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Abstract. We initiate a fine-grained study of the round complexity of
Oblivious RAM (ORAM). We prove that any one-round balls-in-bins
ORAM that does not duplicate balls must have either Ω(

√
N) band-

width or Ω(
√
N) client memory, where N is the number of memory slots

being simulated. This shows that such schemes are strictly weaker than
general (multi-round) ORAMs or those with server computation, and in
particular implies that a one-round version of the original square-root
ORAM of Goldreich and Ostrovksy (J. ACM 1996) is optimal. We prove
this bound via new techniques that differ from those of Goldreich and
Ostrovksy, and of Larsen and Nielsen (CRYPTO 2018), which achieved
an Ω(logN) bound for balls-in-bins and general multi-round ORAMs
respectively. Finally we give a weaker extension of our bound that allows
for limited duplication of balls, and also show that our bound extends to
multiple-round ORAMs of a restricted form that include the best known
constructions.

1 Introduction

Oblivious RAM (ORAM), introduced by Goldreich and Ostrovsky [11], is a
primitive for hiding access patterns to an array held by an untrusted party. It is of
interest in complexity theory, where one is concerned with the power of oblivious
RAM programs which access memory in a manner independent of their inputs,
and also for applications like outsourcing encrypted data and protecting secure
processors against untrusted memory. ORAM has been studied extensively, with
many variants which all in some form define an ORAM to be a stateful, secret-
keyed algorithm that provides a client-side interface for reading and writing to
an array. The algorithm does not have enough state to store the array itself, so
it is allowed to interact with a more powerful but untrusted party that can (e.g.
a larger physical memory, or a cloud server). For clarity, we refer to this party
as a server. Security requires that the addresses being read and written to are
hidden from the server.

This work concerns balls-in-bins ORAMs, which are a restricted form of
ORAM that is powerful enough to capture the best-known (optimal) construc-
tions. At a high level such ORAMs obey two constraints: (1) they interact with a
server that acts only as a passive array, accepting read and write requests to cells
of the array (below we call such servers array-only), and (2) the ORAM treats
array values as abstract symbols, only moving them from one cell to another1.

1 Most of our results require that the balls be moved to exactly one location rather
than copied, i.e. do not allow for duplication of balls.
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In particular, we do not consider schemes where the server processes data, such
as by applying homomorphic encryption.

Intuitively, ORAMs with an array-only server simulate access to a “vir-
tual” array with N1 cells for the client by reading and writing to a “phys-
ical” array with N2 cells held at the server, for N2 usually larger than N1

(N2 = Θ(N1polylogN1) is typical). They typically work by translating one vir-
tual operation into several physical operations, inserting dummies and shuffling
real data to hide the intended addresses of the physical operations. The state
can be used to hold some values from the array.

ORAM constructions aim to minimize the (bandwidth) overhead, which is
defined to be the number of physical operations per virtual operation. A very
simple (stateless even) ORAM can work by simply storing the N1 cells in place
at the server, and simulating accesses by scanning the entire array at the server,
incurring overhead N1 (here N1 = N2). While it is not usually explicitly men-
tioned, another extreme ORAM can use a large state of N1 array cells to trivially
store the virtual array without any server interaction, achieving zero overhead.

Much research on ORAM has targeted more efficient overhead. In their
original work, Goldreich and Ostrovsky gave a more advanced construction
with O(log3N1) overhead, and recent work gave a construction with overhead
O(logN1) [22, 1], which is known to be optimal [18] for ORAMs with array-only
servers.

Round-complexity of ORAMs. We initiate the detailed study of the round
complexity of balls-in-bins ORAMs. It has been observed several times that
many of the physical operations (i.e., those processed by the array-only server)
of ORAMs can be batched together in parallel rather than issued one-at-a-time,
as the ORAM is defined to issue those operations independent of their out-
comes. (To be more precise, one generalizes the notion of an array-only server
to accept batches of array operations; We fix the details later.) Reducing rounds
is desirable for efficiency and simplicity of implementation. But in all efficient
constructions there appears to be an inherent limit to this type of batching op-
timization, as ORAMs adapt some of their physical operations based on the
outcome of prior physical operations.

The issue of rounds of general, non-balls-in-bins ORAM, has been considered
by Williams and Sion [26] and Garg, Mohassel, and Papamanthou [9], who con-
structed single-round ORAMs that used server computation (i.e. their server is
not array-only). The latter work also noted that both of the families of ORAM
schemes with poly-logarithmic bandwidth (hierarchical [12, 14, 17, 19, 22, 1] and
tree-based [5, 21, 24, 25]) had O(logN1) round complexity, where N1 is again the
number of cells in the virtual array to be simulated.

Our contributions. This work proves an overhead lower bound for balls-
in-bins ORAMs that operate in a single round2. It then gives extensions of

2 In this work, a “round” is interpreted to be a read request for several cells, followed
by a write request to several cells; We discuss the motivation for this below. Being
permissive on the notion of a round only makes our lower bounds stronger.
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this result to somewhat more general ORAMs that can store multiple copies of
each ball. Finally this work applies the one-round bound to obtain a bound on
multi-round balls-in-bins ORAMs of a restricted form that we call “partition-
restricted” that captures the best-known bounded-round constructions, showing
that they are optimal for ORAMs of this form.

Towards sketching our one-round bound, we observe first that the one-round
setting is particularly sensitive to the amount of ORAM state compared to multi-
round ORAM. If one is studying O(1)-rounds schemes, the state can always be
stashed at the server, at the cost of one round, as long as the state size is less
than the bandwidth overhead. But in the one-round case (or k-round, for fixed
k) we will see that the size of the state is crucially relevant.

Our first main result is an unconditional proof that any one-round balls-
in-bins ORAM which does not duplicate balls must either have Ω(

√
N1) state

or Ω(
√
N1) bandwidth overhead. This bound is tight up to logarithmic factors

for state, as an optimal construction is a one-round version of the square-root
ORAM [11] with O(

√
N1 logN1) state.

Our techniques differ from those of prior ORAM lower bounds, which fall into
two categories. The first date back to the original Goldreich and Ostrovsky work,
and give bounds on balls-in-bins ORAMs via counting arguments, showing that
any particular physical access sequence can only satisfy a bounded number of
virtual request sequences. The second comes from a recent line of work initiated
by Larsen and Nielsen [18], who proved bounds against general ORAMs via a
novel usage of information transfer arguments to show that many consecutive
operations must frequently overlap in order to be correct and oblivious.

Our bounds follow intuition similar to the techniques of Larsen and Nielsen,
but are for balls-in-bins schemes. At a high level, we show that a one-round
requirement and correctness force an ORAM to request overlapping sets of array
cells, unless it has Ω(

√
N1) client memory or bandwidth. This actually follows

from a simple attack but a subtle analysis. Below we first present a simplified
version of the bound for ORAM schemes that have almost no client memory
(and in particular are only allowed to maintain a program counter). This was
the simplest type of ORAM we could find that was non-trivial to bound, and
already encapsulates the main difficulties. We then extend our proof to schemes
with more client memory. Our version of balls-in-bins schemes does not allow
for multiple of copies of balls to be made, but we can give a weaker bound for
a bounded number of copies. This latter bound is tight for a constant number
of copies, but is loose for larger numbers of copies, becoming trivial if a ball is

copied N
1/4
1 time.

Finally, we sketch how prior ORAMs can be viewed in our formalism for
rounds, and show that the square-root ORAM matches our bound. We then
observe that for any constant k, a natural “k-th root” version of that ORAM

gives a (k − 1)-round of a special form with O(kN
1/k
1 ) overhead and O(N

1/k
1 )

state3. While we cannot prove anything non-trivial even for two-round ORAM,

3 One can also obtain a similar construction by modifying tree-based ORAMs [23, 24]
to use (k − 1) levels of recursion.
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we can show that these ORAMs fall into a class of “partition-restricted” ORAMs,
and are optimal for that class. The observation is simple: Since these ORAMs
predictably access only a relatively small region of memory in their first (k− 2)
rounds, we can view that region as state and collapse them to one-round schemes
to which our one-round bound applies.

In the full version, we additionally consider another restricted class of balls-
in-bins ORAM that we call static. These ORAMs can not move balls between
physical cells on the server after writing them, which seems to not have been
considered explicitly previously. Intuitively, such ORAMs can be thought of as
“balls-in-bins” PIR schemes, and it is possible that one could hope for a weak
type of protection (say, for a bounded number of operations, or with some non-
negligible security bound). We observe the counting argument of Goldreich and
Ostrovsky easily gives a strong bound for unbounded operation sequences, but
that our techniques give a sharper bound for concrete parameters and provide a
lower bound for bounded operation sequences. For instance, we show that even
if a static ORAM is only required to remain oblivious for N1 +Q+ 1 operations,
it must have overhead or state Ω(Q), for Q ≤

√
N1, which follows from proofs

similar to our main results. Additionally, we prove that to support an arbitrary
number of operations, the ORAM must have overhead or state Ω(N1).

Related work. Goldreich and Ostrovsky were the first to define ORAM and
proved the firstΩ(log n) lower bound for the bandwidth of balls-in-bins ORAMs [11],
without any restriction on the number of rounds. Boyle and Naor [2] pointed out
some key assumptions in the original proof and asked if they could be overcome.
Soon after, Larsen and Nielsen removed the assumptions and obtained the same
Ω(log n) bound using novel information transfer techniques [18]. After their re-
sult, the same bound has been extended with fewer assumptions [15] and to
other oblivious data structures [16].

Most of the lower bound work has been on amortized bandwidth and does not
consider any restrictions or bounds on round complexity. However, recent work
by Chan, Chung, and Shi [3] showed a round lower bound for Oblivious Parallel
RAM (OPRAM). Showing that any OPRAM must have Ω(logm) rounds, where
m is the number of processors. OPRAM bounds are distinct from non-parallel
ORAM bounds, as they concern the different issue of coordination amongst
processors.

Many ORAM constructions have been given in the literature that pay at-
tention to rounds. In their work introducing ORAM, Goldreich and Ostrovsky
define a 2-round ORAM as a warm-up for their hierarchical construction [11].
More recently, Goodrich et al. [13] presented a family of constant round ORAM
constructions. Several works gave one-round ORAM constructions with server
computation [26, 20, 10, 4, 6–9, 5]. This line of work allows the server holding the
data to perform some computation as part of the protocol, rather than the server
being an array which can only read and write to requested cells. The previous
lower bounds for ORAM do not apply to this model, and neither do ours.

Organization. Section 2 gives definitions. Sections 3, 4, and 5 give our lower
bounds for counter-only, general one-round, and multiple-copy schemes respec-
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tively. In Section 6 we recall the square root construction and its bounded-round
variants in our notation, and finally we conclude with a discussion of open prob-
lems in Section 7.

Acknowledgements. We thank the anonymous referees for many suggestions
on improving the presentation of this paper. The first and third authors were
supported in part by NSF CNS-1928767.

2 Preliminaries

ORAM syntax. We give a definition of the ORAM primitive that tailored to the
single-round case, and then later extend it to some fixed number of rounds. Our
definition most closely follows that of Wang, Chan, and Shi [25], with changes
that we discuss below.

We start with an intuitive sketch of Definition 1 below, which is itself quite
short. It models a one-round ORAM simulating a virtual array with N1 cells,
with each cell storing a block from a set B1 (e.g. B1 = {0, 1}w1). An ORAM
scheme should accept read operations (which consist of an address a ∈ [N1])
and write operations (which consist of an address/block pair (a, d) ∈ [N1]×B1).
Correctness requires that in the course of processing a sequence of operations, the
last written block written at that address should be returned for read operations
(we will formalize this statement later), and obliviousness will require that the
addresses a in the sequence are hidden.

The scheme will interact with an array-only server holding a physical array
consisting of N2 cells, each storing a block from the set B2, which may or may
not equal B1 (parameters with subscripts 1 and 2 will correspond to the virtual
array and physical array respectively). The ORAM scheme interacts with the
server by sending read and write operations, this time with addresses in [N2]
and blocks in B2. The server is assumed to always respond correctly. We assume
an ORAM comes with associated sets StSp and RSp for the state space and
randomness space respectively. The state space is the set of all possible settings
for the data that the ORAM can hold between processing read/operations (so,
for example, if StSp = BN1

1 then the ORAM can hold the entire virtual array
and ignore the server entirely). The randomness space will not be restricted or
particularly relevant for quantitative bounds but making it explicit (rather than
declaring the ORAM has access to a random tape) fixes a sample space on which
every random variable is defined. We remark that secret keys can be sampled
(and persistently stored) in the randomness space in addition to any coins that
may be used.

Our results require a precise definition of rounds for an ORAM. Intuitively, a
round should consist of sending a tuple of read/write operations from the ORAM
to the server, which applies the writes and then responds with the results of the
read operations. Afterwards, the client updates its local state and continues,
either with more rounds or by replying for the virtual operation (i.e. outputting
a block in B1 in the case of a read, or simply stopping in the case of a write).
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We opt for a definition that is somewhat more permissive by defining a round
to consist of a tuple of read operations (below specified by Access) followed by
a tuple of write operations and a returned block (both below specified by Out;
these may depend on what is returned by the read operations). This version of
the definition simplifies the accounting for rounds without weakening our lower
bounds.

Definition 1. Let B1,B2,StSp,RSp be sets with ⊥ ∈ StSp,⊥ /∈ B1, and let
N1, N2 be positive integers. For j = 1, 2 define the sets

RdOpsj = [Nj ], WrOpsj = [Nj ]× Bj , and Opsj = RdOpsj ∪WrOpsj .

A one-round ORAM scheme (with respect to B1,B2, N1, N2,StSp,RSp) is a pair
of functions O = (Access,Out),

Access : Ops1 × StSp× RSp→ RdOps∗2

Out : B∗2 × Ops1 × StSp× RSp→ (B1 ∪ {⊥})×WrOps∗2 × StSp.

This models the following usage: A sample from RSp (e.g. keys and a random
tape) is chosen and then kept private at the client, and the state is initialized
to a canonical value ⊥ ∈ StSp. The function Access takes as input a requested
virtual operation along with the current state and the randomness, and outputs
a list of physical read operations on the server memory. The function Out takes
the results of these operations (i.e. the blocks from read operations), the virtual
operation being requested, and the state and randomness. Its first output is
the result of the operation (either the block resulting from a read, or ⊥ for a
write). Its second output is a set of write operations that should be applied at
the server. When we use Out in the games defined in Figure 1, we write elements
in WrOps∗2 as (wrts,dw), which denote the ordered sets of locations and data to
write respectively. Finally, Out also outputs an updated state, in preparation for
the next operation.

As mentioned before the definition, this syntax is actually somewhat stronger
than one-round, since the client is allowed defer its writes until after it sees the
results of the reads. The definition of Wang et al. makes a similar choice, where
the ORAM is allowed to “piggyback” its interaction with the server between
operations, receiving the next operation before being required to output the
result of the previous one [25]. Our bounds apply to either model but we found
ours simpler. Finally we remark that allowing Access to update the state is
unnecessary, as Out gets all of the information available to it.

ORAM correctness and obliviousness. We next define correctness and
obliviousness of an ORAM scheme. In both cases, every definition we are aware of
only explicitly considered non-adaptive definitions, where an adversary chooses
operations all at once. We give adaptive definitions, and note that standard
arguments can separate the adaptive and non-adaptive versions. Our bounds
will ultimately only need a non-adaptive adversary and thus be stronger, but
practical constructions should likely aim for the stronger definition.
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Game Gcor
O (A)

ω
$← RSp

M1 ← (⊥)N1 ; M2 ← (⊥)N2

st← ⊥; Win← false
Run ARd,Wr

Return Win

Oracle Rd(a)
rds← Access(a, st, ω)
dr ←M2[rds]
(dout, (wrts,dw), st)← Out(dr, a, st, ω)
M2[wrts]← dw

dideal ←M1[a]
If dideal 6= dout then Win← true
Return (rds,wrts)

Oracle Wr(a, d)
rds← Access((a, d), st, ω)
dr ←M2[rds]
(dout, (wrts,dw), st)← Out(dr, (a, d), st, ω)
M2[wrts]← dw

M1[a]← d
Return (rds,wrts)

Fig. 1. Game Gcor
O for an ORAM scheme O = (Access,Out).

The correctness definition uses game Gcor
O (A) from Figure 1, which we sketch

now. At a high level, it allows the adversary to adaptively request that virtual
operations be run, and gets to see the physical addresses touched. The adver-
sary wins if it ever catches the ORAM returning an incorrect block on a read
operation.

This game starts by choosing an element of randomness space, and initializes
two arrays: M1 with N1 cells, and M2 with N2 cells. The first array will model
the “ideal” virtual array that should be maintained in the course of operation,
and the second will hold the physical array that the server would maintain.
An initial state is fixed, and the adversary is given access to two oracles, and
attempts to trigger a “win” flag.

The first oracle accepts a virtual read operation a ∈ RdOps1, and the game
processes the query by running Access and Out on the appropriate inputs, updat-
ing M2 as a real server would. It also performs the “ideal” virtual read operation
on M1, and sets the win flag if the ideal output differs from what the ORAM
output. Finally it returns the addresses from the read and write operations,
simulating what a server would see.

The second oracle is similar but processes write operations. It applies the
correct write to the ideal array M1, and also simulates the ORAM running with
physical array M2. It also returns the addresses of the physical operations.
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Definition 2. Let O = (Access,Out) be a one-round ORAM scheme with re-
spect to B1,B2, N1, N2,StSp,RSp, and let A be an adversary. The correctness
advantage of A against O is defined to be

Advcor
O (A) = Pr[Gcor

O (A) = 1],

where Gcor
O is defined in Figure 1. We say that O is perfectly correct if this

advantage is zero for any adversary A.

Game Gobl-b
O (A)

ω
$← RSp

M2 ← (⊥)N2

st← ⊥
b′ ← ARd,Wr

Return b′

Oracle Rd(a0, a1)
rds← Access(ab, st, ω)
dr ←M2[rds]
(dout, (wrts,dw), st)← Out(dr, ab, st, ω)
M2[wrts]← dw

Return (rds,wrts)

Oracle Wr((a0, d0), (a1, d1))
rds← Access((ab, db), st, ω)
dr ←M2[rds]
(dout, (wrts,dw), st)← Out(dr, (ab, db), st, ω)
M2[wrts]← dw

Return (rds,wrts)

Fig. 2. Games Gobl-b
O , b = 0, 1, for an ORAM scheme O = (Access,Out).

The obliviousness definition uses games Gobl-b
O (A), b = 0, 1, from Figure 2.

These are left-right indistinguishability games, where the adversary can now
query its oracles with two operations (either both read or both writes). The
oracle processes one of the operations, updating a physical array M2, and returns
the physical addresses touched, modeling what a curious server would see.

Definition 3. Let O = (Access,Out) be a one-round ORAM scheme with re-
spect to B1,B2, N1, N2,StSp,RSp, and let A be an adversary. The obliviousness
advantage of A against O is defined to be

Advobl
O (A) = Pr[Gobl-1

O (A) = 1]− Pr[Gobl-0
O (A) = 1].

We say that O is perfectly oblivious if this advantage is zero for any adversary
A.
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In the obliviousness definition the data written to the physical array is not
revealed to the distinguishing adversary. Standard encryption can be applied to
upgrade a scheme to a model where data is also hidden. This definition also
reveals to the adversary if operations are reads or writes, and implicitly when
one operation ends and the next begins (see Hubácek et al. [15], which considered
models where this distinction is not revealed).

ORAM resource measures. We will be interested in the overhead and state
size of an ORAM. We will consider worst-case and amortized overhead.

Definition 4. Let O = (Access,Out) be a one-round ORAM with respect to
B1,B2, N1, N2,StSp,RSp. We say that O has worst-case overhead p if Access and
Out always output at most p operations. We say that O has amortized overhead
p if for every Q ≥ 0 and every adversary A issuing Q queries in Gcor

O , the total
the number of operations returned in oracle queries is at most pQ with probability
1.

We define the state size of O to be log |StSp|.

Balls-in-bins ORAM. Our results will only apply to a restricted class of
schemes that handle memory in a symbolic “balls-in-bins” manner. This was
originally informally defined by Goldreich and Ostrovsky, and we follow most
closely the definition of Boyle and Naor [2].

Definition 5. Let O = (Access,Out) be a one-round ORAM with respect to
B1,B2, N1, N2,StSp,RSp. We say that O is balls-in-bins if it is of the following
special form:

– B2 is the disjoint union of B1 and a set of bitstrings {0, 1}w2 . We call the
members of B1 balls.

– StSp has the form {0, 1}m× (B1 ∪{⊥})r. That is, a state of O consists of m
bits along with an array of r balls/⊥ entries. For a state st = (σ, reg), the
entries in reg are called registers.

– The function Out satisfies the following:
If Out(dr, (a, d), st, ω) = (dout,wrts,dw, st

′), where st = (σ, reg) and st′ =
(σ′, reg′), then
• reg′ and dw are formed by moving d and the balls from reg and dr, and

then populating their remaining entries with arbitrary non-ball values.
(Any ball may be moved to at most one place.)

• dout appears in dr or reg.

Intuitively, this definition requires that whenever the ORAM returns a block for
a read, the history of that block can be traced back to when it is written, as
at each step the ORAM can only move the balls between physical cells and/or
registers.

We note that this definition does not allow for copying a ball multiple times,
and our main bound does not hold if such copies are allowed. In Section 5 we
give a relaxed definition and prove a weaker bound in the presence of duplicate
balls.
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Our warm-up bound will consider even more restricted balls-in-bins ORAMs
that maintains almost no state. Restricting the scheme to no state at all is not
interesting, as then it cannot even vary its requests as they are repeated. Thus we
define a counter only scheme to maintain only a program counter of the number
of operations performed.

Definition 6. We say that a one-round ORAM O is counter-only if it satisfies
all of the conditions for a balls-in-bins scheme, except that it has StSp = {0, 1}∗
(i.e. no registers), and its state at all times is a simple counter of the number
operations run (initialized to zero, and then incremented on each run of Out).

We remark that a counter-only scheme can still have a secret key (say a PRF key,
or even a random function), which is modeled in the randomness space. Giving
the ORAM a counter allows it to change its operations as time progresses, and
non-trivial constructions are possible. For us it has the advantage of forcing the
ORAM to behave in a simple combinatorial manner, as at each step the possible
physical cells accessed for each operation are fixed once the randomness is fixed.

3 Warm-Up: Lower Bound for Counter-Only Schemes

We first give a bound for the restricted case of counter-only schemes with perfect
correctness and perfect obliviousness, and in the next section remove all of these
restrictions.

Theorem 1. Let O = (Access,Out) be a counter-only one-round balls-in-bins
ORAM scheme with respect to B1,B2, N1, N2,StSp,RSp. Assume |B1| ≥ N1.
Suppose O is perfectly correct, perfectly oblivious, and has worst-case overhead
p. Then

p ≥ C
√
N1,

where C is an absolute constant.

Proof. For concreteness we prove the theorem with C = 0.1. Let O have the
syntax from the theorem, and assume it is perfectly correct and p < C

√
N1. We

construct a non-adaptive randomized adversary A and show that O cannot be
perfectly oblivious, i.e. that Advobl

O (A) > 0. The adversary works as follows:

1. For i = 1, . . . , N1, query Wr((i, bi), (i, bi)), where b1, . . . , bN1
are arbitrary

distinct balls from B1. Ignore the responses.

2. Let T =
√
N1. Choose J

$← [N1]T , a sequence of T i.i.d. uniform virtual
addresses, and query

Rd(J [1], J [1]), . . . ,Rd(J [T ], J [T ]).

Let rds1, . . . , rdsT ⊆ [N2] be the physical addresses read for each query.

3. Choose t
$← [T ], set j∗0 ← J [t], and j∗1

$← [N1]. Query Rd(j∗0 , j
∗
1 ) and let rds∗

be the physical addresses read.
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4. Output 0 if there exists an address a ∈ rds∗ that also appears in rdst but not
in any of rds1, . . . , rdst−1. Otherwise output 1.

We claim that

Pr[Gobl-0
O (A) = 1] ≤ 0.2 (1)

and

Pr[Gobl-1
O (A) = 1] ≥ 0.9 (2)

which together will prove the theorem.
We start with the latter inequality (2), which is intuitively simple; it follows

because the read operation for j∗1 can only overlap in the required way (meaning
at a “fresh” physical address that was not previously touched) with p of the
previous reads, and the random variable t is chosen independently of these over-
laps. Formally, condition on ω, J and j∗1 ; then t (which is still used in the final
step) remains uniform. The set rds∗ can overlap at a point a in the required way
with at most p of the sets rds1, . . . , rdsT . Thus the probability the adversary will
output 0 is bounded by p/T ≤ 0.1.

Proving (1) is more subtle. We sketch our approach before giving the formal
proof. Our plan is to focus on the starting physical position of the “test” ball
b∗ = bJ[t] after step 1 of the adversary, and argue that with good probability
this position will work as the address a in step 4, that is, it is accessed for the
first time at query t in step 2, and then again in step 3.

To argue that this position is touched for the first time at query t in step 2,
we use a counting argument. Since p < C

√
N1, at most p(t− 1) < CN1 balls in

total could have been touched in the t− 1 prior operations. Thus most balls are
untouched, remaining where they started. We are picking one at random and
thus have a good probability of accessing the starting position of b∗ for the first
time in the t-th query.

More difficult is arguing that the starting position of b∗ is touched again in
step 3. A counting argument no longer works for b∗, because now b∗ was previ-
ously touched with probability 1 (it is no longer independent), and the ORAM
has a chance to move it. At this point perfect correctness and the assumption
that O is counter-only combine to come to the rescue. Note that since O is
counter-only, once ω and b∗ have been chosen, the locations read in step 3 are
fixed, independent of the “history” in step 2. The crucial observation is that the
starting location of b∗ must be read in step 3 if there is any history that would
leave b∗ in its starting place. This is due to perfect correctness, since the ORAM
must be correct for that history, even if it is not the one that actually happened!
All that remains is to apply another counting argument showing that most balls
have a history in which they do not move, and the combine (via a union bound)
with the argument about step 2.

Now for the formal proof of (1). We will prove this holds conditioned on any
fixed ω, t, and J [1], . . . , J [t − 1]; The only remaining choices are J [t], . . . , J [T ],
which are still uniform. By our assumption that O is balls-in-bins and has no
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registers, after the first stage of the adversary we have that every ball b1, . . . , bN1

lies in exactly one entry of M2; Let q1, . . . , qN1
∈ [N2] be their respective indices.

We will show that with probability at least 0.8 in the conditional space, a = qJ[t]
satisfies the conditions for outputting 0 in the final step of the adversary. This
establishes that 1 is output with probability at most 0.2 in this game.

We do this in two steps, following the sketch. We write q∗ = qJ[t] for the
index of b∗ index. We first show that

Pr[q∗ ∈ rdst \
t−1⋃
k=1

rdsk] ≥ 0.9 (3)

and then that

Pr[q∗ ∈ rds∗] ≥ 0.9. (4)

(In both cases, the probability is over J [t] ∈ [N1] only, the latter because the
construction is counter-only.) A union bound gives the claimed 0.8 probability.

We proceed with the first step. Since J [1], . . . , J [t − 1] and ω are fixed, the
sets rds1, . . . , rdst−1 are also fixed. We have

Pr[q∗ /∈
t−1⋃
k=1

rdsk] ≥ 1− (t− 1)p

N1
≥ 0.9,

because J [t] is uniform in the conditional space and q∗ is thus uniform on a set
of size N1, while the union of the rdsk is of size at most (t− 1)p. By the perfect
correctness and balls-in-bin assumptions on O, we must have that q∗ ∈ rdst
whenever q∗ is not in any of rds1, . . . , rdst−1, because ball b∗ will still reside
at index q∗ of M2. Thus the event in the probability is actually equivalent to
q∗ ∈ rdst \

⋃t−1
k=1 rdsk, and we have completed (3), the first step in proving (1).

We now prove the second step (4). The argument from the first step does
not apply, because the test ball is being read twice (once in the second stage,
and then again at the third stage of the adversary). Instead, here we will apply
the assumption that O is counter-only and one round (so far everything we
have proved would hold with small modifications even if O were an arbitrary
multi-round scheme).

The set rds∗ is computed by Access(J [t], st, ω) where st = N1 + T + 1 is the
counter. The key observation is that this set must contain q∗ if there exists any
value Ĵ ∈ [N1]T such that q∗ /∈

⋃T
k=1 Access(Ĵ [k], N1+k, ω). This is true because

after these accesses ball b∗ would not be touched and hence still reside at index
q∗. Thus q∗ must be touched by Access(J [t], st, ω) (as O is perfectly correct) in
case it has not moved. (Note we have used that O is counter-only here; If it had
more state, then the set Access(J [t], st, ω) could change based on the “history”,
but it can not change when O is counter-only.)

Thus we only need to lower-bound the number of values of J [t] for which

there exists Ĵ ∈ [N1]T such that q∗ /∈
⋃T

k=1 Access(Ĵ [k], k+N1, ω). This is easy:

Just take some arbitrary choice of Ĵ . The union of their access sets will have size
at most pT ≤ 0.1N1, so we get that there are 0.9N1 values for J [t] will work.
This establishes (4) and (1). ut
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4 Lower Bound for General Balls-in-Bins Schemes

We extend the previous theorem to general balls-in-bins schemes. The step form
the previous proof that falls apart is (4), which relied on the final “test” access
issued by the scheme to be independently of the request history. This no longer
holds when the scheme has state beyond a counter, and indeed state can enable
an ORAM to sometimes avoid the repeated test index.

The previous strategy can be made to work even with state. Intuitively, the
scheme will not be able to remember “too much” of the history, and so its
bounded state can only help avoid the test with a relatively small advantage.
We formalize this intuition by bounding, for any state, the number of histories
for which a particular state can be used to evade the attack, and ultimately
union bound over all possible states.

Theorem 2. Let O = (Access,Out) be a one-round balls-in-bins ORAM scheme
with respect to B1,B2, N1, N2,StSp,RSp. Assume |B1| ≥ N1 ≥ 106. Suppose O
has worst-case overhead 1 ≤ p < C

√
N1 and state size s and for every adversary

A, Advcor
O (A) < 0.001 and Advobl

O (A) < 0.4. Then

ps ≥ CN1,

where C is an absolute constant.

Before giving the proof, we note that this bound is tight up to logarithmic
factors for constructions with p = O(

√
N1), with the matching construction

being a modification of the “square-root ORAM” that we recall in Section 6.
We leave open to determine the optimal state size for constructions with larger
p. We also note that StSp = {0, 1}m× (B1 ∪ {⊥})r for balls-in-bins ORAM, and
for the following proof, we need only assume m + r logN1 < 0.001N1/p for a
contradiction, which is slightly stronger than the stated result.

Proof. The proof proceeds as before, with the same adversary A, except we
have it issue T = 0.001N1/p queries in the second stage. We will show that, if
p < 0.001

√
N1 and s < 0.0001N1/p, then

Pr[Gobl-0
O (A) = 1] ≤ 0.55 (5)

and

Pr[Gobl-1
O (A) = 1] ≥ 0.999. (6)

The bound (6) is proved exactly as before, so we only need to establish (5). We do
so via the same strategy, proving analogues of (3) and (4). Throughout the proof,
we assume StSp = {0, 1}m × (B1 ∪ {⊥})r because the ORAM is balls-in-bins.

Let rds1, . . . , rdsT and q∗ be defined as before. Then an analogue of (3) holds
via a very similar proof; In fact we have

Pr[q∗ ∈ rdst \
t−1⋃
k=1

rdsk] ≥ 0.997 (7)
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with our parameters now. The only modification to the argument is we must
subtract the correctness error 0.001 and also the probability that the test ball
is in one of the registers in StSp. By assumption, r ≤ 0.001N1, which gives the
bound above.

Thus, proving the theorem is reduced to proving an analogue of (4). Specifi-
cally, we prove that

Pr[q∗ ∈ rds∗] ≥ 0.5. (8)

Combining (7) and (8) via a union bound establishes (5), showing that O will
output 0 with at least probability 0.45.

We now prove (8). This requires analyzing how many balls the ORAM can
move from their starting positions while maintaining correctness, so we begin
with some definitions to quantify this. We define a function B(Ĵ , ω̂) which takes
as input a tuple Ĵ ∈ [N1]T and ω̂ ∈ RSp, and counts the number of balls in Ĵ
that will move during the second stage of the adversary (these are the “bad”
balls for our attack). Formally, B(Ĵ , ω̂) works as follows:

1. Run the game Gobl-0
O (A) with ω = ω̂, until the end of the first stage. At this

point, every ball is either in a unique position in M2, or in a register. Let
q1, . . . , qN1

be the indexes of the balls in M2 or ⊥ if the corresponding ball
is in a register.

2. Continue the game, now also using J = Ĵ until the end of the second stage
of the adversary. Let st be the state of O.

3. Output the number of j ∈ Ĵ such that qj /∈ Access(j, st, ω̂). (This includes j
for which qj = ⊥.)

We also define related functions:

– B(Ĵ , ω̂, ŝt) that is exactly the same as B, except it uses the input state ŝt in
step 3 instead of the state computed in step 2.

– Ball(Ĵ , ω̂) that is exactly the same as B, except for the last step, in which
case it outputs the count of j ∈ [N1] that satisfy the condition (and not just
the j ∈ Ĵ).

– Ball(Ĵ , ω̂, ŝt) that is Ball, except modified to use ŝt as the state in step 3.
This function does not depend on Ĵ , as it can be computed by running step
1, and then skipping to step 3.

The latter three functions will be useful for counting the total number of balls
that move, not just those in Ĵ (in the case of Ball). The versions with a hard-
coded state ŝt will be useful for steps in the proof where we want to argue about
the existence of a good state.

It suffices to show that

Pr
J,ω

[B(J, ω) > 0.25T ] ≤ 1/5. (9)
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Assuming this, we have

Pr
J,ω,t

[q∗ 6∈ rds∗] ≤ Pr
J,ω,t

[q∗ 6∈ rds∗|B(J,w) ≤ 0.25T ]

+ Pr
J,ω,t

[q∗ 6∈ rds∗ ∧B(J,w) > 0.25T ]

≤ 1/4 + Pr
J,ω

[B(J,w) > 0.25T ] ≤ 1/4 + 1/5 < 1/2.

We now prove (9). Our strategy is to condition on whether or not Ball(J, ω) is
large and handle the cases separately. We have that PrJ,ω[B(J, ω) > 0.25T ] is
at most

Pr
J,ω

[Ball(J, ω) > 0.03N1] + Pr
J,ω

[B(J, ω) > 0.25T ∧Ball(J, ω) ≤ 0.03N1]. (10)

The first term is bounded using Markov’s inequality. We assert that for any
fixed Ĵ ∈ [N1]T ,

Eω[Ball(Ĵ , ω)] ≤ r + pT + εN1 ≤ 0.003N1,

where ε = Advcor
O (A). This expectation is over ω only. This follows because B

will count at most r balls from registers, pT balls moved during the second stage,
and (in expectation) at most εN1 balls on which O errs with our adversary. Each
of these contribute at most 0.001N1 to the expectation. By Markov’s inequality,
we get that first term of (10) is at most 0.1.

We complete the proof by bounding the second term of (10). For this, we
are aiming to show that, that O is unlikely to enter a state where not too many
balls have been moved in total and yet many balls from J have been moved.
The challenge is that the state depends on J . We will show that any particular
state cannot be useful for too many J , and then take a union bound over all
states; It is (only) here that use the fact that O does not have a large state space.
Intuitively, without such a bound on the state space, the state st, which depends
on J , could be chosen so that Ball(J, ω) ≤ 0.03N1 and yet still B(J, ω) > 0.25T ,
because 0.25T � 0.03N1.

Formally, we bound the second term for every fixed ω̂. We observe that it is
at most

Pr
J

[∃ŝt ∈ StSp : B(J, ω̂, ŝt) > 0.25T ∧Ball(J, ω̂, ŝt) ≤ 0.03N1],

where we have used the versions of B and Ball with a hard-coded state as input.
We then union bound over ŝt ∈ StSp, so this probability is at most∑

ŝt∈StSp

Pr
J

[B(J, ω̂, ŝt) > 0.25T ∧Ball(J, ω̂, ŝt) ≤ 0.03N1].

For a fixed ŝt, the probability is at most the chance that at least 0.25T of the
i.i.d. uniform entries of J land in a pre-determined set of size at most 0.03N1
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(since ω and st are fixed, Ball(J, ω, st) is fixed, counting this set, as it does not
depend on J). If we denote by X the number of such entries, we have

Pr[X > 0.25T ] ≤ Pr[X > 0.03(1 + 7.33)T ].

By a Chernoff bound this probability is at most(
e7.33

(8.33)8.33

)0.03T

≤ 0.75T .

Summing over ŝt ∈ StSp gives

|StSp| · 0.75T ≤ 20.0001N1/p0.750.001N1/p < 0.1

for N1 ≥ 106, because p < 0.001
√
N1. This completes the bound of the second

term of (10). Combining with the bound on the first term completes the proof,
giving (9), as desired. ut

4.1 Bound for ORAMs with Amortized Overhead

Theorem 2 only applies to ORAMs with worse-cast overhead, but the ideas
extend easily to ORAMs with only amortized overhead. As-is, the attack from
the previous theorem cannot handle an amortized adversary; For example, the
final test read could have exceptionally high overhead, which would allow for the
test set to overlap with many of the previous sets. To work around this, our high-
level approach is to have the adversary repeat the reading stage of the attack
many times and then choose one at random to test for overlaps. An averaging
argument shows that with high probability over this random choice, the chosen
stage will not have too much overhead and thus the previous reasoning will apply.

Theorem 3. Let O = (Access,Out) be a one-round balls-in-bins ORAM scheme
with respect to B1,B2, N1, N2,StSp,RSp. Assume |B1| ≥ N1 ≥ 30 · 106. Suppose
O has amortized overhead 1 ≤ p < C

√
N1, state size s, and for every adversary

A, Advcor
O (A) < 0.001 and Advobl

O (A) < 0.15. Then

ps ≥ CN1,

where C is an absolute constant.

Proof. We will take C = 0.001/30 so that most calculations remain similar to
the previous proof. Define an adversary A as follows:

1. For i = 1, . . . , N1, query Wr((i, bi), (i, bi)), where b1, . . . , bN1 are arbitrary
distinct balls from B1. Ignore the responses.

2. Let T = CN/p. For k = 1, . . . , N1, repeat the following:

(a) Let Jk
$← [N1]T and query

Rd(Jk[1], Jk[1]), . . . ,Rd(Jk[T ], Jk[T ]).

Call the sets of physical cells accessed rdsk1 , . . . , rds
k
T .
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(b) Choose tk, t
′
k

$← [T ] and J ′k
$← [N1]T . Query

Rd(J ′k[1], J ′k[1]), . . . ,Rd(Jk[tk], J ′k[t′k]), . . . ,Rd(J ′k[T ], J ′k[T ]).

This is a sequence reading J ′k (on both the left and right), except on one
random query, namely the t′k-th query. There, the attack is using a random
entry from Jk on the left as a test. We call the set of physical addresses
returned by this operation rds∗k.

3. Choose i
$← [N1]. Output 0 if there exists an address a ∈ rds∗i that also

appears in rdsit but not in any of rdsi1, . . . , rds
i
t−1. Otherwise output 1.

This adversary is based on the same idea as in the two previous proofs. The only
differences are that it copies the attack N1 times and only tests one at random.
Notice that this adversary always queries N1 + 2TN1 < 3TN1 queries. By the
definition of amortized overhead, this means less than 3pTN1 operations can be
returned across the entire sequence.

Throughout the proof, we use notation J, J ′, t, t′, rds1, . . . , rdsT , rds
∗ for the

respective variables at the chosen “test window” i to avoid cluttered indices. The
rest of the proof will not need to refer to those values with other indices k 6= i.

From here we proceed as the previous proof. Assume p < C
√
N and s <

0.1CN1/p. We will prove

Pr[Gobl-0
O (A) = 1] ≤ 0.7 (11)

and

Pr[Gobl-1
O (A) = 1] ≥ 0.85. (12)

We begin showing (12). Assume everything is fixed but i, t, t′. Then,

Pr
i,t,t′

[Gobl-1
O (A) = 0] ≤ Pr

i,t,t′
[|rds∗| ≥ 30p] + Pr

i,t,t′
[Gobl-1

O (A) = 0||rds∗| < 30p]

≤ 0.1 + 30p/T ≤ 0.15.

The final inequality comes because if Pri,t′ [|rds∗| ≥ 30p] > 0.1, then there are
0.1TN1 sets with size at least 30p, which means the total overhead is at least
3pTN1 > (2T + 1)pN1.

Now, we move on to prove (11). We will use the same technique to extend the
original proof. First, we will use the same notation defining q∗ as as the location
of the tested ball in the chosen internal i. Then, we will show

Pr[q∗ ∈ rdst \
t−1⋃
k=1

rdsk] ≥ 0.8. (13)
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This follows from a similar argument as before. Define ε = Advcor
O (A) < 0.001.

Pr[q∗ /∈ rdst \
t−1⋃
k=1

rdsk] ≤ Pr[q∗ ∈
t−1⋃
k=1

rdsk|

∣∣∣∣∣
t−1⋃
k=1

rdsk

∣∣∣∣∣ < 30Tp]

+ Pr[

∣∣∣∣∣
t−1⋃
k=1

rdsk

∣∣∣∣∣ ≥ 30Tp] +
r

N1
+ εN1

≤ 30pT

N1
+ 0.1 + 0.001 + 0.001 ≤ 0.15.

Otherwise, at least 0.1N1 of the repeated attacks would access a total of 3N1Tp,
which gives a contradiction.

The final part of the previous proof which must be extended is

Pr[q∗ ∈ rds∗] ≥ 0.45.

We extend this claim by considering the expectation and probabilities over i in
the same way. We have to redefine and extend all the functions based on B(J, ω)
to follow the query pattern of our new adversary. The new functions also must
take new inputs i, t′, which specify where to stop running and count the balls,
exactly analogous to how the adversary chooses where to plant the repeated
read. The positions of the balls will now be marked at the beginning of each
attack and the functions will count using those positions given i.

The claims will still be true with these analogous definitions except, we must
show, for all fixed Ĵ ∈ [N1]2N1T , then with probability 0.9 over the uniformly
random choice of i,

Eω,t′ [Ball(Ĵ , ω, i, t
′)] ≤ r + 30pT + εN1 ≤ 0.003N1.

As has been establish, with probability 0.9 at most 30pT balls accessed in any
attack interval. Assuming this, the expectation must be at most 0.003N1 or
else the ORAM will be incorrect with probability more than 0.001 against an
adversary in this interval.

Once this is established, we take all other probabilities assuming this expec-
tation use a union bound. This achieves the bound

Pr[B(J, ω, i, t′) > 0.25T ] ≤ 0.3,

which implies,
Pr[q∗ 6∈ rds∗] ≤ 0.55.

This concludes the proof of (11), because we output 0 with probability at least
1− 0.55− 0.15 = 0.3. ut

5 Lower Bound for Balls-in-Bins Schemes with Duplicates

The techniques used for the previous proof can be extended to allow the ORAM
scheme to have up to D copies of any ball. We start by defining precisely how
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such an ORAM is allowed to copy balls, and then we extend our previous proof
idea to such ORAM schemes.

Current constructions do not make use of duplication. However, it could be
an avenue to achieve low overhead for constant round schemes in principle. We
prove a lower bound using our same techniques from the previous sections and
show for constant duplication, we achieve a similar bound for one-round ORAM.

Unfortunately, our techniques do not give tight bounds against high dupli-
cation. For example, our bound is trivial for ORAM copying a single ball N0.25

1

times. In our proof technique, we attempt to force the ORAM to overlap two
reads on a specific physical address in a special way. When a ball can be located
in many locations, the ORAM can often avoid this behavior by accessing the
locations of other copies.

Definition 7. Let O = (Access,Out) be a one-round balls-in-bins ORAM with
respect to B1,B2, N1, N2,StSp = {0, 1}m× (B1∪{⊥})r,RSp, except that we relax
the balls-in-bins restriction to allow Out to copy balls to multiple locations.

For a deterministic adversary A in Gobl-0
O , Gobl-1

O , or Gcor
O and for every

b ∈ B1, after A is finished querying its oracles, define

Qb(A) = {i | M2[i] = b}

and
Rb(A) = {i | reg[i] = b},

where M2 is the final server memory state in the game, and reg is the final
register state of O.

We say O is D-duplicate if for all adversaries A which query Wr N1 times
with N1 unique balls in Gobl-0

O , Gobl-1
O , or Gcor

O , and for all b ∈ B1

|Qb(A)|+ |Rb(A)| ≤ D.

Theorem 4. Let O = (Access,Out) be a one-round D-duplicate balls-in-bins
ORAM scheme with respect to B1,B2, N1, N2,StSp,RSp. Assume |B1| ≥ N1 ≥
106 and 1 ≤ D < 0.5

√
N1. Suppose O has worst-case overhead 0 < p <

C
√
N/D2, state size s, and for every adversary A, Advcor

O (A) < 0.001/D and
Advobl

O (A) < 0.4. Then
ps ≥ CN1/D

3,

where C is an absolute constant.

Proof. This proof proceeds in the same structure as before. Assume for a con-
tradiction that p < 0.001

√
N1/D

2 and s < 0.0001N1/(D
3p). We construct an

adversary A that works as follows:

1. For i = 1, . . . , N1, query Wr((i, bi), (i, bi)), where b1, . . . , bN1 are arbitrary
distinct balls from B1. Ignore the responses.

2. Let T = 0.001N1/(D
2p) ≥

√
N1. Choose J

$← [N1]DT , a sequence ofDT i.i.d.

uniform virtual addresses. For i = 1, . . . , D, choose ti
$← [(i−1)T+1, . . . , iT ].

Define j∗0 = J [t1].
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3. For k = 1, . . . , DT , if k = ti for some i then query

Rd(j∗0 , J [k]),

and otherwise query
Rd(J [k], J [k]).

Let rds1, . . . , rdsDT ⊆ [N2] be the physical addresses read for each query.

4. Let j∗1
$← [N1] and tD+1 = TD + 1. Query Rd(j∗0 , j

∗
1 ) and let rdstD+1

be the
addresses read.

5. Output 0 if there exists a pair of indices i, j ∈ [D + 1] with i < j and an
address a ∈ rdstj that also appears in rdsti but not in any of rds1, . . . , rdsti−1.
Otherwise output 1.

This attack follows a similar structure as those outlined in previous sections.
However, it accesses the targeted ball D + 1 times total. Intuitively, we are
showing that each of these accesses must touch one of the D initial locations of
the balls. If that is true, then there is some pair which accesses the same location
by the pigeonhole principle. This pair is identified be the adversary with high
probability and that gives our advantage.

We claim that

Pr[Gobl-0
O (A) = 1] ≤ 0.55 (14)

and

Pr[Gobl-1
O (A) = 1] ≥ 0.999 (15)

which prove the theorem.
We prove similar claims to the previous proofs, but will need to make a

pigeonhole argument as well. For a fixed random string ω, by definition O is has
at most D duplicates of any ball and has no registers, after the first stage of the
adversary we have that every ball b1, . . . , bN1

lies in at most D entry of M2; Let
Q1, Q2, . . . , QN1 ⊆ [N2] be the sets of their respective indices, each with size at
most D.

We begin by proving (14). First, we show

Pr[|Qj∗0
∩ rdst1 | ≥ 1] ≥ 0.997, (16)

which follows from arguments used in previous proofs. There are at most pT
accesses before t1, only r registers, and O can error on only ε fraction of the
inputs. Therefore, over the random choice of t1, which is independent from pre-
vious accesses. None of the at most D balls were touched prior to this access
with probability at most D(pT + r + εN1)/N1 ≤ 0.003.

We will prove that for every 2 ≤ i ≤ D + 1,

Pr[|Qj∗0
∩ rdsti | ≥ 1] ≥ 1− 0.5

D
(17)
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which together with (16) proves that there is some index q∗ that lies in two
different reads ti and tj with probability 0.497 using a union bound.

Then, given this q∗, i and j exists, we will prove, for the smallest pair i < j
with the desired overlap,

Pr[q∗ ∈ rdsti \
ti−1⋃
k=1

rdsk] ≥ 0.997, (18)

which finishes the proof for equation (14).
Now we shift our focus to prove equation (17) which requires the proof tech-

niques used in the previous extension. We redefine the function B(Ĵ , ω̂) for this
new setting, so it can take in a sequence of variable length Ĵ ∈ [N1]≤DT and
ω̂ ∈ RSp. Let Ĵ be length k, then B works as follows:

1. Run the game Gobl-0
O (A) with ω = ω̂, J = Ĵ × ⊥DT−k, until the end of

the first stage. At this point, every ball is in some set of indices in M2, or
in a register. Let Q1, . . . , QN1 be the sets of indices of the balls b1, . . . , bN1

respectively in M2.
2. Continue the game for another k queries (i.e. Ĵ is finished). Let st be the

state of O.
3. Output the number of j ∈ Ĵ such that |Qj ∩ Access(j, st, ω′)| = 0.

Similarly, we redefine B(Ĵ , ω̂, ŝt), Ball(Ĵ , ω̂), and Ball(Ĵ , ω̂, ŝt) with the updated
check condition at the end. Even with this redefinition, it suffices to show, for
every i ≥ 2,

Pr
J,ω

[B(J, ω) > 0.25ti] ≤ 0.2/D. (19)

Assuming this, we have for any fixed i ≥ 2,

Pr
J,ω,t

[|Qj∗0
∩ rdsi| = 0] ≤ Pr

J,ω,t
[|Qj∗0

∩ rdsi| = 0 ∧B(J,w) ≤ 0.25ti]

+ Pr
J,ω,t

[|Qj∗0
∩ rdsi| = 0 ∧B(J,w) > 0.25ti]

≤ 0.25/D + Pr
J,ω

[B(J,w) > 0.25ti]

≤ 0.25/D + 0.2/D < 0.5/D.

In this probability, we note that J is taken according to the distribution that
A submits to to the left part of its oracles up to rdsti which is independently
random outside of the locations t1, . . . , ti−1.

First, we bound (19), by conditioning on the size of Ball(J, ω). We have that
PrJ,ω[B(J, ω) > 0.25ti] is at most

Pr
J,ω

[Ball(J, ω) > 0.03N1] + Pr
J,ω

[B(J, ω) > 0.25ti ∧Ball(J, ω) ≤ 0.03N1]. (20)
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The first term is bounded using Markov’s inequality. We assert that for any fixed
Ĵ ∈ [N1]≤DT ,

Eω[Ball(Ĵ , ω)] ≤ r + pDT + εN1 ≤ 0.003N1/D,

where ε = Advcor
O (A). Just as before, this follows because B will count at

most r balls from registers, pDT balls moved during the second stage, and (in
expectation) at most εN1 balls on which O errs with our adversary. Each of these
contribute at most 0.001N1/D to expectation. By Markov’s inequality, we get
that first term of (20) is at most 0.1/D.

We complete the proof by bounding the second term of (20), in a similar way
to before. Intuitively, since the entries of J are distributed according to A, for
a set ŝt this is the probability that at least 0.25ti of its entries land in a pre-
determined set of size at most 0.03N1, or equivalently a tail bound on flipping
a biased coin ti − i times. We subtract i, because i− 1 values are the same. So,
long as 0.25 of the remaining values are covered by B(J, ω), then 0.25 of all the
values will be covered, giving us an upper bound. Formally, upper bound with an
existential quantifier over the state and union bound as in the previous section,
but we omit the details here.

Take the probability of heads to be 0.03, and let X be the total number of
heads seen after ti independent coin flips. Then, we have, for a fixed ω̂ and fixed
ŝt,

Pr
J

[B(J, ω̂, ŝt) > 0.25(ti − i)] ≤ Pr[X > 0.25(ti −D)]

≤ Pr[X > (1 + 7.33)0.03(ti −D)].

Using a Chernoff bound, this probability is at most(
e7.33

(8.33)8.33

)0.03(ti−D)

≤ 0.75(ti−D) ≤ 0.75T−D.

Then, a union bound of all states gives us our final requirement,

|StSp| · 0.75(T−D) ≤ 20.0001N1/(D
3p)0.750.001N1/(D

2p)−D < 0.1

when D < 0.5
√
N1 and N1 ≥ 106. This concludes the proof of (17).

We show (18) next. Fix q∗, i and j as before. Then,

Pr[q∗ ∈ rdsti \
ti−1⋃
k=1

rdsk] ≥ 1− ε− (p+ r) · (ti − 1)

N1
≥ 0.997

because O can error on a most ε faction of the inputs, and there are at most
(p+r) ·(ti−1) balls touched before ti is read. Also, ti and thus q∗ is uniform and
independent from all other reads except for tk when k < i. However, if q∗ ∈ tk
from some k, then we would have taken tk and ti as the pair to fix instead.
Together with (17) this proves (14).
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To prove (15), we condition on ω, J and j∗1 , then the each of the sets rdstj
can overlap with at most p of the (j − 1)T previous sets in the desired way.
Summing over all possible endpoints shows the probability of outputting 0 is
bounded by Dp/T < 0.001, which proves 1 is output with probability at least
0.999, completing the proof of the theorem. ut

6 Constant-Round ORAM

We define k-round ORAM in our notation and then review (within our formal-
ism) the “square-root construction” given in the original paper on Oblivious

RAM by Goldreich and Ostrovsky [11]. We will also present an O(kN
1/k
1 )-

overhead construction using k-rounds which can be seen as a middle ground
between the square-root and hierarchical constructions. A similar construction
was given by Goodreich et al. [13], which explores constant round ORAM as an
extension of the square root construction for all constants. However, the number
of rounds is less explicit than the construction we present.

We then prove a simple corollary of Theorem 2, which shows the constant-

round O(kN
1−1/k
1 )-overhead constructions are optimal up to logarithmic factors

for a restricted class of ORAM we call “partition-restricted” ORAM. This re-
striction requires that the reads of all rounds except the last fall into a relatively
small, pre-determined zone of physical memory. We then note that the given
constant-round constructions have this property, but that it does not extend to
logarithmic round constructions which do not respect this restriction. This corol-
lary suggests that to achieve better overhead performance for constant rounds,
would require new techniques in ORAM constructions.

Constant round ORAM definitions. The k-round definition we give is a
natural extension of the one-round definition. We aim for a simple and permissive
definition, so we allow the ORAM to issue a sequence of k reads. After each
read, the results are accumulated before the final round, which produces the
writes and the operation output. We note that allowing writes in the intervening
rounds would not strengthen the ORAM, as they can always be deferred without
increasing bandwidth in our model.

We remark that other definitions are not typically so permissive. In practice,
one would need to store the read results in the ORAM memory which often
needs to be small.

Definition 8. Let B1,B2,RSp,StSp be sets, and N1, N2 be positive integers. For
j = 1, 2 define the sets

RdOpsj = [Nj ], WrOpsj = [Nj ]× Bj , and Opsj = RdOpsj ∪WrOpsj .

A k-round ORAM scheme (with respect to B1,B2, N1, N2,StSp,RSp) is a tuple
of functions O = (Access1, . . . ,Accessk,Out),

Accessi : B∗2 × Ops1 × StSp× RSp→ RdOps∗2 (i = 1, . . . , k)

Out : B∗2 × Ops1 × StSp× RSp→ (B1 ∪ {⊥})×WrOps∗2 × StSp.
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We next adapt the correctness and obliviousness definitions to constant-
round ORAM. We use the definitions and their associated games as-is, except
that in the games we redefine the notation Access to mean the following algo-
rithm, for op ∈ Ops1, st ∈ StSp, ω ∈ RSp:

Access(op, st, ω)

dr ← ⊥
For i = 1, . . . , k:
rds← rds ∪ Accessi(dr, op, st, ω)
dr ←M2[rds]

Return rds.

This models the accumulated reads mentioned above, where each Accessi gets to
see the output of reads for Access1, . . . ,Accessi−1. The games then provide Out
with all of the accumulated read results, exactly as specified in their code. The
rest of the games are exactly the same.

The state size of a k-round ORAM is measured exactly as before. For worst-
case and amortized overhead, we use the same definitions, but with the version
of Access defined above.

A version of the Square-Root ORAM. The square-root construction of
Goldreich and Ostrovsky is usually described as a multi-round ORAM with no
state. Here we show that it can be viewed as an amortized one-round scheme
with larger state that matches our lower bounds. Below we extend this to a
family of constant-round schemes. As the ideas are very standard in the ORAM
literature, we omit the full details.

The ORAM works with an arbitrary set of balls B1 and virtual memory
size N1, and with physical memory of N2 = N1 +

√
N1 cells with B2 = B1.

The randomness space is defined so that an unbounded sequence of random
permutations π on [N2] can be generated4. The state of the ORAM consists of
a counter st.c (initially 0, and always between 0 and

√
N1) and a tuple st.Cache

of at most
√
N1 virtual-address/ball pairs.

The ORAM maintains the physical array to hold the N1 balls at physical
addresses π(1), . . . , π(N1), with virtual address a stored at physical address π(a),
where π is the current random permutation. The physical addresses π(N1 +
1), . . . , π(N1+

√
N1) will be “dummies”, which are accessed to cover for when the

same virtual address been accesses multiple times. The ORAM stores in st.Cache
the virtual-address/ball pairs involved in the most recent

√
N1 operations. To

process a read operation, if the requested virtual address a is not in the cache,
then ORAM accesses the ball at physical address π(a). If on the other hand
a is stored in the cache, then the ORAM accesses the next dummy, namely
π(N1 + st.c). After retrieval, balls are held in the cache. After

√
N1 operations,

4 To be totally rigorous in our formalism, one needs to give the ORAM the ability to
remember which permutation π in the sequence is being used, e.g. by providing an
unbounded counter that does not count as state.
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the cache may be full, so the ORAM downloads the entire physical memory,
samples a fresh π, and places the balls in the physical memory according to π.

This ORAM is perfectly oblivious: Independent of the addresses, the ORAM
will access random distinct physical addresses for at most

√
N1 reads (or no

addresses for writes), followed by a reads and writes to all N2 physical cells. It
has amortized overhead p = (

√
N1 + (N1 +

√
N1))/N1 = O(

√
N1) and a state

with m = logN1 bits and r =
√
N1 registers, making it tight for Theorem 2 up

to logarithmic factors.

kth-root ORAM construction. The ideas in the square-root ORAM gen-

eralize to give a k − 1-round construction with amortized overhead O(kN
1/k
1 )

and state size O(N
1/k
1 ). This construction is simply a re-parameterization of the

well-known hierarchical ORAM of Goldreich and Ostrovsky [11], adjusted to a
constant number of levels, so we only sketch the construction, assuming their
construction is familiar.

The ORAM holds in its state a cache containing at most N1/k virtual-
address/ball pairs. At the physical memory, it maintains k−1 “levels”, which are

regions of physical memory. Level i consists of O(log( 1
ε )N

(i+1)/k
1 ) cells storing

a hash table capable of holding N
(i+1)/k
1 balls, except with probability ε, which

we consider an independent error parameter. Thus the final (k− 1)-th layer can
hold N1 balls.

An access happens over k−1 rounds. Initially it the ORAM checks the cache,
and remembers if the requested virtual address is found or not. Then in the i-th
round, the hash table on level i is to be accessed. If the ball has not yet been
found, then the table is accessed at the points determined by the hash function
for that level. If the ball has been found then a dummy is accessed. Eventually
the ball is found and added to the cache (and in the case of writes the ORAM
just add them directly).

Eventually the cache will overflow, so the ORAM periodically rebuilds the
hash tables according to a schedule that also ensures none of the levels overflow.

Namely, after N
i/k
1 operations, levels 1, . . . , i are downloaded and all of the balls

they contain are stored in a rebuilt table on level i. (In our setting we again
avoid the complexity of using oblivious sorts; We allow ORAMs to simply to
rebuild locally and upload the tables.)

This completes the sketch of the kth-root ORAM. It has state size O(N
1/k
1 )

and overhead O(kN
1/k
1 ). We can calculate the overhead by observing that after

N
i/k
1 operations, the ORAM performs a rebuild requiring O(N

(i+1)/k
1 ) opera-

tions. Thus after N1 operations, this type of rebuild will accumulate a total cost

of O(N
1−i/k
1 · N (i+1)/k

1 ) = O(N
1+1/k
1 ) physical operations. This amortizes to

O(N
1/k
1 ) overhead, and summing over k gives O(kN

1/k
1 ).

Bound for restricted k-round ORAM. We now partially address the ques-
tion of whether the kth-root ORAMs are optimal. Our one-round bounds of
course do not apply, and adapting them appears to be non-trivial. Instead, we
observe that these ORAMs obey a simple restricted property, and then prove
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that the kth-root ORAM is optimal amongst multi-round ORAMs with this
property.

We call this property partition-restricted. Intuitively, a multi-round ORAM is
`-partition-restricted if all of its rounds always access some predetermined regions
of ` physical cells. For example, the kth-root ORAM is `-partition-restricted for

` = O(N
1−1/k
1 ), as the first k − 2 rounds will access tables of that size or less

(recall the kth-root ORAM has k − 1 rounds total).
For such ORAMs we make a simple observation: One can move the physical

memory of the first (k − 2) rounds into the state of the ORAM, and transform
it into a one-round ORAM to which our bound applies.

Definition 9. Let O = (Access,Out) be a k-round ORAM scheme with respect
to B1,B2, N1, N2,StSp = {0, 1}m×(B1∪{⊥})r,RSp We say that O is `-partition-
restricted if there exists a set P ⊆ [N2] of size at most ` such that for every input
(dr, op, st, ω) and i = 1, . . . , k − 1 we have Accessi(dr, op, st, ω) ⊆ P .

We now show that `-partition-restricted multi-round ORAMs reduce to one-
round ORAMs.

Corollary 1. Let O = (Access,Out) be a k-round balls-in-bins ORAM scheme
with respect to B1,B2, N1, N2,StSp,RSp. Assume |B1| ≥ N1 ≥ 30 · 106 and B2 =
B1 ∪ {⊥}. Suppose O has amortized overhead 1 ≤ p < C

√
N1, state size s, O is

partition-restricted to ` server cells, and for every adversary A, Advcor
O (A) <

0.001 and Advobl
O (A) < 0.15. Then

p(s+ ` logN1) ≥ CN1,

where C is an absolute constant.

This corollary proves that the kth-root is optimal up to logarithmic factors
for this restricted class of ORAM. It is notable that this bound is actually in-
dependent of the number of rounds the ORAM uses. It only requires that all
but the final access are restricted. This means the registers of the client can be
outsourced on the server and read as an additional round. So, we assume there
are no registers in StSp and achieve the same bound.

Proof. Assume for a contradiction that (s + ` logN1) < CN1/p. Then, we can
construct a one-round ORAM O′ with state space StSp′ = StSp × (B1 ∪ {⊥})`.
Since O is partition-restricted to ` server cells there is a set P which can capture
the first k − 1 access. The new ORAM O′ simulates O but whenever O reads or
writes to the set P , O′ simulates this by reading or writing to the ` extra registers
in StSp′. Because the first k−1 accesses will always read from P , O′ only requires
accessing the server to simulate the final access, making it one-round.

Notice that maxA Advcor
O′ (A) ≤ maxA Advcor

O (A) and maxA Advobl
O′ (A) ≤

maxA Advobl
O (A). This follows because any adversary against O′ can ignore all

accesses before the final access and have the same advantage against O.
Since O′ is one-round, p(s + ` logN1) < C · N1, and 1 ≤ p < C

√
N1 this

contradicts Theorem 3. ut
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7 Conclusion and Open Problems

Lower bounds for ORAM schemes have been largely focused on bandwidth cost
for ORAM with an unrestricted number of rounds and constant client memory.
However, there are still open questions when schemes are restricted to have a
fixed number of rounds.

We prove near-optimal results for one-round ORAM with large client memory
in this paper. However, it is possible that do not we have a tight bound for
one-round ORAM with constant client memory. It seems likely that one-round
ORAM with constant memory should require Ω(N1) overhead.

There is the problem of extending our work out of the balls-in-bins model.
Our techniques do not immediately give lower bounds in an information theo-
retic model for ORAM, but possibly could be extended with techniques similar
to those used by Larsen and Nielsen [18]. Many of the proof steps extend to
equivalent statements with compression arguments, however it is unclear how to
extend equation (8) to the information theoretic setting.

This issue is related to an issue which arose with bounded duplicate ORAM.
If we bound the duplication, the proof extends but gets weakens significantly.
We are unaware of any duplicate balls-in-bins ORAM constructions that match
our bound, and it seems likely the loss to duplicates is an artifact of the proof.

Extension beyond partition-restricted to two-round or even an arbitrary k-
round is still open. One might hope that the k-round construction from Section
6 is tight up to poly-log factors and that the true lower bound for k-round is

Ω(kN
1/k
1 ) with constant client memory.
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