k×Hk,n×{0, 1}k, and call an element of Supp an instance.

Let Φ = {0, 1}N denote the set of all coin toss sequences. We say that an algo-
rithm A inverts i-th iteration (on random coins ω and instance (h, ĥ, f i

ĥ
(x, h)))

if
A(ω, h, ĥ, f i

ĥ
(x, h)) = f i−1

ĥ
(x, h).

Let D(n) be the distribution of instances produced by the generator, i.e.
(h, ĥ, f i

ĥ
(x, h)) for uniform (h, ĥ, x). Let Z(n) be the uniform distribution of

instances, i.e. uniform (h, ĥ, z).

Lemma 3. Let A be an algorithm with running time ≤ t(n). Suppose that

Pr[A inverts i-th iteration on (ω, h, ĥ, f i
ĥ
(x, h))] ≥ ε(n),

where ω is uniform and (h, ĥ, f i
ĥ
(x, h)) is distributed according to D(n). Then

there is an algorithm B which runs in time ≤ poly(n) + t(n) and inverts f(x)
with probability ≥ ε2.5(n)/(16(k + 1)) (for |x| = n).

Proof: On input y, the algorithm B generates random (h, ĥ),
sets u← A(h, ĥ, hi(y)), and outputs ĥ(u).

Fix some n and then we can omit it from the notation. B chooses the hash
functions independently of y, i.e. it produces instances distributed according
to Z. However, A is guaranteed to invert with probability ε on a different dis-
tribution D. The bulk of the proof is devoted to proving that A inverts with
comparable probability ≈ ε2 also on distribution Z. The basic idea of the proof
is similar to [HHR06b]: we show that collision probabilities of Z and D are
closely related CP (Z) ≥ O(k) · CP (D), and from that we conclude that event
probabilities are closely related as well PrZ [S] ≥ (PrD[S])2/O(k). In particular,
the inversion event happens with probability ε2/O(k) under Z. The actual proof
is more involved than this simple outline, the main complications being: 1. there
is a single expanding hash function ĥ which is used in every iteration, so the
technique of [HHR06b] is not directly applicable, 2. contracting hash functions
hi cause collisions, so an inverse of i-th iteration may be unrelated to y. The
details of the proof are given in the full version of this paper [DHR07]. �

Reducing the public seed length. To reduce the public seed length of the above
construction from 2n + O(k2) to 2n + O(k log k), we follow exactly the same
derandomization technique as in the HHR construction. The idea is to not use
independent choices of hash functions for h = (h1, . . . , hk) but rather choose
functions that are correlated yet satisfy the proof of the previous section. The
central observation is that the collision probability of a randomized iterate can
be computed by a bounded space program. More precisely, there is a simple

14 N. Dedić, D. Harnik, and L. Reyzin

bounded space branching program such that its input tape consists of the choice
of h and its acceptance probability is precisely the collision probability of fk

ĥ

(the probability is over inputs x, h) for every fixed ĥ. Thus replacing the hash
functions in the input tape by the output of a generator that fools bounded
space programs (such as the generators of [Nis92,INW94]) changes the collision
probability only by a small additive error. This is sufficient to make the proof of
the previous section go through. Loosely speaking, the bounded space program
takes two initial inputs x1 and x2.9 At the first step the program reads the
randomizing hash function h1 and computes f1

ĥ
(x1, h

1) and f1
ĥ
(x2, h

1) and stores
only these two intermediate values (not storing x1 and x2). At each iteration
the program reads a new randomizing hash and computes the next randomized
iterate of the two values, while not storing the previous one. At the end the
program simply compares the two values and outputs 1 only if they are the
same value. An accurate account of such a program, bounded space generators
and the revisions needed in the proof appears in [HHR06b].

Construction 2. The generator takes the following as inputs:

1. A secret random x ∈ {0, 1}k
2. Description of one hash function ĥ from a family Hk,n of pairwise indepen-

dent hash functions from k bits to n bits (requires 2n bits).
3. Seed s ∈ {0, 1}O(k log k) to a bounded space generator BSG with space bound

2k and error 2−k. The output BSG(s) = (h1, . . . , hk) of the generator con-
sists of the descriptions of k hash functions from a family H`,k of almost
pairwise independent hash functions from ` bits to k bits.

4. A random string r ∈ {0, 1}k for the Goldreich-Levin hardcore bit br (requires
k bits).

The generator is defined as follows:

G′(x, ĥ, s, r) = br(x), br(f1
ĥ
(x,BSG(s))), . . . , br(fk

ĥ
(x,BSG(s))), ĥ, s, r

Where f i
ĥ

denotes the ith randomized iterate of the function fĥ = ĥ ◦ f .

The seed length of the aforementioned generators is O(log |H`,k| · log k) (which
equalsO(k log k) with our choice of parameters) and thus the overall construction
takes seed length 2n +O(k log k).

On using secret seeds from non-uniform distributions. A simple modification
makes our PRG secure even when used with secret seed drawn from any distri-
bution X as long as CP (X) ≤ 2−k. The modification can be applied to either
Construction 2 or Construction 1. The public seed then increases by only O(k)
bits, therefore it remains unchanged asymptotically. Please see Appendix B for
a brief description of the modification.
9 The program actually computes the collision probability for one fixed pair of inputs

x1, x2. The actual collision probability is the average over all possible input fixings.
But since the generator fools each program separately, it will also fool the average.

Saving Private Randomness 15

5 Black-Box Separations

As discussed in the introduction, it is natural to ask under which conditions one
can reduce the input length to a one-way function below its “native” length n.
More abstractly, we want to know: Is there a generic way of securely using a
OWF on n-bit inputs, if we are given only ` < n random bits? How small can `
be?

We formalize these questions using circuits, where it is easy to talk about
security on fixed-length input. (It is possible to formulate them in the uniform
context, but they become too cumbersome.) We then give some indications that
improving upon our results requires non-black-box reductions. Roughly, by “no
black-box reduction of P to Q” we mean that the security proof “if Q is secure
then P is too” is necessarily non-black-box (the construction of P from Q, how-
ever, may be black-box). Before elaborating, let us informally summarize the
optimality results:
1. For any l < n, there is no black-box reduction of l-bit input OWF to regular

n-bit-input OWF (and, as a corollary, no black-box reduction to either OWF
of known hardness, or arbitrary OWF).

2. For any l < n− log α, there is no black-box reduction of l-bit input one-way-
collection to α-regular n-bit-input OWF (and, as a corollary, no black-box
reduction to either OWF of known hardness < 2n/α, or arbitrary OWF).

3. For any s < n and l < n − s, there is no black-box reduction of l-bit input
one-way-collection to an n-bit input OWF of hardness at most s.

5.1 Formal Statements

Let Fn denote the set of all f : {0, 1}n → {0, 1}n. Let ν(n) denote a negligible
function (one decaying faster than any inverse polynomial). Note that 1/ν(n) is
then a superpolynomial function.

Circuits, oracle circuits. Let |A| denote the size of the circuit A. For an oracle
circuit A and a function f : {0, 1}n → {0, 1}m, Af denotes the oracle circuit
in which each oracle gate with input x outputs f(x). If G = {gi}i∈{0,1}n is a
collection of functions gi : {0, 1}n → {0, 1}m then AG denotes the oracle circuit
in which each oracle gate, on input (i, x) outputs gi(x).

Inverter. A circuit A : {0, 1}l → {0, 1}n is a p-inverter for f : {0, 1}n → {0, 1}l
if Prx∈{0,1}n [A(f(x)) ∈ f−1(f(x))] ≥ p. A 1-inverter is called perfect.

Black-box reduction. Let F ⊆ Fn. A pair of circuits (R, g) is an (l, p)-reduction
to F if for any f ∈ F :
1. g has l input wires.
2. If V is a perfect inverter for gf , then RV,f is a p-inverter for f .
A sequence (Rn, gn) of (ln, pn)-reductions to Hn ⊆ Fn is called d(n)-saving if:
1. (|Rn|+ |gn|)/pn is polynomial in n, 2. n− ln = d(n).

Let Fn,α
reg ⊆ Fall denote its subset of all α-regular functions. Let Fn,s

low ⊆ Fall

denote the subset of all at most s-hard permutations (permutations which have
a 1/2-inverter of size < s).

16 N. Dedić, D. Harnik, and L. Reyzin

Black-box collection reduction. A pair of circuits (R, g) is a (l,m, p)-collection-
reduction to F if:
1. For any f ∈ F , and any (i, x) ∈ {0, 1}m×{0, 1}l, gf (i, x) is of the form (i, y).
2. If V is a perfect inverter for gf , then RV,f is a p-inverter for f .
A sequence (Rn, gn) of (ln,mn, pn)-reductions to Hn ⊆ Fn is called d(n)-saving
if: 1. mn(|Rn|+ |gn|)/pn is polynomial in n, 2. n− ln = d(n).

The following two technical lemmas are at the heart of our separations. Their
proofs can be found in the full version of the present article [DHR07].

Lemma 4. Let l = n − c and p ≥ 2−c/2+1. If (R, g) is an (l, p)-reduction to
Fn,α

reg then |g| > 2c/2 or |R| > p2n−a+3.
Lemma 5. Let l = n− log α−d. If (R, g) is a (l,m, p)-collection-reduction from
Fn,α

reg , then |R| > p2d−4/m.

Theorem 5. Let α(n)=ν(n)2n. There is no ω(log n)-saving reduction to Fn,α(n)
reg .

Proof: Suppose to the contrary that (R, g) is a ω(log n)-saving reduction to
Fn,α(n)

reg . Consider some particular f , and let D be the set of all possible oracle
queries that gf can ask, on any input. Then |S| ≤ |g|2l, because on each of the
2l distinct inputs, g asks at most |g| queries. The basic idea of the lower bound
proof is that, for l < n−ω(log n), and polynomial-sized g, S occupies a negligible
fraction of f ’s domain. But the one-way f can be easy on S, and gf is then not
one-way.

Formally: apply Lemma 4 to (Rn, gn) with c = ω(log(n)) and p = p(n). Since
2c/2 = 1/ν(n) and 2n−log α(n) = 2n/α(n) = 1/ν(n) we conclude that |Rn|+ |gn|
is superpolynomial. �

Theorem 6. Let α(n) = ν(n)2n. There is no (ω(log(n)) + log α(n))-saving
collection-reduction to Fn,α(n)

reg .
Proof: Suppose that (R, g) is the collection-reduction which contradicts the
theorem statement, and let l be the number of g’s input wires. We show that
it is possible to build from (R, g) a circuit B of size about 2l which inverts any
f ∈ Fn,α(n)

reg . To do this, note that RV inverts any f ∈ Fn,α(n)
reg as long as it

is given an inverter V for gf . But V can be implemented as a circuit of size
2l/ν(n). Therefore RV can be implemented (without any oracle) as a circuit of
size about |R|2l/ν(n). But this is too small to invert any function f ∈ Fn,α(n)

reg .
The formal argument follows.

If |gn| is superpolynomial we are done. Else suppose |gn| grows polynomially
fast. Apply Lemma 5 with d = ω(log(n)) (and log |I| < |gn| since log |I| is at
most the number of input wires of gn), to get that |Rn| > p(n)2ω(log(n))/|gn|
which is superpolynomial. �

Theorem 7. Let s(n) < n. There is no (ω(log(n)) + s(n))-saving collection-
reduction to Fn,s(n)

low .
Proof Sketch: Let f be a random permutation and let h(p, y) output x =
f−1(y) if p is an s-bit prefix of x. This ensures that f is “exactly” s-hard. For
any construction gf with input size l = n−s−d (and description of family index
m polynomial in n), we can show an oracle V which inverts it, but such that V

Saving Private Randomness 17

does not significantly reduce the hardness of f . Some minor modifications are
needed to ensure that (f, h) is a permutation.

V , on input (i, y), simply outputs a random x for which gf
i (x) = y. To see

that f is still s-hard, suppose there is a poly-size inverter A(f,h),V for f . From
it one can build a circuit Bf which perfectly simulates A(f,h),V . Each call to h
can be simulated using 2n−s queries to f , and each call to V using ≈ 2l queries
to f . So Bf calls f about |B|(2l + 2n−s) < |B|(2 · 2n−s) times. With this many
queries, the probability of inverting f cannot exceed ≈ 2−s, so f is still s-hard.

�
Corollary 1 (To Theorem 5). There is no ω(log n)-saving reduction to Fn.

Corollary 2 (To Theorem 6). There is no (ω(log n)+log α(n))-saving reduc-
tion to Fn.

Acknowledgements
We thank anonymous referees for their many helpful suggestions. Research of
N.D. and L.R. was supported, in part, by IPAM at UCLA, and by US NSF grants
CCF-0515100, CNS-0546614 and CNS-0202067. Research of D.H. was supported
by a Lady Davis Fellowship and by a grant from the Israeli Science Foundation.

References

[BM82] M. Blum and S. Micali. How to generate cryptographically strong sequences
of pseudo random bits. In 23rd FOCS, pages 112–117, 1982.

[CW77] I. Carter and M. Wegman. Universal classes of hash functions. In 9th ACM
Symposium on Theory of Computing, pages 106–112, 1977.

[DHR07] N. Dedić, D. Harnik, and L. Reyzin. Saving private randomness in one-
way functions and pseudorandom generators. Technical Report 2007/458,
Cryptology e-print archive, http://eprint.iacr.org, 2007.

[DS05] Y. Dodis and A. Smith. Correcting errors without leaking partial informa-
tion. In 37th STOC, pages 654–663, 2005.

[GIL+90] O. Goldreich, R. Impagliazzo, L. Levin, R. Venkatesan, and D. Zuckerman.
Security preserving amplification of hardness. In 31st IEEE Symposium on
Foundations of Computer Science, pages 318–326, 1990.

[GKL93] O. Goldreich, H. Krawczyk, and M. Luby. On the existence of pseudorandom
generators. SIAM Journal of Computing, 22(6):1163–1175, 1993.

[GL89] O. Goldreich and L.A. Levin. A hard-core predicate for all one-way functions.
In 21st ACM Symposium on the Theory of Computing, pages 25–32, 1989.

[Gol01] O. Goldreich. Foundations of Cryptography. Cambridge University
Press, 2001.

[HHR06a] I. Haitner, D. Harnik, and O. Reingold. Efficient pseudorandom generators
from exponentially hard one-way functions. In 33rd ICALP, 2006, Pt. II,
LNCS, volume 4052, pages 228–239. Springer, 2006.

[HHR06b] I. Haitner, D. Harnik, and O. Reingold. On the power of the randomized
iterate. In CRYPTO ’06, LNCS, volume 4117, pages 22–40. Springer, 2006.

[HILL99] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom gen-
erator from any one-way function. SIAM Journal of Computing, 29(4):1364–
1396, 1999.

18 N. Dedić, D. Harnik, and L. Reyzin

[HL92] A. Herzberg and M. Luby. Pubic randomness in cryptography. In CRYPTO
’92, LNCS, volume 740, pages 421–432. Springer, 1992.

[Hol06] T. Holenstein. Pseudorandom generators from one-way functions: A simple
construction for any hardness. In TCC ’06, pages 443–461, 2006.

[INW94] R. Impagliazzo, N. Nisan, and A. Wigderson. Pseudorandomness for network
algorithms. In 26th STOC, pages 356–364, 1994.

[Lev86] Leonid A. Levin. Average case complete problems. SIAM Journal on Com-
puting, 15(1):285–286, 1986.

[Lev87] L. A. Levin. One-way functions and pseudorandom generators. Combina-
torica, 7:357–363, 1987.

[Lev93] Leonid A. Levin. Randomness and nondeterminism. The Journal of Symbolic
Logic, 58(3):1102–1103, 1993.

[Nis92] N. Nisan. Pseudorandom generators for space-bounded computation. Com-
binatorica, 12(4):449–461, 1992.

[NN93] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions
and applications. SIAM Journal on Computing, 22(4):838–856, 1993.

[WC81] M. Wegman and J. Carter. New hash functions and their use in authenti-
cation and set equality. Journal of Computer and System Sciences, 1981.

[Yao82] A. C. Yao. Theory and application of trapdoor functions. In 23rd IEEE
Symposium on Foundations of Computer Science, pages 80–91, 1982.

A Further Shortening the PRG Seed

In our pseudorandom generator, the output of the last hash function has, intu-
itively, almost k bits of entropy. It entropy can be converted to pseudorandom-
ness using an extractor with a public seed (of length k). To get this pseudoran-
domness to be, e.g., nlogc n-close to uniform for some c, one will lose Θ(logc+1 n)
bits. If we take this approach, then the we need to run the randomized iter-
ate construction not k times, but Θ(logc+1 n) times; thus, we need the space-
bounded generator to produce not k, but Θ(logc+1 n) hash functions, which can
be done in space O(k log(logc+1 n)) = O(k log log k). The result is a PRG with
seed length 2n+O(k log log k) of which only k bits needs to be secret, but security
reduced to the bare minimum nlogc n.

B On using secret seeds from non-uniform distributions

Suppose X is a distribution with the only guarantee that CP (X) ≤ 2−k. We
outline the modification which makes our PRG secure even when its seed x is
drawn from X. Namely, suppose that the support of X is {0, 1}m, and let Hm,k

be a family of 2−3k-almost pairwise independent hash functions from {0, 1}m
to {0, 1}k. The modified generator first pre-processes its seed x by applying a
random h0 ∈ Hm,k to x, and then uses our PRG (either of Construction 2 or of
Construction 1) on secret seed h0(x). The hash function h0 need not be secret.
As explained in Section 2, h0 can be specified using O(k) bits, therefore the
public seed length remains essentially unchanged (O(k log k) for Construction 2,
or O(k2) for Construction 1).

