
Barriers for Succinct Arguments
in the Random Oracle Model

Alessandro Chiesa1 and Eylon Yogev2

1 UC Berkeley
2 Boston University and Tel Aviv University

Abstract. We establish barriers on the efficiency of succinct arguments
in the random oracle model. We give evidence that, under standard com-
plexity assumptions, there do not exist succinct arguments where the
argument verifier makes a small number of queries to the random oracle.
The new barriers follow from new insights into how probabilistic proofs
play a fundamental role in constructing succinct arguments in the ran-
dom oracle model.
– IOPs are necessary for succinctness. We prove that any succinct ar-

gument in the random oracle model can be transformed into a corre-
sponding interactive oracle proof (IOP). The query complexity of the
IOP is related to the succinctness of the argument.

– Algorithms for IOPs. We prove that if a language has an IOP with
good soundness relative to query complexity, then it can be decided
via a fast algorithm with small space complexity.

By combining these results we obtain barriers for a large class of de-
terministic and non-deterministic languages. For example, a succinct ar-
gument for 3SAT with few verifier queries implies an IOP with good
parameters, which in turn implies a fast algorithm for 3SAT that con-
tradicts the Exponential-Time Hypothesis.
We additionally present results that shed light on the necessity of sev-
eral features of probabilistic proofs that are typically used to construct
succinct arguments, such as holography and state restoration soundness.
Our results collectively provide an explanation for “why” known con-
structions of succinct arguments have a certain structure.

Keywords: succinct arguments; interactive oracle proofs

1 Introduction

A succinct argument is a cryptographic proof system for deterministic and non-
deterministic languages, whose communication complexity is “succinct” in the
sense that it is sublinear in the time to decide the language (for deterministic
languages) or witness size (for non-deterministic languages). In the last decade,
succinct arguments have drawn the attention of researchers from multiple com-
munities, being a fundamental cryptographic primitive that has found applica-
tions in the real world.

A central goal in the study of succinct arguments is improving their efficiency.
An important complexity measure is argument size, which is the number of bits
sent from the prover to the verifier. Achieving small argument size is crucial,

e.g., in applications where non-interactive succinct arguments are broadcast in
a peer-to-peer network and redundantly stored at every node (as in [BCG+14]).
Other important complexity measures include the running time of the prover
and the running time of the verifier — this latter is the complexity measure that
we study in this paper.

There are applications where the running time of the verifier is the main bot-
tleneck and call for verifiers that are extremely lightweight. These applications
include obfuscating the verifier [BISW17], or recursive constructions where an
outer succinct argument proves that the verifier of an inner succinct argument
has accepted [Val08; BCCT13]. In these cases, the circuit (or code) represent-
ing the verifier’s computation is used in a white-box manner and the verifier’s
running time dominates the complexity of the final scheme. For instance, in the
second example, the running time of the outer prover mainly depends on the
running time of the inner verifier.

Our goal is to establish lower bounds on the running time of a succinct
argument’s verifier.

We focus on the random oracle model. We deliberately restrict our atten-
tion to studying succinct arguments that are secure in the random oracle model
(ROM). This is because the ROM is an elegant information-theoretic model
within which we could hope to precisely understand the structure of arbitrary
succinct arguments, and prove lower bounds on specific efficiency measures.

Moreover, the ROM supports several well-known constructions of succinct
arguments that can be heuristically instantiated via lightweight cryptographic
hash functions, are plausibly post-quantum secure [CMS19], and have led to real-
izations that are useful in practice. These constructions include the Fiat–Shamir
transformation [FS86], which applies to public-coin interactive proofs (IPs); the
Micali transformation [Mic00], which applies to probabilistically checkable proofs
(PCPs); and the BCS transformation [BCS16], which applies to public-coin in-
teractive oracle proofs (IOPs).

How small can verifier query complexity be? As mentioned earlier, the
running time of the verifier is a crucial efficiency measure in applications of
succinct arguments. While in the ROM each query is considered a constant-time
operation, each query actually becomes expensive when the random oracle is
heuristically instantiated via a cryptographic hash function. Each query becomes
a sub-computation involving very many gates for evaluating the cryptographic
hash function, which can dominate the verifier’s running time. This, for example,
is the case in the recursive construction in [COS20]. In this paper, we ask: how
small can the query complexity of a verifier be?

We make our question precise via the notion of bits of security. The soundness
error ε of a succinct argument in the ROM is a function of several parameters: the
instance size, the output size of the random oracle, and the number of queries by
the cheating prover to the random oracle. Then we say that a succinct argument
provides s bits of security if the soundness error ε is at most 2−s for every instance
size up to 2s, every prover query complexity up to 2s, and when the output size
of the random oracle is Θ(s). (See Section 3.3 for relevant definitions.)

2

Known constructions of succinct arguments achieve verifier query complex-
ities that are Ω(s). This is true even if one were to rely on conjectured “holy
grail” probabilistic proofs within these constructions. In particular, no approach
is known that could achieve a verifier that makes o(s) queries to the oracle (which
would be very desirable).

We are interested in understanding whether small verifier query complexity
is possible:

Do there exist succinct arguments with s bits of security and verifier query
complexity � s?

1.1 Our contributions

In this paper we contribute new insights into the structure of succinct arguments
in the ROM, which we then use to obtain evidence that the answer to the above
question is negative. First we prove that IOPs are an inherent ingredient of any
succinct argument in the ROM. Then we prove limitations of the obtained IOPs,
thereby obtaining lower bounds on the number of queries to the random oracle
by the verifier in the starting succinct argument. The limitations on IOPs that
we prove are rather broad (even when applied to the case of a PCP), and may
be of independent interest.

Here we remind the reader that an interactive oracle proof (IOP) [BCS16;
RRR16] is a proof system that combines the notions of interactive proofs (IP)
and probabilistically-checkable proofs (PCPs). Namely, it is an interactive proof
where the verifier is granted oracle access to the messages sent by the prover and
so can probabilistically query them. As opposed to PCPs, IOPs leverage the mul-
tiple rounds of communication, which gives them many efficiency improvements
in terms of proof size and the running time of the prover. As shown in [BCS16],
IOPs with suitable soundness properties can be compiled into non-interactive
succinct arguments in the ROM. This, along with the concrete efficiency of
IOPs, makes them a central component of many succinct arguments today.

1.1.1 IOPs are necessary for succinctness
We prove that IOPs are inherent to succinct arguments in the ROM in a precise
sense: any succinct argument in the ROM can be generically transformed into
an IOP whose query complexity depends on the “succinctness” of the argument.
Namely, if the argument prover sends as bits to the argument verifier, then the
IOP verifier makes as queries to proof strings sent by the IOP prover.

Moreover, and less intuitively, the IOP verifier makes O(vq · a) extra queries,
where vq is the number of queries made by the argument verifier to the ran-
dom oracle and a is the number of adaptive rounds of queries by the (honest)
argument prover to the random oracle (see Section 3.1 for more on adaptivity).
The adaptivity parameter a plays a key role in our result, and it is small in
all known schemes. (E.g., a = O(log n) in succinct arguments obtained via the
Micali transformation [Mic00].)

3

Theorem 1 (informal). There is an efficient transformation T that satisfies the
following. Suppose that ARG is a size-as argument in the ROM for a language L
where the honest prover performs pq queries in a rounds and the verifier performs
vq queries. Then IOP := T(ARG) is an IOP for L with proof length O(pq + as)
and query complexity O(as+ vq · a). Other aspects of IOP (such as public coins,
soundness, time and space complexities) are essentially the same as in ARG.

Our result provides a way to construct an IOP by “reverse engineering” an
arbitrary succinct argument, leading to a standalone compelling message: suc-
cinct arguments in the ROM are “hard to construct” because they must contain
non-trivial information-theoretic objects. This holds regardless of the complexity
of the language proved by the succinct argument. For example, IOPs are inherent
even to succinct arguments for deterministic computations (where the primary
efficiency goal is an argument verifier that is faster than directly deciding the
language). Our necessity result is complementary to a result of Rothblum and
Vadhan [RV09], which showed the necessity of PCPs for succinct arguments ob-
tained via blackbox reductions to falsifiable assumptions (see Section 1.2). Their
result does not apply for succinct arguments in the random oracle model.

In this paper, the necessity of IOPs for succinct arguments in the ROM is
more than a compelling message. We demonstrate that the necessity of IOPs is a
useful step towards establishing barriers on succinct arguments, because thanks
to Theorem 1 we have reduced this problem to establishing barriers on IOPs.
Our second main contribution concerns this latter task (see below).

We sketch the ideas behind Theorem 1 in Section 2.1; the formal statement
of the theorem, which gives a precise accounting of many more parameters, is
given and proved in Section 4.

1.1.2 From IOPs to algorithms
We show that IOPs with good parameters (small soundness error relative to
query complexity) can be translated to fast algorithms with small space com-
plexity. This translation should be viewed as a tool to establish barriers on IOPs:
if the language proved by the IOP is hard then the corresponding algorithm may
(conjecturally) not exist, contradicting the existence of the IOP to begin with.

Theorem 2 (informal). Suppose that a language L has a public-coin IOP with
soundness error ε, round complexity k, proof length l = poly(n) over an alphabet
Σ, query complexity q, and verifier space complexity vs. If ε = o(2−q·log l) then,
the language L can be decided by a probabilistic algorithm that runs in time
exponential in Õ

(
q ·(log |Σ|+k)

)
and that runs in space Õ

(
vs ·q2 ·(log |Σ|+k)2

)
.

We sketch the ideas behind Theorem 2 in Section 2.2; the formal statement
is proved in Section 5.

Our result in fact provides a broad generalization of folklore results that
impose barriers on IPs and PCPs (both are special cases of IOPs) as we discuss
in Section 1.2. In particular, the folklore results restrict the verifier and alphabet
size, while we do not. For example, Theorem 2 rules out a broader class of PCPs
for the “small-query high-soundness” regime than what was previously known:

4

under the (randomized) Exponential-Time Hypothesis (rETH),3 if the number
of queries is constant then the best possible soundness error is 1/poly(n), as
long as log |Σ| � n (otherwise a trivial PCP exists). We deduce this from the
corollary obtained by setting k := 1 in Theorem 2.

Corollary 1 (informal). Suppose that NP has a PCP with perfect completeness
and soundness error ε, and where the verifier tosses r random coins, makes q
queries into a proof of length l = poly(n) over an alphabet Σ. Under the rETH
assumption, if Õ(q log |Σ|) = o(n), then ε ≥ 2−q·log l.

This yields limitations for PCPs, e.g., in the “cryptographic regime”: constant-
query PCPs with negligible soundness cannot have polynomial size, even over
an exponentially-large alphabet.
1.1.3 Barriers for succinct arguments
We now discuss our barriers for succinct arguments, which state that under
standard complexity assumptions there are no succinct arguments where the
verifier makes a small number of queries to the random oracle, and the honest
prover has a small adaptivity parameter a.

Suppose that 3SAT has a succinct argument that provides s bits of security
and has argument size as� n, where n is the number of variables in the 3SAT
formula. Suppose that the argument prover makes a adaptive rounds of queries
to the random oracle, and the argument verifier makes vq queries to the random
oracle. If vq · a � s then by Theorem 1 we get an IOP with similar efficiency
parameters, and with query complexity roughly o(s). Then by Theorem 2 we
get an algorithm for 3SAT that runs in time 2o(n), contradicting the randomized
Exponential Time Hypothesis.

Theorem 3 (informal). Suppose that 3SAT has a public-coin succinct argument
that provides s bits of security and has argument size as � n, where the prover
makes a adaptive rounds of queries to the random oracle and the verifier makes
vq queries to the random oracle. If vq · a� s then rETH is false.

The theorem applies to all constructions, but does not completely answer our
motivating question because the theorem has a dependency on the adaptivity
parameter a. The question of whether this dependency can be removed remains
a challenging open problem. If it turns out that it cannot be removed, then
our result suggests a path to construct succinct arguments with more efficient
verifiers: the standard Merkle trees (which lead to very small adaptivity) must
be replaced with a deeper structure that exploits long adaptive paths of queries.
This would be a very exciting development, departing from all paradigms for
succinct arguments known to date!

Note that the requirement as � n is necessary as if as = n then a trivial
argument system, where the prover sends the full satisfying assignment, has no
soundness error with no random oracle calls.
3 The randomized Exponential Time Hypothesis states that there exist ε > 0 and c > 1
such that 3SAT on n variables and with c·n clauses cannot be solved by probabilistic
algorithms that run in time 2ε·n [DHM+14].

5

We sketch how to derive our barriers in Section 2.3; formal statements can
be found in Section 6, in a more general form that separately considers the case
of arbitrary nondeterministic languages (of which 3SAT is an example) and the
case of arbitrary deterministic languages.

1.1.4 Additional applications and extensions
Our transformation from succinct arguments to IOPs (Section 1.1.1) leads to
extensions that provide valuable insights into succinct arguments, as we discuss
below.
Extension 1: preprocessing implies holography. We now consider suc-
cinct arguments in the ROM that have an additional useful feature, known as
preprocessing. This means that in an offline phase one can produce a short sum-
mary for a given circuit and then, in an online phase, one may use this short
summary to verify the satisfiability of the circuit with different partial assign-
ments to its inputs.4 The online phase now can be sublinear in the circuit size
even for arbitrary circuits.

The BCS transformation extends to obtain preprocessing SNARGs from holo-
graphic IOPs [COS20], following a connection between preprocessing and holog-
raphy introduced in [CHM+20]. Therefore, in light of Theorem 1, it is natural to
ask: do all preprocessing SNARGs in the random oracle model arise from holo-
graphic IOPs? Even if SNARGs “hide” IOPs inside them (due to our result),
there may be other approaches to preprocessing beyond holography, at least in
principle.

We show that preprocessing does arise from holography. We extend the ideas
underlying our Theorem 1 to obtain a transformation that given a preprocessing
SNARG in the random oracle model outputs a holographic IOP with related
complexity measures. This reverse direction strengthens the connection between
preprocessing and holography established in [COS20; CHM+20].

Lemma 1. There is an efficient transformation T that satisfies the following.
Suppose that ARG is a size-as preprocessing non-interactive argument in the
ROM for an indexed relation R where the honest prover performs pq queries
in a rounds, the verifier performs vq queries, and the indexer outputs a key of
size ivk. Then IOP := T(ARG) is a holographic IOP for R with proof length
O(pq+ as) and query complexity O(ivk+ as+ vq · a). Other aspects of IOP (such
as public coins, soundness, time and space complexities) are essentially the same
as in ARG.

Extension 2: on state restoration soundness. A careful reader may have
noticed that our discussion so far did not touch upon a technical, yet important,
aspect. Namely, observe that if we applied the transformation in Theorem 1 to
a SNARG in the ROM then we would obtain a corresponding public-coin IOP.
However, given what we said so far, we are not guaranteed that we can compile
4 Here we focus on succinct arguments for circuit satisfiability for simplicity of ex-
position. The preprocessing property can be stated more generally, specifically for
ternary relations, and we do so in the rest of this paper.

6

this IOP back into a SNARG! Indeed, the known approach for constructing
SNARGs from IOPs requires the IOP to satisfy a stronger notion of soundness
called state restoration soundness [BCS16]. So we should ask: does the IOP
output by Theorem 1 satisfy this stronger notion?

We prove that the transformation in Theorem 1 yields an IOP with state-
restoration soundness as long as the SNARG had a stronger notion of soundness
that we introduce and call salted soundness. Informally, this notion allows a
cheating SNARG prover to request the random oracle to re-sample the answer
for a chosen query (in case the prover did not “like” the prior answer).

Lemma 2 (informal). The transformation T in Theorem 1 satisfies this addi-
tional property: if ARG is a SNARG with salted soundness error εs(t) for query
budget t and the prover runs in a adaptive rounds then IOP := T(ARG) is a
public-coin IOP with state restoration soundness error εs(t ·m).

This lemma resolves the issue described above because the SNARGs con-
structed from (state-restoration sound) IOPs in [BCS16] do indeed satisfy the
stronger notion of salted soundness.

Reverse Engineering

succinct
argument

in the ROM
IOPTheorem 1

fast algorithm
with

small space
Theorem 2

⇒
⇐

complexity
assumptions

+ preprocessing + holographyLemma 1

+ salted
soundness

+ state restoration
soundnessLemma 2

Fig. 1. Summary of our results. The left part shows results related to “reverse engi-
neering” succinct arguments, which derive IOPs with certain properties from succinct
arguments with certain properties. The right part depicts the fact that IOPs with good
enough parameters lead to algorithms that, for hard enough languages, contradict plau-
sible complexity assumptions.

1.2 Related work

Known limitations on IPs and PCPs. Our Theorem 2 implies that IOPs
with good parameters can be translated into good algorithms. Below we sum-
marize known facts that impose limitations on restrictions of the IOP model:
interactive proofs (IPs) and probabilistically checkable proofs (PCPs).

7

– IPs. The following fact follows from proof techniques in [GH98] (see also
[RRR16, Remark 5.1]).

Folklore 1. If a language L has a public-coin IP where the communication
and verifier space complexity are bounded by c, then L can be decided by an
algorithm running in space O(c).

Since it is believed that DTIME[T] 6⊆ SPACE[o(T)], the above lemma tells us
that we should not expect every language in DTIME[T] to have a non-trivial
public-coin interactive proof.
Both Folklore 1 and our Theorem 2 lead to an algorithm with small space,
and the main difference is that our theorem is a statement about IOPs rather
than IPs. We note, however, that within the proof of our theorem we prove
a lemma (Lemma 3) that can be viewed as a refinement of Folklore 1 as it
applies even when the verifier-to-prover communication is large.

– PCPs. The following fact lower bounds a PCP’s soundness error.

Folklore 2. Suppose that NP has a PCP with perfect completeness and sound-
ness error ε, and where the verifier tosses r random coins and makes q queries
into a proof of length l over an alphabet Σ. Then the following holds:
1. ε ≥ 2−r; and
2. Under the ETH assumption, if r = o(n) and q log |Σ| = o(n) then ε ≥

2−q·log |Σ|.

In order to understand the implications of the above limitation, we find it
helpful to recall a well-known conjecture about possible PCP constructions.
The Sliding Scale Conjecture states that, for every ε ∈ [1/poly(n), 1], every
language in NP has a PCP with perfect completeness and soundness error ε,
and where the verifier uses O(log n) random bits and makes O(1) queries into
a proof over an alphabet Σ of size poly(1/ε). The conjecture is tight in the
sense that we cannot ask for better soundness with the same parameters.
Yet if we allow the verifier to use ω(log n) random bits or if log |Σ| = ω(log n)
then Folklore 2 does not rule out PCPs with soundness error 1/nω(1). Our
Corollary 1 amends this by establishing that one cannot get soundness error
better than 1/poly(n) even if the verifier uses an arbitrary number of random
bits and the alphabet is arbitrarily large.

Probabilistic proofs in succinct arguments. Essentially all known con-
structions of succinct arguments use some form of probabilistic proof as an in-
gredient (possibly among other ingredients). Prior to this work, the only known
formal statement seeking to explain this phenomenon is a result by Rothblum
and Vadhan [RV09] stating that succinct arguments proved secure via a black-
box reduction to a falsifiable assumption must “contain” a PCP. This is for-
malized via a transformation that, given such a succinct argument, outputs a
PCP with size and query complexity related to the succinctness of the argument
system (and also certain aspects of the security reduction).

Our Theorem 1 is complementary to the result in [RV09], in that we con-
sider succinct arguments that are unconditionally secure in the random oracle

8

model (as opposed to computationally secure in the standard model). Our tech-
niques are also different, in that the technical challenge is to design an efficient
sub-protocol to simulate a random oracle (as opposed to detecting if the adver-
sary has “broken cryptography” by using the falsifiability of the cryptographic
assumption).

2 Techniques

2.1 IOPs are necessary for succinctness

We describe the main ideas behind Theorem 1, which states that any succinct
argument in the ROM implies an IOP with related parameters (which in par-
ticular demonstrates that IOPs are necessary for succinctness in the ROM). Let
P and V be the prover and verifier of an arbitrary succinct argument for a lan-
guage L (e.g., 3SAT). We seek to “remove” the random oracle from the succinct
argument by simulating it via an interactive sub-protocol and ending with an
IOP for the same language L. We assume, without loss of generality, that P and
V each never query the same element more than once.5

Below, we first describe a straightforward approach, then explain problems
and challenges on the approach, and finally explain how we overcome the chal-
lenges to obtain our result.
A straightforward approach. We can construct an IP with a new prover
P and a new verifier V that respectively simulate the argument prover P and
argument verifier V . In addition, we task the IP verifierV to simulate the random
oracle for both P and V , as we explain.

– Whenever the argument prover P wants to query the oracle at an element x,
the IP prover P forwards the query x to the IP verifier V, who replies with a
truly random string y that plays the role of the output of the random oracle
on x.

– Whenever the argument verifier V queries x, then the IP verifier V checks if
x had appeared in the transcript as one of the queries and returns the given
answer to V if so, or otherwise it feeds V with a truly random value.

There is a delicate, yet crucial, issue that needs to be taken care of. A cheating
IP prover might query x twice (or more) to get two possible answers for the same
query, which might affect the soundness of the IP (and indeed there are succinct
arguments where this issue has devastating consequences on the soundness of
the IP). Thus, when simulating a verifier query x, the IP verifier V must assert
that x was not issued twice during the protocol (and otherwise reject).

The approach above perfectly removes the random oracle from the succinct
argument and yields an IP with similar completeness and soundness. Henceforth

5 We can always modify the prover to store previous query answers, so that no query
is performed twice. This might increase the space complexity of the prover, but it
does not affect the results in this paper.

9

we view the IP constructed above as an IOP whose verifier reads the entire
transcript (queries all locations of the exchanged messages).
The problem. The problem with the IOP described above is its parameters.
The argument prover P might perform many queries, and in particular more than
the witness size (as is the case in known constructions of succinct arguments).
This dominates many parameters of the IOP, including the number of rounds,
the number of bits read by the verifier, and its running time — and also yields a
trivial IOP for the language. Note that proof length (the number of bits sent by
P) is fine, as we do not expect all languages in NP to have an IOP with small
proof length, but rather only expect the IOP verifier to read a small number of
locations from the prover messages.
Achieving small round complexity. We crucially exploit a parameter of the
argument prover P not discussed thus far, namely, its adaptivity. We say that P
has adaptivity a if it performs a rounds of queries to the random oracle and in
each round submits a (possibly long) list of queries and receives corresponding
answers. In known constructions, a is very small (e.g., O(log n)). If P has adap-
tivity a, then the number of rounds in the constructed IOP can be easily reduced
to O(a), where the IOP prover P sends the verifier a list of queries x1, . . . , xm,
and the IOP verifier V replies with a list of answers y1, . . . , ym, while applying
the same logic as before. This reduces the number of rounds of the IOP, but
so far has no effect on the number of queries performed by the IOP verifier V,
which remains as large as the number of queries performed by the argument
prover P .
Perfect hash functions with locality. Our main goal now is to reduce the
number of bits read by the IOP verifier V. Consider a query x performed by the
argument verifier V . The IOP verifier V needs to read the transcript to see if the
query x was issued and, if so, check that it was issued only once. A simple way
to find x in the transcript is to have the IOP prover P assist with locating x.
That is, P points to the exact location in the transcript for where x was issued.
Then V reads this specific location in the transcript and is assured that x was
queried and at the same time reads the corresponding response y. However, how
can V check that x was not issued twice? And how can P give a proof that the
rest of the transcript does not contain x?

To deal with these challenges, we use perfect hash functions. These are a
family of functions H = {h : U → [O(m)]} such that for any S of size m there
exists a function h ∈ H that is one-to-one on S. Fixing such a family H, we let
the IOP prover P provide with each set of queries (for each round), a perfect
hash function h for the set X of submitted queries and send an array of length
O(m) such that element x ∈ X resides in the cell at index h(x). This way, instead
of the IOP verifier V scanning (and reading) all prover messages, it suffices for
V to read the description of h and then query the cell h(x) to determine if x is
in the array.

Also, the IOP verifier V writes the response y at the same location h(x) in a
dedicated array of random values, Y [h(x)]. This way, V can be convinced that
x was not issued at a specific round by looking at a single cell h(x) for the array

10

given by P at that round. Thus, the query complexity of V for simulating a
single query of V is mainly determined by the number of rounds of the protocol,
which is the rather small value a (the adaptivity of the honest argument prover
P). Note that while the entire array Y is sent to the prover, the verifier needs
to read only a single location from Y (we elaborate on this further below).

The locality property. Turning the above ideas into our transformation runs
into several delicate issues that need to be handled to achieve soundness and
good parameters. One issue is that the description of h is, in fact, too large for
the verifier to read in its entirety (it is larger than the set itself). However, we
observe that V need not read the entire function description, but only the parts
required for evaluating h at x.

Therefore, we additionally require the perfect hash family to have a locality
property where, in order to evaluate the hash function h on a single element
x, only a relatively small number of bits are required to be read from the de-
scription of h. Luckily, several known constructions have this locality property
and, specifically, we use the construction of Fredman, Komlós, and Szemerédi
[FKS84]. An overview of the [FKS84] construction, its locality property, and a
bound on the number of bits required to read are given in Section 4.1.

There are additional challenges in realizing the above plan. For example,
in terms of soundness, note that a cheating prover might submit a set X and
choose a function h that is not perfect for X and contains collision — this could
potentially harm soundness. We deal with this and other issues on the way to
proving our transformation from succinct arguments to IOPs.

The resulting IOP. This results in an IOP with the following parameters. If
the prover had a rounds of adaptivity, then the IOP has a+1 rounds, where the
first a rounds are used to simulate the random oracle for the prover, and the last
round is dedicated to sending the final output of the prover. The proof length
of the IOP (i.e., the total communication of the protocol) is O(as+ pq) symbols
where each symbol contains an output of the random oracle. Indeed, for each of
the pq queries we an additional O(1) symbols, and for the last round we send
the final argument which is as bits (and can be read as a single symbol).

The query complexity is O(as + vq · a) as for each of the vq queries of the
prover, the verifier needs to scan all a rounds, and performs O(1) queries in each.
Then, it reads last prover message entirely which is as bits (which we can view
as 1 large symbol of as bits).

The resulting IOP has large communication of randomness from the verifier
to the prover. However, the verifier, in order to decide whether to accepts, has
to read only a small number of locations, and these are included in the count
of the query complexity. Our definition for IOP allows the verifier to have only
oracle access to its own randomness and thus the query complexity includes
both locations read from the proof and from the randomness. We stress that the
compiler of [BCS16] works even for this more general definition of IOP. Therefore,
we do not expect to get an IOP with small verifier-to-prover communication as
it could be that the succinct argument was constructed from an IOP with large

11

communication (see Section 3.4 for the precise definition of IOP and a further
discussion on this topic).

See Section 4 for further details of the proof.

2.2 Algorithms for IOPs

We describe the main ideas behind Theorem 2, which states that IOPs with good
parameters can be translated to fast algorithms with small space complexity. We
proceed in two steps.

– Step 1. We prove that any IOP can be simulated by an IP (interactive proof)
with small prover-to-verifier communication, at the cost of a (large) complete-
ness error that depends on how well one can guess all of the IOP verifier’s
query locations (the “query entropy” of the IOP).

– Step 2. We prove a refinement of a result of Goldreich and Håstad [GH98]
that states that languages with public-coin IPs with small prover-to-verifier
communication can be decided via fast probabilistic algorithms with small
space complexity.

We elaborate on each of these steps in turn below.
Step 1: IOP to laconic IP (Lemma 2 in Section 5.1). We prove that
any IOP with good enough soundness relative to its query entropy can be trans-
lated to a laconic IP (an IP with small prover-to-verifier communication). Query
entropy is related to the probability of guessing in advance all locations that
the IOP verifier will read across the proof strings sent by the IOP prover (see
Definition 5 for how query entropy is formally defined). The translation ensures
that if the IOP is public coin (as indeed it is in our case) then the IP is also
public coin. Moreover, at the cost of an additional completeness error, the IP
verifier can be modified so that it makes a single pass on its (large) randomness
tape and runs in small space. (This small-space property will be useful later on
for establishing barriers on succinct arguments for deterministic languages; see
Section 2.3.)

We construct the IP as follows. First, the IP prover guesses the locations that
the IOP verifier will read. The probability of guessing all locations correctly is
2−h, where h is the query entropy. Assuming a correct guess, the IP prover sends
the description of these locations together with corresponding values. If the IOP
verifier makes q queries across a proof of length l over an alphabet Σ, then the IP
prover sends q · log l+ q · log |Σ| bits. The soundness of the protocol remains the
same. What changes is the completeness error, which drastically increases since
guessing all locations has a small probability. However, if the soundness error is
small enough and as long as there is some difference between completeness and
soundness, we get a non-trivial IP. In particular, if the IOP has soundness error
ε < 2−h then the resulting IP has soundness error ε, completeness error 1− 2−h,
and prover communication q · log l+ q · log |Σ| as mentioned above.

Finally, we show that the IP can be modified (at the expense of the com-
pleteness error) to make the IP verifier perform a single pass over its randomness

12

tape. Note that the IOP verifier might read the randomness in an arbitrary man-
ner, which would make the IP verifier read it in a similar one. Here, we exploit
the fact that the IOP verifier had only oracle access to its own random tape,
and performed only a limited number of queries. We leverage this and let the IP
verifier guess these locations in advance. Then, the verifier reads the random-
ness tape and stores only the locations it guessed. From here on, the verifier will
use only the randomness stored explicitly. Assuming that it guessed correctly, it
uses these locations to simulate random access for the IOP verifier. This again
adds a large completeness error. However, if the soundness error is small enough,
then again the resulting IP is non-trivial and, as discussed above, suffices for our
purposes.
Step 2: IP to algorithm (see Lemma 3 in Section 5.2). Goldreich and
Håstad [GH98] showed that languages with public-coin IPs with small prover-
to-verifier communication can be decided via fast probabilistic algorithms. In
particular, if L has a public-coin IP where, for an instance of length n, the
prover-to-verifier communication is bounded by c(n) and the number of rounds
is bounded by k(n) then it holds that

L ∈ BPTIME
[
2O(c(n)+k(n)·log k(n)) · poly(n)

]
.

Their result is shown only for IPs with constant completeness and soundness
errors, which is not the case for the IP constructed in Step 1. We stress that
the IP constructed Step 1 can be amplified via standard repetition to reach the
setting of constant completeness and soundness errors, doing so would increase
communication and render the IP not laconic, and hence not useful for us in this
paper. Instead, we show a refinement of [GH98] that is suitable to work in the
“large-error” regime of IP parameters. Details follow.

We explicitly show the dependency in the completeness and soundness errors,
allowing the theorem to apply to IPs with large completeness errors (which we
need). This refinement is technical, where we follow the original proof blueprint of
[GH98]. We explicitly track the completeness and soundness errors rather than
hiding them as constants in the Big-O notation, and adjust other parameters
as a function of the completeness and soundness error values. The result is a
moderately more involved formula for the running time of the final algorithm,
which has these parameters in addition to the communication complexity and
the number of rounds.

In particular, we get that if a language L has a public-coin IP with com-
pleteness error α, soundness error β, round complexity k, and prover-to-verifier
communication c, then it holds that

L ∈ BPTIME
[
2O(c(n)+k(n)·log k(n)

1−α(n)−β(n)) · poly(n)
]
.

For example, plugging in the IP obtained from Step 1, while assuming that ε =
o(2−q·log l) (and hiding some terms under the Õ notation) we get the expression
from Theorem 2:

L ∈ BPTIME
[
2Õ(q·(log |Σ|+k))

]
.

13

Additionally, we show that if the verifier of the IP reads its randomness in
a single pass, then the same algorithm can be implemented in small space (the
original implementation of [GH98] used space proportional to its running time).
Looking ahead, this property is used to achieve the barrier for deterministic
languages. We sketch the main idea behind the new algorithm.

The algorithm’s main goal is to compute the value of a tree Ax corresponding
to (an approximation of) the interaction in the IP protocol. Each node in the tree
corresponds to a certain partial transcript of the IP, and computing the value
of the tree suffices to decide the language. The straightforward way to compute
the value is to compute the value of each node in the tree from the leaves up to
the root. This would require space proportional to the size of Ax. Yet, in order
to compute the value of the tree it would suffice to store only log |Ax| values at
a time, as for any subtree it suffices to store the value of its root.

There is, however, a major issue with this approach. Namely, the space re-
quired to store even a single value of the tree is too large, as writing the location
of a node in the tree includes the description of the randomness of the verifier in
this partial transcript, which is too large to store explicitly. Here we exploit the
fact that the verifier uses a single pass to read its randomness, and show how to
compress the description of a node in the tree using the internal memory and
state of the verifier, given this partial transcript. This allows us to implicitly
store nodes values with small memory. Since it suffices to store only log |Ax|
values at a time we get an algorithm with small memory.

This results in the following conclusion: if the space complexity of the IP
verifier is vs when reading its randomness random tape in a single pass then

L ∈ SPACE
[
O (d · (vs+ d))

]
,

where d = c(n)+ k(n) · log k(n)
1−α(n)−β(n) . Once again, plugging in the IP obtained

from Step 1, we get the other expression from Theorem 2:

L ∈ SPACE
[
Õ
(
vs · q2 · (log |Σ|+ k)2

)]
.

2.3 Barriers for succinct arguments

Our results provide a methodology for obtaining barriers on succinct arguments
for different languages, based on complexity assumptions for the language. We
describe this blueprint and give two examples, one for non-deterministic lan-
guages and one for deterministic languages, and suggest that additional barriers
could be achieved is a similar manner.

This methodology works as follows. Let L be the language for which a barrier
is desired, and suppose that one proves (or conjectures) some hardness property
about the language L. Now assume that there exists a succinct argument for L
with certain efficiency parameters such as soundness, query complexity, prover
adaptivity, and so on. First apply Theorem 1 to obtain an IOP with parameters
related to the succinct argument, and then apply Theorem 2 to obtain an efficient

14

algorithm for L. If the efficient algorithm violates the hardness of L, then one
must conclude that the assumed succinct argument for L does not exist.

Barriers for 3SAT. We apply the above methodology to obtain barriers for
succinct arguments for NP based on the Exponential-Time Hypothesis. Suppose
that 3SAT over n variables has a succinct argument that provides s bits of
security and has argument size as � n (of course, if as = n then the scheme
is trivial). Suppose also that the argument prover makes a adaptive rounds of
queries to the random oracle, and the argument verifier makes vq queries to the
random oracle.

We apply Theorem 1 to the argument scheme to get a related IOP. Since the
argument scheme provides s bits of security, then for any instance x ≤ 2s and
query bound t ≤ 2s and for oracle output size λ = O(s) we get that the resulting
IOP has soundness ε(x, t, λ) ≤ 2−s. Moreover, the verifier reads O(vq·a) symbols
from the transcript, the alphabet size is |Σ| = 2λ, the number of rounds is O(a),
and the proof length is O(as+pq), which is best to think as poly(n) for simplicity.

What is important to note here is that if vq · a � s then the query entropy
of the IOP is 2−h = l−vq·a = ω(2−s) and thus ε = o(2−h). This means that
we can apply Step 1 above to get an IP for 3SAT where the prover-to-verifier
communication is

c(n) = q · log l+ q · log |Σ| = q · log n+ q · s = O(s2) ,

and the difference between the completeness and soundness error is 1− α(n)−
β(n) = o(s). Then, using Step 2, we get a (randomized) algorithm for 3SAT that
runs in time 2Õ(q·(log |Σ|+k) = 2o(s) = 2o(n), as long as s2 � n. This contradicts
the (randomized) Exponential Time Hypothesis. Note that the condition that
s2 � n is relatively mild, as s is a lower bound for the size of the argument
scheme, and the main objective of a succinct argument is to have argument size
much smaller than the trivial n bits of communication (sending the satisfying
assignment).

The above reasoning can be generalized to any non-deterministic language
in NTIME[T], as we work out in detail in Section 6.1.

Barriers for DTIME[T]. As a second example of our methodology, we show
barriers for deterministic languages. Here, we exploit the fact that the final
algorithm obtained in Step 2 has small space complexity. Suppose that there is a
succinct argument as above for languages in DTIME[T], for some time bound T ,
with argument size as � T . Assume that DTIME[T] 6⊆ SPACE[o(T)], a rather
unlikely inclusion (which is currently outside of known techniques to either prove
or disprove).

As before, if vq · a � s then by Theorem 1 we get an IOP with similar
efficiency parameters, and with query complexity vq · a� s. Additionally, if the
argument’s verifier space complexity is sv� T (which is naturally the case with
a non-trivial argument scheme) then the verifier of the obtained IOP can be
implemented with O(sv) space.

15

Similar to the analysis we did in the non-deterministic case, here we apply
Theorem 2 and get an algorithm for L that runs in space

Õ(sv · q2 · (log |Σ|+ k)2) = Õ(s4) = o(T) ,

as long as s4 � T (again, a relatively mild condition). This implies that

DTIME[T] ⊆ SPACE[o(T)],

which contradicts the initial conjectured hardness.
Is the dependency on a inherent? Our methodology gives meaningful
barriers provided that the adaptivity of the honest prover, a, is somewhat small,
e.g., sublinear in the security parameter s. While this is indeed the case for all
known constructions, it is not clear if a succinct argument could benefit from
large adaptivity. We can thus draw the following conclusion. One possibility
is that our results could be improved to eliminate the dependency on a, for
example by improving the transformation to IOP to be more efficient and contain
queries from several adaptivity rounds to be in the same round of the IOP.
Another possibility is that there exist succinct arguments with small verifier
query complexity and large prover adaptivity. This latter possibility would be
a quite surprising and exciting development, which, in particular, would depart
from all paradigms for succinct arguments known to date.

2.4 Additional results and applications

Extension 1: preprocessing implies holography. Our Lemma 1 states
that we can transform any preprocessing succinct argument into a corresponding
holographic IOP. We do so by extending the transformation that underlies our
Theorem 1, and below, we summarize the required changes.

Recall that in a holographic IOP there is an algorithm, known as the IOP
indexer and denoted I, that receives as input, e.g., the circuit whose satisfiability
is proved and outputs an encoding of it that will be given as an oracle to the
IOP verifier. Our goal here is to construct the IOP indexer by simulating the
argument indexer I, which instead relies on the random oracle to output a short
digest of the circuit for the argument verifier.

Similarly to the transformation outlined in Section 2.1, we need to “remove”
the random oracle during the simulation. The IOP indexer uses its randomness
ρ0 to answer any oracle query performed by the argument indexer. Let X0 be
the set of queries performed by the argument indexer. Then, the IOP indexer
finds a perfect hash function h0 for X0 and creates the corresponding arrays T0
and Y0 containing the queried elements and responded positioned according to
h0. Finally, the IOP indexer outputs the string (ivk, h0, T0, Y0), where ivk is the
output of the argument indexer.

We are left to ensure that, during the transformation, any query simulated
by the IOP verifier is consistent with the queries performed in the preprocessing
step. The IOP prover, uses ρ0 to simulate, in its head, the above (deterministic)

16

process to get the same output (ivk, h0, T0, Y0), and thus can act in a consistent
way to the queries in X0.

The IOP verifier reads ivk and uses it to simulate the argument verifier. Recall
that for every query x the verifier ensures that x was not issued in any previous
round. Here, we modify the verify to search in the array T0 in addition to the
arrays in all the rounds. In this sense, the preprocessing phase acts as “round 0”
of the protocol. Completeness and soundness follow in a similar manner to the
original transformation.

Extension 2: on state restoration soundness. Our Lemma 2 states that
the transformation in Theorem 1 yields an IOP with state-restoration soundness
when applied to a SNARG that satisfies salted soundness, a stronger notion of
soundness that we introduce and may be of independent interest. The motivation
for this result is that in the “forward” direction we only know how to construct
SNARGs from IOPs that do satisfy state-restoration soundness [BCS16], which
informally means that the IOP prover cannot convince the IOP verifier with high
probability even when the IOP prover is allowed to choose from multiple contin-
uations of the interaction up to some budget. We now sketch salted soundness
and the ideas behind Lemma 2.

In a succinct argument with salted soundness, the cheating argument prover
is allowed to resample answers of the random oracle, in a specific way. Suppose
the prover queried some element x1 and got response y1. If the prover wishes,
it may resample x1 to get a fresh new uniform response y′1. This process may
happen multiple times within the query budget of the algorithm. Then, the
prover selects one of these answers, and proceeds to query another element x2,
and so on. The prover is additionally allowed to go back, and change its decision
for the value of some xi. However, this produces a new branch where the values
for xj for j > i have to be resampled. In general, at any step the prover can
choose a brach from the set of all branches so far and choose to extend it. Finally,
the prover outputs the argument. When the argument verifier queries an element,
then it gets a response that is consistent with the branch the prover chose.

We need this security notion to get an IOP with state restoration sound-
ness since this is precisely what a cheating IOP prover can perform within our
transformation. In the state-restoration game, the cheating IOP prover can go
back to a previous round and ask for new randomness from the IOP verifier. In
our case, the IOP prover will get new randomness for some set of queries. Since
these queries simulate a random oracle, it can get fresh randomness for a query
intended for a random oracle.

Thus, we show that any cheating prover playing the state-restoration game
can be transformed into a cheating prover to the salted soundness game, and
yields the desired proof.

17

3 Definitions

3.1 Random oracles and oracle algorithms

We denote by U(λ) the uniform distribution over all functions ζ : {0, 1}∗ →
{0, 1}λ (implicitly defined by the probabilistic algorithm that assigns, uniformly
and independently at random, a λ-bit string to each new input). If ζ is sampled
from U(λ), then we say that ζ is a random oracle.

In this paper, we restrict our attention to oracle algorithms that are deter-
ministic. This is without loss of generality as we do not restrict the running of
the algorithm in the random oracle model only the number of queries.

Given an oracle algorithm A and an oracle ζ ∈ U(λ), queries(A, ζ) is the set
of oracle queries that Aζ makes. We say that A is t-query if |queries(A, ζ)| ≤ t
for every ζ ∈ U(λ).

Moreover, we consider complexity measures that quantify how the algorithm
A makes queries: some queries may depend on prior answers while other queries
do not. Letting ζm(x1, . . . , xm) := (ζ(x1), . . . , ζ(xm)), we say that A makes
queries in a rounds of width m if there exists an a-query oracle algorithm B
such that Bζ

m ≡ Aζ for every ζ ∈ U(λ). Note that t ≤ m · a.
Finally, we consider the size of oracle queries, i.e., the number of bits used to

specify the query: we say that A has queries of size n if for every ζ ∈ U(λ) and
x ∈ queries(A, ζ) it holds that |x| ≤ n.

We summarize the above via the following definition.

Definition 1. An oracle algorithm A is (a,m, n)-query if A makes queries in a
rounds of width m, and all queries of A have size at most n.

3.2 Relations

We consider proof systems for binary relations and for ternary relations, as we
now explain.

– A binary relation R is a set of tuples (x,w) where x is the instance and w

the witness. The corresponding language L = L(R) is the set of x for which
there exists w such that (x,w) ∈ R.

– A ternary relation R is a set of tuples (i,x,w) where i is the index, x the
instance, and w the witness. The corresponding language L = L(R) is the set
of tuples (i,x) for which there exists w such that (i,x,w) ∈ R. To distinguish
this case from the above case, we refer to R as an indexed relation and L as
an indexed language.

A binary relation can be viewed as a special case of a ternary relation, where the
same index has been fixed for all instances. For example, the indexed relation
of satisfiable boolean circuits consists of triples where i is the description of a
boolean circuit, x is an assignment to some of the input wires, and w is an
assignment to the remaining input wires that makes the circuit output 0. If

18

we restrict this indexed relation by fixing the same circuit for all instances, we
obtain a binary relation.

The proof systems that we consider for binary relations are: (a) non-interactive
arguments in the random oracle model; and (b) interactive oracle proofs. The
proof systems that we consider for indexed (ternary) relations are (a) preprocess-
ing non-interactive arguments in the random oracle model; and (b) holographic
interactive oracle proofs. We will define only the latter two (in Section 3.3 and
Section 3.4 respectively) because the former two can be derived as special cases.

3.3 Non-interactive arguments in the random oracle model

We consider non-interactive arguments in the random oracle model, where se-
curity holds against query-bounded, yet possibly computationally-unbounded,
adversaries. Recall that a non-interactive argument typically consists of a prover
algorithm and a verifier algorithm that prove and validate statements for a bi-
nary relation, which represents the valid instance-witness pairs. Here we define a
more general notion known as a preprocessing non-interactive argument, which
works for indexed relations (see Section 3.2). This notion additionally involves
an indexer algorithm, which receives as input an index and deterministically pro-
duces a key pair specialized for producing and validating statements relative to
the given index. The usual notion of a non-interactive argument corresponds to a
preprocessing non-interactive argument where the indexer algorithm is degener-
ate (it sets the proving key equal to the index, and similarly sets the verification
key equal to the index).

Let ARG = (I, P, V) be a tuple of (oracle) algorithms, with I deterministic.
We say that ARG is a (preprocessing) non-interactive argument, in the random
oracle model, for an indexed relation R with (non-adaptive) soundness error ε if
the following holds.

– Completeness. For every (i,x,w) ∈ R and λ ∈ N,

Pr

V ζ(ivk,x, π) = 1

∣∣∣∣∣∣
ζ ← U(λ)

(ipk, ivk)← Iζ(i)
π ← P ζ(ipk,x,w)

 = 1 .

– Soundness (non-adaptive). For every (i,x) /∈ L(R), t-query P̃ , and λ ∈ N,

Pr

V ζ(ivk,x, π) = 1

∣∣∣∣∣∣
ζ ← U(λ)

(ipk, ivk)← Iζ(i)

π ← P̃ ζ

 ≤ ε(i,x, λ, t) .
Complexity measures. We consider several complexity measures beyond
soundness error. All of these complexity measures are, implicitly, functions of
(i,x) and the security parameter λ.
– sizes: proving key size ipks := |ipk|; verification key size ivks := |ivk|; argument

size as := |π|.

19

– times: the indexer I runs in time it; the prover P runs in time pt; the verifier
V runs in time vt.

– queries: the indexer I is a iq-query algorithm; the prover P is a (a,m, n)-query
algorithm (see Definition 1); the verifier V is a vq-query algorithm.

Bits of security. We are interested to discuss complexity measures, most
notably argument size, also as a function of bits of security. Note, though, that
we cannot directly equate “bits of security” with − log ε(i,x, λ, t) because this
value depends on multiple quantities that we cannot set a priori. Indeed, while
we could set the output size λ of the random oracle to be a value of our choice, we
may not know which index-instance pairs (i,x) we will consider nor a malicious
prover’s query bound t. Thus we consider all (i,x) and t up to a large size that
depends on the desired bits of security, and say that the scheme has s bits of
security if − log ε(i,x, λ, t) ≤ s for all such i,x, t and where λ is linear in s. This
is captured is the following definition.

Definition 2. We say that ARG provides s bits of security if its soundness
error ε satisfies the following condition with λ := c · s for some constant c >
0: for every index-instance pair (i,x) /∈ L(R) and query bound t ∈ N with
max{|i|+ |x|, t} ≤ 2s it holds that ε(i,x, λ, t) ≤ 2−s.

The above definition enables us to discuss any complexity measure also, and
possibly exclusively, as a function of bits of security as we illustrate in the fol-
lowing definition.

Definition 3. We say that ARG has argument size as(s) if ARG provides s
bits of security and, moreover, as(s) bounds the size of an honestly-generated π
for any index-instance pair (i,x) ∈ L(R) with |i| + |x| ≤ 2s and while setting
λ := Θ(s).

3.4 Interactive oracle proofs

Interactive Oracle Proofs (IOPs) [BCS16; RRR16] are information-theoretic proof
systems that combine aspects of Interactive Proofs [Bab85; GMR89] and Prob-
abilistically Checkable Proofs [BFLS91; FGL+91; AS98; ALM+98], and also
generalize the notion of Interactive PCPs [KR08]. Below we describe a general-
ization of public-coin IOPs that is convenient in this paper.

Recall that a k-round public-coin IOP works as follows. For each round i ∈
[k], the prover sends a proof string Πi to the verifier; then the verifier sends a
uniformly random message ρi to the prover. After k rounds of interaction, the
verifier makes some queries to the proof strings Π1, . . . ,Πk sent by the prover,
and then decides if to accept or to reject.

The definition that we use here generalizes the above notion in two ways.

– Holography. The proof system works for indexed relations (see Section 3.2),
and involves an indexer algorithm that, given an index as input, samples an
encoding Π0 of the index; the randomness ρ0 used by the indexer to sample
the encoding Π0 is public (known to prover and verifier). The verifier receives
oracle access to the encoding Π0, rather than explicit access to the index.

20

– Randomness as oracle. The verifier has oracle access to its own randomness
ρ1, . . . , ρk and to the indexer’s randomness ρ0. This notion, which naturally
arises in our results, is compatible with known compilers, as we explain in
Remark 1. We will count verifier queries to the randomness ρ0, ρ1, . . . , ρk sep-
arately from verifier queries to the encoding Π0 and proof strings Π1, . . . ,Πk.

In more detail, let IOP = (I,P,V) be a tuple where I is a deterministic
algorithm,P is an interactive algorithm, andV is an interactive oracle algorithm.
We say that IOP is a public-coin holographic IOP for an indexed relation R with
k rounds and soundness error ε if the following holds.

– Completeness. For every (i,x,w) ∈ R,

Pr
ρ0,ρ1,...,ρk

 VΠ0,Π1,...,Πk,ρ0,ρ1,...,ρk(x) = 1

Π0 ← I(i, ρ0)
Π1 ← P(i,x,w, ρ0)

Π2 ← P(i,x,w, ρ0, ρ1)
...

Πk ← P(i,x,w, ρ0, ρ1, . . . , ρk−1)

 = 1 .

– Soundness. For every (i,x) /∈ L(R) and unbounded malicious prover P̃,

Pr
ρ0,ρ1,...,ρk

 VΠ0,Π̃1,...,Π̃k,ρ0,ρ1,...,ρk(x) = 1

Π0 ← I(i, ρ0)

Π̃1 ← P̃(ρ0)

Π̃2 ← P̃(ρ0, ρ1)
...

Π̃k ← P̃(ρ0, ρ1, . . . , ρk−1)

 ≤ ε(x) .

Complexity measures. We consider several complexity measures beyond
soundness error. All of these complexity measures are implicitly functions of the
instance x.
– proof length l: the total number of bits in Π0, Π1, . . . ,Πk.
– proof queries q: the number of bits read by the verifier from Π0, Π1, . . . ,Πk.
– randomness length r: the total number of bits in ρ0, ρ1, . . . , ρk.
– randomness queries qr: the total number of bits read by the verifier from
ρ0, ρ1, . . . , ρk.

– indexer time it: I runs in time it.
– prover time pt: P runs in time pt.
– verifier time vt: V runs in time vt.
Query entropy. We additionally define a complexity measure called query
entropy that, informally, captures the entropy of the query locations read by
the IOP verifier in an honest execution. In particular, if the query entropy is at
most h then the probability of predicting in advance all the locations that the
verifier will read at the end of the protocol is at least 2−h, where the probability
is taken over the randomness of the IOP verifier and (any) randomness of the
honest IOP prover.

21

Definition 4. Let X be a random variable. The sample-entropy of x ∈ supp(X)
with respect to X is H(x) := − log Pr[X = x]. The min-entropy of X is
Hmin(X) := minx∈supp(X)H(x).

Definition 5. Let IOP = (I,P,V) be an IOP with proof length l for an indexed
relation R.
– The query distribution of IOP for (i,x,w) ∈ R is the distribution D(i,x,w)

over subsets I ⊆ [l] such that the probability of I is the probability that the
honest IOP verifier V reads exactly the locations in I in an honest execution
with the IOP prover P for the triple (i,x,w).

– The query entropy of IOP for an index-instance pair (i,x) ∈ L(R) is

h(i,x) := max
w s.t. (i,x,w)∈R

Hmin(D(i,x,w)) .

For any IOP with proof length l and query complexity q it holds that for
any (i,x,w) ∈ R the query distribution has no more entropy than the uniform
distribution over subsets of size q. Therefore it always holds that h(i,x) ≤ q(i,x)·
log l(i,x).

Remark 1 (randomness in known compilers). The definition of public-coin (holo-
graphic) IOP that we consider additionally grants the verifier oracle access to its
own randomness, which in particular, enables the prover to receive much more
randomness than allowed by the verifier’s running time. We briefly discuss why
this feature is motivated by known cryptographic compilers.

First, the size of arguments produced via known cryptographic compilers does
not depend on the verifier’s randomness complexity. E.g., the Micali compiler
[Mic00] maps a PCP into a corresponding non-interactive argument whose size
is independent of the PCP verifier’s randomness complexity; more generally,
the BCS compiler [BCS16] maps a public-coin IOP into a corresponding non-
interactive argument whose size is independent of the IOP verifier’s randomness
complexity.

Second, the running time of the argument verifier produced by these com-
pilers only depends on the number of queries to the randomness, but not on
randomness complexity. Indeed, both in the Micali compiler and in the BCS
compiler, the argument prover only needs to invoke the random oracle to an-
swer randomness queries of the underlying PCP/IOP verifier, and in particular,
does not have to materialize the unqueried randomness. This is because the ran-
dom oracle, which serves as a shared randomness resource, enables the argument
prover to suitably materialize all the relevant randomness without impacting the
argument verifier.

4 From succinct arguments to interactive oracle proofs

We formally re-state Theorem 1 and then prove it. The formal theorem statement
is somewhat technical, as it contains the precise relationship between parameters
of the succinct argument and the corresponding IOP. We advise the reader to

22

first read the informal overview of the proof in Section 2.1, as it gives intuition
for the relationships between the parameters.

The theorem is stated with respect to a non-interactive succinct argument,
for the sake of simple presentation. The compiler naturally generalizes to succinct
arguments with multiple rounds, and we describe this is Remark 2. We note that
we additionally provide the query entropy of the compiled IOP (see Definition 5)
as it is used later in Theorem 6.

In the theorem below, an (a,m, n)-query algorithm performs a rounds each
containing m queries to a random oracle over defined over {0, 1}n (see Defini-
tion 1).

Theorem 3 (ARG → IOP). There exists a polynomial-time transformation
T that satisfies the following. If ARG is a non-interactive argument in the ROM
for a relation R then IOP := T(ARG) is a public-coin IOP for R, parametrized
by a security parameter λ ∈ N, with related complexity as specified below. (All
complexity measures take as input an instance x and the security parameter λ.)

ARG
soundness error ε
argument size as
prover
• time pt
• queries (a,m, n)
verifier
• time vt
• queries vq

−→

IOP
soundness error ε(t) for t := O(a ·m)
round complexity a+ 1
prover
• time (expected) Õ(pt)

• messages Π1, . . . , Πa ∈ ΣO(m)
n

Πa+1 ∈ Σas

verifier
• time (worst case) vt+ Õ

(
vq · a · (n+ λ)

)
• messages ρ1, . . . , ρa ∈ ΣO(m)

λ

ρa+1 ∈ Σvq
λ

• queries O(vq) to each of Π1, . . . , Πa

1 to Πa+1

O(vq) to ρ1, . . . , ρa+1

query entropy O(vq · a · logm)
[above Σn denotes the alphabet {0, 1}n]

Moreover, the IOP prover and IOP verifier make only black-box use of the argu-
ment prover and argument verifier respectively (up to intercepting and answering
their queries to the random oracle).

The rest of this section is organized as follows: in Section 4.1 we introduce
the main tool that we use in our transformation, and in Section 4.2 we describe
the transformation. Proofs are given in the full version of the paper.

Remark 2 (interactive arguments). While the focus of this paper is non-interactive
arguments in the random oracle model (as defined in Section 3.3), one could also
study interactive arguments in the random oracle model. Our proof of Theorem 3
directly extends to give a result also for this more general case, with the main
difference being that the round complexity of the IOP increases by the round
complexity of the given argument system.

23

The reason why the proof directly extends is that the main technique for
constructing the IOP is a sub-protocol for simulating queries to a random oracle,
and this sub-protocol does not “care” if in the meantime the argument prover and
argument verifier engage in a conversation. As a result, if the succinct argument
has k rounds, then the compiled IOP has k+ a rounds.

4.1 Tool: perfect hash functions with locality

A perfect hash function for a set S of size m in a universe U is a function
h : U → {1, . . . , O(m)} that is one-to-one on S. We use a seminal construction
of Fredman, Komlós, and Szemerédi [FKS84], observing that it has a certain
locality property that is crucial for us.

Theorem 4 (follows from [FKS84]). For any universe U there exist a
poly(m, log |U |)-time deterministic algorithm that, given as input a subset S ⊆ U
of size m, outputs a perfect hash function h : U → {1, . . . , O(m)} for S with
|h| = O(m · log |U |) bits. In fact, evaluating h on a single input requires reading
only O(log |U |) bits from the description of h, and performing Õ(log |U |) bit op-
erations. In alternative to the deterministic algorithm, h can be found in expected
time Õ(m · log |U |).

Proof. The FKS construction achieves a perfect hash function h via two levels of
hashing. The first level is a hash function h0 : U → [m] that divides the elements
of S among m bins where bin i has bi elements, with

∑m
i=1 b

2
i = O(m). The

second level is a hash function hi : [m] → [b2i], one for each bin i ∈ [m], that
resolves collisions inside bin i by mapping the bi elements in bin i to a range of
size b2i . Hence the hash function h consists of a collection of 1+m hash functions:
one for the first level andm for the second level. Each of the 1+m hash functions
is sampled from a family of universal hash functions (see Definition 6), which
can be instantiated via the standard construction in Lemma 1 below.

Definition 6. A family H of hash functions mapping U to [M] is universal if
for any distinct x, y ∈ U it holds that Prh←H[h(x) = h(y)] = 1/M .

Lemma 1 ([CW79]). Let p be a prime with |U | < p ≤ poly(|U |). The fam-
ily H = {ha,b : U → [M]}a∈F∗p,b∈Fp where ha,b(x) := (a · x mod p) mod M is
universal. Each ha,b has bit size O(log |U |) and can be evaluated in Õ(log |U |)
time.

The above gives us |h0| = O(log |U |) and |hi| = O(log |U |) for all i ∈ [m],
and in particular |h| = O(

∑m
i=0 |hi|) = O(m · log |U |).

We now discuss the locality property of the FKS construction. In order to
evaluate h on a single element, one needs to use only two hash functions among
the 1+m: the first level hash function h0 and then the appropriate second level
hash function hi. Thus, to evaluate h on a single element requires reading only
the relevant bits of h0 and hi from the description of h, which together amount
to O(log |U |) bits. The time to evaluate both h0 and hi is Õ(log |U |).

24

We conclude with a discussion of how to find h. Fredman, Komlós, and Sze-
merédi [FKS84] showed a poly(m, log |U |)-time deterministic algorithm; Alon
and Naor [AN96] showed a faster deterministic algorithm, but the running time
remains super-linear. Alternatively, in [FKS84], it was shown that h can be found
in expected time Õ(m · log |U |). This follows since for a random h0 it holds that∑m
i=1 b

2
i = O(m) with high probability, and moreover, for a random hi, the

mapping to [b2i] is one-to-one with high probability. Thus, in expectation, only
a constant number of trials are needed to find h0 and to find each hi.

4.2 The transformation

Construction 5 (transformation T). Let ARG = (P, V) be a non-interactive
argument in the ROM. We construct a public-coin interactive oracle proof IOP =
(P,V), parametrized by a choice of security parameter λ ∈ N. The IOP prover
P takes as input an instance x and a witness w, and will internally simulate the
argument prover P on input (x,w), answering P ’s queries to the random oracle
as described below. The IOP verifier V takes as input only the instance x, and
will simulate the argument verifier V on input x, answering V ’s queries to the
random oracle as described below.

The interactive phase of the IOP protocol proceeds as follows:

– For round j = 1, . . . , a:
1. P simulates P to get its j-th query set Xj = (x1, . . . , xm), and finds a

perfect hash function hj : {0, 1}n → [M] for the set Xj where M = O(m).
Then, P creates anM -cell array Tj such that Tj [hj(xi)] = xi for all i ∈ [m],
and all other cells of Tj are ⊥. Finally, P sends Πj := (hj , Tj) to V.

2. V samples y1, . . . , yM ∈ {0, 1}λ uniformly at random and sends ρj :=
(y1, . . . , yM) to P.

3. P answers P ’s query xi with the value ρj [hj(xi)], for every i ∈ [m].
– P simulates P until it outputs the non-interactive argument π; P sends
Πa+1 := π to V.

The query phase of the IOP protocol proceeds as follows. The IOP verifier V
reads the non-interactive argument π sent in the last round (the only symbol in
Πa+1), and simulates the argument verifier V on input (x, π), answering each
oracle query x with an answer y that is derived as follows:
– V reads the necessary bits from hj (in Πj) to evaluate hj(x);
– V reads vj := Tj [hj(x)] (in Πj) for all j ∈ [a];
– if vj 6= x for all j ∈ [a] then set y to be a random value in {0, 1}λ;
– if there exists j 6= j′ such that vj = x and vj′ = x then halt and reject;
– let j be the unique value such that vj = x, and set y := ρj [hj(x)].
If each query was answered successfully, V rules according to the output of
V . (Note that, formally, the randomness used by the IOP verifier V to answer
queries of the argument verifier V that were not also asked by the argument
prover P should be treated as a last verifier message ρa+1 consisting of vq random
λ-bit strings. The IOP verifier will then “consume” this randomness as needed.)

The proof appears in the full version of the paper.

25

5 From interactive oracle proofs to algorithms

We formally re-state and prove Theorem 2, which states that IOPs with good
parameters (small soundness error relative to soundness error or, more precisely,
query entropy) can be translated to good algorithms (fast algorithms with small
space complexity). We use this transformation in Section 6 to show that, for
certain languages, if the IOP parameters are “too good” then the resulting algo-
rithms contradict standard complexity assumptions (and therefore cannot exist).

Theorem 6 (IOP to algorithm). Suppose that a language L has a public-
coin IOP with completeness error c, soundness error ε, round complexity k,
proof length l over an alphabet Σ, query complexity q, and query entropy h. If
δ := (1− c) · 2−h − ε > 0 then, for c := q · log l+ q · log |Σ| the language L is in

BPTIME
[
2O(c(n)+k(n)·log k(n)

δ(n)) · poly(n)
]
.

Let the verifier space complexity be vs, randomness length r (over Σ) and ran-
domness query complexity qr. If δ′ := (1 − c) · 2−h · r−qr − ε > 0 then the same
algorithm can be implemented in space

O

(
vs ·
(
c(n) + k(n) · log k(n)

δ′(n)

)2
)

.

(Above it suffices to take c to be the number of bits to specify the set of queries by the
IOP verifier and their corresponding answers. This is useful when queries are correlated
or answers are from different alphabets.)

The proof appears in the full version of the paper.

5.1 IOP to laconic IP

The lemma below states that any IOP with good enough soundness relative to
its query entropy can be translated to a laconic IP (an IP with small prover-to-
verifier communication). Query entropy is the probability of guessing in advance
the exact locations that the IOP verifier will read across the proof strings sent
by the IOP prover; see Definition 5 for how query entropy is formally defined.

Lemma 2 (IOP to laconic IP). Suppose that a language L has an IOP with
completeness error c, soundness error ε, round complexity k, proof length l over
an alphabet Σ, query complexity q, and query entropy h. If ε < (1 − c) · 2−h
then L has an IP with completeness error 1 − (1 − c) · 2−h, soundness error ε,
round complexity k, and prover-to-verifier communication q · log l + q · log |Σ|.
(More generally, communication is bounded by the number of bits to specify the
set of queries by the IOP verifier and their corresponding answers.) If the IOP
is public-coin then the IP is public-coin.

Moreover, the IP can be modified so that the IP verifier performs a single
pass over the randomness tape, with completeness error 1 − (1 − c) · 2−h · r−qr ,
and space complexity O(vs+qr ·log r+qr log |Σ|)) where vs is the space complexity
of the IOP verifier.

26

The proof appears in the full version of the paper.

5.2 IP to algorithm

Goldreich and Håstad [GH98] have shown that languages with public-coin IPs
with small prover-to-verifier communication can be decided via fast probabilistic
algorithms. Their result is shown for IPs with constant completeness and sound-
ness errors. Below we show a refinement of their theorem, where we explicitly
provide the dependency in the completeness and soundness errors, which allows
supporting IPs with large completeness errors (which we need). Moreover, we
note that if the IP verifier reads its randomness in a single pass, the probabilistic
algorithm for deciding the language can be implemented in small space (which
we also need).

Lemma 3 (IP to algorithm). Suppose that a language L has a public-coin IP
with completeness error α, soundness error β, round complexity k, and prover-
to-verifier communication c. Then, for d(n) := c(n) + k(n) · log k(n)

1−α(n)−β(n) the
language L is in

BPTIME
[
2O(d) · poly(n)

]
.

Moreover, if the space complexity of the IP verifier is vs when reading its ran-
domness random tape in a single pass then the language L is in

SPACE [O (d · (vs+ d))] .

The proof appears in the full version of the paper.

6 Barriers for succinct arguments

We prove that, under plausible complexity assumptions, there do not exist suc-
cinct arguments where the argument verifier makes a small number of queries
to the random oracle and the honest argument prover has a small adaptivity
parameter. We separately consider that case of succinct arguments for nonde-
terministic languages (NTIME) in Section 6.1, and the case of deterministic
languages (DTIME) in Section 6.2.

In both cases our approach consists of the following steps: (1) we use Theo-
rem 3 to transform the succinct argument into a corresponding IOP; then, (2) we
use Theorem 6 to transform the IOP into an algorithm with certain time and
space complexity; finally, (3) we argue that, under standard complexity assump-
tions, such an algorithm does not exist.

6.1 The case of nondeterministic languages

Theorem 7. Suppose that NTIME[T] has a non-interactive argument ARG that
provides s bits of security and has argument size as = o(T) (see Definitions 2

27

and 3), where the prover makes a adaptive rounds of m queries to the random or-
acle, and the verifier makes vq queries to the random oracle. If (1) vq·a·log(m) =
o(s); and (2) log n ≤ s ≤ o(T 1/2), then NTIME[T (n)] ⊆ BPTIME[2o(T (n))] (an
unlikely inclusion).

Remark 3 (s vs. T). If as = Ω(T) then the trivial scheme of sending the T bits
of a valid witness yields a non-interactive argument (indeed, proof), and so we
consider the case as = o(T). For technical reasons, we also need that s = o(T 1/2),
a rather weak condition. Additionally, we restrict the instance size to be at most
exponential in s, and therefore assume that log n ≤ s.

Remark 4 (“a” in known compilers). In the Micali transformation [Mic00], the
argument prover performs a = Θ(log l) rounds of queries to the random oracle
(one round for each level of a Merkle tree over a PCP of size l), whereas the
argument verifier performs vq = Θ(q · log l + r) queries to the random oracle.
When using known or conjectured PCPs in the Micali transformation, we get
vq = Ω(s). In particular, the hypothesis vq · a · log(m) = o(s) does not apply,
and as expected does not lead to the inclusion stated in the theorem.

Remark 5 (interactive argument). Similar to the way Theorem 3 is presented,
to get a simple presentation, we state the above theorem for non-interactive
succinct arguments. We note, however, that the theorem naturally generalizes
to any public-coin succinct argument with k rounds (note that always k ≤ as),
as long as s2 · k = o(T).

6.2 The case of deterministic languages

Theorem 8. Suppose that DTIME[T] has a non-interactive argument ARG that
provides s bits of security and has argument size as = o(T) (see Definitions 2
and 3), where the prover makes a adaptive rounds of m queries to the random
oracle, and the verifier makes vq queries to the random oracle and has space
complexity sv. If (1) vq · a · log(a · m) = o(s); (2) sv · (s4 + as2) = o(T); and
(3) log n ≤ s then DTIME[T (n)] ⊆ SPACE[o(T (n))] (an unlikely inclusion).

The proof appears in the full version of the paper.

Acknowledgments

We thank Amey Bhangale, Karthik C. S., and Inbal Livni Navon for fruitful
discussions regarding PCPs and the sliding scale conjecture.

Alessandro Chiesa is funded by the Ethereum Foundation and Eylon Yogev
is funded by the ISF grants 484/18, 1789/19, Len Blavatnik and the Blavatnik
Foundation, and The Blavatnik Interdisciplinary Cyber Research Center at Tel
Aviv University. This work was done (in part) while the second author was
visiting the Simons Institute for the Theory of Computing.

28

References

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. “Proof veri-
fication and the hardness of approximation problems”. In: Journal of the
ACM (1998). Preliminary version in FOCS ’92.

[AN96] N. Alon and M. Naor. “Derandomization, Witnesses for Boolean Matrix
Multiplication and Construction of Perfect Hash Functions”. In: Algorith-
mica (1996).

[AS98] S. Arora and S. Safra. “Probabilistic checking of proofs: a new charac-
terization of NP”. In: Journal of the ACM (1998). Preliminary version in
FOCS ’92.

[Bab85] L. Babai. “Trading group theory for randomness”. In: STOC ’85.
[BCCT13] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. “Recursive Com-

position and Bootstrapping for SNARKs and Proof-Carrying Data”. In:
STOC ’13.

[BCG+14] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza. “Zerocash: Decentralized Anonymous Payments from Bitcoin”.
In: SP ’14.

[BCS16] E. Ben-Sasson, A. Chiesa, and N. Spooner. “Interactive Oracle Proofs”.
In: TCC ’16-B.

[BFLS91] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. “Checking computa-
tions in polylogarithmic time”. In: STOC ’91.

[BISW17] D. Boneh, Y. Ishai, A. Sahai, and D. J. Wu. “Lattice-Based SNARGs and
Their Application to More Efficient Obfuscation”. In: EUROCRYPT ’17.

[CHM+20] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward. “Mar-
lin: Preprocessing zkSNARKs with Universal and Updatable SRS”. In:
EUROCRYPT ’20.

[CMS19] A. Chiesa, P. Manohar, and N. Spooner. “Succinct Arguments in the
Quantum Random Oracle Model”. In: TCC ’19.

[COS20] A. Chiesa, D. Ojha, and N. Spooner. “Fractal: Post-Quantum and Trans-
parent Recursive Proofs from Holography”. In: EUROCRYPT ’20.

[CW79] L. Carter and M. N. Wegman. “Universal Classes of Hash Functions”. In:
Journal of Computer and System Sciences (1979).

[DHM+14] H. Dell, T. Husfeldt, D. Marx, N. Taslaman, and M.Wahlén. “Exponential
time complexity of the permanent and the Tutte polynomial”. In: ACM
Transactions on Algorithms (2014).

[FGL+91] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. “Approxi-
mating clique is almost NP-complete (preliminary version)”. In: SFCS ’91.

[FKS84] M. L. Fredman, J. Komlós, and E. Szemerédi. “Storing a Sparse Table
with 0(1) Worst Case Access Time”. In: Journal of the ACM (1984).

[FS86] A. Fiat and A. Shamir. “How to prove yourself: practical solutions to
identification and signature problems”. In: CRYPTO ’86.

[GH98] O. Goldreich and J. Håstad. “On the complexity of interactive proofs with
bounded communication”. In: Information Processing Letters (1998).

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. “The knowledge complexity
of interactive proof systems”. In: SIAM Journal on Computing (1989).
Preliminary version appeared in STOC ’85.

[KR08] Y. Kalai and R. Raz. “Interactive PCP”. In: ICALP ’08.
[Mic00] S. Micali. “Computationally Sound Proofs”. In: SIAM Journal on Com-

puting (2000). Preliminary version appeared in FOCS ’94.

29

[RRR16] O. Reingold, R. Rothblum, and G. Rothblum. “Constant-Round Interac-
tive Proofs for Delegating Computation”. In: STOC ’16.

[RV09] G. N. Rothblum and S. Vadhan. “Are PCPs Inherent in Efficient Argu-
ments?” In: CCC ’09.

[Val08] P. Valiant. “Incrementally Verifiable Computation or Proofs of Knowledge
Imply Time/Space Efficiency”. In: TCC ’08.

30

	Abstract
	1 Introduction
	1.1 Our contributions
	1.1.1 IOPs are necessary for succinctness
	1.1.2 From IOPs to algorithms
	1.1.3 Barriers for succinct arguments
	1.1.4 Additional applications and extensions

	1.2 Related work

	2 Techniques
	2.1 IOPs are necessary for succinctness
	2.2 Algorithms for IOPs
	2.3 Barriers for succinct arguments
	2.4 Additional results and applications

	3 Definitions
	3.1 Random oracles and oracle algorithms
	3.2 Relations
	3.3 Non-interactive arguments in the random oracle model
	3.4 Interactive oracle proofs

	4 From succinct arguments to interactive oracle proofs
	4.1 Tool: perfect hash functions with locality
	4.2 The transformation

	5 From interactive oracle proofs to algorithms
	5.1 IOP to laconic IP
	5.2 IP to algorithm

	6 Barriers for succinct arguments
	6.1 The case of nondeterministic languages
	6.2 The case of deterministic languages

	Acknowledgments
	References

