
Recursive Proof Composition
from Accumulation Schemes

Benedikt Bünz1, Alessandro Chiesa2, Pratyush Mishra2 and Nicholas Spooner2

1 Stanford University
benedikt@cs.stanford.edu

2 UC Berkeley
{alexch,pratyush,nick.spooner}@berkeley.edu

Abstract. Recursive proof composition has been shown to lead to powerful
primitives such as incrementally-verifiable computation (IVC) and proof-carrying
data (PCD). All existing approaches to recursive composition take a succinct
non-interactive argument of knowledge (SNARK) and use it to prove a statement
about its own verifier. This technique requires that the verifier run in time sublinear
in the size of the statement it is checking, a strong requirement that restricts the
class of SNARKs from which PCD can be built. This in turn restricts the efficiency
and security properties of the resulting scheme.
Bowe, Grigg, and Hopwood (ePrint 2019/1021) outlined a novel approach to
recursive composition, and applied it to a particular SNARK construction which
does not have a sublinear-time verifier. However, they omit details about this
approach and do not prove that it satisfies any security property. Nonetheless,
schemes based on their ideas have already been implemented in software.
In this work we present a collection of results that establish the theoretical foun-
dations for a generalization of the above approach. We define an accumulation
scheme for a non-interactive argument, and show that this suffices to construct
PCD, even if the argument itself does not have a sublinear-time verifier. Moreover
we give constructions of accumulation schemes for SNARKs, which yield PCD
schemes with novel efficiency and security features.

Keywords: succinct arguments; proof-carrying data; recursive proof composition

1 Introduction

Proof-carrying data (PCD) [CT10] is a cryptographic primitive that enables mutually dis-
trustful parties to perform distributed computations that run indefinitely, while ensuring
that every intermediate state of the computation can be succinctly verified. PCD supports
computations defined on (possibly infinite) directed acyclic graphs, with messages passed
along directed edges. Verification is facilitated by attaching to each message a succinct
proof of correctness. This is a generalization of the notion of incrementally-verifiable
computation (IVC) due to [Val08], which can be viewed as PCD for the path graph (i.e.,
for automata). PCD has found applications in enforcing language semantics [CTV13],
verifiable MapReduce computations [CTV15], image authentication [NT16], succinct
blockchains [Co17; KB20; BMRS20], and others.



Recursive composition. Prior to this work, the only known method for constructing
PCD was from recursive composition of succinct non-interactive arguments (SNARGs)
[BCCT13; BCTV14; COS20]. This method informally works as follows. A proof that
the computation was executed correctly for t steps consists of a proof of the claim “the
t-th step of the computation was executed correctly, and there exists a proof that the
computation was executed correctly for t − 1 steps”. The latter part of the claim is
expressed using the SNARG verifier itself. This construction yields secure PCD (with
IVC as a special case) provided the SNARG satisfies an adaptive knowledge soundness
property (i.e., is a SNARK). The efficiency and security properties of the resulting PCD
scheme correspond to those of a single invocation of the SNARK.

Limitations of recursion. Recursion as realized in prior work requires proving a
statement that contains a description of the SNARK verifier. In particular, for efficiency,
we must ensure that the statement we are proving (essentially) does not grow with the
number of recursion steps t. For example, if the representation of the verifier were to
grow even linearly with the statement it is verifying, then the size of the statement to be
checked would grow exponentially in t. Therefore, prior works have achieved efficiency
by focusing on SNARKs which admit sublinear-time verification: either SNARKs for
machine computations [BCCT13] or preprocessing SNARKs for circuit computations
[BCTV14; COS20]. Requiring sublinear-time verification significantly restricts our
choice of SNARK, which limits what we can achieve for PCD.

In addition to the above asymptotic considerations, recursion raises additional consid-
erations concerning concrete efficiency. All SNARK constructions require that statements
be encoded as instances of some particular (algebraic) NP-complete problem, and diffi-
culties often arise when encoding the SNARK verifier itself as such an instance. The
most well-known example of this is in recursive composition of pairing-based SNARKs,
since the verifier performs operations over a finite field that is necessarily different
from the field supported “natively” by the NP-complete problem [BCTV14]. This type
of problem also appears when recursing SNARKs whose verifiers make heavy use of
cryptographic hash functions [COS20].

A new technique. Bowe, Grigg, and Hopwood [BGH19] suggest an exciting novel
approach to recursive composition that replaces the SNARK verifier in the circuit with a
simpler algorithm. This algorithm does not itself verify the previous proof πt−1. Instead,
it adds the proof to an accumulator for verification at the end. The accumulator must
not grow in size. A key contribution of [BGH19] is to sketch a mechanism by which
this might be achieved for a particular SNARK construction. While they prove this
SNARK construction secure, they do not include definitions or proofs of security for
their recursive technique. Nonetheless, practitioners have already built software based
on these ideas [Halo19; Pickles20].

1.1 Our contributions

In this work we provide a collection of results that establish the theoretical foundations
for the above approach. We introduce the cryptographic object, an accumulation scheme,
that enables this technique, and prove that it suffices for constructing PCD. We then
provide generic tools for building accumulation schemes, as well as several concrete

2



instantiations. Our framework establishes the security of schemes that are already being
used by practitioners, and we believe that it will simplify and facilitate further research
in this area.

Accumulation schemes. We introduce the notion of an accumulation scheme for a
predicate Φ : X → {0, 1}. This formalizes, and generalizes, an idea outlined in [BGH19].
An accumulation scheme is best understood in the context of the following process.
Consider an infinite stream q1, q2, . . . with each qi ∈ X . We augment this stream with
accumulators acci as follows: at time i, the accumulation prover receives (qi, acci−1)
and computes acci; the accumulation verifier receives (qi, acci−1, acci) and checks that
acci−1 and qi were correctly accumulated into acci (if not, the process ends). Then at any
time t, the decider can validate acct, which establishes that, for all i ∈ [t], Φ(qi) = 1. All
three algorithms are stateless. To avoid trivial constructions, we want (i) the accumulation
verifier to be more efficient than Φ, and (ii) the size of an accumulator (and hence the
running time of the three algorithms) does not grow over time. Accumulation schemes
are powerful, as we demonstrate next.

Recursion from accumulation. We say that a SNARK has an accumulation scheme
if the predicate corresponding to its verifier has an accumulation scheme (so X is a set
of instance-proof pairs). We show that any SNARK having an accumulation scheme
where the accumulation verifier is sublinear can be used to build a proof-carrying data
(PCD) scheme, even if the SNARK verifier is not itself sublinear. This broadens the
class of SNARKs from which PCD can be built. Similarly to [COS20], we show that if
the SNARK and accumulation scheme are post-quantum secure, so is the PCD scheme.
(Though it remains an open question whether there are non-trivial accumulation schemes
for post-quantum SNARKs.)

Theorem 1 (informal). There is an efficient transformation that compiles any SNARK
with an efficient accumulation scheme into a PCD scheme. If the SNARK and its ac-
cumulation scheme are zero knowledge, then the PCD scheme is also zero knowledge.
Additionally, if the SNARK and its accumulation scheme are post-quantum secure then
the PCD scheme is also post-quantum secure.

The above theorem holds in the standard model (where all parties have access to a
common reference string, but no oracles). Since our construction makes non-black-box
use of the accumulation scheme verifier, the theorem does not carry over to the random
oracle model (ROM). It remains an intriguing open problem to determine whether or not
SNARKs in the ROM imply PCD in the ROM (and if the latter is even possible).

Note that we require a suitable definition of zero knowledge for an accumulation
scheme. This is not trivial, and our definition is informed by what is required for
Theorem 1 and what our constructions achieve.

Proof-carrying data is a powerful primitive: it implies IVC and, further assuming
collision-resistant hash functions, also efficient SNARKs for machine computations.
Hence, Theorem 1 may be viewed as an extension of the “bootstrapping” theorem of
[BCCT13] to certain non-succinct-verifier SNARKs.

See Section 2.1 for a summary of the ideas behind Theorem 1, and the full version
for technical details.

3



Accumulation from accumulation. Given the above, a natural question is: where do
accumulation schemes for SNARKs come from? In [BGH19] it was informally observed
that a specific SNARK construction, based on the hardness of the discrete logarithm
problem, has an accumulation scheme. To show this, [BGH19] first observe that the
verifier in the SNARK construction is sublinear except for the evaluation of a certain
predicate (checking an opening of a polynomial commitment [KZG10]), then outline a
construction which is essentially an accumulation scheme for that predicate.

We prove that this idea is a special case of a general paradigm for building accumu-
lation schemes for SNARKs.

Theorem 2 (informal). There is an efficient transformation that, given a SNARK whose
verifier is succinct when given oracle access to a “simpler” predicate, and an accumu-
lation scheme for that predicate, constructs an accumulation scheme for the SNARK.
Moreover, this transformation preserves zero knowledge and post-quantum security of
the accumulation scheme.

The construction underlying Theorem 2 is black-box. In particular, if both the
SNARK and the accumulation scheme for the predicate are secure with respect to an
oracle, then the resulting accumulation scheme for the SNARK is secure with respect to
that oracle.

See Section 2.3 for a summary of the ideas behind Theorem 2, and the full version
for technical details.
Accumulating polynomial commitments. Several works [MBKM19; GWC19; CHM+20]
have constructed SNARKs whose verifiers are succinct relative to a specific predicate:
checking the opening of a polynomial commitment [KZG10]. We prove that two natural
polynomial commitment schemes possess accumulation schemes in the random oracle
model: PCDL, a scheme based on the security of discrete logarithms [BCC+16; BBB+18;
WTS+18]; and PCAGM, a scheme based on knowledge assumptions in bilinear groups
[KZG10; CHM+20].

Theorem 3 (informal). In the random oracle model, there exist (zero knowledge) accu-
mulation schemes for PCDL and PCAGM that achieve the efficiency outlined in the table
below (n denotes the number of evaluation proofs, and d denotes the degree of committed
polynomials).

polynomial
commitment

assumption cost to check
evaluation proofs

cost to check an
accumulation step

cost to check final
accumulator

accumulator
size

PCDL DLOG + RO Θ(nd) G mults. Θ(n log d) G mults. Θ(d) G mults. Θ(log d) G
PCAGM AGM + RO Θ(n) pairings Θ(n) G1 mults. 1 pairing 2 G1

For both schemes the cost of checking that an accumulation step was performed
correctly is much less than the cost of checking an evaluation proof. We can apply Theo-
rem 2 to combine either of these accumulation schemes for polynomial commitments
with any of the aforementioned predicate-efficient SNARKs, which yields concrete
accumulation schemes for these SNARKs with the same efficiency benefits.

We remark that our accumulation scheme for PCDL is a variation of a construction
presented in [BGH19], and so our result establishes the security of a type of construction
used by practitioners.

4



We sketch the constructions underlying Theorem 3 in Section 2.4, and provide details
in the full version of our paper.
New constructions of PCD. By combining our results, we (heuristically) obtain
constructions of PCD that achieve new properties. Namely, starting from either PCDL

or PCAGM, we can apply Theorem 2 to a suitable SNARK to obtain a SNARK with an
accumulation scheme in the random oracle model. Then we can instantiate the random
oracle, obtaining a SNARK and accumulation scheme with heuristic security in the
standard (CRS) model, to which we apply Theorem 1 to obtain a corresponding PCD
scheme. Depending on whether we started with PCDL or PCAGM, we get a PCD scheme
with different features, as summarized below.

– From PCDL: PCD based on discrete logarithms. We obtain a PCD scheme in the
uniform reference string model (i.e., without secret parameters) and small argument
sizes. In contrast, prior PCD schemes require structured reference strings [BCTV14]
or have larger argument sizes [COS20]. Moreover, our PCD scheme can be efficiently
instantiated from any cycle of elliptic curves [SS11]. In contrast, prior PCD schemes
with small argument size use cycles of pairing-friendly elliptic curves [BCTV14;
CCW19], which are more expensive.

– From PCAGM: lightweight PCD based on bilinear groups. The recursive statement
inside this PCD scheme does not involve checking any pairing computations, because
pairings are deferred to a verification that occurs outside the recursive statement.
In contrast, the recursive statements in prior PCD schemes based on pairing-based
SNARKs were more expensive because they checked pairing computations [BCTV14].

Note again that our constructions of PCD are heuristic as they involve instantiating the
random oracle of certain SNARK constructions with an appropriate hash function. This
is because Theorem 3 is proven in the random oracle model, but Theorem 1 is explicitly
not (as is the case for all prior IVC/PCD constructions [Val08; BCCT13; BCTV14;
COS20]). There is evidence that this limitation might be inherent [CL20].
Open problem: accumulation in the standard model. All known constructions of
accumulation schemes for non-interactive arguments make use of either random oracles
(as in our constructions) or knowledge assumptions (e.g., the “trivial” construction from
succinct-verifier SNARKs). A natural question, then, is whether there exist construc-
tions of accumulation schemes for non-interactive arguments, or any other interesting
predicate, from standard assumptions, or any assumptions which are not known to
imply SNARKs. A related question is whether there is a black-box impossibility for
accumulation schemes similar to the result for SNARGs of [GW11].

1.2 Related work

Below we survey prior constructions of IVC/PCD.
PCD from SNARKs. Bitansky, Canetti, Chiesa, and Tromer [BCCT13] proved that
recursive composition of SNARKs for machine computations implies PCD for constant-
depth graphs, and that this in turn implies IVC for polynomial-time machine compu-
tations. From the perspective of concrete efficiency, however, one can achieve more
efficient recursive composition by using preprocessing SNARKs for circuits rather than

5



SNARKs for machines [BCTV14; COS20]; this observation has led to real-world ap-
plications [Co17; BMRS20]. The features of the PCD scheme obtained from recursion
depend on the features of the underlying preprocessing SNARK. Below we summarize
the features of the two known constructions.

– PCD from pairing-based SNARKs. Ben-Sasson, Chiesa, Tromer, and Virza [BCTV14]
used pairing-based SNARKs with a special algebraic property to achieve efficient
recursive composition with very small argument sizes (linear in the security parameter
λ). The use of pairing-based SNARKs has two main downsides. First, they require
sampling a structured reference string involving secret values (“toxic waste”) that, if
revealed, compromise security. Second, the verifier performs operations over a finite
field that is necessarily different from the field supported “natively” by the statement
it is checking. To avoid expensive simulation of field arithmetic, the construction uses
pairing-friendly cycles of elliptic curves, which severely restricts the choice of field in
applications and requires a large base field for security.

– PCD from IOP-based SNARKs. Chiesa, Ojha, and Spooner [COS20] used a holo-
graphic IOP to construct a preprocessing SNARK that is unconditionally secure in
the (quantum) random oracle model, which heuristically implies a post-quantum
preprocessing SNARK in the uniform reference string model (i.e., without toxic
waste). They then proved that any post-quantum SNARK leads to a post-quantum
PCD scheme via recursive composition. The downside of this construction is that,
given known holographic IOPs, the argument size is larger, currently at O(λ2 log2N)
bits for circuits of size N .

IVC from homomorphic encryption. Naor, Paneth, and Rothblum [NPR19] obtain a
notion of IVC by using somewhat homomorphic encryption and an information-theoretic
object called an “incremental PCP”. The key feature of their scheme is that security
holds under falsifiable assumptions.

There are two drawbacks, however, that restrict the use of the notion of IVC that
their scheme achieves.

First, the computation to be verified must be deterministic (this appears necessary for
schemes based on falsifiable assumptions given known impossibility results [GW11]).
Second, and more subtly, completeness holds only in the case where intermediate proofs
were honestly generated. This means that the following attack may be possible: an
adversary provides an intermediate proof that verifies, but it is impossible for honest
parties to generate new proofs for subsequent computations. Our construction of PCD
achieves the stronger condition that completeness holds so long as intermediate proofs
verify, ruling out this attack.

Both nondeterministic computation and the stronger completeness notion (achieved
by all SNARK-based PCD schemes) are necessary for many of the applications of
IVC/PCD.

6



2 Techniques

2.1 PCD from arguments with accumulation schemes

We summarize the main ideas behind Theorem 1, which obtains proof-carrying data
(PCD) from any succinct non-interactive argument of knowledge (SNARK) that has an
accumulation scheme. For the sake of exposition, in this section we focus on the special
case of IVC, which can be viewed as repeated application of a circuit F . Specifically,
we wish to check a claim of the form “FT (z0) = zT ” where FT denotes F composed
with itself T times.
Prior work: recursion from succinct verification. Recall that in previous approaches
to efficient recursive composition [BCTV14; COS20], at each step i we prove a claim of
the form “zi = F (zi−1), and there exists a proof πi−1 that attests to the correctness of
zi−1”. This claim is expressed using a circuit R which is the conjunction of F with a
circuit representing the SNARK verifier; in particular, the size of the claim is at least the
size of the verifier circuit. If the size of the verifier circuit grows linearly (or more) with
the size of the claim being checked, then verifying the final proof becomes more costly
than the original computation.

For this reason, these works focus on SNARKs with succinct verification, where the
verifier runs in time sublinear in the size of the claim. In this case, the size of the claim
essentially does not grow with the number of recursive steps, and so checking the final
proof costs roughly the same as checking a single step.

Succinct verification is a seemingly paradoxical requirement: the verifier does not
even have time to read the circuit R. One way to sidestep this issue is preprocessing:
one designs an algorithm that, at the beginning of the recursion, computes a small
cryptographic digest of R, which the recursive verifier can use instead of reading R
directly. Because this preprocessing need only be performed once for the given R in an
offline phase, it has almost no effect on the performance of each recursive step (in the
later online phase).
A new paradigm: IVC from accumulation. Even allowing for preprocessing, succinct
verification remains a strong requirement, and there are many SNARKs that are not
known to satisfy it (e.g., [BCC+16; BBB+18; AHIV17; BCG+17; BCR+19]). Bowe,
Grigg, and Hopwood [BGH19] suggested a further relaxation of succinctness that appears
to still suffice for recursive composition: a type of “post-processing”. Their observation
is as follows: if a SNARK is such that we can efficiently “defer” the verification of a
claim in a way that does not grow in cost with the number of claims to be checked, then
we can hope to achieve recursive composition by deferring the verification of all claims
to the end.

In the remainder of this section, we will give an overview of the proof of Theorem 1,
our construction of PCD from SNARKs that have this “post-processing” property. We
note that this relaxation of requirements is useful because, as suggested in [BGH19], it
leads to new constructions of PCD with desirable properties (see discussion at the end of
Section 1.1). In fact, some of these efficiency features are already being exploited by
practitioners working on recursing SNARKs [Halo19; Pickles20].

The specific property we require, which we discuss more formally in the next section,
is that the SNARK has an accumulation scheme. This is a generalization of the idea

7



described in [BGH19]. Informally, an accumulation scheme consists of three algorithms:
an accumulation prover, an accumulation verifier, and a decider. The accumulation
prover is tasked with taking an instance-proof pair (z, π) and a previous accumulator
acc, and producing a new accumulator acc? that “includes” the new instance. The
accumulation verifier, given ((z, π), acc, acc?), checks that acc? was computed correctly
(i.e., that it accumulates (z, π)) into acc). Finally the decider, given a single accumulator
acc, performs a single check that simultaneously ensures that every instance-proof pair
accumulated in acc verifies.3

Given such an accumulation scheme, we can construct IVC as follows. Given a
previous instance zi, proof πi, and accumulator acci, the IVC prover first accumulates
(zi, πi) with acci to obtain a new accumulator acci+1. The IVC prover also generates
a SNARK proof πi+1 of the claim: “zi+1 = F (zi), and there exist a proof πi and an
accumulator acci such that the accumulation verifier accepts ((zi, πi), acci, acci+1)”,
expressed as a circuit R. The final IVC proof then consists of (πT , accT ). The IVC
verifier checks such a proof by running the SNARK verifier on πT and the accumulation
scheme decider on accT .

Why does this achieve IVC? Throughout the computation we maintain the invariant
that if acci is a valid accumulator (according to the decider) and πi is a valid proof, then
the computation is correct up to the i-th step. Clearly if this holds at time T then the IVC
verifier successfully checks the entire computation. Observe that if we were able to prove
that “zi+1 = F (zi), πi is a valid proof, and acci is a valid accumulator”, by applying
the invariant we would be able to conclude that the computation is correct up to step
i+ 1. Unfortunately we are not able to prove this directly, for two reasons: (i) proving
that πi is a valid proof requires proving a statement about the argument verifier, which
may not be sublinear, and (ii) proving that acci is a valid accumulator requires proving a
statement about the decider, which may not be sublinear.

Instead of proving this claim directly, we “defer” it by having the prover accumulate
(zi, πi) into acci to obtain a new accumulator acci+1. The soundness property of the
accumulation scheme ensures that if acci+1 is valid and the accumulation verifier accepts
((zi, πi), acci, acci+1), then πi is a valid proof and acci is a valid accumulator. Thus all
that remains to maintain the invariant is for the prover to prove that the accumulation
verifier accepts; this is possible provided that the accumulation verifier is sublinear.

From sketch to proof. In the full version of our paper, we give the formal details of
our construction and a proof of correctness. In particular, we show how to construct PCD,
a more general primitive than IVC. In the PCD setting, rather than each computation
step having a single input zi, it receives m inputs from different nodes. Proving correct-
ness hence requires proving that all of these inputs were computed correctly. For our
construction, this entails checking m proofs and m accumulators. To do this, we extend
the definition of an accumulation scheme to allow accumulating multiple instance-proof
pairs and multiple “old” accumulators.

We now informally discuss the properties of our PCD construction.

3 We remark that the notion of an accumulation scheme is distinct from the notion of a crypto-
graphic accumulator for a set (e.g., an RSA accumulator), which provides a succinct representa-
tion of a large set while supporting membership queries.

8



– Efficiency requirements. Observe that the statement to be proved includes only the
accumulation verifier, and so the only efficiency requirement for obtaining PCD is
that this algorithm run in time sublinear in the size of the circuit R. This implies, in
particular, that an accumulator must be of size sublinear in the size of R, and hence
must not grow with each accumulation step. The SNARK verifier and the decider
algorithm need only be efficient in the usual sense (i.e., polynomial-time).

– Soundness. We prove that the PCD scheme is sound provided that the SNARK is
knowledge sound (i.e., is an adaptively-secure argument of knowledge) and the
accumulation scheme is sound (see Section 2.2 for more on what this means). We
stress that in both cases security should be in the standard (CRS) model, without any
random oracles (as in prior PCD constructions).

– Zero knowledge. We prove that the PCD scheme is zero knowledge, if the underlying
SNARK and accumulation scheme are both zero knowledge (for this part we also
formulate a suitable notion of zero knowledge for accumulation schemes as discussed
shortly in Section 2.2).

– Post-quantum security. We also prove that if both the SNARK and accumulation
scheme are post-quantum secure, then so is the resulting PCD scheme. Here by post-
quantum secure we mean that the relevant security properties continue to hold even
against polynomial-size quantum circuits, as opposed to just polynomial-size classical
circuits.

2.2 Accumulation schemes

A significant contribution of this work is formulating a general notion of an accumulation
scheme. An accumulation scheme for a non-interactive argument as described above is a
particular instance of this definition; in subsequent sections we will apply the definition
in other settings.

We first give an informal definition that captures the key features of an accumulation
scheme. For clarity this is stated for the (minimal) case of a single predicate input q and
a single “old” accumulator acc; we later extend this in the natural way to n predicate
inputs and m “old” accumulators.

Definition 1 (informal). An accumulation scheme for a predicate Φ : X → {0, 1}
consists of a triple of algorithms (P,V,D), known as the prover, verifier, and decider,
that satisfies the following properties.
– Completeness: For all accumulators acc and predicate inputs q ∈ X , if D(acc) = 1

and Φ(q) = 1, then for acc? ← P(acc, q) it holds that V(acc, q, acc?) = 1 and
D(acc?) = 1.

– Soundness: For all efficiently-generated accumulators acc, acc? and predicate in-
puts q ∈ X , if D(acc?) = 1 and V(acc, q, acc?) = 1 then, with all but negligible
probability, Φ(q) = 1 and D(acc) = 1.

An accumulation scheme for a SNARK is an accumulation scheme for the predicate
induced by the argument verifier; in this case the predicate input q consists of an instance-
proof pair (x, π). Note that the completeness requirement does not place any restriction
on how the previous accumulator acc is generated; we require that completeness holds

9



for any acc the decider D determines to be valid, and any q for which the predicate
Φ holds. This is needed to obtain a similarly strong notion of completeness for PCD,
required for applications where accumulation is done by multiple parties that do not trust
one another.

Zero knowledge. For our PCD application, the notion of zero knowledge for an
accumulation scheme that we use is the following: one can sample a “fake” accumulator
that is indistinguishable from a real accumulator acc?, without knowing anything about
the old accumulator acc and predicate input q that were accumulated in acc?. The
existence of the accumulation verifier V complicates matters here: if the adversary
knows acc and q, then it is easy to distinguish a real accumulator from a fake one using
V. We resolve this issue by modifying Definition 1 to have the accumulation prover P
produce a verification proof πV in addition to the new accumulator acc?. Then V uses
πV in verifying the accumulator, but πV is not required for subsequent accumulation.
In our application, the simulator then does not have to simulate πV. This avoids the
problem described: even if the adversary knows acc and q, unless πV is correct, V can
simply reject, as it would for a “fake” accumulator. Our informal definition is as follows.

Definition 2. An accumulation scheme for Φ is zero knowledge if there exists an ef-
ficient simulator S such that for all accumulators acc and inputs q ∈ X such that
D(acc) = 1 and Φ(q) = 1, the distribution of acc? when (acc?, πV) ← P(acc, q) is
computationally indistinguishable from acc? ← S(1λ).

Predicate specification. The above informal definitions omit many important details;
we now highlight some of these. Suppose that, as required for IVC/PCD, we have
some fixed circuit R for which we want to accumulate pairs (xi, πi), where πi is a
SNARK proof that there exists wi such that R(xi,wi) = 1. In this case the predicate
corresponding to the verifier depends not only on the pair (xi, πi), but also on the circuit
R, as well as the public parameters of the argument scheme pp and (often) a random
oracle ρ.

Moreover, each of these inputs has different security and efficiency considerations.
The security of the SNARK (and the accumulation scheme) can only be guaranteed
with high probability over public parameters drawn by the generator algorithm of the
SNARK, and over the random oracle. The circuit R may be chosen adversarially, but
cannot be part of the input q because it is too large; it must be fixed at the beginning.

These considerations lead us to define an accumulation scheme with respect to both
a predicate Φ : U(∗)× ({0, 1}∗)3 → {0, 1} and a predicate-specification algorithmH.
We then adapt Definition 1 to hold for the predicate Φ(ρ, ppΦ, iΦ, ·) where ρ is a random
oracle, ppΦ is output by H, and iΦ is chosen adversarially. In our SNARK example,
H is equal to the SNARK generator, iΦ is the circuit R, and Φ(ρ, pp, R, (x, π)) =
Vρ(pp, R,x, π).

Remark 1 (helped verification). We compare accumulation schemes for SNARKs with
the notion of “helped verification” [MBKM19]. In a SNARK with helped verification, an
untrusted party known as the helper can, given n proofs, produce an auxiliary proof that
enables checking the n proofs at lower cost than that of checking each proof individually.
This batching capability can be viewed as a special case of accumulation, as it applies to

10



n “fresh” proofs only; there is no notion of batching “old” accumulators. It is unclear
whether the weaker notion of helped verification alone suffices to construct IVC/PCD
schemes.

2.3 Constructing arguments with accumulation schemes

A key ingredient in our construction of PCD is a SNARK that has an accumulation
scheme (see Section 2.1). Below we summarize the ideas behind Theorem 2, by ex-
plaining how to construct accumulation schemes for SNARKs whose verifier is succinct
relative to an oracle predicate Φ◦ that itself has an accumulation scheme.
Predicate-efficient SNARKs. We call a SNARK ARG predicate-efficient with respect
to a predicate Φ◦ if its verifier V operates as follows: (i) run a fast “inner” verifier Vpe to
produce a bit b and query set Q; (ii) accept iff b = 1 and for all q ∈ Q, Φ◦(q) = 1. In
essence, V can be viewed as a circuit with “oracle gates” for Φ◦.4 The aim is for Vpe to
be significantly more efficient than V; that is, the queries to Φ◦ capture the “expensive”
part of the computation of V .

As noted in Section 1.1, one can view recent SNARK constructions [MBKM19;
GWC19; CHM+20] as being predicate-efficient with respect to a “polynomial commit-
ment” predicate. We discuss how to construct accumulation schemes for these predicates
below in Section 2.4.
Accumulation scheme for predicate-efficient SNARKs. Let ARG be a SNARK that
is predicate-efficient with respect to a predicate Φ◦, and let AS◦ be an accumulation
scheme for Φ◦. To check n proofs, instead of directly invoking the SNARK verifier V ,
we can first run Vpe n times to generate n query sets for Φ◦, and then, instead of invoking
Φ◦ on each of these sets, we can accumulate these queries using AS◦. Below we sketch
the construction of an accumulation scheme ASARG for ARG based on this idea.

To accumulate n instance-proof pairs [(xi, πi)]ni=1 starting from an old accumulator
acc, the accumulation prover ASARG.P first invokes the inner verifier Vpe on each (xi, πi)
to generate a query set Qi for Φ◦, accumulates their union Q = ∪ni=1Qi into acc using
AS◦.P, and finally outputs the resulting accumulator acc?. To check that acc? indeed
accumulates [(xi, πi)]ni=1 into acc, the accumulation verifier ASARG.V first checks, for
each i, whether the inner verifier Vpe accepts (xi, πi), and then invokes AS◦.V to check
whether acc? correctly accumulates the query set Q = ∪ni=1Qi. Finally, to decide
whether acc? is a valid accumulator, the accumulation scheme decider ASARG.D simply
invokes AS◦.D.
From sketch to proof. The foregoing sketch omits details required to construct a
scheme that satisfies the “full” definition of accumulation schemes as stated in the full
version of our paper. For instance, as noted in Section 2.3, the predicate Φ◦ may be be
an oracle predicate, and could depend on the public parameters of the SNARK ARG.
We handle this by requiring that the accumulation scheme for Φ◦ uses the SNARK
generator G as its predicate specification algorithm. We also show that zero knowledge
and post-quantum security are preserved. See the full version of our paper for a formal
treatment of these issues, along with security proofs.

4 This is not precisely the case, because the verifier is required to reject immediately if it ever
makes a query q with Φ◦(q) = 0.

11



From predicate-efficient SNARKs to PCD. In order to build an accumulation scheme
ASARG that suffices for PCD, ARG and AS◦ must satisfy certain efficiency properties.
In particular, when verifying satisfiability for a circuit of size N , the running time of
ASARG.V must be sublinear in N , which means in turn that the running times of Vpe and
AS◦.V, as well as the size of the query setQ, must be sublinear inN . Crucially, however,
AS◦.D need only run in time polynomial in N .

2.4 Accumulation schemes for polynomial commitments

As noted in Section 2.3, several SNARK constructions (e.g., [MBKM19; GWC19;
CHM+20]) are predicate-efficient with respect to an underlying polynomial commit-
ment, which means that constructing an accumulation scheme for the latter leads (via
Theorem 2) to an accumulation scheme for the whole SNARK.

Informally, a polynomial commitment scheme (PC scheme) is a cryptographic
primitive that enables one to produce a commitment C to a polynomial p, and then to
prove that this committed polynomial evaluates to a claimed value v at a desired point
z. An accumulation scheme for a PC scheme thus accumulates claims of the form “C
commits to p such that p(z) = v” for arbitrary polynomials p and evaluation points z.

In this section, we explain the ideas behind Theorem 3, by sketching how to con-
struct (zero knowledge) accumulation schemes for two popular (hiding) polynomial
commitment schemes.

– In Section 2.4.1, we sketch our accumulation scheme for PCDL, a polynomial com-
mitment scheme derived from [BCC+16; BBB+18; WTS+18] that is based on the
hardness of discrete logarithms.

– In Section 2.4.2, we sketch our accumulation scheme for PCAGM, a polynomial com-
mitment scheme based on knowledge assumptions over bilinear groups [KZG10;
CHM+20].

In each case, the running time of the accumulation verifier will be sublinear in the
degree of the polynomial, and the accumulator itself will not grow with the number of
accumulation steps. This allows the schemes to be used, in conjunction with a suitable
predicate-efficient SNARK, to construct PCD.

We remark that each of our accumulation schemes is proved secure in the random
oracle model by invoking a useful lemma about “zero-finding games” for committed
polynomials. Security also requires that the random oracle used for an accumulation
scheme for a PC scheme is domain-separated from the random oracle used by the PC
scheme itself. See the full version for details.

2.4.1 Accumulation scheme for PCDL

We sketch our accumulation scheme for PCDL. For univariate polynomials of degree
less than d, PCDL achieves evaluation proofs of size O(λ log d) in the random oracle
model, and assuming the hardness of the discrete logarithm problem in a prime order
group G. In particular, there are no secret parameters (so-called “toxic waste”). However,
PCDL has poor verification complexity: checking an evaluation proof requires Ω(d)
scalar multiplications in G. Bowe, Grigg, and Hopwood [BGH19] suggested a way to
amortize this cost across a batch of n proofs. Below we show that their idea leads to an

12



accumulation scheme for PCDL with an accumulation verifier that uses only O(n log d)
scalar multiplications instead of the naive Θ(n · d), and with an accumulator of size
O(log d) elements in G.
Summary of PCDL. The committer and receiver both sample (consistently via the
random oracle) a list of group elements {G0, G1, . . . , Gd} ∈ Gd+1 in a group G of prime
order q (written additively). A commitment to a polynomial p(X) =

∑d
i=0 aiX

i ∈
F≤d
q [X] is then given by C :=

∑d
i=0 aiGi. To prove that the committed polynomial p

evaluates to v at a given point z ∈ Fq , it suffices to prove that the triple (C, z, v) satisfies
the following NP statement:

∃ a0, . . . , ad ∈ F s.t. v =
∑d
i=0 aiz

i and C =
∑d
i=0 aiGi .

This is a special case of an inner product argument (IPA), as defined in [BCC+16],
which proves the inner product of two committed vectors. The receiver simply verifies
this inner product argument to check the evaluation. The fact that the vector (1, z, . . . , zd)
is known to the verifier and has a certain structure is exploited in the accumulation scheme
that we describe below.
Accumulation scheme for the IPA. Our accumulation scheme relies on a special
structure of the IPA verifier: it generates O(log d) challenges using the random oracle,
then performs cheap checks requiring O(log d) field and group operations, and finally
performs an expensive check requiring Ω(d) scalar multiplications. This latter check
asserts consistency between the challenges and a group element U contained in the proof.
Hence, the IPA verifier is succinct barring the expensive check, and so constructing an
accumulation scheme for the IPA reduces to the task of constructing an accumulation
scheme for the expensive check involving U .

To do this, we rely on an idea of Bowe, Grigg, and Hopwood [BGH19], which
itself builds on an observation in [BBB+18]. Namely, letting (ξ1, . . . , ξlog2 d) be the
protocol’s challenges, U can be viewed as a commitment to the polynomial h(X) :=∏log2(d)−1
i=0 (1+ξlog2(d)−iX

2i) ∈ F≤d
q [X]. This polynomial has the special property that

it can be evaluated at any point in just O(log d) field operations (exponentially smaller
than its degree d). This allows transforming the expensive check on U into a check that
is amenable to batching: instead of directly checking that U is a commitment to h, one
can instead check that the polynomial committed inside U agrees with h at a challenge
point z sampled via the random oracle.

We leverage this idea as follows. When accumulating evaluation claims about multi-
ple polynomials p1, . . . , pn, applying the foregoing transformation results in n checks
of the form “check that the polynomial contained in Ui evaluates to hi(z) at the point z”.
Because these are all claims for the correct evaluation of the polynomials hi at the same
point z, we can accumulate them via standard homomorphic techniques. We now sum-
marize how we apply this idea to construct our accumulation scheme AS = (P,V,D)
for PCDL.

Accumulators in our accumulation scheme have the same form as the instances to be
accumulated: they are tuples of the form (C, z, v, π) where π is an evaluation proof for
the claim “p(z) = v” and p is the polynomial committed in C. For simplicity, below we
consider the case of accumulating one old accumulator acc = (C1, z1, v1, π1) and one
instance (C2, z2, v2, π2) into a new accumulator acc? = (C, z, v, π).

13



Accumulation prover P: compute the new accumulator acc? = (C, z, v, π) from the
old accumulator acc = (C1, z1, v1, π1) and the instance (C2, z2, v2, π2) as follows.
– Compute U1, U2 from π1, π2 respectively. As described above, these elements can be

viewed as commitments to polynomials h1, h2 defined by the challenges derived from
π1, π2.

– Use the random oracle ρ to compute the random challengeα := ρ([(h1, U1), (h2, U2)]).
– Compute C := U1 + αU2, which is a polynomial commitment to p(X) := h1(X) +
αh2(X).

– Compute the challenge point z := ρ(C, p), where p is uniquely represented via the
tuple ([h1, h2], α).

– Construct an evaluation proof π for the claim “p(z) = v”. (This step is the only
expensive one.)

– Output the new accumulator acc? := (C, z, v, π).

Accumulation verifier V: to check that the new accumulator acc? = (C, z, v, π) was
correctly generated from the old accumulator acc = (C1, z1, v1, π1) and the instance
(C2, z2, v2, π2), first compute the challenges α and z from the random oracle as above,
and then check that (a) (C1, z1, v1, π1) and (C2, z2, v2, π2) pass the cheap checks of the
IPA verifier, (b) C = U1 + αU2, and (c) h1(z) + αh2(z) = v.

Decider D: on input the (final) accumulator acc? = (C, z, v, π), check that π is a
valid evaluation proof for the claim that the polynomial committed inside C evaluates to
v at the point z.

This construction achieves the efficiency summarized in Theorem 3.
We additionally achieve zero knowledge accumulation for the hiding variant of

PCDL. Informally, the accumulation prover randomizes acc? by including a new random
polynomial h0 in the accumulation step. This ensures that the evaluation claim in acc? is
for a random polynomial, thus hiding all information about the original evaluation claims.
To allow the accumulation verifier to check that this randomization was performed
correctly, the prover includes h0 in an auxiliary proof πV.

In the full version, we show how to extend the above accumulation scheme to
accumulate any number of old accumulators and instances. Our security proof for the
resulting accumulation scheme relies on the hardness of zero-finding games, and the
security of PCDL.

2.4.2 Accumulation scheme for PCAGM

We sketch our accumulation scheme AS = (P,V,D) for PCAGM. Checking an evaluation
proof in PCAGM requires 1 pairing, and so checking n evaluation proofs requires n
pairings. AS improves upon this as follows: the accumulation verifier V only performs
O(n) scalar multiplications in G1 in order to check the accumulation of n evaluation
proofs, while the decider D performs only a single pairing in order to check the resulting
accumulator. This is much cheaper: it reduces the number of pairings from n to 1, and
also defers this single pairing to the end of the accumulation (the decider). In particular,
when instantiating the PCD construction outlined in Section 2.1 with a PCAGM-based
SNARK and our accumulation scheme for PCAGM, we can eliminate all pairings from the
circuit being verified in the PCD construction.

14



Below we explain how standard techniques for batching pairings using random linear
combinations [CHM+20] allow us to realize an accumulation scheme for PCAGM with
these desirable properties.

Summary of PCAGM. The committer key ck and receiver key rk for a given maximum
degree bound D are group elements from a bilinear group (G1,G2,GT , q, G,H, e):
ck := {G, βG, . . . , βDG} ∈ GD+1

1 consists of group elements encoding powers of a
random field element β, while rk := (G,H, βH) ∈ G1 ×G2

2.
A commitment to a polynomial p ∈ F≤D

q [X] is the group element C := p(β)G ∈
G1. To prove that p evaluates to v at a given point z ∈ Fq, the sender computes a
“witness polynomial” w(X) := (p(X)− v)/(X − z), and outputs the evaluation proof
π := w(β)G ∈ G1. The receiver can check this proof by checking the pairing equation
e(C−vG,H) = e(π, βH−zH). This pairing equation is the focus of our accumulation
scheme below. (This summary omits details about degree enforcement and about hiding.)

Accumulation scheme. We construct an accumulation scheme AS = (P,V,D) for
PCAGM by relying on standard techniques for batching pairing equations. Suppose that
we wish to simultaneously check the validity of n instances [(Ci, zi, vi, πi)]

n
i=1. First,

rewrite the pairing check for the i-th instance as follows:

e(Ci−viG,H) = e(πi, βH−ziH) ⇐⇒ e(Ci−viG+ziπi, H) = e(πi, βH) . (1)

After the rewrite, the G2 inputs to both pairings do not depend on the claim being
checked. This allows batching the pairing checks by taking a random linear combination
with respect to a random challenge r := ρ([Ci, zi, vi, πi]

n
i=1) computed from the random

oracle, resulting in the following combined equation:

e(
∑n
i=1 r

i(Ci − viG+ ziπi), H) = e(
∑n
i=1 r

iπi, βH) . (2)

We now have a pairing equation involving an “accumulated commitment” C? :=∑n
i=1 r

i(Ci − viG + ziπi) and an “accumulated proof” π? :=
∑n
i=1 r

iπi. This ob-
servation leads to the accumulation scheme below.

An accumulator in AS consists of a commitment-proof pair (C?, π?), which the
decider D validates by checking that e(C?, H) = e(π?, βH). Moreover, observe that
by Eq. (1), checking the validity of a claimed evaluation (C, z, v, π) within PCAGM

corresponds to checking that the “accumulator” (C − vG+ zπ, π) is accepted by the
decider D. Thus we can restrict our discussion to accumulating accumulators.

The accumulation prover P, on input a list of old accumulators [acci]ni=1 = [(C?i , π
?
i )]

n
i=1,

computes a random challenge r := ρ([acci]
n
i=1), constructs C? :=

∑n
i=1 r

iC?i and
π? :=

∑n
i=1 r

iπ?i , and outputs the new accumulator acc? := (C?, π?) ∈ G2
1. To check

that acc? accumulates [acci]
n
i=1, the accumulation verifier V simply invokes P and

checks that its output matches the claimed new accumulator acc?.
To achieve zero knowledge accumulation, the accumulation prover randomizes acc?

by including in it an extra “old” accumulator corresponding to a random polynomial,
which statistically hides the accumulated claims. To allow the accumulation verifier
to check that this randomization was performed correctly, the prover includes this old
accumulator in an auxiliary proof πV.

This construction achieves the efficiency summarized in Theorem 3.

15



In the full version of our paper, we show how to extend the above accumulation
scheme to account for additional features of PCAGM (degree enforcement and hiding).
Our security proof for the resulting accumulation scheme relies on the hardness of
zero-finding games (see full version).

Acknowledgements

The authors thank William Lin for pointing out an error in a prior version of the con-
struction of PCDL, and Github user 3for for pointing out errors in a prior version of
the construction of PCAGM. This research was supported in part by: the Berkeley Haas
Blockchain Initiative and a donation from the Ethereum Foundation. Benedikt Bünz per-
formed part of the work while visiting the Simons Institute for the Theory of Computing.

References

[AHIV17] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. “Ligero: Lightweight
Sublinear Arguments Without a Trusted Setup”. In: CCS ’17.

[BBB+18] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. “Bulletproofs:
Short Proofs for Confidential Transactions and More”. In: S&P ’18.

[BCC+16] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. “Efficient Zero-Knowledge
Arguments for Arithmetic Circuits in the Discrete Log Setting”. In: EUROCRYPT ’16.

[BCCT13] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. “Recursive Composition and
Bootstrapping for SNARKs and Proof-Carrying Data”. In: STOC ’13.

[BCG+17] J. Bootle, A. Cerulli, E. Ghadafi, J. Groth, M. Hajiabadi, and S. K. Jakobsen.
“Linear-Time Zero-Knowledge Proofs for Arithmetic Circuit Satisfiability”. In:
ASIACRYPT ’17.

[BCR+19] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward.
“Aurora: Transparent Succinct Arguments for R1CS”. In: EUROCRYPT ’19.

[BCTV14] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. “Scalable Zero Knowledge
via Cycles of Elliptic Curves”. In: CRYPTO ’14.

[BGH19] S. Bowe, J. Grigg, and D. Hopwood. “Halo: Recursive Proof Composition without
a Trusted Setup”. ePrint Report 2019/1021.

[BMRS20] J. Bonneau, I. Meckler, V. Rao, and E. Shapiro. “Coda: Decentralized Cryptocur-
rency at Scale”. ePrint Report 2020/352.

[CCW19] A. Chiesa, L. Chua, and M. Weidner. “On Cycles of Pairing-Friendly Elliptic
Curves”. In: SIAM Journal on Applied Algebra and Geometry (2019).

[CHM+20] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward. “Marlin: Prepro-
cessing zkSNARKs with Universal and Updatable SRS”. In: EUROCRYPT ’20.

[CL20] A. Chiesa and S. Liu. “On the Impossibility of Probabilistic Proofs in Relativized
Worlds”. In: ITCS ’20.

[Co17] O(1) Labs. “Coda Cryptocurrency”. https://codaprotocol.com/.
[COS20] A. Chiesa, D. Ojha, and N. Spooner. “Fractal: Post-Quantum and Transparent

Recursive Proofs from Holography”. In: EUROCRYPT ’20.
[CT10] A. Chiesa and E. Tromer. “Proof-Carrying Data and Hearsay Arguments from

Signature Cards”. In: ICS ’10.
[CTV13] S. Chong, E. Tromer, and J. A. Vaughan. “Enforcing Language Semantics Using

Proof-Carrying Data”. ePrint Report 2013/513.

16

https://github.com/3for
https://codaprotocol.com/


[CTV15] A. Chiesa, E. Tromer, and M. Virza. “Cluster Computing in Zero Knowledge”. In:
EUROCRYPT ’15.

[GW11] C. Gentry and D. Wichs. “Separating Succinct Non-Interactive Arguments From
All Falsifiable Assumptions”. In: STOC ’11.

[GWC19] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. “PLONK: Permutations over
Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge”. ePrint
Report 2019/953.

[Halo19] S. Bowe, J. Grigg, and D. Hopwood. Halo. 2019. URL: https://github.
com/ebfull/halo.

[KB20] A. Kattis and J. Bonneau. “Proof of Necessary Work: Succinct State Verification
with Fairness Guarantees”. ePrint Report 2020/190.

[KZG10] A. Kate, G. M. Zaverucha, and I. Goldberg. “Constant-Size Commitments to
Polynomials and Their Applications”. In: ASIACRYPT ’10.

[MBKM19] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. “Sonic: Zero-Knowledge
SNARKs from Linear-Size Universal and Updateable Structured Reference Strings”.
In: CCS ’19.

[NPR19] M. Naor, O. Paneth, and G. N. Rothblum. “Incrementally Verifiable Computation
via Incremental PCPs”. In: TCC ’19.

[NT16] A. Naveh and E. Tromer. “PhotoProof: Cryptographic Image Authentication for
Any Set of Permissible Transformations”. In: S&P ’16.

[Pickles20] O(1) Labs. Pickles. URL: https://github.com/o1-labs/marlin.
[SS11] J. H. Silverman and K. E. Stange. “Amicable Pairs and Aliquot Cycles for Elliptic

Curves”. In: Experimental Mathematics (2011).
[Val08] P. Valiant. “Incrementally Verifiable Computation or Proofs of Knowledge Imply

Time/Space Efficiency”. In: TCC ’08.
[WTS+18] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish. “Doubly-Efficient

zkSNARKs Without Trusted Setup”. In: S&P ’18.

17

https://github.com/ebfull/halo
https://github.com/ebfull/halo
https://github.com/o1-labs/marlin

	Abstract
	1 Introduction
	1.1 Our contributions
	1.2 Related work

	2 Techniques
	2.1 PCD from arguments with accumulation schemes
	2.2 Accumulation schemes
	2.3 Constructing arguments with accumulation schemes
	2.4 Accumulation schemes for polynomial commitments
	2.4.1 Accumulation scheme for PCDL
	2.4.2 Accumulation scheme for PCAGM


	Acknowledgements
	References

