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Abstract. We present a general notion of channel for cryptographic
purposes, which can model either a (classical) physical channel or the
consequences of a cryptographic protocol, or any hybrid. We consider
simultaneous secrecy and reliability amplification for such channels. We
show that simultaneous secrecy and reliability amplification is not pos-
sible for the most general model of channel, but, at least for some values
of the parameters, it is possible for a restricted class of channels that
still includes both standard information-theoretic channels and keyless
cryptographic protocols.
Even in the restricted model, we require that for the original channel,
the failure chance for the attacker must be a factor c more than that for
the intended receiver. We show that for any c > 4, there is a one-way
protocol (where the sender sends information to the receiver only) which
achieves simultaneous secrecy and reliability. From results of Holenstein
and Renner (CRYPTO’05 ), there are no such one-way protocols for c <
2. On the other hand, we also show that for c > 1.5, there are two-way
protocols that achieve simultaneous secrecy and reliability.
We propose using similar models to address other questions in the theory
of cryptography, such as using noisy channels for secret agreement, trade-
offs between reliability and secrecy, and the equivalence of various notions
of oblivious channels and secure computation.

1 Introduction

Modern cryptography has its roots in the work of Shannon [35], using channels
as the model of communication where some secrecy is attainable [39, 9]. A cryp-
tographic protocol can also be interpreted as implicitly defining a computational
channel, where the loss of information is merely computational. For example,
consider a channel sending a message m as the pair consisting of a public key
pk, and an encryption c of m under pk. If the encryption scheme provides some
form of (even weak) security, a computationally bounded adversarial observer
of the channel output will only learn partial information about m, even though
information-theoretically the channel may well uniquely define its input.
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In some circumstances, it may not even be clear whether the limitation is
computational or informational. For example, an adversary may not be able
to perfectly tune in to a low-power radio broadcast. This might appear an
information-theoretic limitation, but improved algorithms to interpolate signals
or to predict interference due to atmospheric conditions could also improve the
adversary’s ability to eavesdrop.

In this work, we introduce a model of computation that combines information-
theoretic and computational limitations. Specifically, we present a general notion
of channel for cryptographic purposes, which can model either a (classical) phys-
ical channel or the consequences of a cryptographic protocol, or any hybrid.

We require our model to satisfy the following properties:

– [Agnostic] It should not matter why an adversary is limited. Protocols
designed exploiting an adversary’s weakness should remain secure whether
that weakness is due to limited information, computational ability, or any
other reason.

– [Composable] We should be able to safely combine a protocol that achieves
one goal from an assumption, and a second protocol that achieves a second
goal from the first, into one that achieves the second goal from the original
assumption.

– [Functional] The assumptions underlying our protocols should concern
what the parties can do, rather than concerning what they or the channels
through which they communicate are. In particular, we should be able to use
this to evaluate the danger of side information, and enhanced functionality
should not threaten secrecy properties.

– [Combining reliability and secrecy] Instead of viewing reliability of a
channel and its secrecy as separate issues, our model should combine the
two in a seamless way. We want to study how enhancing secrecy might im-
pact reliability, and vice versa. In other words, we view reliability as equally
necessary for the overall secrecy.

In this paper, we focus on the simultaneous secrecy and reliability amplifi-
cation for such channels. We start with a channel where the intended receiver
gets the transmitted bit except with some probability and the attacker can guess
the transmitted bit except with a somewhat higher probability. We wish to use
the channel to define one where the receiver gets the transmitted bit almost
certainly while only negligible information is leaked to the attacker. We show
that simultaneous secrecy and reliability amplification is not possible for the
most general model of channel, but, at least for some values of the parameters,
it is possible for a restricted class of channels that still includes both standard
information-theoretic channels and keyless cryptographic protocols.

Note that, traditionally, error-correction and encryption have been thought
of in communications theory as separate layers, with one performed first and
then the other on top. However, when one wants to leverage the secrecy of an
unreliable channel, it does not seem possible to separate the two. Using an error-
correcting code prior to secrecy considerations could totally eliminate even the
partial secrecy, and amplifying secrecy could make the channel totally unreliable.
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(In some sense, our solution alternates primitive error-correction stages with
secrecy amplification stages, but we need several rounds of each nested carefully.)

1.1 Our results

We propose a very general model of channel with state, which makes few assump-
tions about the way the channel is constructed or the computational resources of
the users and attackers. In the present paper, such a channel is used for commu-
nication between Alice and Bob, with an active attacker Eve. The channel has
certain reliability and secrecy guarantees, ensuring that Bob receives a bit sent
to him by Alice with sufficiently higher probability than Eve (see Section 2).

We show (in Section 3) how secrecy and reliability of such channels can be
simultaneously amplified with efficient protocols (using one-way communication
only), provided that the original channel has a constant-factor gap (at least 4)
between its secrecy and reliability (i.e., Eve is 4 times more likely to make a
mistake on a random bit sent by Alice across the channel than Bob is on any
given bit sent by Alice). We prove (in Section 4) that some constant-factor gap
(the factor 2) is necessary for any one-way protocol. Finally, we present (in
Section 5) an efficient two-way communication protocol for amplifying secrecy
and reliability, assuming the original channel has the factor 1.5 gap between
secrecy and reliability.

For our one-way protocol in Section 3, we tighten a result of Halevi and
Rabin [16] on the secrecy analysis of a repetition protocol. If the eavesdropper
has probability at most 1−α of guessing a bit sent across the channel from Alice
to Bob, then the eavesdropper has probability at most 1 − (2α)n/2 of learning
the bit, if this bit is sent across the channel n times. This improves upon the
analysis of [16], who showed 1− αn probability for the eavesdropper.

Our two-way protocol in Section 5 applies to secret-key agreement between
two parties both in the information-theoretic and complexity-theoretic setting,
extending the results of Holenstein and Renner [19] on one-way protocols.

1.2 Related work

Our results exhibit both technical and conceptual similarities with the rich line
of works on secrecy amplification for cryptographic primitives and protocols. A
number of them developed amplification results for both soundness and correct-
ness of specific two-party protocols [1, 32, 33, 37, 16, 15, 17, 4, 20, 5]. Differ-
ent from our work, however, these consider settings where one of two parties
is corrupt, and secrecy for the other party is desired. Here, we envision a sce-
nario with two honest parties, Alice and Bob, communicating in presence of
a malicious third party, Eve. Previously, this was only considered in works on
secrecy and correctness amplification for public-key encryption and key agree-
ment [11, 18, 19, 26]. We note that our framework is far more general than these
previous works.

Following Shannon’s impossibility result showing that perfect secrecy requires
a secret key as large as the plaintext [35] (see also [10]), there has been a large
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body of research in information-theoretic cryptography. This line of work shows
that perfect secrecy is possible, if one assumes that physical communication
channels are noisy. One such model of a noisy communication channel is Wyner’s
wiretap channel of [39], generalized by [9], and extensively studied since (see [25]
for a survey). A number of both possibility and impossibility results were shown
for various models of noisy channels, see, e.g., [7, 29, 30, 6, 31, 8, 38, 21, 12].

Different formalizations of secrecy in the information-theoretic setting were
studied by [2, 36, 22, 23]. In particular, Bellare et al. [2] consider the wiretap
channel and relate the information-theoretic notion of secrecy (traditionally used
in information-theoretic cryptography) to the semantic secrecy in the spirit of
[14] (used in complexity-theoretic cryptography).

We remark that in the information-theoretic approach to cryptography, the
focus is usually on what the channel is: for example, a channel between Alice
and Bob, with eavesdropper Eve, is modeled as a triple of correlated random
variables A,B,E, with certain assumptions on the joint distribution of these
variables. Then the question is studied what such a channel can be used for, and
how efficiently (e.g., at what rate). In contrast, our main focus is on the utilization
of the channel, i.e., what the channel can be used for. For example, if a channel
can be used for somewhat secret and reliable transmission of information, we
would like to know if that channel can be used to construct a new channel for
totally secret and reliable transmission.

Below we provide a more detailed comparison between our work and the
most closely related previous work.

Comparison with [19]. Perhaps the most closely related to the present paper
is the work by Holenstein and Renner [19] that considers the task of secret-key
agreement in the information-theoretic setting, where two honest parties, Alice
and Bob, have access to some correlated randomness such that the eavesdrop-
per, Eve, has only partial information on that randomness. In particular, [19]
consider a special case where the random variables of Alice and Bob, A and B,
are binary and have correlation at least α (i.e., A and B are equal with proba-
bility at least (1 + α)/2), whereas with probability at least 1 − β, the random
variable E of Eve contains no information on A. One of the main results of [19]
shows that secret key agreement, using one-way communication from Alice to
Bob, is possible when α2 > β, and impossible otherwise. Holenstein and Ren-
ner also observe that one-way secret-key agreement for such random variables
is equivalent to the task of black-box circuit polarization, introduced by Sahai
and Vadhan [34] in the context of statistical zero knowledge. The impossibility
result for one-way secret-key agreement in [19] implies that the parameters for
circuit polarization achieved by Sahai and Vadhan [34] are in fact optimal for
such black-box protocols.

The setting of binary random variables A,B,E in [19] is similar to the channel
model we consider. Their condition on A and B being correlated corresponds to
channel’s reliability, and the condition on E sometimes having no information on
A corresponds to channel’s secrecy. We use the impossibility result of [19] (almost
directly) to argue the need of a constant-factor (factor 2) separation between re-
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liability and secrecy of channels for the case of one-way protocols. However,
our one-way channel protocol (for the case of factor 4 separation between reli-
ability and secrecy) is for a more general, not necessarily information-theoretic,
setting. Moreover, we go beyond the one-way communication, and describe an
efficient two-way protocol that works for the case where the constant-factor gap
between reliability and secrecy of a channel is smaller (factor 1.5) than the gap
required by one-way protocols. This yields a new protocol that works both for
the information-theoretic setting (as in [19]), and for the complexity-theoretic
setting, using the results of [18].

Comparison with [30]. Maurer [30] considered the information-theoretic setting
of a channel between Alice and Bob, with eavesdropper Eve, where the channel
from Alice to Bob is symmetric noisy channel with the noise parameter ε, and
the channel from Alice to Eve is an independent symmetric noisy channel with
the noise parameter δ. Using the earlier work by [9], Maurer shows that Alice and
Bob can securely agree on a secret in this setting, provided ε < δ. Surprisingly,
Maurer also shows that secret-key agreement between Alice and Bob is still
possible even if ε ≥ δ, by using a two-way protocol (where Bob also sends
messages to Alice over the public channel)! Like Maurer, we also use a two-
way protocol to overcome the limitations of one-way protocols. The difference is
that our setting is more general than his information-theoretic setting (of two
independent noisy channels). For example, in Maurer’s setting, it is easy to see
that Eve has less information than Alice about the bit Bob receives, which is
not always true in our setting (unless α > 2β). However, his results raise the
question of what additional reasonable conditions on our channel model could be
used to reduce the gap between secrecy and reliability that one needs to assume.
One natural condition is that Eve has a small probability of learning a random
bit sent from Bob to Alice (in addition to the existent secrecy condition that Eve
has small probability of learning a random bit sent from Alice to Bob). We leave
the study of this channel model with “symmetric secrecy” for future research.

Comparison with [27]. The framework of constructive cryptography by Maurer
[27] also deals with reductions between channels, using the formalism from the
abstract cryptography framework [28]. In constructive cryptography, the main
goal is to capture traditional security goals (like secrecy and authenticity) in
terms of channel transformations. Contrary to our framework, channels in con-
structive cryptography are described exactly through ideal functionalities, in the
same spirit as in Canetti’s UC framework [3]. Maurer’s framework in fact also
allows the definition of classes of channels (as we consider here), but this feature
appears to be mostly definitional, as we are not aware of any results that would
apply to the context of our work.

1.3 Our techniques

We use fairly standard tools such as the direct-product and XOR protocols, re-
lying on the proof techniques in [24, 13]. We also use the repetition protocol,
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whose secrecy in the cryptographic setting was first analyzed in [16]. We general-
ize and improve their analysis (see Theorem 14), getting better secrecy ((2α)n/2
instead of αn), which is crucial for our applications. While the techniques we
ended up using in this paper are standard, finding the right techniques to use
for our applications was nontrivial, and involved considering many other stan-
dard techniques that turned out to be inapplicable to our setting. For example,
error-correcting codes are an obvious approach to amplifying reliability. But it
is still very unclear how such codes affect secrecy. Also, many of the ways we
apply standard techniques are delicate. The XOR protocol we use is standard,
but fails dramatically if one reverses the order in which the messages are sent.
There seems to be a subtle and intricate interplay between the contradictory
requirements of secrecy and reliability that we want to achieve simultaneously.

2 The model and axioms

2.1 Channels

The following is a definition of a one-way channel that communicates information
from a user Alice to a user Bob. An attacker Eve is capable of launching possibly
active attacks, and can gain some information about communicated messages.
We can generalize such a channel to one allowing two-way communication or
multi-party channels. Note that while we do capture a variety of classical physical
systems with this definition, we do not necessarily capture quantum channels or
protocols, because we assume that computation does not change the system’s
state. We could generalize further, but it’s already getting pretty complicated.

Definition 1 (Channel). A one-way channel from user Alice to user Bob with
attacker Eve has the following components:

1. Security parameter: k ∈ N;
2. States: for each k, a countable set of possible underlying states, Σk ⊆
{0, 1}∗;

3. Attacks: for each k, a countable set of possible attacks Γk ⊆ {0, 1}∗;
4. Transition function: for each k, a probabilistic transition function δk

which takes as input the current state s ∈ Σk, an attack γ ∈ Γk from Eve,
and a transmitted bit b from Alice, and produces a probability distribution
δk(s, γ, b) on the updated state s′ ∈ Σk and received message b′ ∈ {0, 1};

5. Eve’s view function: a function vE(s) from states to strings, giving the
visible part of the state for Eve;

6. Resource limits: a set F of probabilistic functions from strings to strings,
computable within the computational limits of the adversary. We assume F
is closed under polynomial-time (in the lengths of strings and the secrecy pa-
rameter) Turing reductions, and under fixing as advice any single bit, visible
state or action.6

6 If a channel is such that the state description rapidly grows (say, squares) after each
use, then after very few uses, the adversary that is allowed polynomial time in the
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Remark 2. For our application of secret and reliable information transmission
from Alice to Bob in the presence of an active evesedropper Eve, we can assume
that Alice and Bob, as trusted parties, do not need to keep track of the channel
state. This simplifies our definition of channel above. However, for other tasks
(e.g., Oblivious Transfer, bit flipping over the phone, secure multiparty compu-
tation), we need to include in our model Alice’s and Bob’s view functions of
the channel state, vA(s) and vB(s), respectively. This would match the standard
information-theoretic view of such a channel as a triple of correlated random
variables A (for Alice), B (for Bob), and E (for Eve).

Our main results only apply to limited classes of channels that we call trans-
parent and semi-transparent.

Definition 3 (Transparency). A channel of Definition 1 is called transparent
if it satisfies the following additional properties:

– vE(s) = s (i.e., all of the state is visible to the attacker), and

– for every k ∈ N, δk ∈ F (i.e., the attacker can simulate the channel).

A channel of Definition 1 is called semi-transparent if it satisfies the following
additional properties:

– vE(s) = s (i.e., all of the state is visible to the attacker), and

– for every k ∈ N, computing the new state under δk is in F (i.e., the at-
tacker can simulate the channel as far as the information they get, but not
necessarily the output).

Remark 4. The utility of transparency condition on the channel is that it enables
the eavesdropper Eve to simulate the channel forward, by taking control of a
virtual Alice. In fact, as was pointed out to us by Daniele Micciancio [personal
communication, 2015], given an arbitrary channel that can be simulated forward,
one can define a new, equivalent channel that is transparent; the converse is also
true. So transparency is equivalent to being simulatable forward.

Transparent channels include any memoryless channel with computationally
unbounded (information-theoretic) attackers, and any two-party protocol where
there are no secret inputs for either party before the protocol starts.

Definition 5 (α-Secrecy and β-Reliability). Let 1/2 > α > β ≥ 0 be con-
stants (or functions of the security parameter). A channel is called α-secret and
β-reliable if it satisfies the following axioms:

size of the state will get to use exponential-time computation for her attacks. A
standard cryptographic channel will unlikely be secure in this case. However, it is
up to the designer of the channel to ensure that it remains secure, with respect to
polynomial-time adversaries (which will probably force the designer to make sure
that the state description does not grow too fast with respect to k).
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– Secrecy Axiom: For all but finitely many k ∈ N, ∀f ∈ F , ∀s ∈ Σk,
∀γ ∈ Γk, and for b ∈U {0, 1} uniformly chosen,

Pr
(s′,b′)=δk(s,γ,b)

[f(vE(s′)) = b] ≤ 1− α.

– Reliability Axiom: ∀k ∈ N, ∀s ∈ Σk, ∀γ ∈ Γk, and ∀b ∈ {0, 1},

Pr
(s′,b′)=δk(s,γ,b)

[b′ = b] ≥ 1− β.

These conditions are met by the (non-transparent) channel that works as
follows. Initially the state is the empty string. The intended receiver always gets
the sent bit. The eavesdropper is allowed exponential computation time, and has
two attacks: “defer” or “break”. If “defer” is chosen, the eavesdropper learns
nothing at the time (the visible state contains no bits), but the current bit sent
is appended to the channel state. If “break” is chosen, with probability 1− 2α,
the channel state is updated as normal but becomes visible to the eavesdropper;
with probability 2α, the channel state is erased (becomes the empty string).

The first example provably shows that secrecy amplification cannot be based
solely on the above axioms. Consider any protocol to send a bit secretly from
Alice to Bob, using the channel above. Eve can use the strategy of using “defer”
until the last bit is sent, and attacking the last bit with “break”. With probability
1−2α, Eve learns the entire conversation between Alice and Bob. By simulating
all possible random choices used by Alice and Bob, and seeing which ones are
consistent with the conversation, Eve can learn the secret.

To see where non-transparency could actually prevent secrecy amplification
in the cryptographic setting, consider a channel that simulates the following
private-key protocol. Alice and Bob share a secret key κ, and to send a message,
Alice sends Eκ(m) and a weak commitment C(κ) to Bob. If an eavesdropper can
break the secrecy of the commitment scheme with some small probability α, then
no matter how the scheme is used repeatedly and combined, the attacker will
learn the key with probability at least α. In general, protocols that assume prior
shared information such as a private key will not be transparent, because the
attacker cannot simulate a run of the protocol without this shared information.

We will show that for transparent channels this problem does not arise.

2.2 Examples

We give some examples of both channels in an information-theoretic setting and
computational setting. Our results hold for channels that are some hybrid of
the two as well, but these two extremes are the most familiar, so will serve as
intuition. In general, we’ll be using complexity-theoretic methods when proving
possibility results, and prove impossibility results using information-theoretic
means, so we will be shifting back and forth between the two.
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Information-theoretic channels

Noise vs. erasure One interesting channel is a joint symmetric binary noise
and erasure channel, where, when Alice sends b, Bob receives the bit b′ which
is equal to b with probability 1−β and equal to 1−b otherwise. Eve receives
(i.e., the new state equals) the bit b with probability 1−2α and the message
⊥ otherwise. 7 There might or might not be correlation between Eve’s era-
sures and Bob’s noise. The channel is memoryless, in that the current state
does not actually affect the transition function. Any memoryless channel is
equivalent to a transparent one in the information-theoretic setting, since
we might as well replace the state with the visible state and Eve can always
simulate the fixed transition function.

Noise attacks An active Eve might be able to control the noise of the channel,
but not gain any information about the bit sent. For example, say attacks
are numbers γ between 0 and β. Bob receives a bit b′ with binary symmetric
noise γ, and Eve receives (i.e., the new state is) b′⊕b, whether or not Bob got
the bit sent. This channel gives Eve no information about the bit sent, but
allows her to attack reliability. Again it is memoryless, hence transparent.

Arbitrary memoryless channels We can embed conventional results about
secrecy capacity of channels in our model. Consider any fixed distribution
on triples (A,B,E), where we view a single use of a device as giving Alice
information A, Bob, B and the attacker E, and Alice and Bob can commu-
nicate in the clear as well. Using the device K times gives a sequence of K
values of these variables A1, ..., AK , B1, ..., BK , and E1, ..., EK from the same
joint distribution. At some point, after using the device and sending some
messages, Bob will output a guess as to the bit Alice meant to send him. The
new state would be the K tuple of values E1, . . . , EK , and the messages sent
in the clear. While the sequence A and B are used, and help determine the
output, we don’t include them in the state (because they will not be used
in future transmissions), and since Alice and Bob are trusted participants,
there is no reason to keep track of their side information, rather than just
the secret they agree on. The system is memoryless, and hence transparent.

Complexity-theoretic channels

Private key encryption If Alice and Bob use a secret key and send messages
using a private key encryption, then the state would be both the key and
the messages sent in the clear, but the visible state for Eve would just be
the messages sent in the clear. So this type of protocol is not transparent,
since including the key in the visible state would render it useless.

Noisy trapdoor function with fixed public key Say Bob creates a trap-
door function with probabilistic encryption and noisy decryption, and Alice
always sends bits with Bob’s fixed public key. Then the state of the channel

7 Note that Eve can guess the bit with probability 1/2 when she receives ⊥. So the
probability of her knowing the bit b is 1− 2α+ (1/2) · (2α) = 1− α.
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is the public key and the encryption of the bit sent. This channel is semi-
transparent, because Eve can simulate the new state (only the encryption
of the bit is changed), but cannot necessarily simulate whether Bob will get
the bit correctly without Bob’s secret key. If there is feed-back from Bob
to Alice, Eve might be able to simulate a chosen cyphertext attack on the
encryption function.

Noisy trapdoor function with fresh public keys On the other hand, us-
ing the same encryption function but with a fresh key every message, the
channel becomes fully transparent. Eve can simulate the channel and Bob’s
received bit by generating her own keys and using them. Chosen cyphertext
attacks become a non-issue, so protocols using feedback are fine.

2.3 Virtual channels and protocol channels

A protocol using a channel defines a new, virtual channel. The inputs to this
virtual channel are strategies for the participants and attacker, using the old
channel. The virtual channel’s states accumulate the protocol history, that is
the the sequence of observable states during the protocol, together with any
messages sent in the clear. The transition function simulates the protocol with
the given strategies to obtain the history.

A protocol channel fixes the inputs from Alice and Bob in the virtual channel
to specific strategies of Alice and Bob.

Definition 6 (Amplifying secrecy and reliability). For α′ > α > β >
β′, secrecy and reliability amplification from (α, β) to (α′, β′) means defining a
protocol which guarantees that, for any (transparent) channel satisfying α-secrecy
and β-reliability, the protocol channel satisfies α′-secrecy and β′-reliability.

We note that by construction, states of a protocol channel have the same
degree of visibility as states of the underlying channel. Furthermore, since tran-
sitions of the protocol channel simulate the strategies of the participants, we
conclude the following.

Lemma 7. If a channel is transparent, and the legitimate users’ strategies are
in F , then the protocol channel is also transparent, regardless of whether the pro-
tocol uses one-way or two-way communication. If a channel is semi-transparent,
and the legitimate users’ strategies are in F , then the protocol channel is also
semi-transparent, provided that the protocol uses one-way (from Alice to Bob)
communication only.

Thus, protocol constructions or secrecy and reliability amplifications which
assume the axiom of transparency will always be composable. In other words,
we can have a series of protocols built on top of channels. The protocols will
only utilize the channels as black boxes and so not require any knowledge of how
the underlying channel works. They will have the property that if the channel
is transparent, α-secret and β-reliable, then the protocol is α′-secret and β′-
reliable. Then we can use the protocol as the channel in any way of converting
α′-secret and β′-reliable channels into α′′-secret and β′′-reliable ones. The same
is true also for one-way protocols using semi-transparent channels.
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3 Secrecy and reliability amplification for one-way
protocols

The main result of this section is the following.

Theorem 8. For any non-negligible ε and any 1/2 > α > 4β > 0, there is a one-
way protocol for secrecy and reliability amplification from (α, β) to (1/2−ε, 2−k).

The required protocol will rely on the Direct-Product protocol, the Parity
protocol, and the Repetition protocol that we discuss next.

3.1 Direct-product protocols

The direct product is one of the fundamental constructions in complexity and
the theory of cryptography. Direct product theorems state that if one instance
of a problem is unlikely to be solved , then two independent instances are even
less likely to be both solved. There are many proofs of direct product theorems
that apply to a wide variety of models and circumstances. Modern proofs utilize
connections to coding theory, hard-core sets, and so on. However, these proofs do
not seem to work in our setting. What does work is one of the oldest techniques
in direct products, estimates of conditional probabilities, used, for example, by
Levin [24].

Direct product constructions generally decrease reliability but enhance se-
crecy. The simplest direct product constructions just concatenate the various
solutions. We’ll analyze such a protocol, but it will not be immediate how to
translate the result about concatenating secrets into one where the secrets are
combined into a single bit.

Consider the following Direct-Product Protocol:

Alice sends n independent random bits bn, . . . , b1 (we number them in
reverse order to make an inductive argument cleaner) through the chan-
nel.

We compare the probability that Bob receives all n bits with the probability
that Eve can guess all n bits. First, for Bob’s probability of receiving all n
bits, we can use that the reliability axiom holds for each state of the channel.
Conditioned on any event for the first i bits, and in particular, conditional on
Bob receiving the first i bits correctly, the probability of his receiving the ith bit
correctly is at least 1 − β. Therefore, the probability that he receives all n bits
correctly is at least (1− β)n.

Next, we use the method of conditional probabilities, due to Levin, to bound
the probability that Eve can guess all n bits.

Theorem 9 (Direct-Product Theorem for Channels). For any non-neg-
ligible function ε of the secrecy parameter, and any polynomially bounded n, the
probability that Eve can guess all n bits is at most (1− α)n + nε.
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Proof. Consider the distribution on the information available to Eve by an at-
tack. An attack on the protocol will be determined by two functions A which
receives a list of states and determines the next attack a on the channel, and
f which after the protocol ends outputs the guess Bn...B1. The protocol under
this strategy will evolve as follows:

1. The protocol starts in some state sn+1. Let the initial history Hn+1 be the
list containing only sn+1.

2. For each i from n to 1:
(a) Alice picks a random bit bi ∈ {0, 1}.
(b) Eve picks channel attack ai = A(Hi+1).
(c) The new state si and the bit b′i received by Bob are given by (si, b

′
i) =

δk(si+1, ai, bi).
(d) Append si to Hi+1 to get an updated history Hi.

3. Eve guesses Bn, . . . , B1 = f(H1).

Note that given any Hi, Eve can simulate the rest of the process to produce
H1 according to the correct conditional distribution, using randomly generated
bits bi−1, . . . , b1 (since δk ∈ F ). (This is where we use transparency.)

Let Successi be the event that Bi = bi, . . . , B1 = b1. The theorem will follow
from the next claim for i = n.

Claim. For any 1 ≤ i ≤ n and history Hi+1, Pr [Successi | Hi+1] ≤ (1−α)i + iε.

Proof (of Claim). Our proof is by induction on i. The i = 1 case is just the
secrecy property of the channel at state s2. Fix Hi+1. Consider the following
attack on a single bit bi sent on the channel at state si+1:

Eve uses attack ai, bit bi is sent by Alice, and the channel arrives in
state si. Then she repeatedly simulates the conditional distribution on
histories starting from Hi as given above, until either Successi−1 or the
number of simulations reaches T = (1/ε) ln(1/ε). If the former, she out-
puts Bi as her guess for bi, otherwise, the simulations time out without
success, she outputs no guess.

By transparency of the channel and its α-secrecy, we get that

Pr[Bi = bi | Hi+1] ≤ (1− α). (1)

Next, Pr[Bi = bi | Hi] is Pr[Successi | Hi,Successi−1] times the probability of
not timing out, which is 1−(1−Pr[Successi−1|Hi])

T . In particular, if Pr[Successi |
Hi] ≥ ε, so is Pr[Successi−1 | Hi] and the probability of not timing out is at least
1− (1− ε)T ≥ 1− e−εT = 1− ε by our choice of T . Then

Pr[Bi = bi | Hi] ≥
Pr[Successi | Hi]

Pr[Successi−1 | Hi]
− ε

≥ Pr[Successi | Hi]

(1− α)i−1 + (i− 1)ε
− ε,
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where the last inequality is by the induction hypothesis applied to Hi−1. So we
get

Pr[Successi | Hi] ≤ (1− α)i−1 · Pr[Bi = bi | Hi] + iε. (2)

If Pr[Successi | Hi] < ε, then Eq. (2) holds for trivial reasons. Finally, averaging
over Hi in Eq. (2) and then using the inequality of Eq. (1), concludes the proof.

3.2 Parity protocols

Next we want to use our direct-product protocol to get a single bit message across
the channel. Before showing a protocol that works (under some circumstances),
we give an illuminating example of a tempting protocol that fails.

Naive parity protocol Consider the naive parity protocol for sending a bit b
from Alice to Bob:

Alice sends random bits bn, . . . , b1 as above, and then sends b⊕bn⊕· · ·⊕
b1. Bob’s guess at b is the parity of all the bits he receives.

We are not sure whether this protocol boosts secrecy, but it actually fails
miserably when it comes to reliability. In fact, there are channels where this
protocol is much worse than random guessing from Bob’s point of view!

Theorem 10. For any 1/2 > β > 0, there is a transparent 1/2-secret and
β-reliable channel such that the naive parity protocol above yields the protocol
channel with reliability 1− (1− β)n.

Proof. Indeed, consider a channel where Eve decides whether each bit is sent
with symmetric noise β or with no noise, and learns nothing about the bit sent,
only the noise. In other words, the channel has two states, 0 and 1, and there are
two attacks, 0 and 1. A coin η of bias β is flipped by the channel, and the new
state is η (regardless of the bit sent or the attack). The bit received by Bob is
b⊕aη, i.e., is flipped if Eve picks attack 1 and the noise is 1, and is not otherwise.
One can think of Alice and Bob as communicating by low power radio, and Eve
can make the channel noisy by broadcasting at the same time, but can only tell
if she disrupted the signal, not what the message was.

This channel has secrecy 1/2 and β-reliability. But if Alice and Bob use the
parity protocol, Eve can use attack 1 (keep the channel noisy) until η = 1, and
then set a = 0 after that. Bob only gets the correct bit if η is never 1, so with
probability (1− β)n.

So the reliability of the naive parity protocol goes totally out the window!

Modified parity protocol Next we show a modification of this protocol that
amplifies secrecy of a given channel, albeit at the price of possibly worsening its
reliability somewhat. This will be later combined with another protocol that will
significantly improve reliability while somewhat worsening secrecy. By carefully
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choosing the parameters of the protocols in this combination, we will be able
to achieve both secrecy and reliability amplification for a given α-secret and
β-reliable channel, provided that α > 4β.

The modified parity protocol sends the parity of a random subset of bits
bn, . . . , b1, rather than all of them. Consider the Parity Protocol:

To send a given bit b to Bob, Alice uses the channel to send random bits
bn, . . . , b1, and then, in the clear, sends random bits rn, . . . , r1, followed
by b⊕ (⊕ni=1biri). Bob receives bits b′n, . . . , b

′
1 through the channel, and

outputs (b⊕ (⊕ni=1biri))⊕ (⊕ni=1b
′
iri).

Theorem 11. Given any α-secret and β-reliable transparent channel, the Parity
Protocol above yields the protocol channel that is α′-secret and β′-reliable for
α′ ≈ (1− e−αn/2)/2 and β′ ≈ (1− e−βn)/2.

Proof. The probability that Bob receives all n bits is (1 − β)n, and then he
correctly recovers b with probability 1 over the choice of random bits rn, . . . , r1.
Otherwise, Bob’s string b′n . . . b

′
1 is different from the string bn . . . b1, but the two

strings have the same inner product modulo 2 with the random string rn . . . r1,
with probability 1/2 over the choice of rn, . . . , r1. Thus, Bob’s overall chance of
guessing b correctly is (1 + (1− β)n)/2, which means that the protocol is about
(1/2)(1− e−βn)-reliable.

On the other hand, if Eve can guess b with conditional probability 1/2 + γb
after b = bn, . . . , b1 are sent, using the algorithm of Goldreich and Levin [13],
varying over choices of bits r, she can guess the entire vector b with probability
c · γ2b , for some constant c > 0. Set γ = Expb[γb]. We conclude that if Eve can
guess b with probability 1/2+γ, then she can recover the entire b with probability
at least c·Expb[γ2b ], which by Jensen’s Inequality is at least c·(Expb[γb])2 = c·γ2.

Finally, using the Direct-Product Theorem for Channels, Theorem 9, we must
have c · γ2 ≤ (1− α)n + nε for any non-negligible ε, or γ ≤

√
c · (1− α)n/2 + ε′

for any such ε′. So secrecy is roughly 1/2(1− e−αn/2).

While both secrecy and reliability in the above protocol are close to 1/2, a
multiplicative difference in α vs. β has become an exponent in the advantage
over random guessing, with the factor of 2 lost in the process.

Remark 12. Note that order matters in the protocol. Although sending bn, . . . , b1
then rn, . . . , r1 is the same information as sending r first then b, the reverse order
would be subject to the same attack as the naive parity protocol above.

3.3 Repetition protocol

Here we get a protocol for improving reliability. It is the following Repetition
Protocol:

To transmit a given bit b to Bob, Alice sends this b over the channel n
times. Bob takes the majority value of the received bits.
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This protocol is somewhat dual to direct product: here reliability is enhanced
at the price of secrecy dropping substantially. In fact, it is not clear that any
secrecy would remain. In the cryptographic setting, Halevi and Rabin [16] showed
that at least αn secrecy remains. We generalize and improve their result, showing
that the repetition protocol has at least (2α)n/2 secrecy.

First, we analyze reliability using familiar probabilistic tools.

Theorem 13. The Repetition Protocol applied to a β-reliable channel yields a
channel with reliability β′ ≤ e−(1−2β)2n/8.

Proof. We need to show that, for any attack on the Repetition Protocol over
a β-reliable channel, the probability that Bob fails to output b is at most
e−(1−2β)

2n/8. Let b′n, . . . , b
′
1 be the bits received by Bob. Look at the quantity

that adds β each time bit b′i = b and subtracts (1 − β) if the bit received is in-
correct. By the definition of β-reliability, this quantity is a sub-martingale, with
the difference bounded by 1. Bob only returns the wrong bit if there are more
incorrect bits received than correct bits, in which case this quantity is at most
βn/2 − (1 − β)n/2 = −(1 − 2β)n/2. By Azuma’s inequality, the probability of

this is at most e−((1−2β)n/2)
2/(2n)), as claimed.

Next we show:

Theorem 14. For any parameters α and n (with n polynomially bounded in the
security parameter, and (2α)n non-negligible), the n-bit Repetition Protocol over
an α-secret transparent channel has secrecy at least (2α)n/2.

Proof. As in the proof of Theorem 9, fixing functions A and f that describe
Eve’s attack, the process can be described as follows:

1. Alice picks a random bit r (to be sent over the channel n times).
2. The protocol starts in some state sn+1. Let the initial history Hn+1 be the

list containing only sn+1.
3. For each i from n to 1:

(a) Eve picks channel attack ai = A(Hi+1).
(b) The new state and bit Bob receives is (si, b

′
i) = δk(si+1, ai, r) .

(c) Append si to Hi+1 to get an updated history Hi.

4. Eve guesses R = f(H1).

Consider starting from partial history Hi+1, picking a new random bit r1
and simulating the protocol from then on sending r1 for the i remaining bits to
be sent. The theorem will follow from the next claim when i = n.

Claim. For every 1 ≤ i ≤ n, Pr[R 6= r1 | Hi+1] ≥ (2α)i/2.

Proof. The proof is by induction on i. For i = 1, this is exactly the definition of
α-secrecy. Consider the following attack on a single bit r1 sent on the channel
at state si+1:
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Eve uses attack ai and r1 is sent by Alice, and the channel arrives in
state si. Then she picks a new random bit r2 and simulates the repeti-
tion protocol starting from Hi, with Alice sending r2 each time. If the
simulation returns an R 6= r2, Eve guesses R. Otherwise, Eve repeats the
simulation for a fresh random bit r2. (Note that the expected number
of repetitions is at most 2(2α)−i, by the induction hypothesis, which is
feasible by assumption).

By α-secrecy, the described strategy must fail with probability at least α, i.e.,

Pr[R 6= r1 | R 6= r2, Hi+1] ≥ α. (3)

Now fix any history Hi and bit r1. For the R returned by Eve in the above
strategy, the probability that R 6= r1 is the conditional probability

Pr[R 6= r1 | R 6= r2, Hi] =
Pr[R = ¬r1 = ¬r2 | Hi]

Pr[R 6= r2|Hi]
.

By induction, for eachHi the denominator of this expression is at least (2α)i−1/2.
So for each Hi and r1, we have

((2α)i−1/2) · Pr[R 6= r1 | R 6= r2, Hi] ≤ Pr[r1 = r2, R 6= r1 | Hi].

Averaging both sides over Hi, we get

((2α)i−1/2) · Pr[R 6= r1 | R 6= r2, Hi+1] ≤ Pr[r2 = r1, R 6= r1 | Hi+1]. (4)

Finally, applying Eq. (3) to the left-hand side of Eq. (4), we get

((2α)i−1/2) · α ≤ Pr[r2 = r1, R 6= r1 | Hi+1]

= Pr[r2 = r1] · Pr[R 6= r1 | r2 = r1, Hi+1]

= (1/2) · Pr[R 6= r1 | r2 = r1, Hi+1],

and so Pr[R 6= r1 | r2 = r1, Hi+1] ≥ (2α)i−1(2α)/2 = (2α)i/2. Observe that the
last probability is for the process where, starting at Hi+1, the same bit r1 is sent
i times. This is exactly the probability in the statement of our claim (for the
repetition protocol starting at Hi+1).

This completes the proof of the theorem.

3.4 Assembling the pieces for one-way protocols

Here we show how to combine the two building blocks we just used: the Parity
protocol and the repetition protocol. Let α > 4(1 + 2δ)β. We re-state the main
theorem of this section.

Theorem 15. For any non-negligible ε and any 1/2 > α > 4β > 0, there is a
one-way protocol for secrecy and reliability amplification from (α, β) to (1/2 −
ε, 2−k).
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Proof. First, we can use the following protocol to make α and β suitably small
without changing their ratios:

With probability p, Alice uses the channel to send a random bit b, other-
wise she sends b in the clear. This protocol is α′ = pα secret and β′ = pβ
reliable.

Since 1− α′ ≈ e−α′ for small α′, we can pick p small enough so that (1− α′) <
e−α(1−δ). Then we use the Parity protocol of Theorem 11 with n = log k to
define a channel that has secrecy at least

(1/2) ·
(

1− (1− α′)n/2
)
≥ (1/2) ·

(
1− k−(α/2)(1−δ)

)
≥ (1/2) ·

(
1− k−2β(1+δ)

)
,

and reliability at least (1/2) ·
(
1− e−βn

)
= (1/2) ·

(
1− k−β

)
.

We use the repetition protocol on this channel for N = k2β(1+δ/2) repetitions.
By Theorem 14, the resulting channel has secrecy at least (1/2) · (1−k−βδ) and,

by Theorem 14, reliability at most e−k
−2βN/8 = e−(1/8)k

βδ

, which tends to 0
exponentially fast with k. We can use the Parity protocol with n = k on this
protocol, to get one that is (1/2 − ε)-secret for arbitrary non-negligible ε, and
still has exponentially small reliability. If we want, we can then use repetition
on this protocol for any polynomial number of times to keep the advantage of
an adversary negligible, while making the reliability as good as desired.

Remark 16. The above shows a one-way protocol when α > 4β. The factor of
4 can be thought of as two factors of two. The first one is due to the quadratic
dependence of list size on the advantage when list decoding the Hadamard code
(cf. the proof of Theorem 11 above). The second factor of 2 is because repeating
a message through a symmetric channel takes quadratic time in the advantage,
whereas for an erasure channel, the advantage grows linearly (cf. the proof of
Theorem 17 below).

4 Impossibility results for one-way protocols

Here, we show that a constant factor difference of two between α and β is
necessary. To get our negative result, we will look at a particular channel; of
course, it follows that if no protocol exists for this channel, then no protocol
exists for an unknown channel. Our particular channel is stateless, and is

– Symmetric β-Noise Channel for Bob: each bit sent over the channel is
flipped with probability β, and is unchanged with probability 1− β,

– 2α-Erasure Channel for Eve: each bit sent over the channel is erased
with probability 2α (with Eve getting a special symbol ‘?’), and is unchanged
with probability 1− 2α.
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In addition, we allow Eve to have unlimited computational power.
We prove the following result, using the techniques of Holenstein and Ren-

ner [19].

Theorem 17. If α ≤ 2β− 2β2, then no one-way protocol for the above channel
has reliability .01 and secrecy .49.

Proof. We use the techniques of Holenstein and Renner [19] who showed that the
same relationship between secrecy and reliability parameters is necessary for any
information-theoretic one-way protocol for secret key agreement. Let a random
variable B denote the bit to be sent. Let X1, . . . , Xn be the distribution on bits
Alice sends through the channel, and let V be the distribution on messages she
sends in the clear. Let Y1, . . . , Yn be the bits Bob receives, and Z1, . . . , Zn be the
information Eve receives.

Let H be the entropy function. Let B′ bet the Boolean random variable
that is 1 iff Bob correctly guesses the bit B, given V and Y1, . . . , Yn. Since,
given V, Y1, . . . , Yn, Bob guesses B correctly with probability at least .99, we get
H(B′ | V, Y1, . . . , Yn) ≤ H(.99). On the other hand, note that V and Y1, . . . , Yn
determine Bob’s guess at B, and so if we know B, then we also know B′, and vice
versa. It follows that H(B | V, Y1, . . . , Yn) = H(B′ | V, Y1, . . . , Yn) ≤ H(.99) ≈ 0.
By a similar reasoning for Eve, we get that H(B | V,Z1, . . . , Zn) ≥ H(.49) ≈ 1.

Consider H(B | V, Y1, ..Yi, Zi+1...Zn). When i = n, this is close to 0, and
when i = 0, close to 1. So there must exist an index i, 0 ≤ i ≤ n, such that

H(B | V, Y1, . . . , Yi, Zi+1, . . . , Zn) < H(B | V, Y1, . . . , Yi−1, Zi, . . . , Zn).

Then by an averaging argument, there must exist values for V , Y1, . . . , Yi−1 and
Zi+1, . . . , Zn, so that in the conditional distribution, we have

H(B | Yi) < H(B | Zi). (5)

Note that, because the protocol is one-way, conditioning on these values does
not change the conditional distributions of Yi or Zi as functions of Xi (the bit
sent)8. It will possibly change both the distributions of B and Xi to arbitrary
distributions.

By Eq. (5), and using the entropy chain rule twice, we get

0 > H(B | Yi)−H(B | Zi)
= H(B, Yi)−H(Yi)−H(B,Zi) +H(Zi)

= H(B) +H(Yi | B)−H(Yi)−H(B)−H(Zi|B) +H(Zi)

= H(Yi | B)−H(Yi)−H(Zi | B) +H(Zi).

8 In contrast, consider a 2-way protocol where Bob, after receiving his n bits over the
channel, sends Alice a message in the clear stating whether all his received bits are
the same. Then fixing the value of Bob’s message to Alice will change the distribution
of Yi as a function of Xi. So the argument in the present theorem does not apply to
this 2-way protocol. (In fact, we use such a 2-way protocol in Section 5 in order to
overcome the “factor-2 barrier” for one-way protocols given by the present theorem.)
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Next we analyze each of the four summands in the last equation above.
Let q be the conditional probability that B = 1, and let p1 be the conditional

probability that Xi = 1 if B = 1, and p0 be the conditional probability that
Xi = 1 if B = 0. Then the overall probability that Xi = 1 is

p := qp1 + (1− q)p0.

Note that Yi is equal to Xi with probability 1 − β, and to ¬Xi otherwise. It
follows that

H(Yi) = H(p(1− 2β) + β). (6)

Next, given B = 1, Yi is distributed as first flipping a coin with probability
p1 to determine X1, then a coin with probability β, and finally taking the parity.
So we have

H(Yi | B = 1) = H(p1(1− 2β) + β),

and similarly,
H(Yi | B = 0) = H(p0(1− 2β) + β).

Combining the two conditional entropies, we conclude

H(Yi | B) = q ·H(p1(1− 2β) + β) + (1− q) ·H(p0(1− 2β) + β), (7)

Finally, Zi reveals whether the bit is erased, a random event with probability
2α no matter what, and then, with probability 1 − 2α, it reveals the value of
Xi. Thus, H(Zi) = H(2α) + (1− 2α) ·H(Xi), and the same for any conditional
distribution. So we get

H(Zi) = H(2α) + (1− 2α) ·H(p), (8)

and
H(Zi | B) = H(2α) + (1− 2α) · (q ·H(p1) + (1− q) ·H(p0)). (9)

Combining Eqs. (6)–(9), we get

0 > (H(Yi | B)−H(Yi))− (H(Zi | B)−H(Zi))

= q ·H(p1(1− 2β) + β) + (1− q) ·H(p0(1− 2β) + β)−H(p(1− 2β) + β)−
(H(2α) + (1− 2α) · (q ·H(p1) + (1− q) ·H(p0))−H(2α)− (1− 2α) ·H(p)) .

Rearranging the terms in the last expression, we can write it as

q · (H(p1(1− 2β) + β)− (1− 2α) ·H(p1))

+ (1− q) · (H(p0(1− 2β) + β)− (1− 2α) ·H(p0))

− (H(p(1− 2β) + β)− (1− 2α) ·H(p))

= q · F (p1) + (1− q) · F (p0)− F (p),

for the function F (x) := H(x · (1− 2β) + β)− (1− 2α) ·H(x). Thus, we have

q · F (p1) + (1− q) · F (p0)− F (p) < 0,
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which is equivalent (recalling that p = qp1 + (1− q)p0) to

F (qp1 + (1− q)p0) > q · F (p1) + (1− q) · F (p0). (10)

Observe that Eq. (10) states that the function F at a convex combination
of two points is greater than the convex combination of its values at those two
points. This condition is violated if F is a convex function on the interval [0, 1].
So, to complete our proof by contradiction, it suffices to show

Claim. The function F (x) defined above is convex on [0, 1].

Proof (of Claim). We use the convexity criterion for twice differentiable func-
tions: such a function is convex over an interval iff its second derivative is nonneg-
ative on that interval. We can change the binary logs to natural logs, since that
just multiplies F by a positive constant factor. For the ln-based entropy function
h(x) = −x lnx− (1−x) ln(1−x), its first derivative is h′(x) = − lnx+ln(1−x),
and its second derivative is h′′(x) = −1/x− 1/(1− x).

Similarly, for the linear function L(x) := x(1− 2β) + β, one can easily verify
that

(h(L(x)))′ = (1− 2β) · (ln(1− L(x))− ln(L(x))) ,

and

(h(L(x)))′′ = (1− 2β)2 ·
(
− 1

1− L(x)
− 1

L(x)

)
.

Using these expressions for the second derivatives of h(x) and h(L(x)), we
get

F ′′(x) = (H(L(x)))′′ − (1− 2α) ·H ′′(x)

= (1− 2β)2 ·
(
− 1

1− L(x)
− 1

L(x)

)
+ (1− 2α) ·

(
1

x
+

1

1− x

)
= −(1− 2β)2 · 1

L(x) · (1− L(x))
+ (1− 2α) · 1

x(1− x)
.

We want to show that F ′′(x) ≥ 0 for all x ∈ [0, 1], i.e., that

1− 2α

x(1− x)
≥ (1− 2β)2

L(x) · (1− L(x))
.

Note that L(x) = x(1 − 2β) + (1/2)(2β), and so L(x) is always between x and
1/2 (no matter which side of 1/2 the point x is). Since the function x(1− x) is
symmetric around 1/2, and achieves its maximum at the point 1/2, we conclude
that L(x)(1− L(x)) ≥ x(1− x). Thus it suffices to show

1− 2α

x(1− x)
≥ (1− 2β)2

x(1− x)
,

equivalent to 1−2α ≥ (1−2β)2. The latter is equivalent to α ≤ 2β−2β2, which
is our assumption on the α and β.

This completes the proof of the theorem.
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5 Breaking the factor of two barrier with two-way
protocols

By the lower bound of Theorem 17, we know that it is impossible to amplify se-
crecy and reliability of a given α-secret and β-reliable channel when α < 2β, if we
use one-way communication only. Here we show that a two-way communication
protocol exists that works even for α < 2β, as long as α > (3/2)β.

Our main result of the section is the following.

Theorem 18. For any non-negligible ε and for any 1/2 > α > 1.5 · β > 0,
there is a two-way protocol for secrecy and reliability amplification from (α, β)
to (1/2− ε, 2−k).

We will need a simple variant on the repetition protocol where Bob commu-
nicates one bit in the clear. Like the repetition protocol, this variant will reduce
both secrecy and reliability exponentially. But, if α > 1.5β, the exponent that
secrecy decreases by will be larger than that for Bob’s failure chance. So the
ratio between them will improve with the number of repetitions. We can then
pick the number of repetitions to be such that the ratio is greater than 4, and
use this protocol as the channel in the one-way protocol from Theorem 15.

The variant protocol is Repetition with Feedback:

1. Alice uses the channel to send b to Bob n times.
2. If Bob receives the same bit b′ each time, he sends the message

“Consistent” to Alice in the clear and uses b′ as his output. Otherwise
he sends the message “Inconsistent” to Alice in the clear.

3. If Bob sends “Inconsistent”, Alice sends b in the clear, and Bob uses
that as his output.

We show the following.

Theorem 19. Let α, β, n be any parameters such that n is poly-bounded in the
security parameter, and (2(α− β))n is non-negligible. The n-bit Repetition with
Feedback protocol applied to an α-secret and β-reliable transparent channel yields
a new α′-secret and β′-reliable channel, for α′ ≥ (2(α− β))n/2 and β′ ≤ βn.

Proof. Reliability: First we argue reliability of the new channel. We need to
show that for any attack on the Repetition with Feedback Protocol over a β-
reliable channel, the probability that Bob fails to output b is at most βn. Indeed,
Bob gets b unless he receives the same bit b′ each of n times, and b′ 6= b. Thus,
the protocol only fails if the channel fails n times in a row, which happens with
probability at most βn.

Secrecy: Next we argue secrecy of the new channel. We need to show that
no attack on the n-bit Repetition with Feedback protocol using an α-secret and
β-reliable transparent channel can predict a random bit b sent by the protocol
with better than 1 − (2(α − β))n/2 probability of success. As before, fixing
functions A and f that describe Eve’s attack, the process can be described as:
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1. Alice picks a random bit r.

2. The protocol starts in some state sn+1. Let the initial history Hn+1 be the
list containing only sn+1.

3. For each i from n to 1:

(a) Eve picks channel attack ai = A(Hi+1).

(b) The new state and bit Bob receives is (si, b
′
i) = δk(si+1, ai, r) .

(c) Append si to Hi+1 to get an updated history Hi.

4. If all b′i are equal (according to Bob’s message in the clear), Eve guesses
R = f(H1, “Consistent”). Otherwise she learns b when it is sent in the clear.

The intuition is that, even if we revealed the secret to Eve whenever Bob
fails to get the secret, the channel would remain (α− β)-secret, because failure
happens with probability at most β . We could then apply the analysis of the
repetition protocol to this altered channel.

Define random variable R = f(H1, “Consistent”), even if the bits received
are possibly inconsistent. Consider starting from partial history Hi+1, picking a
new random bit r1 and simulating the protocol from then on sending r1 for the
i remaining bits to be sent, and verifying that b′i = r1 each time. The theorem
will follow form the next claim for i = n (which shows that with probability at
least (2(α−β))n/2, Bob gets b all n times, sends “Consistent”, and Eve outputs
R 6= b).

Claim. For each 1 ≤ i ≤ n, Pr[R 6= r1,∧1≤j≤i(b′j = r1) | Hi+1] ≥ (2(α− β))i/2.

Proof (of Claim). Our proof is by induction on i. For i = 1, this follows from
α-secrecy and β-reliability: the probability that R 6= r1 is at least α, and the
probability that b′1 6= r1 is at most β, so the probability that R 6= r1 = b′1 is
at least α− β. Consider the following strategy for Eve to predict a single bit r1
sent on the channel at state si+1:

Eve uses ai as her attack when Alice sends r1, and the channel arrives in
state si. Then she picks a new random bit r2 and simulates the repetition
protocol with feedback starting from Hi, with Alice sending r2 each time
(including simulating the bit Bob receives) . If the simulation returns
an R 6= r2 and Bob receives r2 each time, Eve guesses R. Otherwise,
Eve repeats the simulation for a fresh random bit r2. (Note that the
expected number of repetitions is at most 2(2(α−β))−i, by the induction
hypothesis, which is feasible by assumption).

Denote by Successi the event that Bob receives r2 each of the last i times.
Fix any history Hi, together with r1. The probability that, for the R returned
by Eve in the above strategy, R 6= r1 is

Pr[R 6= r1 | R 6= r2, Hi,Successi−1] =
Pr[R = ¬r1 = ¬r2,Successi−1 | Hi]

Pr[R 6= r2,Successi−1 | Hi]
.
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By induction, for each such Hi, the denominator of this expression is at least
(2(α− β))i−1/2. So for each Hi where b′i = r1,

(2(α− β))i−1

2
· Pr[R 6= r1 | R 6= r2, Hi,Successi−1]

≤ Pr[r2 = r1, R 6= r1,Successi−1|Hi].

Note that Hi already determines (although Eve doesn’t know which way)
whether Bob received r1, i.e., whether b′i = r1. For those histories where this did
happen, the conditional probability that R 6= r1 and Bob receives r1 is the same
as just the first clause, and for the others, it is 0. So either way we get

1

2
· (2(α− β))i−1 · Pr[R 6= r1, b

′
i = r1 | R 6= r2, Hi,Successi−1]

≤ Pr[r2 = r1, R 6= r1, b
′
i = r1,Successi−1 | Hi].

Then we can average both sides over all Hi, to get

1

2
· (2(α− β))i−1 · Pr[R 6= r1, b

′
i = r1 | R 6= r2, Hi+1,Successi−1]

≤ Pr[r2 = r1, R 6= r1, b
′
i = r1,Successi−1 | Hi+1].

By α-secrecy and β-reliability, the probability on the left-hand side of the
inequality above is at least α− β. The probability on the right-hand side is 1/2
(the probability that r2 = r1), times the probability that R 6= r1 and Successi
when r1 is sent i times starting at Hi+1. The latter probability is exactly the
probability in the statement of the claim. Thus, we get

Pr[R 6= r1,∧1≤j≤i(b′j = r1) | Hi+1] ≥ 1

2
· (2(α− β))(2(α− β))i−1.

This completes the proof of the theorem.

As a corollary, we get the desired proof of the main result of this section.

Proof (of Theorem 18). Given α > 1.5β, we first use the Repetition with Feed-
back protocol for an appropriate number of times to get a new protocol channel
with α′-secrecy and β′-reliability for α′ > 4β′. Then we use the protocol of
Theorem 15 on this protocol channel.

Tightness of the analysis of the Repetition with Feedback protocol. In our anal-
ysis of the Repetition with Feedback protocol, the ratio of secrecy to reliability
improves with n when 2(α−β) > β, i.e., when α > 1.5β. In other cases, it makes
things worse, rather than better. We now show this analysis is actually tight.

Consider the channel where, with probability 2β, Eve and Bob both receive
a random bit b′. In addition, Eve receives A, denoting that this is the case in
question. With probability 2(α − β), Bob receives the correct bit b, and Eve
receives just the message B, saying that this is the case. With the remaining
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probability 1 − 2α, Bob receives the correct bit b, and Eve also receives b and
the message C.

In the repetition with feedback, if the messages Bob receives are consistent,
and C has occurred, Eve knows with certainty one bit Bob received and hence
that bit must have been received all n times. If the messages Bob receives are
consistent, and A occurred, then Eve and Bob get the same random bit b′ all n
times.

If Bob’s messages are inconsistent, the secret is sent in the clear and Eve
gets it. Eve fails to get the secret when either (i) case B happens all n times,
and thereafter Eve does not guess the random bit sent by Alice, or (ii) case A
happens all n times, and the random bit b′ is different from Alice’s bit. Thus the
overall failure probability for Eve is at most (2(α− β))n/2 + βn.

6 Conclusions and open problems

In this paper, we considered just the simplest issue in secure communication, the
transmission of secret information from one party to another. Even here, there
are unexpected complications arising from the joint consideration of secrecy and
reliability. We gave non-trivial constructions of secure protocols that under some
circumstances are guaranteed to amplify both secrecy and reliability to within
negligible amounts of the ideal.

However, our results raise more questions than they answer. We hope that
these will be addressed in future work, and that future work will consider sim-
ilar models for more complex issues in secure communications. We suggest the
following tasks to consider for the case of trusted parties: authentication, covert
channels (steganography), and traffic analysis. For the case of untrusted parties,
it will be interesting to use an appropriate channel model to argue about: coin
flipping, oblivious transfer, multi-party computation, and broadcast.

It would also be very interesting to study channel models with weaker re-
strictions on transparency. For example, can one generalize our channel model
to include the quantum-computational setting?
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