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Abstract. We initiate a study of pseudorandom encodings: efficiently
computable and decodable encoding functions that map messages from a
given distribution to a random-looking distribution. For instance, every
distribution that can be perfectly and efficiently compressed admits such
a pseudorandom encoding. Pseudorandom encodings are motivated by a
variety of cryptographic applications, including password-authenticated
key exchange, “honey encryption” and steganography.
The main question we ask is whether every efficiently samplable distri-
bution admits a pseudorandom encoding. Under different cryptographic
assumptions, we obtain positive and negative answers for different flavors
of pseudorandom encodings, and relate this question to problems in other
areas of cryptography. In particular, by establishing a two-way relation
between pseudorandom encoding schemes and efficient invertible sampling
algorithms, we reveal a connection between adaptively secure multiparty
computation for randomized functionalities and questions in the domain
of steganography.
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1 Introduction

The problem of compression has been extensively studied in the field of informa-
tion theory and, more recently, in computational complexity and cryptography [23,
42, 40, 27]. Informally, given a distribution X, compression aims to efficiently
encode samples from X as short strings while at the same time being able to
efficiently recover these samples. While the typical information-theoretic study of
compression considers the case of compressing multiple independent samples from
the same source X, its study in computer science, and in particular in this work,
considers the “single-shot” case. Compression in this setting is closely related
to randomness condensers [34, 39, 38, 18] and resource-bounded Kolmogorov
complexity [33, 32] – two well-studied problems in computational complexity.
Randomness condensers, which relax randomness extractors, are functions that
efficiently map an input distribution into an output distribution with a higher
entropy rate. A randomness condenser can be viewed as an efficient compression
algorithm, without a corresponding efficient decompression algorithm. The re-
source-bounded Kolmogorov complexity of a string is the smallest description
length of an efficient program that outputs this string. This program description
can be viewed as a compressed string, such that decoding is efficiently possible,
while finding the compressed string may be inefficient.

An important property of efficient compression algorithms, which combines the
efficiency features of randomness condensers and resource-bounded Kolmogorov
complexity, is their ability to efficiently produce “random-looking” outputs while
allowing the original input to be efficiently recovered. Despite the large body of
work on compression and its computational variants, this fundamental property
has, to our knowledge, never been the subject of a dedicated study. In this work,
we fill this gap by initiating such a study. Before formalizing the problem, we
give a simple motivating example.

Consider the goal of encrypting a sample x from a distribution X (say, a
random 5-letter English word from the Merriam-Webster Dictionary) using a low-
entropy secret key k. Applying a standard symmetric-key encryption scheme with
a key derived from k gives rise to the following brute-force attack: Try to decrypt
with different keys until obtaining x′ in the support of X. In the typical case that
wrong keys always lead to x′ outside the support of X, this attack successfully
recovers x. Variants of this attack arise in different scenarios, including password-
authenticated key exchange [4], honey encryption [30], subliminal communication
and steganography [26], and more. A natural solution is to use perfect compression:
if x can be compressed to a uniformly random string x̂ ∈ {0, 1}n before being
encrypted, it cannot be distinguished from another random string x̂′ ∈ {0, 1}n
obtained by trying the wrong key. Note, however, that compression may be an
overkill for this application. Instead, it suffices to efficiently encode x into a
(possibly longer) pseudorandom string from which x can be efficiently decoded.
This more general solution motivates the question we consider in this work.

Encoding into the uniform distribution. We initiate the study of encoding distri-
butions into a random-looking distribution. Informally, we say that a distribution
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ensemble Xλ admits a pseudorandom encoding if there exist efficient encoding
and decoding algorithms (EX ,DX), where DX is deterministic, such that

Pr
[
y ← Xλ : DX(EX(y)) = y

]
is overwhelming and (1){

y ← Xλ : EX(y)
}
≈ Un(λ). (2)

Here, “≈” denotes some notion of indistinguishability (we will consider both
computational and statistical indistinguishability), and the probability is over
the randomness of both EX and Xλ. The polynomial n(λ) denotes the output
length of the encoding algorithm EX . We refer to Equation (1) as correctness
and to Equation (2) as pseudorandomness. It will also be useful to consider
distribution ensembles parameterized by an input m from a language L. We say
that such a distribution ensemble (Xm)m∈L admits a pseudorandom encoding
if there exist efficient algorithms (EX ,DX) as above satisfying correctness and
pseudorandomness for all m ∈ L, where EX and DX both additionally receive m
as input. Note that we insist on the decoding algorithm being efficient. This is
required for our motivating applications.6 Note also that encoding and decoding
above are keyless; that is, we want encoded samples to be close to uniform even
though anyone can decode them. This is a crucial distinction from, for instance,
encryption schemes with pseudorandom ciphertexts, which look uniformly dis-
tributed to everyone except the owner of the decryption key, and cannot be
efficiently decrypted except by the owner of the decryption key. Here, we seek to
simultaneously achieve pseudorandomness and correctness for all parties.

Our motivation for studying pseudorandom encodings stems from the fact
that this very natural problem appears in a wide variety of – sometimes seemingly
unrelated – problems in cryptography. We already mentioned steganography,
honey encryption, and password-authenticated key exchange; we will cover more
such connections in this work. Yet, this notion of encoding has to our knowledge
never been studied systematically. In this work we study several natural flavors
of this notion, obtain positive and negative results about realizing them, and
map their connections with other problems in cryptography.

The main focus of this work is on the hypothesis that all efficiently samplable
distributions admit a pseudorandom encoding. Henceforth, we refer to this
hypothesis the pseudorandom encoding hypothesis (PREH).

For describing our results, it will be convenient to use the following general
notion of efficiently samplable distributions. A distribution family ensemble
(Xm)m∈L (for some language L ⊆ {0, 1}∗) is efficiently samplable if there exists
a probabilistic polynomial time (PPT) algorithm S such that S(m) is distributed
according to Xm for every m ∈ L. In case the distribution does not depend on
additional inputs, L can be considered equal to N.

6 Without this requirement, the problem can be solved using non-interactive commit-
ment schemes with the additional property that commitments are pseudorandom
(which exist under standard cryptographic assumptions).
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Overview of contributions. Following is a brief summary of our main contributions.
We will give an expanded overview of the contributions and the underlying
techniques in the rest of this section.

– We provide a unified study of different flavors of pseudorandom encodings
(PRE) and identify computational, randomized PRE in the CRS model as a
useful and achievable notion.

– We establish a two-way relation between PRE and the previously studied
notion of invertible sampling. This reveals unexpected connections between
seemingly unrelated problems in cryptography (e.g., between adaptively
secure computation for general functionalities and “honey encryption”).

– We bootstrap “adaptive PRE” from “static PRE”. As a consequence, one can
base succinct adaptively secure computation on standard iO as opposed to
subexponential iO [15].

– We use PRE to obtain a compiler from standard secure multiparty computa-
tion (MPC) protocols to covert MPC protocols.

1.1 Flavors of pseudorandom encoding

The notion of pseudorandom encoding has several natural flavors, depending
on whether the encoding algorithm is allowed to use randomness or not, and
whether the pseudorandomness property satisfies a computational or information-
theoretic notion of indistinguishability. We denote the corresponding hypotheses
that every efficiently samplable distribution can be pseudorandomly encoded
according to the above variants as PREHrand

≈c
, PREHrand

≡s
, PREHdet

≈c
and PREHdet

≡s
.7

Further, we explore relaxations which rely on a trusted setup assumption:
we consider the pseudorandom encoding hypothesis in the common reference
string model, in which a common string sampled in a trusted way from some
distribution is made available to the parties. This is the most common setup
assumption in cryptography and it is standard to consider the feasibility of
cryptographic primitives in this model to overcome limitations in the plain model.
That is, we ask whether for every efficiently samplable distribution X, there exists
an efficiently samplable CRS distribution and efficient encoding and decoding
algorithms (EX ,DX) as above, such that correctness and pseudorandomness hold,
where the encoding and decoding algorithm as well as the distinguisher receive
the CRS as input, and the distributions in Equations (1) and (2) are additionally
over the choice of the CRS.

Considering distributions which may depend on an input m ∈ L further
entails two different flavors. On the one hand, we consider the notion where
7 We note that not all efficiently samplable distributions can be pseudorandomly
encoded with a deterministic encoding algorithm. For instance, a distribution which
has one very likely event and many less likely ones requires one specific encoding to
appear with high probability. Thus, we formally restrict the deterministic variants
of the pseudorandom encoding hypothesis to only hold for “compatible” samplers,
which still results in interesting connections. In this overview, however, we ignore
this restriction.
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inputs m are chosen adversarially but statically (that is, independent of the CRS)
and, on the other hand, we consider the stronger notion where inputs m are
chosen adversarially and adaptively depending on the CRS. We henceforth denote
these variants by the prefix “c” and “ac”, respectively.

Static-to-adaptive transformation. The adaptive notion, where inputs may be
chosen depending on the CRS, is clearly stronger than the static notion. However,
surprisingly, the very nature of pseudorandom encodings allows one to apply an
indirection argument similar to the one used in [25, 11, 12], which yields a static-
to-adaptive transformation.

Theorem (informal). If all efficiently samplable distributions can be pseudo-
randomly encoded in the CRS model with a static choice of inputs, then all
efficiently samplable distributions can be pseudorandomly encoded in the CRS
model with an adaptive choice of inputs.

Static-to-adaptive transformations in cryptography are generally non-trivial,
and often come at a big cost in security when they rely on a “complexity leveraging”
technique. This connection and its application we will discuss below are a good
demonstration of the usefulness of the notion of pseudorandom encodings.

Relaxing compression. The notion of statistical deterministic pseudorandom
encodings recovers the notion of optimal compression. Hence, this conflicts with
the existence of one-way functions.8 In our systematic study of pseudorandom
encodings, we gradually relax perfect compression in several dimensions, while
maintaining one crucial property – the indistinguishability of the encoded distri-
bution from true randomness.

Example. To illustrate the importance of this property, we elaborate on the
example we outline at the beginning of the introduction, focusing more specifically
on password-authenticated key exchange (PAKE). A PAKE protocol allows two
parties holding a (low entropy) common password to jointly and confidentially
generate a (high entropy) secret key, such that the protocol is resilient against
offline dictionary attacks, and no adversary can establish a shared key with a
party if he does not know the matching password. A widely used PAKE protocol
due to Bellovin and Merritt [4] has a very simple structure: the parties use their
low-entropy password to encrypt the flows of a key-exchange protocol using
a block cipher. When the block cipher is modeled as a random cipher, it has
the property that decrypting a ciphertext (of an arbitrary plaintext) under an
incorrect secret key yields a fresh random plaintext. Thus, Bellovin and Merritt
point out that the security of their PAKE protocol requires that “the message to
be encrypted by the password must be indistinguishable from a random number.”
This is easy to achieve for Diffie-Hellman key exchange over the multiplicative
group of integers modulo a prime p. However, for elliptic curve groups this is
8 If perfect compression exists, pseudorandom generators cannot exist (observation
attributed to Levin in [23]).
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no longer the case, and one needs to resort to alternative techniques including
nontrivial point compression algorithms that compress the representation of a
random group element into a nearly uniform bitstring [6].

Clearly, our relaxation of compression does not preserve the useful property
of obtaining outputs that are shorter than the inputs. However, the remaining
pseudorandomness property is good enough for many applications.

In the following, we elaborate on our weakest notion of pseudorandom en-
codings, that is, pseudorandom encodings allowing the encoding algorithm to
be randomized and providing a computational pseudorandomness guarantee.
We defer the discussion on the stronger statistical or deterministic variants to
Section 1.3, where we derive negative results for most of these stronger notions,
which leaves computational randomized pseudorandom encodings as the “best
possible” notion that can be realized for general distributions.

Randomized, computational pseudorandom encodings. Computational
randomized pseudorandom encodings allow the encoding algorithm to be ran-
domized and require only computational pseudorandomness.

Relation to invertible sampling. We show a simple but unexpected connection with
the notion of invertible sampling [9, 17, 22]. Informally, invertible sampling refers
to the task of finding, given samples from a distribution, random coins that explain
the sample. Invertible sampling allows to obliviously sample from distributions,
that is, sampling from distributions without knowing the corresponding secrets.
This can be useful for, e.g., sampling common reference strings without knowing
the random coins or public keys without knowing the corresponding secret
keys. A natural relaxation of this notion was systematically studied by Ishai,
Kumarasubramanian, Orlandi and Sahai [29]. Concretely, a PPT sampler S is
inverse samplable if there exists an alternative PPT sampler S and a PPT inverse
sampler S−1 such that{

y ← S(1λ) : y
}
≈c
{
y ← S(1λ) : y

}
,{

y ← S(1λ; r) : (r, y)
}
≈c
{
y ← S(1λ) : (S−1(1λ, y), y)

}
.

Note that the inverse sampling algorithm is only required to efficiently inverse-
sample from another distribution S, but this distribution must be computationally
close to the distribution induced by S. The main question studied in [29] is
whether every efficient sampler admits such an invertible sampler. They refer
to this hypothesis as the invertible sampling hypothesis (ISH), and show that
ISH is equivalent to adaptive MPC for general randomized functionalities that
may hide their internal randomness. In this work, we show the following two-way
relation with pseudorandom encoding.

Theorem (informal). A distribution admits a pseudorandom encoding if and
only if it admits invertible sampling.

Intuitively, the efficient encoding algorithm corresponds to the inverse sam-
pling algorithm, and decoding an encoded string corresponds to sampling with the
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de-randomized alternative sampler S. This equivalence immediately extends to
all variants of pseudorandom encodings and corresponding variants of invertible
sampling we introduce in this work. Invertible sampling is itself connected to
other useful cryptographic notions, such as oblivious sampling, trusted common
reference string generations, and adaptively secure computation (which we will
elaborate upon below).

Building on this connection, the impossibility result of [29] translates to our
setting. On a high level, extractable one-way functions (EOWFs) conflict with
invertible sampling because they allow to extract a “secret” (in this case a pre-
image) from an image, independently of how it was computed. This conflicts
with invertible sampling because invertible sampling is about sampling without
knowing the secrets.

Theorem (informal, [29]). Assuming the existence of extractable one-way
functions (EOWF) and a non-interactive zero-knowledge proof system, PREHrand

≈c
does not hold.

This suggests that towards a realizable notion of pseudorandom encodings, a
further relaxation is due. Thus, we ask whether the above impossibility result
extends to the CRS model. In the CRS model, the above intuition why ISH
conflicts with EOWFs fails, because the CRS can contain an obfuscated program
that samples an image using some secret, but does not output this secret.

Dachman-Soled, Katz, and Rao [16] (building on the universal deniable encryp-
tion construction of Sahai and Waters [35]) construct a so-called “explainability
compiler” that implies cISHrand

≈c
based on indistinguishability obfuscation9 (iO).

By our equivalence theorem above, this implies pseudorandom encodings for all
efficiently samplable distributions in the CRS model, with static choice of inputs,
from iO. Invoking the static-to-adaptive transformation detailed above, this also
applies to the adaptive variant.

Theorem (informal). Assuming the existence of (polynomially secure) indis-
tinguishability obfuscation and one-way functions, acPREHrand

≈c
holds.

Note that [29] claim that their impossibility result extends to the CRS
model, whereas the above theorem seems to suggest the opposite. We show
that technically the result of [29] does extend to the CRS model at the cost
of assuming unbounded auxiliary-input extractable one-way functions, a strong
flavor of EOWFs that seems very unlikely to exist but cannot be unconditionally
ruled out.

Theorem (informal). Assuming the existence of extractable one-way functions
with unbounded common auxiliary input and a non-interactive zero-knowledge
proof system, cPREHrand

≈c
does not hold.

9 Informally, an iO scheme is a PPT algorithm that takes as input a circuit C and
produces another circuit iO(C) such that C and iO(C) compute the same function,
but iO(C) is unintelligible in the following sense. If two circuits C1 and C2 compute
the same function, then iO(C1) and iO(C2) are computationally indistinguishable.
The notion of iO was introduced in [2] and first instantiated in [20].
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In fact, this apparent contradiction has been the source of some confusion in
previous works: the work of [29] makes an informal claim that their impossibility
result for ISH extends to the CRS model. However, due to the connection between
ISH and adaptively secure MPC (which we will discuss in more details later on),
this claim was challenged in [16]: the authors achieve a construction of adaptively
secure MPC for all functionalities assuming iO, which seemingly contradicts the
claim of [29]. The authors of [16] therefore stated that the “impossibility result
of Ishai et al. [...] does not hold in the CRS model.” Our extension clarifies that
the distinction is in fact more subtle: the result of [29] does extend to the CRS
model, but at the cost of assuming EOWF with unbounded auxiliary inputs. This
does not contradict the constructions based on iO, because iO and EOWF with
unbounded auxiliary inputs are known to be contradictory [5].

Overview. In Figure 1, we provide a general summary of the many flavors of the
pseudorandom encoding hypothesis, and how they relate to a wide variety of
other primitives.

Further relaxation. We further study an additional relaxation of pseudorandom
encodings, where we allow the encoding algorithm to run in super-polynomial time.
We show that this relaxed variant can be achieved from cryptographic primitives
similar to extremely lossy functions [45], which can be based on the exponential
hardness of the decisional Diffie-Hellman problem – a strong assumption, but (still)
more standard than indistinguishability obfuscation. However, the applicability
of the resulting notion turns out to be rather restricted.

1.2 Implications and applications of our results

In this section, we elaborate on the implications of the techniques we develop
and the results we obtain for a variety of other cryptographic primitives.

New results for adaptively secure computation. As mentioned above, a
sampler admits invertible sampling if and only if it can be pseudorandomly en-
coded. A two-way connection between invertible sampling and adaptively secure
MPC for general randomized functionalities was established in [29]. An MPC
protocol allows two or more parties to jointly evaluate a (possibly randomized)
functionality F on their inputs without revealing anything to each other except
what follows from their inputs and outputs. This should hold even in the presence
of an adversary who can corrupt any number of parties in an adaptive (sequen-
tial) fashion. When we write “adaptive MPC”, we mean adaptive MPC for all
randomized functionalities. This should be contrasted with weaker notions of
adaptive MPC for strict subsets of corrupted parties [3, 9, 21] or for adaptively
well-formed functionalities10 [10] which can both be done from mild assumptions.
The connection from [29] shows that adaptive MPC for all randomized functions
10 Adaptively well-formed functionalities do not hide internal randomness.
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Fig. 1. An overview of the relations between the pseudorandom encoding hypothesis and
other fields of cryptography and computational complexity theory. For simplicity, our
static-to-adaptive transformation only appears in the computational, randomized setting
in this overview, but also applies to the other settings. (Since the deterministic variants of
the pseudorandom encoding hypothesis are impossible for some pathologic samplers, the
arrows between deterministic and randomized variants of the pseudorandom encoding
hypothesis are to be read as if the deterministic variant is true for some sampler, then
the corresponding randomized variant is true for that sampler.)

is possible if and only if every PPT sampler admits invertible sampling, i.e., the
invertible sampling hypothesis is true.

We show that this result generalizes to the global CRS model. More precisely,
we prove the adaptive variant of the pseudorandom encoding hypothesis in the
CRS model acPREHrand

≈c
is equivalent to adaptive MPC in the global CRS model.11

As detailed above, the static pseudorandom encoding hypothesis cPREHrand
≈c

in the CRS model follows from iO (and one-way functions). Applying our static-
to-adaptive transformation, the same holds for the adaptive variant. Thus, we
obtain the first instantiation of an adaptive explainability compiler [16] without
complexity leveraging and, hence, based only on polynomial hardness assump-

11 Together with the conflict between cPREHrand
≈c and EOWFs with unbounded auxiliary

input, this corrects a claim made in [16] that the impossibility result of adaptive
MPC from [29] would not extend to the CRS model.
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tions. The recent work of Cohen, shelat, and Wichs [15] uses such an adaptive
explainability compiler to obtain succinct adaptive MPC, where “succinct” means
that the communication complexity is sublinear in the complexity of the evaluated
function. Due to our instantiation of acPREHrand

≈c
from polynomial iO, we improve

the results of [15] by relaxing the requirement for subexponentially secure iO to
polynomially secure iO in a black-box way.

Corollary (informal). Assuming the existence of polynomially secure indistin-
guishability obfuscation and the adaptive hardness of the learning with errors
problem, then malicious, two-round, UC-secure adaptive MPC and sublinear com-
munication complexity is possible (in the local CRS model, for all deterministic
functionalities).

Steganography and covert multi-party computation. We explore the con-
nection of the pseudorandom encoding hypothesis to various flavors of steganog-
raphy. The goal of steganography, informally, is to embed secret messages in
distributions of natural-looking messages, in order to hide them from external
observers. While the standard setting for steganography relies on shared secret
keys to encode the messages, we show that pseudorandom encodings naturally
give rise to a strong form of keyless steganography. Namely, one can rely on pseu-
dorandom encodings to encode any message into an innocent-looking distribution,
without truly hiding the message (since anyone can decode the stream), but
providing plausible deniability, in the sense that, even with the decoded message,
it is impossible to tell apart whether this message was indeed encoded by the
sender, or whether it is simply the result of decoding the innocent distribution.

Corollary (informal). Assuming pseudorandom encodings, then there exists a
keyless steganographic protocol which provides plausible deniability.

Plausible deniability is an important security notion; in particular, an im-
portant cryptographic primitive in this area is the notion of (sender-)deniable
encryption [8], which is known to exist assuming indistinguishability obfuscation
[35]. Deniable encryption enables to “explain” ciphertexts produced for some
message to any arbitrary other message by providing corresponding random coins
for a faked encryption process. We view it as an interesting open problem to
build deniable encryption under the pseudorandom encoding hypothesis together
with more standard cryptographic primitives; we make a first step in this direc-
tion and show the following: the statistical variant of pseudorandom encodings,
together with the existence of public-key encryption, implies deniable encryption.
Interestingly, we also show that the computational randomized pseudorandom
encoding hypothesis suffices to imply non-committing encryption, a weaker form
of deniable encryption allowing to explain only simulated ciphertexts to arbitrary
messages [9].

Covert secure computation. Covert MPC [41, 13] is an intriguing flavor of MPC
that aims at achieving the following strong security guarantee: if the output of the
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protocol is not “favorable,” the transcript of the interaction should not leak any
information to the parties parties, including whether any given party was actually
taking part in the protocol. This strong form of MPC aims at providing security
guarantees when the very act of starting a computation with other parties should
remain hidden. As an example [41], suppose that a CIA agent who infiltrated a
terrorist group wants to make a handshake with another individual to find out
whether she is also a CIA agent. Here, we show that pseudorandom encodings give
rise to a general compiler transforming a standard MPC protocol into a covert
one, in a round-preserving way. The idea is to encode each round of the protocol
such that encoded messages look random. Together with the equivalence between
adaptively secure MPC and pseudorandom encodings, this gives a connection
between two seemingly unrelated notions of secure computation.

Corollary (informal). Assuming adaptively secure MPC for all functionalities,
there exists a round-preserving compiler that transforms a large class of “natural”
MPC protocols into covert MPC protocols (in the static, semi-honest setting).

Other results. Due to our infeasibility results of PREHrand
≡s

, distribution trans-
forming encoders (DTEs) for all efficiently samplable distributions are infeasible.
Even the computational relaxation of DTEs is infeasible assuming extractable
one-way functions. Since all currently known constructions of honey encryption
rely on DTEs, we conditionally refute the existence of honey encryption based
on the DTE-then-encrypt framework from [30]. On the positive side, due to our
feasibility result of acPREHrand

≈c
, computational honey encryption is feasible in

the CRS model.

Theorem (informal). Assuming acPREHrand
≈c

and a suitable symmetric-key en-
cryption scheme (modeled as a random cipher), computational honey encryption
for all efficiently samplable distributions exists in the CRS model.

1.3 Negative results for stronger notions of pseudorandom
encodings

Below we describe how we gradually relax optimal compression via different
notions of pseudorandom encodings and derive infeasibility results for all variants
of pseudorandom encodings which restrict the encoding algorithm to be deter-
ministic or require an information-theoretic pseudorandomness guarantee. This
leaves computational randomized pseudorandom encodings as the best possible
achievable notion.

Deterministic, statistical pseudorandom encodings. The notion of pseu-
dorandom encodings with a deterministic encoding algorithm and information-
theoretic indistinguishability is perhaps the simplest notion one can consider.
As we will prove in this paper, this notion recovers the notion of optimal com-
pression: since the encoding algorithm for some source X is deterministic, it
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can be seen with an entropy argument that the output size of EX must be at
most H∞(X), the min-entropy of X; otherwise, the distribution {EX(X)} can
necessarily be distinguished from random with some statistically non-negligible
advantage. Therefore, EX is an optimal and efficient compression algorithm for X,
with decompression algorithm DX ; this is true even for the relaxation in the CRS
model. The existence of efficient compression algorithms for various categories of
samplers was thoroughly studied [40]. In particular, the existence of compression
algorithms for all efficiently samplable sources implies the inexistence of one-way
functions (this is an observation attributed to Levin in [23]) since compressing
the output of a pseudorandom generator to its entropy would distinguish it from
a random string, and the existence of one-way functions implies the existence of
pseudorandom generators [24]).

Theorem (informal). Assuming the existence of one-way functions, neither
PREHdet

≡s
nor cPREHdet

≡s
hold.

This is a strong impossibility result, as one-way functions dwell among the
weakest assumptions in cryptography, [28]. One can circumvent this impossibility
by studying whether compression can be achieved for more restricted classes
of distributions, as was done e.g. in [40]. Our work can be seen as pursuing an
orthogonal direction. We seek to determine whether a relaxed notion of compres-
sion can be achieved for all efficiently samplable distributions. The relaxations
we consider comprise the possibility to use randomness in the encoding algorithm,
and weakening the requirement on the encoded distribution to being only compu-
tationally indistinguishable from random. Clearly, these relaxations remove one
of the most important features of compression algorithms, which is that their
outputs are smaller than their inputs (i.e., they compress). Nevertheless, the
indistinguishability of the encoded distribution from the uniform distribution is
another crucial feature of optimal compression algorithms, which has independent
applications.

Deterministic, computational pseudorandom encodings. We now turn
towards a relaxation where the encoded distribution is only required to be
computationally indistinguishable from random, but the encoding algorithm is
still required to be deterministic. This flavor is strongly connected to an important
problem in cryptography: the problem of separating HILL entropy [24] from
Yao entropy [44]. HILL and Yao entropy are different approaches of formalizing
computational entropy, i.e., the amount of entropy a distribution appears to
have from the viewpoint of a computationally bounded entity. Informally, a
distribution has high HILL entropy if it is computationally close to a distribution
with high min-entropy; a distribution has high Yao entropy if it cannot be
compressed efficiently. Finding a distribution which, under standard cryptographic
assumptions, has high Yao entropy, but low HILL entropy constitutes a long
standing open problem in cryptography. Currently, only an oracle separation [42]
and a separation for conditional distributions [27] are known. To establish the
connection between PREHdet

≈c
and this problem, we proceed as follows: informally,
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a deterministic pseudorandom encoding must necessarily compress its input to
the HILL entropy of the distribution. That is, the output size of the encoding
cannot be much larger than the HILL entropy of the distribution. This, in turn,
implies that a distribution which admits such a pseudorandom encoding cannot
have high Yao entropy.

In this work, we formalize the above argument, and show that the conditional
separation of HILL and Yao entropy from [27] suffices to refute PREHdet

≈c
. This

separation holds under the assumption that non-interactive zero-knowledge proofs
with some appropriate structural properties exist (which in turn can be based on
standard assumptions such as the quadratic residuosity assumption). Thus, we
obtain the following infeasibility result:

Theorem (informal). If the quadratic residuosity assumption holds, then PREHdet
≈c

does not hold.

Hence, we may conclude that towards a feasible variant of pseudorandom en-
codings for all efficiently samplable distributions, requiring the encoding algorithm
to be deterministic poses a strong restriction.

Randomized, statistical pseudorandom encodings. We now consider the
relaxation of perfect compression by allowing the encoding algorithm to be
randomized while still requiring information-theoretic indistinguishability from
randomness. This flavor of pseudorandom encoding was used in the context of
honey encryption [30]. Honey encryption is a cryptographic primitive which has
been introduced to mitigate attacks on encryption schemes resulting from the use
of low-entropy passwords. Honey encryption has the property that decrypting a
ciphertext with an incorrect key always yields a valid-looking plaintext which
seems to come from the expected distribution, thereby mitigating brute-force
attacks. This is the same property that was useful in the previous PAKE example.

The study of honey encryption was initiated in [30], where it was shown
that honey encryption can naturally be constructed by composing a block ci-
pher (modeled as a random cipher) with a distribution transforming encoder
(DTE), a notion which is equivalent to our notion of pseudorandom encoding
with randomized encoding and statistical pseudorandomness. The focus of [30]
was on obtaining such DTEs for simple and useful distributions. In contrast,
we seek to understand the feasibility of this notion for arbitrary distributions.
Intuitively, it is not straightforward to encode any efficient distribution into the
uniform distribution; consider for example the distribution over RSA moduli, i.e.,
products of two random n-bit primes. Since no efficient algorithm is known to
test membership in the support of this distribution, natural approaches seem to
break down. In fact, we show in this work that this difficulty is inherent: building
on techniques from [5, 29], we demonstrate the impossibility of (randomized,
statistical) pseudorandom encodings for all efficiently samplable distributions,
under a relatively standard cryptographic assumption.

Theorem (informal). Assuming the sub-exponential hardness of the learning
with errors (LWE) problem, PREHrand

≡s
does not hold.
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This result directly implies that under the same assumption, there exist
efficiently samplable distributions (with input) for which no distribution trans-
forming encoder exists. We view it as an interesting open problem whether this
result can be extended to rule out the existence of honey encryption for arbitrary
distributions under the same assumption.

1.4 Open questions and subsequent work

The most intriguing question left open by our work is whether the weakest variant
of the pseudorandom encoding hypothesis cPREHrand

≈c
, which is implied by iO, also

implies iO. Very recently, this question was settled in the affirmative by Wee and
Wichs [43] under the LWE assumption. More concretely, by modifying a heuristic
iO construction of Brakerski et al. [7], they show that iO is implied by LWE if
one is additionally given an oblivious LWE-sampler in the CRS model. Such a
sampler, given a matrix A ∈ Zm×nq , generates outputs that are indistinguishable
from LWE samples A · s + e without knowing the secrets s or the noise e.
The existence of an oblivious LWE sampler is nontrivial even under the LWE
assumption, because A can be such that A · s + e is not pseudorandom; however,
such a sampler still follows from the invertible sampling hypothesis [29], which we
show to be equivalent to the pseudorandom encoding hypothesis. By proposing an
explicit heuristic construction of (a relaxed flavor of) an oblivious LWE sampler,
the end result of [43] is a construction of iO from a new “falsifiable” assumption.

Whether cPREHrand
≈c

implies iO under weaker or different assumptions than
LWE remains open. A potentially easier goal is using cPREHrand

≈c
to construct

public-key encryption from one-way functions. This is related to the possibility
of constructing oblivious transfer from any public-key encryption in which public
keys and ciphertexts are obliviously samplable [19, 22], which is implied by public-
key encryption and cPREHrand

≈c
. Here cPREHrand

≈c
is used to bypass the black-box

separation between public-key encryption and oblivious transfer [22].
Finally, there is a lot of room for relaxing the intractability assumptions we

use to rule out the statistical (cPREHrand
≡s

) and deterministic (cPREHdet
≈c

) flavors
of pseudorandom encodings.

Organization. In Section 2, we provide a technical overview of a selection of
our results. In Section 3, we provide condensed definitions of pseudorandom
encodings and invertible sampling and a formal proof of their equivalence and in
Section 4 we describe the static-to-adaptive transformation. We refer the reader
to the full version [1] for more details and for the other results we described.

2 Overview of techniques

In this section, we elaborate on some of our technical results in more detail. In the
following, we identify a PPT sampler S with the distribution (family) ensemble
it induces.
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The relation to invertible sampling. A PPT sampler S is inverse samplable [17,
29], if there exists an alternative sampler S inducing a distribution which is
computationally indistinguishable to the distribution induced by S such that the
computations of S can be efficiently inverted. Efficiently inverting the computation
of S means that there exists an efficient inverse sampler S−1 which, given an
output of S, recovers a well-distributed random tape for S to compute the given
output in the following sense. The inverse sampled random tape is required
to be computationally indistinguishable from the actually used random tape.
More formally, a PPT sampler S is inverse samplable if there exists an efficient
alternative sampler S and an efficient inverse sampler S−1 such that{

y ← S(1λ) : y
}
≈c
{
y ← S(1λ) : y

}
, (3){

y ← S(1λ; r) : (r, y)
}
≈c
{
y ← S(1λ) : (S−1(1λ, y), y)

}
. (4)

We refer to Equation (3) as closeness and to Equation (4) as invertibility. If the
sampler S admits an input m, the above is required to hold for all inputs m in
the input space L, where S and S−1 both additionally receive m as input. In
accordance with [29], we refer to the hypothesis that all PPT algorithms with
input are inverse samplable as the invertible sampling hypothesis. Restricting
the invertible sampling hypothesis to algorithms which do not admit inputs is
denoted the weak invertible sampling hypothesis.

The concepts of inverse samplability and pseudorandom encodings are tightly
connected. Suppose a PPT algorithm S is inverse samplable. Then, there exists an
alternative and an inverse sampler (S, S−1) satisfying closeness and invertibility.
Invertibility guarantees that the inverse sampler S−1 on input of a sample y
from S(1λ), outputs a computationally well-distributed random tape r. Hence,
with overwhelming probability over the choice of y ← S(1λ) and r ← S

−1(y),
the alternative sampler on input of r, recovers y. In other words, the inverse
sampler S−1 can be seen as encoding a given sample y, whereas the de-ran-
domized alternative sampler S given this encoding as random tape, is able to
recover y. Looking through the lens of pseudorandom encoding, this almost
proves correctness except that y is sampled according to S(1λ) instead of S(1λ).
This difference can be bridged due to closeness. We now turn towards showing
pseudorandomness of the encoded distribution. Due to closeness, the distributions
{y ← S(1λ) : (S−1(1λ, y), y)} and {y ← S(1λ) : (S−1(1λ, y), y)} are computation-
ally indistinguishable. Invertibility guarantees that, given a sample y from S(1λ),
an encoding of y is indistinguishable to uniformly chosen randomness conditioned
on the fact that decoding yields y. Removing y from this distribution, almost
corresponds to pseudorandomness, except that y is sampled according to S(1λ)
instead of S(1λ). Again, we are able to bridge this gap due to closeness. Note that
we crucially use the fact that the initial randomness used by S resides outside of
the view of an adversary. Summing up, if a PPT sampler S is inverse samplable,
then it can be pseudorandomly encoded.

Interestingly, this connection turns out to be bidirectional. Suppose a PPT
algorithm S can be pseudorandomly encoded. Then, there exists an efficient

15



encoding algorithm ES and an efficient deterministic decoding algorithm DS sat-
isfying correctness and pseudorandomness. Looking through the lens of invertible
sampling, we identify the decoding algorithm to correspond to the alternative
sampler (viewing the random tape of the alternative sampler as explicit input to
DS) and the encoding algorithm to correspond to the inverse sampler. Pseudoran-
domness guarantees that ES(S(1λ)) is indistinguishable from uniform randomness.
Hence, applying the decode algorithm DS on uniform randomness is indistin-
guishable from applying DS to outputs of ES(S(1λ)). Correctness guarantees
that DS(ES(y)) for y sampled according to S(1λ) recovers y with overwhelming
probability. Thus, the distribution induced by applying DS on uniform random-
ness is computationally close to the distribution induced by S(1λ). This shows
closeness. For the purpose of arguing about invertibility, consider the distribution
A := {y ← DS(r) : (r, y)}. Due to pseudorandomness r can be considered an
encoded sample from S(1λ). Hence, A is indistinguishable to the distribution,
where r is produced by ES(y′) for some independent y′ ← S(1λ), i.e.{

y ← DS(r) : (r, y)
}
≈c
{
y′ ← S(1λ), r ← ES(y′), y ← DS(r) : (r, y)

}
.

Note that by correctness, y and y′ are identical with overwhelming probability.
Therefore, A is indistinguishable to

{
y′ ← S(1λ), r ← ES(y′) : (r, y′)

}
. Since

sampling y′ via DS applied on uniform randomness is computationally close to
the above distribution due to closeness, invertibility follows. Summing up, a
sampler S can be pseudorandomly encoded if and only if it is inverse samplable.

Likewise to the variations and relaxations described for pseudorandom encod-
ings, we vary and relax the notion of invertible sampling. The inverse sampler can
be required to be deterministic or allowed to be randomized. Further, closeness
and invertibility can be required to hold information theoretically or computation-
ally. We denote these variants as ISHrand

≈c
, ISHrand

≡s
, ISHdet

≈c
and ISHdet

≡s
. To circumvent

impossibilities in the plain model, we also define the relaxations in the common
reference string model in static and adaptive flavors, denoted the prefix “c” and
“ac”, respectively. The above equivalence extends to all introduced variations of
the pseudorandom encoding and invertible sampling hypotheses.

The static-to-adaptive transformation. The static variant of pseudorandom en-
codings in the CRS model only guarantees correctness and pseudorandomness as
long as the input m for the sampler S is chosen independently of the CRS. The
adaptive variant, on the other hand, provides correctness and pseudorandomness
even for adaptive choices of inputs. Adaptive notions always imply their static
analogues. Interestingly, for pseudorandom encodings, the opposite direction is
true as well. The core idea is to use an indirection argument (similar to [25, 11,
12]) to delay CRS generation until during the actual encoding process. Thus, the
advantage stemming from adaptively choosing the input is eliminated.

Suppose that the static variant of the pseudorandom encoding hypothesis
in the CRS model is true and let S be some PPT sampler. Since S can be
pseudorandomly encoded in the CRS model with static choice of inputs, there exist
algorithms (Setup′,E′,D′) such that static correctness and pseudorandomness
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hold. Further, the algorithm Setup′ can also be pseudorandomly encoded as above.
Let (Setup′′,E′′,D′′) be the corresponding algorithms such that static correctness
and pseudorandomness hold. Note that since the sampler Setup′ does not expect
an input, static and adaptive guarantees are equivalent.

Then, the sampler S can be pseudorandomly encoded in the CRS model with
adaptive choice of inputs as follows. Initially, we sample a common reference
string crs′′ via Setup′′(1λ) and make it available to the parties. Given crs′′
and a sample y from S(m), adaptive encoding works in two phases. First, a
fresh CRS crs′ is sampled via Setup′(1λ) and pseudorandomly encoded via
r1 ← E′′(crs′′, crs′). Second, the given sample y is pseudorandomly encoded via
r2 ← E′(crs′,m, y). The encoding of y then consists of (r1, r2). To decode, the
CRS crs′ is restored via D′′(crs′′, r1). Then, using crs′, the original sample y is
recovered via D′(crs′,m, r2).

Since crs′ is chosen freshly during the encoding process, the input m which
may depend on crs′′, cannot depend on crs′. Further, the distribution Setup′′
does not expect an input. Hence, static guarantees suffice.

To realize that adaptive pseudorandomness holds, consider the encoding of
S(m) for some adaptively chosen message m. Since the view of A when choosing
the message m is independent of crs′, static pseudorandomness can be applied
to replace the distribution E′(crs′,m, S(m)) with uniform randomness. Further,
since the sampler Setup′ does not expect any input, static pseudorandomness
suffices to replace the distribution E′′(crs′′,Setup′(1λ)) with uniform randomness.
This proves adaptive pseudorandomness.

The adaptive variant of correctness follows similarly from the static variant
of correctness. Consider the distribution of decoding an encoded sample of S(m),
where m is adaptively chosen. Since the sampler Setup′ does not expect an
input, static correctness can be applied to replace decoding D′′(crs′′, r1) with
the crs′ sampled during encoding. Again, since crs′ does not lie in the view
of the adversary when choosing the message m, static correctness guarantees
that decoding succeeds with overwhelming probability. This proves adaptive
correctness.

On deterministic pseudorandom encoding and compression. The notion of pseudo-
random encoding is inspired by the notion of compression. A tuple of deterministic
functions (EX ,DX) is said to compress a source Xλ to length m(λ) with decoding
error ε(λ), if (i) Pr[DX(EX(Xλ)) 6= Xλ] ≤ ε(λ) and (ii) E[|EX(Xλ)|] ≤ m(λ), see
[42, 40]. Pseudorandom encoding partially recovers the notion of compression
if we require the encoding algorithm to be deterministic. If a source Xλ can be
pseudorandomly encoded with a deterministic encoding algorithm having output
length n(λ), then Xλ is compressible to length n(λ). Note, however, that the
converse direction is not true. Compression and decompression algorithms for a
compressible source do not necessarily encode that source pseudorandomly. The
output of a compression algorithm is not required to look pseudorandom and,
in some cases, admits a specific structure which makes it easily distinguishable
from uniform randomness, e.g. instances using Levin search, [40].
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Clearly, the requirement for correctness, poses a lower bound on the encod-
ing length n(λ), [36]. Conversely, requiring the encoding algorithm EX to be
deterministic means that the only source of entropy in the distribution EX(Xλ)
originates from the source Xλ itself. Hence, for the distributions EX(Xλ) and the
uniform distribution over {0, 1}n(λ) to be indistinguishable, the encoding length
n(λ) must be “sufficiently small”. We observe that correctness together with the
fact that EX is deterministic implies that the event EX(DX(EX(Xλ))) = EX(Xλ)
occurs with overwhelming probability. Applying pseudorandomness yields that
EX(DX(Un(λ))) = Un(λ) holds with overwhelming probability, wherefore we can
conclude that DX operates almost injectively on the set {0, 1}n(λ). Hence, the
(smooth) min-entropy of DX(Un(λ)) is at least n(λ).

Considering information theoretical pseudorandomness, the distributions
DX(Un(λ)) and Xλ are statistically close. Hence, by the reasoning above, the
encoding length n(λ) is upper bounded by the (smooth) min-entropy of the source
Xλ. In conclusion, if a distribution can be pseudorandomly encoded such that the
encoding algorithm is deterministic satisfying statistical pseudorandomness, then
this distribution is compressible to its (smooth) min-entropy. Using a technical
“Splitting Lemma”, this extends to the relaxed variant of the pseudorandom
encoding hypothesis in the CRS model.

Considering computational pseudorandomness, by a similar argument as above,
we obtain that Xλ is computationally close to a distribution with min-entropy
n(λ). This does not yield a relation between the encoding length and the min-
entropy of the source. However, we do obtain relations to computational analogues
of entropy. Computational entropy is the amount of entropy a distribution
appears to have from the perspective of a computationally bounded entity. The
notion of HILL entropy [24] is defined via the computational indistinguishability
from a truly random distribution. More formally, a distribution Xλ has HILL
entropy at least k, if there exists a distribution with min-entropy k which is
computationally indistinguishable from Xλ. Hence, the encoding length n(λ) is
upper bounded by the HILL entropy of the source Xλ. Another important notion
of computational entropy is the notion of Yao entropy [44]. Yao entropy is defined
via the incompressibility of a distribution. More precisely, a distribution Xλ

has Yao entropy at least k if Xλ cannot be efficiently compressed to length less
than k (and successfully decompressed). If a distribution can be pseudorandomly
encoded with deterministic encoding, then it can be compressed to the encoding
length n(λ). This poses an upper bound on the Yao entropy of the source. In
summary, this yields

n(λ) ≤ HHILL(Xλ) and HYao(Xλ) ≤ n(λ). (5)

However, due to [27, 31], if the Quadratic Residuosity Assumption (QRA) is true,
then there exist distributions which have low conditional HILL entropy while
being conditionally incompressible, i.e. have high conditional Yao entropy.12 The
above observations, particularly Equation (5), can be extended to conditional
12 Let (X, Z) be a joint distribution. The conditional computational entropy is the

entropy X appears to have to a bounded adversary when additionally given Z.
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HILL and conditional Yao entropy, by considering PREHdet
≈c

for PPT algorithms
with input. Therefore, if the Quadratic Residuosity Assumption is true, PREHdet

≈c
cannot be true for those distributions.

Unfortunately, we do not know whether this extends to the relaxed variants
of the pseudorandom encoding hypothesis admitting access to a CRS. On a high
level, the problem is that the HILL entropy, in contrast to the min-entropy, does
not remain untouched when additionally conditioning on some common reference
string distribution, even though the initial distribution is independent of the
CRS. Hence, the splitting technique can not be applied here.

3 Pseudorandom encodings and invertible sampling

In this section, we formally define pseudorandom encodings and invertible sam-
pling. We will work with the hypothesis that every efficiently samplable distri-
bution can be pseudorandomly encoded and invertible sampled and we refer to
these hypotheses as the pseudorandom encoding hypothesis and the invertible
sampling hypothesis, respectively. This section is a condensed and much less
detailed version of the full version [1].

Definition 1 (Pseudorandom encoding hypothesis, PREHrand
≈c

). For every
PPT algorithm S, there exist efficient algorithms ES (the encoding algorithm) with
output length n(λ) and DS (the decoding algorithm), where DS is deterministic
and ES is randomized satisfying the following two properties.
Correctness. For all inputs m ∈ L, εdec-error(λ) := Pr

[
y ← S(m) : DS(m,ES(m,

y)) 6= y
]
is negligible.

Pseudorandomness. For all PPT adversaries A and all inputs m ∈ L,

Advpre
A,m(λ) :=

∣∣∣Pr[Exppre
A,m,0(λ) = 1]− Pr[Exppre

A,m,1(λ) = 1]
∣∣∣ ≤ negl(λ),

where Exppre
A,m,0 and Exppre

A,m,1 are defined below.

Exppre
A,m,0(λ)

r ← {0, 1}p(λ)

y := S(m; r)
return A(m, ES(m, y))

Exppre
A,m,1(λ)

u← {0, 1}n(λ)

return A(m, u)

Definition 2 (Invertible sampling hypothesis, ISHrand
≈c

, [29]). For every
PPT algorithm S, there exists a PPT algorithm S (the alternate sampler) with
randomness space {0, 1}n(λ) and an efficient randomized algorithm S

−1 (the
inverse sampler), satisfying the following two properties.
Closeness. For all PPT adversaries A and all inputs m ∈ L,

Advclose
A,m(λ) :=

∣∣∣Pr[Expclose
A,m,0(λ) = 1]− Pr[Expclose

A,m,1(λ) = 1]
∣∣∣ ≤ negl(λ),

where Expclose
A,m,0 and Expclose

A,m,1 are defined below.
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Invertibility. For all PPT adversaries A and all inputs m ∈ L,

Adv inv
A,m(λ) :=

∣∣Pr[Expinv
A,m,0(λ) = 1]− Pr[Expinv

A,m,1(λ) = 1]
∣∣ ≤ negl(λ),

where Expinv
A,m,0 and Expinv

A,m,1 are defined below.

Expclose
A,m,0(λ)

r ← {0, 1}p(λ)

y := S(m; r)
return A(m, y)

Expclose
A,m,1(λ)

r ← {0, 1}n(λ)

y := S(m; r)
return A(m, y)

Expinv
A,m,0(λ)

r ← {0, 1}n(λ)

y := S(m; r)
return A(m, r, y)

Expinv
A,m,1(λ)

r ← {0, 1}n(λ)

y := S(m; r)

r ← S
−1(m, y)

return A(m, r, y)

Theorem 1. PREHrand
≈c

is true if and only if ISHrand
≈c

is true.

Lemma 1. If ISHrand
≈c

holds, then PREHrand
≈c

holds.

Proof. Assume ISHrand
≈c

holds. Let S be a PPT algorithm. ISHrand
≈c

implies that
there exists an alternative sampler S (with randomness space {0, 1}n(λ)) and a
corresponding inverse sampler S−1 satisfying closeness and invertibility.

For m ∈ L, y ∈ {0, 1}∗, r ∈ {0, 1}n(λ), we define the algorithms ES(m, y) :=
S
−1(m, y) (potentially randomized) and DS(m, r) := S(m; r) (deterministic).

Correctness. We consider a series of hybrids, see Figure 2.
G0

r ← {0, 1}n(λ)

y := S(m; r)
return A(m, r, y)

G1

r ← {0, 1}n(λ)

y := S(m; r)

r ← S
−1(m, y)

return A(m, r, y)

G2

r ← {0, 1}p(λ)

y := S(m; r)

r ← S
−1(m, y)

return A(m, r, y)

Fig. 2. Hybrids used in the proof of correctness.

Game G0 is identical to Expinv
A,m,0 and game G1 is identical to Expinv

A,m,1.
Hence, |Pr[out1 = 1]− Pr[out0 = 1]| ≤ Adv inv

A,m(λ).

Claim. For all PPT adversaries A, for all m ∈ L, there exists a PPT adversary
A, such that |Pr[out2 = 1]− Pr[out1 = 1]| ≤ Advclose

A,m(λ).

Proof. Construct an adversary A on closeness. On input of (m, y), A computes
r ← S

−1(m, y), calls A on input of (m, r, y) and outputs the resulting output. If
y is sampled using S(m; r) (for r ← {0, 1}n(λ)), A perfectly simulates game G1
for A. If y is sampled using S(m; r) (for f ← {0, 1}p(λ)), A perfectly simulates
game G2 for A. Therefore, Pr[out1 = 1] = Pr[Expclose

A,m,1(λ) = 1] and Pr[out2 =
1] = Pr[Expclose

A,m,0(λ) = 1]. ut
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Thus, we have that |Pr[out2 = 1]− Pr[out0 = 1]| ≤ Advclose
A,m(λ) + Adv inv

A′
,m

(λ)
for some PPT adversaries A,A′.

Consider the adversary A distinguishing between game G0 and game G2 that
on input of (m, r, y), outputs 0 if S(m; r) = y and outputs 1 otherwise. By defini-
tion, A always outputs 0 inG0. Hence, εdec-error(λ) = Pr[y ← S(m) : S(m,S−1(m,
y)) 6= y] = Pr[out2,A = 1] = |Pr[out2,A = 1]− Pr[out0,A = 1]|.

Pseudorandomness. We consider a sequence of hybrids starting from Exppre
A,m,0

and concluding in Exppre
A,m,1, see Figure 3.

G0

r ← {0, 1}p(λ)

y := S(m; r)

u← S
−1(m, y)

return A(m, u)

G1

r ← {0, 1}n(λ)

y := S(m; r)

u← S
−1(m, y)

return A(m, u)

G2

r ← {0, 1}n(λ)

return A(m, r)

Fig. 3. Hybrids used in the proof of pseudorandomness.

Claim. For all PPT adversaries A, for all m ∈ L, there exists a PPT adversary
A, such that |Pr[out1 = 1]− Pr[out0 = 1]| ≤ Advclose

A,m(λ).

Proof. Construct a PPT adversary A on the closeness property as follows. On
input of (m, y), A calls A on input of (m,S−1(m, y)) and outputs the resulting
output. If y ← S(m), A simulates game G0 for A, and if y ← S(m), A simulates
game G1 for A. Hence, Pr[out0 = 1] = Pr[Expclose

A,m,0(λ) = 1] and Pr[out1 = 1] =
Pr[Expclose

A,m,1(λ) = 1]. ut

Claim. For all PPT adversaries A, for all m ∈ L, there exists a PPT adversary
A, such that |Pr[out2 = 1]− Pr[out1 = 1]| ≤ Adv inv

A,m(λ).

Proof. We construct a PPT adversary A on the invertibility property. On input
of (m, r, y), A calls A on input of (m, r) and outputs its output. If r ← S

−1(m, y)
for y ← S(m), A simulates game G1 for A. If r ← {0, 1}n(λ), A simulates game
G2 for A. Therefore, Pr[out1 = 1] = Pr[Expinv

A,m,0(λ) = 1] and Pr[out2 = 1] =
Pr[Expinv

A,m,1(λ) = 1]. ut

Hence, Advpre
A,m(λ) = |Pr[out2 = 1] − Pr[out0 = 1]| ≤ Advclose

A,m(λ) + Adv inv
A′
,m

(λ)
for some PPT adversaries A and A′. ut

Lemma 2. If PREHrand
≈c

holds, then ISHrand
≈c

holds.

Proof. We prove the statement for the computational randomized case. The
remaining cases are similar.
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Assume PREHrand
≈c

holds. Let S be a PPT algorithm. PREHrand
≈c

implies that
for S there exist efficient algorithms ES (potentially randomized) with output
length n(λ) and DS (deterministic) satisfying correctness and pseudorandomness.

For m ∈ L, r ∈ {0, 1}n(λ), y ∈ {0, 1}∗, we define the alternative sampler
as S(m; r) := DS(m, r) (randomized) and the corresponding inverse sampler
S
−1(m, y) := ES(m, y) (potentially randomized).

Closeness. Let A be an adversary on closeness. We consider a sequence of
games starting from Expclose

A,m,0 and concluding in Expclose
A,m,1, see Figure 4.

G0

rS ← {0, 1}p(λ)

yS := S(m; rS)
return A(m, yS)

G1

rS ← {0, 1}p(λ)

yS := S(m; rS)
rD ← ES(m, yS)
yD := DS(m, rD)
return A(m, yS)

G2

rS ← {0, 1}p(λ)

yS := S(m; rS)
rD ← ES(m, yS)
yD := DS(m, rD)
return A(m, yD)

G3

rS ← {0, 1}p(λ)

yS := S(m; rS)

rD ← {0, 1}n(λ)

yD := DS(m, rD)
return A(m, yD)

Fig. 4. Hybrids used in the proof of closeness.

The difference between game G0 and game G1 is only conceptional, hence,
Pr[out0 = 1] = Pr[out1 = 1].

G1 and G2 proceed exactly identical if yS = yD. More formally, let F be
the event that yS 6= yD. We have that out1 = 1 ∧ ¬F ⇔ out2 ∧ ¬F . Hence,
the Difference Lemma (due to Shoup, [37]) bounds |Pr[out2 = 1] − Pr[out1 =
1]| ≤ Pr[F ]. Correctness guarantees that for all m ∈ L, Pr[F ] = Pr[yS ←
S(m) : DS(m,ES(m, yS)) 6= yS ] = εdec-error(λ) is negligible.

Claim. For all PPT adversaries A, for all m ∈ L, there exists a PPT adversary
A, such that |Pr[out3 = 1]− Pr[out2 = 1]| ≤ Advpre

A,m
(λ).

Proof. Construct an adversary A on pseudorandomness as follows. On input of
(m,u =: rD), A calls A on input (m,DS(m, rD)) and outputs the resulting output.
If u← ES(m, y) for y ← S(m),A perfectly simulates gameG2 forA. Otherwise, if
u is uniformly random over {0, 1}n(λ),A perfectly simulates gameG3 forA. Hence,
Pr[out3 = 1] = Pr[Exppre

A,m,1
(λ) = 1] and Pr[out2 = 1] = Pr[Exppre

A,m,0
(λ) = 1].

ut

Hence, Advclose
A,m(λ) = |Pr[out3 = 1]− Pr[out0 = 1]| ≤ Advpre

A,m
(λ) + εdec-error(λ)

for some PPT adversary A.

Invertibility. We consider a sequence of hybrids, see Figure 5.

Claim. For all PPT adversaries A, for all m ∈ L, there exists a PPT adversary
A, such that |Pr[out1 = 1]− Pr[out0 = 1]| ≤ Advpre

A,m
(λ) + εdec-error(λ).

Proof. Let A be an adversary distinguishing G0 and G1. Construct an adversary
A on the closeness property. On input of (m, y), A computes r ← ES(m, y) and
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G0

r ← {0, 1}n(λ)

y := DS(m, r)
r ← ES(m, y)
return A(m, r, y)

G1

rS ← {0, 1}p(λ)

yS := S(m; rS)
rD ← ES(m, yS)
return A(m, rD, yS)

G2

rS ← {0, 1}p(λ)

yS := S(m; rS)
rD ← ES(m, yS)
yD := DS(m, rD)
return A(m, rD, yS)

G3

rS ← {0, 1}p(λ)

yS := S(m; rS)
rD ← ES(m, yS)
yD := DS(m, rD)
return A(m, rD, yD)

G4

rS ← {0, 1}p(λ)

yS := S(m; rS)

rD ← {0, 1}n(λ)

yD := DS(m, rD)
return A(m, rD, yD)

G5

rD ← {0, 1}n(λ)

yD := DS(m, r)
return A(m, rD, yD)

Fig. 5. Hybrids used in the proof of invertibility.

calls A on input (m, r, y). If y ← S(m), A simulates game G0 for A. Else, if
y ← S(m), A simulates game G1 for A. Hence, |Pr[out1 = 1]− Pr[out0 = 1]| =
Advclose

A,m(λ). ut

The difference between G1 and G2 is purely conceptional. Hence, Pr[out1 =
1] = Pr[out2 = 1]. G2 and G3 behave identical if yD = yS . Let F denote the
failure event yD 6= yS . We have that out2 = 1 ∧ ¬ ⇔ out3 ∧ ¬F . The Difference
Lemma (due to Shoup, [37]) bounds |Pr[out3 = 1]− Pr[out2 = 1]| ≤ Pr[F ]. Due
to correctness, for all m ∈ L, Pr[F ] = Pr[yS ← S(m) : DS(m,ES(m, yS)) 6= yS ] =
εdec-error(λ) is negligible.

Claim. For all PPT adversaries A, for all m ∈ L, there exists a PPT adversary
A, such that |Pr[out4 = 1]− Pr[out3 = 1]| ≤ Advpre

A,m
(λ).

Proof. Construct a PPT adversary A on the pseudorandomness property. On
input of (m,u), A calls A on input (m,u =: rD,DS(m,u) =: yD) and outputs
the resulting output. If u ← ES(m, y) for y ← S(m), A perfectly simulates
game G3 for A. Otherwise, if u is uniformly random over {0, 1}n(λ), A perfectly
simulates game G4 for A. Hence, Pr[out3 = 1] = Pr[Exppre

A,m,0
(λ) = 1] and

Pr[out4 = 1] = Pr[Exppre
A,m,1

(λ) = 1]. ut

The difference between G4 and G5 is again only conceptional and Pr[out4 = 1] =
Pr[out5 = 1]. Hence, |Pr[out5 = 1]−Pr[out0 = 1]| ≤ 2 ·Advpre

A,m
(λ)+2 · εdec-error(λ)

for some PPT adversary A. ut

4 Static-to-adaptive transformation

We obtain a natural relaxation of the pseudorandom encoding hypothesis by
introducing public parameters. That is, a distribution defined via S can be
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pseudorandomly encoded in this relaxed sense, if there exists a probabilistic
setup algorithm SetupS and encode and decode algorithms as before such that for
all m ∈ L, the event DS(crs,ES(crs, S(m))) = S(m) occurs with overwhelming
probability, where the probability is also over the choice of crs, and the distribution
(SetupS(1λ),ES(SetupS(1λ), S(m))) is indistinguishable from the distribution
(SetupS(1λ), Un(λ)). See the full version [1] for more details.

There are two variants of this definition. The input m can be required to be
chosen independently of crs or allowed to be chosen depending on crs. Clearly,
the adaptive variant implies the non-adaptive (or static) variant. Interestingly,
the opposite direction is true as well by an “indirection” argument similar to the
one from the work on universal samplers [25]. A similar technique was used in
the context of non-committing encryption [11] and adaptively secure MPC [12].
Theorem 2. Let α ∈ {≈c,≡s} and β ∈ {rand, det}. If cPREHβα is true, then
acPREHβα is true.
Proof. We prove the statement for the computational randomized case. A very
similar proof applies to the remaining cases.

Let S be a PPT sampler with input space L. Since cPREHrand
≈c

is true, for
the PPT sampler S, there exist (Setup′S ,E′S ,D′S) with output length n′(λ) such
that correctness and pseudorandomness hold (statically). Again, since cPREHrand

≈c
is true, for the PPT sampler Setup′S , there exist (Setup′′,E′′,D′′) with output
length n′′(λ) such that correctness and pseudorandomness hold (statically).13

Note that Setup′S does not expect an input.
In Figure 6, we define algorithms (SetupS ,ES ,DS) satisfying adaptive correct-

ness and pseudorandomness.
SetupS(1λ)

crs′′ ← Setup′′(1λ)
crs := crs′′

return crs

ES(crs, m, y)

crs′ ← Setup′S(1λ)
r1 ← E′′(crs′′, crs′)
r2 ← E′S(crs′, m, y)
return r1 ‖ r2

DS(crs, m, r)

parse r =: r1 ‖ r2

crs′ := D′′(crs′′, r1)
y := D′S(crs′, m, r2)
return y

Fig. 6. Adaptive pseudorandom encodings.

On a high level, since crs′ is chosen freshly and independently after the
adversary fixes the message m, selective security suffices. Furthermore, since the
distribution of crs′ has no input, selective security is sufficient.

Adaptive correctness. We define a series of hybrid games to prove correctness,
see Figure 7. Game G0 corresponds to encoding and subsequently decoding a
sample y (for adaptively chosen input m) and game G1 is simply a reordering
of the commands of G0. The game hop from G0 to G1 only conceptional and
Pr[out0 = 1] = Pr[out1 = 1].
Claim. For all PPT adversaries A, there exists a PPT adversary A, such that
|Pr[out2 = 1]− Pr[out1 = 1]| ≤ εc-dec-error

(Setup′′,E′′,D′′),A(λ).
13 For notational convenience, we do not write the sampler Setup′S as index.
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G1

crs′′ ← Setup′′(1λ)
crs′ ← Setup′S(1λ)
r1 ← E′′(crs′′, crs′)
crs′D := D′′(crs′′, r1)
m← A(crs′′)
y ← S(m)
r2 ← E′S(crs′, m, y)
yD := D′S(crs′D, m, r2)
return yD = y

G2

crs′′ ← Setup′′(1λ)

crs′ ← Setup′S(1λ)
r1 ← E′′(crs′′, crs′)
crs′D := D′′(crs′′, r1)
m← A(crs′′)
y ← S(m)
r2 ← E′S(crs′, m, y)
yD := D′S(crs′, m, r2)
return yD = y

G3

crs′′ ← Setup′′(1λ)
m← A(crs′′)
crs′ ← Setup′S(1λ)
y ← S(m)
r2 ← E′S(crs′, m, y)
yD := D′S(crs′, m, r2)
return yD = y

Fig. 7. Hybrid games for the proof of adaptive correctness.

Proof. The games G1 and G2 proceed exactly identically if crs′D = crs′. Let E
be the event that crs′ 6= crs′D. We have that out1 = 1 ∧ ¬E ⇔ out2 ∧ ¬E. Due
to correctness of (Setup′′,E′′,D′′),

Pr


crs′′ ← Setup(1λ)
crs′ ← Setup′S(1λ)
r1 ← E′′(crs′′, crs′)

crs′D := D′′(crs′′, r1)

: crs′D 6= crs′


is negligible. Hence, the Difference Lemma (due to Shoup, [37]) upper bounds

|Pr[out2 = 1]− Pr[out1 = 1]| ≤ Pr[E].

ut

The game hop fromG2 toG3 only conceptional and Pr[out2 = 1] = Pr[out3 =
1].

Claim. For all PPT adversaries A, there exists a PPT adversary A, such that
Pr[out3 = 1] ≥ 1− εc-dec-error

(Setup′
S
,E′

S
,D′

S
),A(λ).

Proof. Due to correctness of (Setup′S ,E′S ,D′S), we have that for all PPT adver-
saries A,

Pr


m ← A(1λ)

crs′ ← Setup′S(1λ)
y ← S(m)
r ← E′S(crs′,m, y)
yD := D′S(crs′,m, r)

: y = yD


is overwhelming. Therefore, for all PPT adversaries A, Pr[out3 = 1] is overwhelm-
ing. ut

Adaptive pseudorandomness. We define a series of hybrid games to prove
pseudorandomness, see Figure 8.
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G1

crs′′ ← Setup′′(1λ)
m← A(crs′′)
y ← S(m)

crs′ ← Setup′S(1λ)
r1 ← E′′(crs′′, crs′)

r2 ← {0, 1}n
′(λ)

return A(crs′′, m, r1 ‖ r2)

G2

crs′′ ← Setup′′(1λ)
crs′ ← Setup′S(1λ)
r1 ← E′′(crs′′, crs′)
m← A(crs′′)

r2 ← {0, 1}n
′(λ)

return A(crs′′, m, r1 ‖ r2)

G3

crs′′ ← Setup′′(1λ)

r1 ← {0, 1}n
′′(λ)

m← A(crs′′)

r2 ← {0, 1}n
′(λ)

return A(crs′′, m, r1 ‖ r2)

Fig. 8. Hybrid games for the proof of adaptive pseudorandomness.

Game G0 corresponds to the adaptive pseudorandomness game. That is, G0
first samples crs′′, the adversary A chooses the message m adaptively depending
on crs′′, and G0 then samples y using S(m), encodes that sample and gives the
encoding to A.
Claim. For all PPT adversaries A, there exists a PPT adversary A, such that
|Pr[out1 = 1]− Pr[out0 = 1]| ≤ Advcrs-pre

(Setup′
S
,E′

S
,D′

S
),A

(λ).

Proof. Construct an adversary A on static pseudorandomness relative to (Setup′S ,
E′S ,D′S) as follows. On input of 1λ, A samples crs′′ ← Setup′′(1λ) calls A on
input of crs′′, and outputs the message m produced by A. In return, A receives
crs′ ← Setup′S(1λ) and either u := E′S(crs′,m, S(m)) or a uniform random string
u ← {0, 1}n′(λ) from Expcrs-pre

(Setup′
S
,E′

S
,D′

S
),A,b(λ). A computes r1 ← E′′(crs′′, crs′),

calls A on input of (crs′′,m, r1 ‖ u) and returns A’s output.
If A plays Expcrs-pre

(Setup′
S
,E′

S
,D′

S
),A,0

(λ), then it perfectly simulates G0. On the

other hand, if A plays Expcrs-pre
(Setup′

S
,E′

S
,D′

S
),A,1

(λ), then it perfectly simulates G1.
ut

The game hop from G1 to G2 is only conceptional and Pr[out2 = 1] = Pr[out1 =
1].
Claim. For all PPT adversaries A, there exists a PPT adversary A, such that
|Pr[out3 = 1]− Pr[out2 = 1]| ≤ Advcrs-pre

(Setup′′,E′′,D′′),A
(λ).

Proof. Construct an adversary A on static pseudorandomness relative to (Setup′′,
E′′,D′′) as follows. On input of 1λ, A returns ⊥ since the input space L of the
sampler Setup′S(1λ) is empty. In return, A receives crs′′ sampled via Setup′′(1λ)
and u which is either produced via E′′(crs′′,Setup′(1λ)) or via uniform sampling
from {0, 1}n′′(λ). A calls A on input of crs′′ and receives a message m from A.
Finally, A samples r2 ← {0, 1}n

′(λ), calls A on input of (crs′′,m, u ‖ r2) and
outputs his output.

If A plays Expcrs-pre
(Setup′′,E′′,D′′),A,0

(λ), then it perfectly simulates G2. On the
other hand, if A plays Expcrs-pre

(Setup′′,E′′,D′′),A,1
(λ), then it perfectly simulates G3.

ut

ut
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