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Abstract. Program watermarking enables users to embed an arbitrary
string called a mark into a program while preserving the functionality of
the program. Adversaries cannot remove the mark without destroying the
functionality. Although there exist generic constructions of watermarking
schemes for public-key cryptographic (PKC) primitives, those schemes
are constructed from scratch and not efficient.
In this work, we present a general framework to equip a broad class of
PKC primitives with an efficient watermarking scheme. The class consists
of PKC primitives that have a canonical all-but-one (ABO) reduction.
Canonical ABO reductions are standard techniques to prove selective
security of PKC primitives, where adversaries must commit a target
attribute at the beginning of the security game. Thus, we can obtain
watermarking schemes for many existing efficient PKC schemes from
standard cryptographic assumptions via our framework. Most well-known
selectively secure PKC schemes have canonical ABO reductions. Notably,
we can achieve watermarking for public-key encryption whose ciphertexts
and secret-keys are constant-size, and that is chosen-ciphertext secure.
Our approach accommodates the canonical ABO reduction technique to
the puncturable pseudorandom function (PRF) technique, which is used
to achieve watermarkable PRFs. We find that canonical ABO reductions
are compatible with such puncturable PRF-based watermarking schemes.
Keywords. watermarking, public-key cryptography, all-but-one reduc-
tion

1 Introduction

1.1 Background

Watermarking. Watermarking enables us to embed an arbitrary string called
a “mark” into a digital object such as images, videos, programs. While an em-
bedded mark is extractable, a watermarked object should be almost functionally
equivalent to the original one. Watermarking ensures that no one can remove
an embedded mark without destroying the original functionality. Watermarking
has two main applications. One is identifying ownership of an object. We can
verify who is the original creator of objects by extracting an embedded mark that
includes a unique identifier. The other is tracing malicious users that illegally
copy objects. Therefore, watermarking deters unauthorized distribution.

Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang initiated the
study of program watermarking and gave rigorous definitions of cryptographic
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watermarking for programs [8]. They proved that program watermarking with
perfect functionality-preserving property does not exist if there exists indis-
tinguishability obfuscation (IO) [8]. Hopper, Molnar, and Wagner gave more
definitions of cryptographic watermarking for perceptual objects and studied the
relationships among them [34].

Earlier works presented watermarking schemes for specific classes of cryp-
tographic functionalities [42,56,44]. However, those schemes are secure in re-
stricted models where we limit adversary’s strategies due to the impossibility
results by Barak et al. [8]. That is, earlier works [42,56,44] do not consider
arbitrary removal strategies. Cohen, Holmgren, Nishimaki, Vaikuntanathan,
and Wichs presented the first watermarking scheme for pseudorandom functions
(PRFs) against arbitrary removal strategies by introducing a relaxed functionality-
preserving property [21]. In addition, they observed two facts: even if we relax
the functionality-preserving property, (1) we need to pick a target circuit from a
distribution with high min-entropy to avoid trivial attacks in the security game.
(2) learnable circuit families are not watermarkable [21]. These two facts are the
reasons why most studies on cryptographic watermarking [21,12,38,46,39,27,55]
focus on cryptographic primitives rather than arbitrary circuits.

We focus on achieving secure watermarking for public-key cryptographic
primitives against arbitrary removal strategies in this study since public-key
primitives are more versatile than secret-key ones.

Why watermarking public-key primitives?: An application. Cohen et al. [21]
presented an application of watermarked PRFs to electronic locks for cars. A
car contains a PRF F and can only be opened by running a typical challenge-
response identification protocol. A car owner has a software key (e.g., a smart-
phone application) that includes a marked PRF. We can embed some identifying
information to PRFs. No one can remove the owner’s information without losing
the ability to unlock the car. Therefore, we can identify the car owner even if
the software key is copied and the car is stolen (license plates can be forged).
However, an automobile manufacturer can know user keys in this scenario since
they are hard-coded in cars.1

If we can independently generate a key pair (public and secret-keys) of a public-
key primitive from the watermarking setup, then an automobile manufacturer
installs the public key to a car and need not know the secret-key. Therefore,
we can run a typical challenge-response protocol by watermarkable public-key
encryption (PKE) or signature without revealing secret-keys to manufacturers.2

Watermarking from scratch or retrofit. Goyal, Kim, Manohar, Waters, and
Wu [27] presented the first feasibility result of watermarkable public-key cryp-
tographic primitives from standard assumptions. This is an excellent work on

1If a car owner can directly install a PRF key into a car, and a watermarking scheme
is public marking type, then watermarkable PRFs work in this scenario. However, this
situation is not preferable.

2If a watermarking scheme is secret marking type, then we run a secure two-party
computation between a user and a manufacturer.
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general constructions of watermarkable public-key cryptographic primitives. How-
ever, their constructions of cryptographic primitives are built from scratch. Many
efficient public-key cryptographic schemes (without watermarking functionalities)
have been already proposed. One natural question is whether we can equip
existing public-key cryptographic schemes with watermarking functionalities. If it
is possible, we can obtain many efficient watermarkable cryptographic primitives.
Our main question in this study is as follows.

Is there any general framework to equip public-key cryptographic schemes with
watermarking functionalities?

We affirmatively answer to this question in this paper.

1.2 Our Contribution

We present a general framework to equip a broad class of public-key primitives
with watermarking functionalities. The features of our watermarking schemes
are as follows. Our watermarking schemes:

– almost preserve the efficiency of the original public-key primitives.
– apply to various primitives such as signature, PKE, key encapsulation mech-

anism (KEM), identity-based encryption (IBE), attribute-based encryption
(ABE), inner-product encryption (IPE), predicate encryption (PE).

– are secure under the same assumptions as ones used in the original public-key
primitives (i.e., CDH, decisional linear (DLIN), DBDH, short integer solution
(SIS), LWE assumptions, and more).

– are independent of the original public-key primitives. (We do not need
watermarking parameters to setup public-key primitives.)

– use simulation algorithms in security reductions of the original primitives.

More details of our watermarking schemes are explained in Sec. 1.4. We will
explain our technique in Sec. 1.3.

Our primary advantages are: (1) semi-general applicability, that is, we can
use many existing public-key schemes almost as they are. We do not need to
construct watermarkable public-key schemes from scratch. (2) achieving CCA
security for PKE. (3) efficiency based on concrete cryptographic assumptions.
(See the comparison in Table 1.) Those are obtained from our framework using
simulation algorithms.

Using proof techniques as real algorithms. Our construction technique signifi-
cantly deviates from those of previous works. The most notable feature of our
result is that we present a general method to use simulation algorithms that
appear in reduction-based proofs as real cryptographic algorithms. Although
our study is not the first study that uses simulation algorithms to achieve new
cryptographic functionalities [44,35,36],3 we present the first systematic approach

3Katsumata et al. [35,36] use simulation algorithms of ABE schemes to achieve
homomorphic signatures.



4 R. Nishimaki

using simulation algorithms in real schemes. We abstract a commonly used proof
technique and show that if a public-key cryptographic scheme is proven to be
secure via the proof technique, we can use simulation algorithms in the reduction
as watermarked cryptographic functionalities. See Sec. 1.3 for the detail. This
approach enables us to equip existing schemes with watermarking functionalities.

Terminology. Before we give a technical overview, we more formally explain
watermarking. A watermarking scheme consists of three algorithms called setup,
marking, and extraction algorithms. A setup algorithm Setup generates a marking
key wmk and extraction key wxk. A marking algorithm Mark takes as input wmk,
a circuit C, and a message ω, and outputs a marked circuit C̃. Here, C̃ should
output the same output by C for most inputs. An extraction algorithm Extract
takes as input wxk and circuit C ′, and outputs a string ω or special message
unmarked. This type of watermarking is called message-embedding. If Mark does
not take ω as input and Extract outputs marked or unmarked, then we call message-
less watermarking. The basic security notion is unremovability, which means no
adversary can construct a circuit C∗ such that the functionality of C∗ is almost
equivalent to that of C̃, but Extract(wxk, C∗) outputs ω∗ 6= ω. If we can/not
publish wmk and wxk, then we call public/secret marking and public/secret
extraction, respectively.

1.3 Technical Overview

We present how to equip public-key primitives that have canonical all-but-one
reductions4 with watermarking functionalities. All-but-one (ABO) reductions
are standard proof techniques to prove selective security of public-key primi-
tives [9,49,30,37,1,3,25,10,26]. Although our technique is not fully general, that
is, we cannot apply our technique to all selectively secure public-key primitives,
many well-known schemes fall into the class of canonical ABO reductions, where
our technique applies. Roughly speaking, our watermarked cryptographic func-
tionalities are simulation algorithms in ABO reductions. This technique is of
independent interest because we can use simulators in security reductions as real
algorithms for achieving new functionalities.

Our watermarking schemes based on canonical ABO reductions are message-
less. To achieve message-embedding watermarking, we need to extend (canonical)
ABO reductions to (canonical) all-but-N (ABN) reductions. However, ABO
reductions are simpler to explain and it is easy to upgrade ABO reductions
to ABN reductions for pairing-based schemes.5 Thus, we first explain ABO
reductions.

4See Sec. 4.2 for the formal definition and the meaning of “canonical”.
5There is no general conversion from ABO to ABN reductions, but upgrading is

possible for many concrete schemes by using programmable hash. See Sec. 4.5 for more
detail.
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All-but-one reduction. An ABO reduction is a polynomial-time algorithm that
solves a problem instance π of a hard problem Π by using an adversary A
that breaks selective security of a cryptographic primitive Σ. To explain ABO
reductions and selective security, we introduce oracles in security games.

Adversaries have access to oracles that receives queries from adversaries and
returns answers in some security games. Adversaries also declare a target to
attack Σ at some point in the security game of Σ. We prohibit adversaries from
sending a special query (or queries) that satisfies some conditions related to the
target to prevent trivial attacks. We call such a special query “query on the
target”. In selective security games, adversaries must declare the target at the
very beginning of the game.6

When we prove that if Π is hard, then Σ is selectively secure, we construct
the following reduction R. After an adversary declares a target at the beginning
of a selective security game, R simulates a public parameter by using a problem
instance of Π and the target and sends the public parameter to the adversary.
Then, R simulates answers to all queries from the adversary except the queries on
the target by using the problem instance (and the target). Note that R completes
the simulation without (master) secret-keys of Σ. This type of reduction is called
all-but-one reductions due to the simulation manner. In other words, if there
exists an ABO reduction, then there exists an oracle simulation algorithm that
works for all queries except the target.

We give an example. In the selective security game of signature, an adversary
A declares a target message m∗ at the beginning of the game. Then a challenger
sends a public verification-key VK to A. After that, A can send polynomially
many queries (i.e., messages) and receives signatures corresponding to the queried
messages (except m∗). At some point, A sends a challenge (m∗, σ∗).

A typical example of ABO reductions is the security reduction of the Boneh-
Boyen signature scheme [9]. The reduction (or called simulator) R is given a
CDH instance π = (G,Gx, Gy) where G is a generator of a group G. When the
adversary A declares a target m∗, R simulates VK by using π and m∗ (embedding
π and m∗ into VK). Next, R simulates signatures σm for queried message m from
A except m∗. Here, R implicitly embeds Gxy into the signing key by setting
parameters carefully (note that R does not have Gxy). Thus, if we assume A
breaks the signature scheme, then R can extract Gxy from the forged signature
σ∗ output by A.

Although R embeds m∗ in VK, the distribution of VK by R is perfectly the
same as the original distribution. In addition, R can perfectly simulate signatures
for messages except for the target message m∗ due to the embedding of m∗. For
notational convention, we separate this signature simulation algorithm part as
SimSign6=m∗ . That is, we can construct an algorithm SimSign6=m∗ from π and
m∗ that outputs σm for input m except m∗. This is not necessarily possible for
all selectively secure schemes since R might use oracle answers for simulation.
Thus, we say a reduction is “canonical” if SimSign6=m∗ does not rely on oracle
answers and is described as a stateless randomized algorithm. This proof style

6In adaptive security games, adversaries can select the target at any time.
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is sometimes called puncturing proof technique [48] since m∗ is like a hole in
the message space and the reduction has no way to generate σm∗ for m∗. The
graphical explanation is described in Fig. 1.

Although the case of encryption is slightly different from that of signatures,
we can consider similar simulation strategies for encryption. In the PKE case,
there is no “attribute”, but we can use a part of a ciphertext (sometimes called
tag) as an attribute (in particular, in the CCA setting).

A
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SimSign6=m∗
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σmi

Fig. 1: Illustration of ABO reduction from
the selective security of signature to Π. Solid
lines denote outputs by the adversary A of sig-
nature. Dashed lines denote simulation by the
reduction R. The grayed circle is the hole. Value
sol denotes a solution to π.
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Fig. 2: Illustration of reduction from the se-
curity of watermarking to π. Solid lines denote
outputs by the adverasry W of watermarking.
Dashed lines denote simulation by reduction
R′. The grayed circle is the hole. Value sol de-
notes a solution to π.

A hole is to watermark. We move to explain our unified framework to achieve
watermarkable public-key primitives by using canonical ABO reductions. Roughly
speaking, a punctured hole in an ABO reduction works as a watermark because
adversaries cannot fill the hole. More concretely, we can consider the oracle
simulation part SimSign6=m∗ of the canonical reduction R as a watermarked
signature generation circuit in the signature case. In addition, no adversary
can recover the ability to generate σm∗ from SimSign6=m∗ because otherwise, the
adversary can break the security of the signature scheme. (The message m∗ is
the target.)

The ABO oracle simulation algorithm SimSign6=m∗ preserves the functionality
of the signature generation circuit except for an input m∗. To detect whether a
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circuit is watermarked or not, we check whether the circuit generates a correct
output for the punctured input.7 We can check whether a signature is valid for an
message or not by using its verfication algorithm. If a circuit does not generate
a valid output for the punctured input (i.e., the hole), then we consider it as
watermarked. In almost all ABO reductions, we have efficient algorithms that
check the validity of answers from oracles.

The unremovability holds as follows. We construct a reduction R′ that solves a
problem instance π by using a watermarking adversaryW . R′ can give SimSign6=m∗
to W since R′ has π and m∗.8 Assume that W can remove the watermark. That
is, we assume W is given SimSign6=m∗ and generates a circuit Sign=m∗ that can
generate a signature for the target m∗ (i.e., filling the hole). Then, R′ can break
the security of signature. This is because Sign=m∗ yields a forgery σ∗ for the
target m∗. We can extract the solution for π from σ∗ as the ABO reduction for
Boneh-Boyen signature scheme.

Put it differently, the canonical ABO reduction R(π) works as well even if we
replace the adversary A of a cryptographic scheme Σ with the adversary W for
watermarking, which removes the watermark. The modified reduction R′(π) can
solve π because the power of removing the watermark by W leads to breaking
the security of Σ. Therefore, the watermarking scheme is secure if the underlying
problem is hard. The graphical explanation is described as in Fig. 2.

There are a few issues in the overview above. One issue is giving the description
of SimSign6=m∗ to the adversary since it has only black-box access to the signature
generation oracle in the security game. This issue is the reason why we use
“canonical” ABO reductions. If ABO reductions satisfy the canonical property,
then SimSign6=m∗ does not need oracle answers from the hard problem Π to
simulate the signature generation oracle and can be described as a stateless
randomized algorithm.

Another issue is how to prepare a problem instance and randomness for
simulating VK in an ABO reduction. To create an ABO reduction in the real
world, we need a problem instance π. However, what we have in the real world is
not a problem instance but a secret signing-key. It is easy to find that we can
perfectly simulate a problem instance and randomness for reductions by using
a secret key in the real world for most ABO reductions. In addition, although
SimSign6=m∗ includes randomness for simulating VK, this is not an issue thanks
to the randomness of the problem instance π (i.e., secret-key in the real world).
See Sections 4 to 6 for details.

Although we gave only intuitions in this section, we formalize properties of
canonical ABO reductions in Sec. 4 and prove that we can achieve watermarking
from canonical ABO reductions in Sections 5 and 6.

Extension to all-but-N reduction. The watermarking based on ABO reductions
above is message-less watermarking. To embed an arbitrary N -bit string, we

7A useless circuit that outputs ⊥ for all inputs is watermarked by this detection. To
prevent this, we test the functionalities of circuits. See Sec. 6 for details.

8We do not explain how to determine m∗ here since it is not essential in this overview.
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need all-but-N reduction, which can simulate oracle answers except queries
on N targets. Here, N is an a-priori bounded polynomial in the security pa-
rameter. We can easily extend known cryptographic primitives that have ABO
reductions to ones that have all-but-N reductions by using the technique of
programmable hash functions [33] for pairing-based cryptography. We also use
the fully key-homomorphic technique [10] in the lattice setting or dynamic q-type
assumptions [5] for the Boneh-Boyen IBE. See Sec. 4.4 for the detail.

First, we explain a reasonable but faulty idea to achieve message-embedding
watermarking based on all-but-N reductions since it helps to understand our
idea. We prepare N pairs of strings {t∗i,b}i∈[N ],b∈{0,1} as the public parameter
of watermarking. To embed a message ω = (ω1, . . . , ωN ) ∈ {0, 1}N , we consider
an oracle simulation algorithm that can generate answers for queries except N
points in P := {t∗1,ω1

, . . . , t∗N,ωN }. Concretely, in the case of signature, a signature
oracle simulation algorithm SimSign/∈P outputs a signature σm for a message m
such that m /∈ P .9 To extract an embedded message from a circuit C ′, we run
the answer checking algorithm as in the message-less scheme for each i ∈ [N ] and
b ∈ {0, 1}. If C ′ outputs a valid σt∗

i,1
for input t∗i,1 and does not output a valid

σt∗
i,0

for input t∗i,0, then we set the i-th bit of a message to 0 and vice versa.
This construction achieves the functionality of message-embedding water-

marking. However, it is not secure because the adversary knows which points
should not be punctured. That is, the points in P := {t∗1,1−ω1

, . . . , t∗N,1−ωN } (and
P ) are publicly available information. We call P the negation of punctured points
P in this section. As already observed in some watermarkable PRFs [21,38,46],
public punctured points could hurt watermarking security. In our case, adversary
can easily destroy the functionality of cryptographic primitive at any point. More
concretely, the adversary can easily modify a watermarked circuit where t∗i,ωi is
punctured but t∗i,1−ωi is not punctured into a circuit that does not work for point
t∗i,1−ωi too. Then, the extraction algorithm above outputs ⊥ for the malformed
circuit since the circuit outputs ⊥ both for t∗i,0 and t∗i,1.

To solve the issue, we generate punctured points P and its negation P by
using PRFs and hide them instead of using publicly known punctured points and
its negation. This technique is commonly used in watermarkable PRFs [21,38,46].
We pseudo-randomly determine punctured points and its negation based on an
embedded mark and the public parameter of the target master secret-key to be
watermarked. Then, the adversary has no idea about the negation of punctured
points P (and P ). Therefore, it is hard for the adversary to intentionally modify
a watermarked circuit into a circuit that does not work for points in P . In fact,
we must prepare many punctured points pi := (t(1)

i,ωi
, . . . , t

(T )
i,ωi

) and its negation
pi := (t(1)

i,1−ωi , . . . , t
(T )
i,1−ωi) for each bit position i and check all points to extract i-

th bit of an embedded message, where T is a polynomial in the security parameter.

9All-but-N reductions should be able to generate N simulated challenge ciphertexts
in the encryption case. This simulation is easy to achieve by using random self-reducibility
of underlying hard problems for the discrete-logarithm-based case. In the LWE case,
polynomially many (so, N) problem instances can be given.
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If a circuit output ⊥ for all points in pi and a correct value for at least one
point in pi, we extract ωi as the i-th bit. To change the i-th bit of the embedded
message without recovering the original functionality, adversaries must destroy
the functionality of a circuit for all points in pi. Advesaries can indiscriminately
destroy the functionality without knowing points (pi, pi). However, if the adversary
makes a circuit that does not work for a 1/2 plus a non-negligible fraction of
inputs, then we can check that the circuit is not functionally similar to the
original watermarked circuit. To make a circuit that is functionally similar to the
watermarked circuit, but the extraction algorithm does not output ωi from, all
the adversary can do is recovering the functionality of the watermarked circuit at
punctured points P (pi). This event contradicts to all-but-N reductions as the
case of the message-less scheme. Thus, we can achieve unremovability.

Although the message-embedding scheme above is secret marking and secret
extraction, it is secure even if the adversary has the oracle access to the marking
and extraction oracles. See Sec. 6 for the detail.

1.4 Comparison and Related Work

In this section, we review previous works on watermarking.10 First, we compare
our watermarking schemes with the schemes by Goyal et al. [27].

Efficient direct constructions and generic constructions. Goyal et al. [27] con-
structed a secret marking and secret extraction watermarking scheme for ABE
(GKM+ABE) from mixed functional encryption (FE) and delegatable ABE,
which can be instantiated only by the LWE assumption. They also constructed a
public marking and public extraction watermarking scheme for PE (GKM+PE)
from (bounded collusion-resistant) hierarchical FE, which can be instantiated by
any PKE. Although the LWE assumption instantiates the schemes, the construc-
tions are inefficient since they rely on heavy tools like mixed FE and hierarchical
FE even for watermarkable PKE. In particular, in their watermarkable encryption
schemes, not only the public key length but also the ciphertext length depend on
the length of embedded massages (and the number of collusions in the GKM+PE
case). The ciphertext size of GKM+ABE and GKM+PE is huge (See Table 1).
They constructed a public marking and public extraction watermarking scheme
for signature (GKM+SIG) from a prefix-constrained signature, which is instan-
tiated with OWFs. GKM+SIG scheme is relatively efficient if it is instantiated
with a signature scheme based on the symmetric external Diffie-Hellman (SXDH)
assumption [18] since the transformation does not incur significant overhead.11

Our watermarking schemes can generally equip public-key primitives with
watermarking functionalities if the primitives satisfy some conditions. The equip-
ping procedure incurs only a little overhead. Although we need to modify public-
key schemes so that they have O(`λ)-size master public parameters to achieve

10We do not consider constructions from strong assumptions such as IO in this study.
11We focus on constructions in the standard model in this paper. If we instantiate

a signature scheme with Schnorr signature scheme [50], GKM+SIG would be more
efficient.
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Table 1: Efficiency Comparison of Message-Embedding Watermarking (Advanced) Public-Key
Encryption and Signature. We ignore MPK part in MSK. In “Assumption” column, we put refer-
ences for concrete instantiations. Parameters λ and ` are the security parameter and the length
of marks, respectively. In general, |G| = cλ and |GT | = cTλ for some small constant c and cT
(depends on pairing groups). We do not put Ours2 in this table since it is message-less type.

|MPK| |MSK| |SK| or |σ| |CT| Assumption

GKM+ABE poly(λ, `) poly(λ) poly(λ) poly(λ, `)c LWE [28]
GKM+PE Q · poly(λ, `) Q · poly(λ, `) poly(λ, `) Q · poly(λ, `)d PKE

Ours1 PKEa (2`λ + 5)|G| (2`λ + 2)|Zp| N/A 6|G| DLIN [37]
Ours1 KEMb (`λ + 4)|G|+ |hk| (`λ + 3)|Zp| N/A 2|G|+ |r| DBDH [13]
Ours1 KEMb 4|G|+ |hk| 3|Zp| N/A 2|G|+ |r| q-type [5]
Ours1 IBE (`λ + 4)|G| (`λ + 3)|Zp| 2|G| 2|G|+ |GT | DBDH [9]
Ours1 IBE 4|G| 3|Zp| 2|G| 2|G|+ |GT | q-type [5]
Ours1 IBE `poly(λ) poly(λ) poly(λ) poly(λ)e LWE [10]
GKM+SIG (` + 3)|G| |Zp| (` + 7)|G| N/A CDH [52]
GKM+SIG 8|G|+ |GT | 8|Zp| 16|G|+ |GT | N/A SXDH [18]
Ours3 SIG (`λ + 4)|G| (`λ + 3)|Zp| 2|G| N/A CDH [9]
Ours3 SIG 4|G| 3|Zp| 2|G| N/A q-type [5]
Ours3 SIG `poly(λ) poly(λ) poly(λ) N/A LWE [10]

a Tag-based encryption.
b Value hk and r are a hash key and randomness of a chameleon hash function.
c At least `7λ7.
d At least `2λ2 if instantiated with FE by Ananth and Vaikuntanathan [4].
e At most O(λ3 log2 λ).

message-embedding watermarking where ` is the mark length and λ is the security
parameter, the size of signatures/secret-keys/ciphertexts does not change. The
signatures/secret-keys/ciphertexts consist of only a few group elements if we use
group-based schemes. In addition, if we use a q-type assumption, we can use the
original Boneh-Boyen scheme as it is (even the master public key is constant-size).
Thus, our watermarkable public-key primitives are as efficient as known efficient
public-key primitives such as Boneh-Boyen IBE scheme [9]. Therefore, in the case
of encryption, our schemes are more efficient than those of Goyal et al. in the
asymptotic sense. See Table 1 for the efficiency comparison.

Functionalities of watermarking. In GKM+PE, GKM+SIG, and our schemes, the
watermarking setup algorithms are completely separated from the key generation
algorithm of public-key primitives. However, in GKM+ABE, we need the public
parameter of the watermarking scheme to generate keys of public-key primitives.

Although our message-embedding scheme is secret marking and secret ex-
traction, it is secure even if adversaries have access to marking and extraction
oracles, which answer a marked circuit and an embedded mark for queried circuits,
respectively. GKM+ABE is also secret marking and secret extraction and secure
under the marking and extraction oracles, but the number of extraction queries
is a-priori bounded. On the other hand, GKM+PE and GKM+SIG are public
marking and public extraction.
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Our schemes for signature/TBE/KEM/IBE and all GKM+ schmes are
message-embedding watermarking, but our schemes for ABE/PE are message-less
watermarking.

Watermarking user secret-keys v.s. master secret-keys. In GKM+ABE and
GKM+PE, we can watermark user secret-keys such as secret-keys for identities
(resp. policies) in IBE (resp. ABE). On the other hand, in our schemes, we can
watermark master secret-keys of tag-based encryption (TBE), KEM, IBE, ABE,
and PE. TBE is a variant of PKE. For signature/KEM/PKE cases, there is no
difference since master secret-keys are user secret-keys in these cases.

Security level. There are several security measures. (1) Ours for TBE/KEM
achieves CCA-security, but GKM+ABE and GKM+PE for PKE do not. (2)
GKM+PE and GKM+SIG are adaptively secure, but GKM+ABE and ours
are selectively secure in terms of public-key primitives. In terms of embedded
messages, GKM+ schemes are adaptively secure, but ours are selectively secure.
See Sec. 3 for selective security of watermarking. (3) All schemes are secure
even if the authority of watermarking setup is corrupted. (4) Regarding the
parameter on how much adversaries should preserve functionalities to succeed
attacks, GKM+ schemes are better than ours. (GKM+ is 1/poly(λ) while ours
is 1/2 + 1/poly(λ).) (5) We can consider three types of collusion-resistance in
this study.

Collusion-resistance w.r.t. cryptographic primitives: In security games
of cryptographic primitives, adversaries are often allowed to send queries to
master secret-key based oracles that gives additional information such as
signatures in the signature case and secret-keys for identities in the IBE case.
We say collusion-resistant w.r.t. cryptographic primitives if cryptographic
schemes are secure even in such a setting. Both GKM+SIG and our water-
marking schemes for signatures are collusion-resistant w.r.t. cryptographic
primitives. GKM+ABE and our watermarking schemes for encryption (IBE,
ABE, and PE) are collusion-resistant w.r.t. cryptographic primitives. On the
other hand, GKM+PE is bounded collusion-resistant w.r.t. cryptographic
primitives, where the number of queries is a-priori bounded.

Collusion-resistance w.r.t. watermarkable cryptographic primitives: We
say that a watermarking scheme is collusion-resistant w.r.t. watermarkable
cryptographic primitives if it is unremovable even if adversaries have access to
the master secret-key based oracle explained above in security games of water-
marking for public-key primitives. Both GKM+SIG and our schemes for sig-
nature are collusion-resistant w.r.t. watermarkable cryptographic primitives.
Our watermarking schemes for encryption (IBE, ABE, and PE) are collusion-
resistant w.r.t. watermarkable cryptographic primitives, but GKM+ABE
and GKM+PE schemes are not.

Collusion-resistance w.r.t. watermarking: We say that a watermarking
scheme is collusion-resistant w.r.t. watermarking (collusion-resistant water-
marking) if it is unremovable even if adversaries are given many watermarked
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keys for the same original key. GKM+ABE, GKM+PE, and GKM+SIG are
collusion-resistant watermarking, but ours are not.
We emphasize that even if watermarking schemes do not satisfy collusion-
resistance w.r.t. watermarking, they have an application to ownership identifi-
cation. This is because each user can use different keys in some settings, as we
can see in the application to electronic car-lock in Sec. 1.1. Moreover, collusion-
resistant watermarkable encryption is essentially the same as traitor tracing
(the definition by Goyal [27] for PKE implies traitor tracing).12 In some
scenarios (ownership identification), traitor tracing (and collusion-resistant
watermarking) is over-engineered. Thus, watermarking without collusion-
resistance w.r.t. watermarking is meaningful enough. Moreover, if we would
like to use collusion-resistant watermarkable PKE, we already have traitor
tracing schemes [14,29]. If we want to trace users in public-key primitives,
we can directly consider traceable primitives rather than collusion-resistant
watermarkable public-key primitives.
The construction technique by Goyal et al. relies on that of traitor trac-
ing [19,45] to achieve collusion-resistance w.r.t. watermarking.

Summary of comparison. We summarize watermarkable public-key primitives by
Goyal et al. [27] and ours in Tables 1 and 2. PE and ABE include PKE/IBE/IPE
as special cases. Notably, ours achieves CCA security for PKE. In addition,
our message-embedding scheme (Ours1 in Table 2) is much more efficient than
GKM+ABE and GKM+PE as we see in Table 1. In particular, the size of
secret-keys and ciphertexts in our scheme does not depend on `. If we use q-type
assumption, then even the size of master public key does not depend on `.

The disadvantages of Ours1 and Ours3 are (1) not collusion-resistant (2)
secret marking/extraction (3) selective security (4) watermarking for master
secret-keys (this is not a disadvantage for PKE and signature) (5) not supporting
functionalities beyond IBE. We do not have a useful application of watermarking
for master secret-keys in IBE/ABE/PE cases. On the other hand, all GKM+
constructions achieve collusion-resistance, watermarking for user secret keys,
and support functionalities beyond IBE. GKM+PE and GKM+SIG achieve
adaptive security. Although Ours2 is public marking/extraction and supports
functionalities beyond IBE, it is message-less type and watermarking for master
secret-keys. Therefore, GKM+ constructions and ours are incomparable.

More on related work. Cohen et al. gave the first positive result on program
watermarking by introducing the statistical functionality-preserving property [21].
They presented public extraction message-embedding watermarkable PRFs based
on IO. Subsequently, Kim and Wu [38,39] (KW17 and KW19) and Quach,
Wichs, and Zirdelis [46] (QWZ18) presented secret extraction message-embedding
watermarkable PRFs based on the LWE assumption. The KW19 and QWZ18

12Collusion-resistant watermarkable signatures may have an application to group
signatures. However, the application is non-trivial since we should be able to trace users
from signatures (not from signing keys) in the group signature setting.
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Table 2: Comparison of Watermarking (Advanced) Public-Key Encryption. WM, CR, prim., auth.,MO,
and XO stands for watermarking (or watermarkable), collusion-resistance, primitive, authority, marking
oracle, and extraction oracle, respectively.

GKM+ABE Ours1 Ours2 GKM+PE GKM+SIG Ours3

Primitive ABE PKEa/IBE ABE/IPE/PE PE SIG SIG
Assumption LWE DBDH/DLIN/LWE PKE OWF CDH/SIS

Message-embedding X X × X X X
Public mark × × X X X ×

AgainstMO attack X X X X X X
Public extraction × × X X X ×

Against XO attack bounded X X X X X
Separated setup × X X X X X
Marking MSK × X X × N/A N/A
Marking SK X × × X X X

CCA-secure PKE × Xa Xa × N/A N/A
CR w.r.t. prim. X X X bounded X X

CR w.r.t. WM prim. × X X × X X
CR w.r.t. WM X × N/A bounded X ×

Selective/Adaptive selective selective selective adaptive adaptive selective
Sec. against auth. X X X X X X

a TBE and KEM.

schemes are secure against extraction oracle attacks. In addition, QWZ18 scheme
is public marking. Regarding message-embedding watermarkable PRFs, KW17,
KW19, and QWZ18 schemes are relatively efficient since they are based on the
LWE assumption.

Baldimtsi, Kiayias, and Samari presented watermarking schemes for public-key
primitives in a relaxed model, where a trusted watermarking authority generates
not only watermarked keys but also unmarked keys and algorithms are stateful [7].
We do not compare their scheme because this is a weaker model.

Goyal et al. presented not only constructions but also rigorous definitions
of watermarkable public-key primitives and a relaxed functionality-preserving
property for watermarkable public-key primitives [27].13

Organization. In Sec. 2, we provide basic notions. Sec. 3 introduces the syntax
and security definitions of watermarking. Sec. 4 defines canonical ABO reductions
and gives examples of them. In Sec. 5, we present our message-less watermarking
scheme. In Sec. 6, we present our message-embedding watermarking scheme and
prove its security. Due to space limitations, we omitted many contents.

2 Preliminaries

We define some notations and introduce cryptographic notions in this section.
13Cohen et al. [20] considered watermarkable public-key primitives before Goyal et al.,

but even if a scheme satisfies their definitions, there exists simple attacks as observed
by Goyal et al. [27].
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Notations and basic concepts. If X (b) = {X(b)
λ }λ∈N for b ∈ {0, 1} are two en-

sembles of random variables indexed by λ ∈ N, we say that X (0) and X (1) are
computationally indistinguishable if for any PPT distinguisher D, there exists a
negligible function negl(λ), such that

∆ := |Pr[D(X(0)
λ ) = 1]− Pr[D(X(1)

λ ) = 1]| ≤ negl(λ).

We write X (0) c
≈ X (1) to denote that the advantage ∆ is negligible.

The statistical distance between X (0) and X (1) over a countable set S is
defined as ∆s(X (0),X (1)) := 1

2
∑
α∈S |Pr[X(0)

λ = α] − Pr[X(1)
λ = α]|. We say

that X (0) and X (1) are statistically/perfectly indistinguishable (denoted by
X (0) s

≈ X (1)/X (0) p
≈ X (1)) if ∆s(X (0),X (1)) ≤ negl(λ) and ∆s(X (0),X (1)) = 0,

respectively. We also say that X (0) is ε-close to X (1) if ∆s(X (0),X (1)) = ε.

Definition 2.1 (Circuit similarity). Let C be a circuit class whose input space
is {0, 1}`. For two circuits C,C ′ ∈ C and a non-decreasing function ε : N→ N,
we say that C is ε-close to C ′ if it holds that

Pr[C(x) 6= C ′(x) | x← {0, 1}`] ≤ ε. (denoted by C ∼=ε C
′)

Similarly, we say that C is ε-far to C ′ if it holds that

Pr[C(x) 6= C ′(x) | x← {0, 1}`] > ε. (denoted by C 6∼=ε C
′)

3 Definitions of Watermarking for Cryptographic
Primitives

In this section, we introduce the definitions of watermarking for cryptographic
primitives. Although our definitions basically follow those of Goyal et al. [27],
there are several differences.

We focus on cryptographic primitives that have a master parameter genera-
tion algorithm PGen and a master secret-key based algorithm MSKAlg in this
study. For example, in IBE/ABE/IPE, PGen is a setup algorithm Setup and
MSKAlg is a key generation algorithm for identity/attribute/policy KeyGen. In
TBE/KEM/signature, PGen is a key generation algorithm Gen and MSKAlg is
a decryption/signing algorithm Dec/Sign. Hereafter, we do not explicitly treat
KEM, but it is easy to adapt all definitions to the KEM setting. We formalize
the notion of master secret-key based cryptographic schemes as follows.

Definition 3.1 (Master secret-key based cryptographic scheme). A
master secret-key based cryptographic scheme Σ with spaces (T ,Q,P,Rmka) has
at least two algorithms PGen and MSKAlg.

Master parameter generation: PGen(1λ) takes as input the security param-
eter and outputs a master public parameter PP ∈ PP and a master secret
key MSK ∈MSK. We often omit spaces PP andMSK from Σ.
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Master secret-key based algorithm: MSKAlg(MSK, X) takes MSK and an
input X ∈ Q and outputs Y ∈ P. The randomness space of MSKAlg is Rmka.

We assume that MSK includes PP. Σ = (PGen,MSKAlg, . . .) has additional
algorithm other than PGen and MSKAlg. The space T is used in the security
game defined later.14

Remark 3.1. In Def. 3.1, an output by MSKAlg is typically a secret key for an
identity/policy X, signature for a message X. In the TBE case, X consists of a
tag and ciphertext, and Y is a plaintext. We can consider encryption, decryption,
and verification algorithms as additional algorithms. Def. 3.1 captures most
popular cryptographic schemes such as PKE, TBE, IBE, ABE, IPE, PE, FE,
signature, constrained signature.

Table 3: Concrete spaces and algorithms of master secret-key based cryptographic scheme.

tag-based PKE IBE SIG

T tag space T AG identity space ID message spaceMSG
Q tag and ciphertext space T AG × CT ID MSG
P plaintext space PT ∪ {⊥} secret key space SK signature space SIG
MSKAlg(MSK, ·) Dec(sk, ·) KeyGen(MSK, ·) Sign(sk, ·)

Definition 3.2 (Validity check algorithm for master secret-key based
cryptographic scheme). A master secret-key based cryptographic scheme Σ
with spaces (T ,Q,P,Rmka) can have an optional algorithm Valid-Out that takes
as inputs PP, X ∈ Q, and Y ∈ P and outputs >/⊥. For all (PP,MSK) ←
PGen(1λ) and all X ∈ Q, Valid-Out(PP, X, Y ) outputs > if and only if Y ←
MSKAlg(MSK, X).

Remark 3.2. Although we do not explicitly consider validity check algorithms in
signature and advanced encryption schemes, we can implement validity check
algorithms in most schemes (and all schemes in this paper). See examples in Sec-
tions 4.3 and 4.5. Note that Y is not necessarily unique since MSKAlg might be
a randomized algorithm.

Definition 3.3 (Watermarkable Public-Key Scheme). A watermarking
scheme with mark spaceMw for master secret-key based cryptographic scheme
Σ with spaces (T ,Q,P,Rmka) is a tuple of algorithms (WMSetup,Mark,Extract)
with the following properties:

14Jumping ahead, T is a space where adversaries select targets at the beginning of
security games.
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Setup: WMSetup(1λ) takes as input the security parameter and outputs a wa-
termarking public parameter wpp, a marking key wmk, and an extraction key
wxk.

Mark: Mark(wpp,wmk,MSK, ω) takes as input wpp, wmk, the master secret key
MSK ∈MSK of Σ, and a mark ω ∈Mw and outputs a deterministic circuit
C̃ : Q×Rmka → P. Note that C̃ explicitly takes the randomness of MSKAlg.

Extract: Extract(wpp,wxk,PP, C ′) takes as input wpp, wxk, the public param-
eter PP ∈ PP of Σ, and a circuit C ′ : Q×Rmka → P and outputs a mark
ω′ ∈Mw or a special symbol unmarked.

Remark 3.3. We can separately treat watermarking schemes and cryptographic
primitives in our definition while in the definition of Goyal et al. [27], key
generation algorithms of cryptographic primitives need public parameters of
watermarking. The separated definition is preferable and the same definition as
that of Cohen et al. [21].

Hereafter, we set wsk := wmk = wxk since we consider only two cases. One is
the public marking and extraction case (wmk = wxk = ⊥) and the other is the
secret marking and extraction case (wsk = wmk = wxk) in this paper.

Hereafter, we focus on advanced encryption (IBE, IPE, ABE, PE) rather
than TBE and signature for readability. Due to space limitations, we omit the
definitions for TBE and signature.

Definition 3.4 (Correctness (Advanced encryption)). Let WMΣ = (WMSetup,
Mark,Extract) be a watermarking scheme for advanced encryption scheme Σ =
(Setup,KeyGen,Enc,Dec) with spaces (T ,Q,P,Rmka). In this case, T = AT T ,
Q = POL, P = SK, where AT T and POL is an attribute and policy space,
respectively. We say that WMΣ is correct if it satisfies the following.

Extraction correctness: For all (wpp,wsk) ← WMSetup(1λ), all marks ω ∈
Mw,

Pr
[
Extract(wpp,wsk,PP, C̃) 6= ω

∣∣∣∣ (PP,MSK)← Setup(1λ)
C̃ ← Mark(wpp,wsk,MSK, ω)

]
≤ negl(λ).

Meaningfulness: There are two variants of meaningfulness.
Strong meaningfulness. For all fixed circuits C : POL×Rmka → SK,

Pr
[

Extract(wpp,wsk,PP, C)
= unmarked

∣∣∣∣ (wpp,wsk)←WMSetup(1λ)
(PP,MSK)← Setup(1λ)

]
> 1−negl(λ).

Weak meaningfulness. For all (wpp,wsk)←WMSetup(1λ),

Pr
[

Extract(wpp,wsk,PP,KeyGen(MSK, ·))
= unmarked

∣∣∣∣(PP,MSK)← Setup(1λ)
]
> 1−negl(λ).

Functionality-preserving: For all (wpp,wsk)←WMSetup(1λ), for all (PP,MSK)←
Setup(1λ), all marks ω ∈ Mw, there exists PS ⊂ AT T such that N :=
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|PS| ≤ poly(λ), for all ρmka ∈ Rmka, all attributes x ∈ AT T \ PS and all
policy P ∈ POL such that P(x) = >, we have that

Pr[C̃(P, ρmka)
p
≈ KeyGen(MSK,P) | C̃ ← Mark(wpp,wsk,MSK, ω)] > 1−negl(λ).

Here, PS stands for a “punctured set” since C̃ does not work for policy P
such that x ∈ PS and P(x) = ⊥.

Condition P(x) = ⊥ means attribute x is not qualified to policy P.

In the IBE case, T = Q = ID (identity space), P = idi, x = id, and P(x) = ⊥
means idi 6= id.

Remark 3.4. Although our definition has a few differences from the standard
functionality preserving in the cryptographic watermarking context [21,38] on the
surface, ours is basically the same as the standard one. We select the definition
above to emphasize that there exists a punctured set PS, and the set is explicitly
used in the security definition.

In addition, this functionality-preserving is stronger than that by Goyal et al. [27]
since the output distribution of marked circuits is perfectly the same as that of
the original circuit on almost all inputs.

Definition 3.5 (Selective-Mark ε-Unremovability for Advanced Encryp-
tion). For every PPT A, we have

Pr[Expurmv-enc
A,WMΣ

(λ, ε) = 1] ≤ negl(λ),

where ε is a parameter of the scheme called the approximation factor and
Expurmv-enc
A,WMΣ

(λ, ε) is the game defined as follows.

1. The adversary A declares a target mark ω∗ ∈Mw.
2. The challenger generates (PP,MSK)← Setup(1λ), (wpp,wsk)←WMSetup(1λ),

and C̃ ← Mark(wpp,wsk,MSK, ω∗), and gives (PP,wpp, C̃) to A. At this
point, a set PS ⊂ T such that |PS| = poly(λ) is uniquely determined by
(wpp,wsk,PP, ω∗).

3. A has oracle access to the key generation oracle KO. If KO is queried with
a policy P ∈ POL such that P(t∗i ) = ⊥ for all t∗i ∈ PS, then KO answers
with KeyGen(MSK,P). Otherwise, it answers ⊥. Condition P(x) = ⊥ means
attribute x is not qualified to policy P.

4. A has oracle access to the marking oracle MO. If MO is queried with
a master secret key MSK′ ∈ MSK and a mark ω′ ∈ Mw, then does the
following. If the corresponding master public parameter PP′ is equal to PP,
then outputs ⊥. Otherwise, answers with Mark(wpp,wsk,MSK′, ω′).

5. A has oracle access to the extraction oracle XO. If XO is queried with a PP′
and circuit C ′, then XO answers with Extract(wpp,wsk,PP′, C ′).

6. Finally, A outputs a circuit C∗. If A is admissible (defined below) and
Extract(wpp,wsk,PP, C∗) 6= ω∗ then the experiment outputs 1, otherwise 0.
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We say that A is ε-admissible if C∗ output by A in the experiment above satisfies

Pr
[
Valid-Out(PP,P, C∗(P, ρmka)) = >

∣∣∣∣ P← POL
ρmka ← Rmka

]
≥ ε.

See Def. 3.2 for Valid-Out.

The admissibility requires the adversary to output C∗ that agrees on an
ε fraction of inputs with C. This formalizes that C∗ should be similar to the
original circuit C.

Remark 3.5. Our definition is the same as that of Goyal et al. [27] except for
that

1. A must declare the target mark ω at the beginning of the game.
2. A does not receives answers for inputs in PS from the key generation oracle.
3. we do not consider collusion-resistance w.r.t. watermarking. That is, A is

given only one target circuit C̃.
4. we consider the oracles KO in the unremovability game while Goyal et al. do

not.
5. we consider watermarking for master secret-keys. Thus, the admissible con-

dition for advanced encryption (i.e., beyond PKE or TBE) is in terms of
Valid-Out.

Unforgeability. We can consider another security notion for watermarking, called
unforgeability [21,12,38], in the secret marking setting. Unforgeability says that
adversaries cannot generate a marked circuit with sufficiently different function-
ality from that of given marked circuits without a marking key.

We do not formally define unforgeability in this work as Goyal et al. did
not. However, we can achieve unforgeability by embedding not only a mark but
also a signature for the embedded mark and master public key as Goyal et al.
observed [27].15

On security against malicious authority. Our watermarkable public-key primitives
are trivially secure against authorities of watermarking schemes if the underlying
public-key primitives are secure since parameter generation algorithms PGen are
independent of watermarking setup algorithms WMSetup. Thus, we omit the
definition of security against malicious authority.

4 All-But-One Reductions

In this section, we formalize a class of security reductions, called canonical all-
but-one (ABO) reductions. Canonical ABO reductions are often used to prove
the hardness of breaking many cryptographic primitives. A typical example
is the security reduction of Boneh-Boyen IBE based on the decisional bilinear
Diffie-Hellman assumption [9].

15ePrint archive report 2019/628, Section 3.4 and C.4 (version 20190908).
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4.1 Assumptions and Security Games

We need to define cryptographic assumptions and security games before we
formalize canonical ABO reductions. The types of reductions depend on whether
security games and underlying cryptographic assumptions are computational or
decisional. Therefore, we consider two types of assumptions and games. However,
we focus on the decisional case in the main body for readability. See the full
version for the computational case.

Definition 4.1 (Decisional assumption). A decisional assumption DA for
problem Π is formalized by a game between the challenger E and the adversary
A. The problem Π consists of an efficient problem sampling algorithm PSampleb
for b ∈ {0, 1}. The game ExptDA

Π,E↔A(λ, b) is formalized as follows.

– On input security parameter λ, E samples a problem instance πb ← PSampleb(1λ).
– E sends πb to A and may interact with A(1λ, πb).
– At some point, A outputs a guess coin∗ and the game outputs coin∗.

We say a decisional assumption holds (or problem Π is hard) if it holds

AdvDA
Π,E↔A(λ) := |Pr[ExptDA

Π,E↔A(λ, 0) = 1]−Pr[ExptDA
Π,E↔A(λ, 1) = 1]| ≤ negl(λ).

This definition captures the well-known DDH, DBDH, k-Lin, matrix-DDH,
quadratic residuosity, LWE, decisional q-type assumptions (and more). Note that
the assumption above also captures interactive oracle assumptions since A may
interact with the challenger that plays the role of oracles.

Definition 4.2 (Selective Security Game (Decisional Case)). We define
selective security games (decisional case) between a challenger C and an adversary
A for a master secret-key based scheme Σ with spaces (T ,Q,P,Rmka) associated
with challenge space H, challenge answer space I, and admissible condition Adml.
(See Table 4 for concrete examples.) The admissible condition Adml outputs > or
⊥ depending on whether a query is allowed or not.

We define the experiment Expd-goal-atk
A,Σ (λ, coin) between an adversary A and a

challenger as follows.

1. A submits a target t∗ ∈ T to the challenger.
2. The challenger runs (PP,MSK)← PGen(1λ), and gives PP to A.
3. A sends a query query ∈ Q to the challenger. If Adml(t∗, query) = >, the

challenger sends an answer answer ← MSKAlg(MSK, query) to A. On the
other hand, if Adml(t∗, query) = ⊥, the challenger outputs ⊥. (A can send
polynomially many queries.)

4. At some point, A sends a challenge challenge ∈ H to the challenger. The chal-
lenger generates a challenge answer c-ans∗ ∈ I by using (t∗,PP, challenge, coin)
(denoted by Ca(t∗,PP, challenge, coin)) and sends c-ans∗ to A.

5. Again, A is allowed to query (polynomially many) query ∈ Q such that
Adml(t∗, query) = >.

6. A outputs a guess coin∗ for coin. The experiment outputs coin∗.
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We say that Σ is secure if for all A, it holds that

Advd-goal-atk
A,Σ (λ) := |Pr[Expd-goal-atk

A,Σ (λ, 0) = 1]− Pr[Expd-goal-atk
A,Σ (λ, 1) = 1]| ≤ negl(λ).

We say an adversary is successful if the advantage is non-negligible. We can
consider the multi-challenge case, where the targets are ~t∗ ∈ T N instead of the
single t∗.

A concrete example of Adml(t∗, query) is Adml(t∗, query) = > if and only if t∗ 6=
t where query = t in the signature/TBE/IBE cases (t is a message/tag/identity).

Although we can consider a stronger variant, called adaptive security games,
we consider only selective security games since ABO reductions are basically
applicable in the selective setting.

4.2 Abstraction of All-But-One Reductions for Decisional Case

Now, we are ready to define ABO reductions for the decisional case. We put red
underlines on the parts related to “canonical” parts.

First, we present a simplified definition that does not capture the TBE/KEM
case for readability.
Definition 4.3 (Canonical All-But-One Reduction for Decisional Case
(Simplified)). Let Σ be a master secret-key based scheme with (T ,Q,P,Rmka)
associated with challenge space H, challenge answer space I, and admissible con-
dition Adml. (See Table 4 for concrete examples.) A security reduction algorithm
R from Σ to a hard problem Π is a canonical all-but-one reduction (or Σ has a
canonical all-but-one reduction to Π) if it satisfies the following properties.

Oracle access: A has oracle access to OMSK : Q → P in the security game
Expd-goal-atk
A,Σ . This oracle receives a query query ∈ Q and does the following. If

Adml(t∗, query) = >, where t∗ is defined below, it sends an answer answer←
MSKAlg(MSK, query) to A. On the other hand, if Adml(t∗, query) = ⊥, it
outputs ⊥.

Selective reduction: R simulates the security game Expd-goal-atk
A,Σ of Σ between

the challenger C and the adversary A to win the game ExptDA
Π,E↔R. That is,

R plays the role of the challenger C in Expd-goal-atk
A,Σ and that of the adversary

in ExptDA
Π,E↔R.

1. A declares an arbitrary string t∗ ∈ T at the very begnning of the game
and send t∗ to R. (We can allow R to determine t∗ in some security
games.)

2. R is given a problem instance π of the hard problem Π.
3. R simulates public parameters PP of Σ by using π and t∗ and sends PP

to A.
4. R simulates an oracle OMSK of the security game of Σ when A sends

oracle queries. That is, when A sends a query query ∈ Q, R simulates
the value OMSK(query) and returns a simulated value answer ∈ P to A.
If Adml(t∗, query) = ⊥, then R outputs ⊥.
At the oracle simulation phase, R never interacts with E.
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5. At some point, A sends a challenge query challenge ∈ H to R.
6. R chooses coin← {0, 1} and simulates a challenge answer c-ans∗ ∈ I of
Ca(PP, t∗, challenge, b) by using (π,PP, t∗, challenge, coin). It sends c-ans∗
to A. R is allowed to interact with E at this phase.

7. We can allow A to send queries to OMSK again. At some point, A outputs
coin∗.

8. Finally, R outputs a bit sol := 0 if coin = coin∗. Otherwise (coin 6= coin∗),
outputs sol := 1.

R consists of three algorithms (PSim,OSim,CSim) introduced below.
All-but-one oracle simulation: R can perfectly simulate the public parameter

of Σ and the oracle OMSK. That is, there exist parameter and oracle simulation
algorithms PSim and OSim such that for all (PP,MSK) ← PGen(1λ), b ∈
{0, 1}, π ← PSampleb(1λ), t∗ ∈ T , and query ∈ Q where Adml(t∗, query) = >,
it holds that

PSim(π, t∗; ρ)
p
≈ PP,

OSim(π, ρ, t∗, query)
p
≈ OMSK(query),

where ρ is the randomness of PSim. Note that a query query such that
Adml(t∗, query) = ⊥ is not allowed in the selective security game of Σ.
In particular, OSim
– is described as a stateless randomized algorithm.
– does not have any oracle access.

Challenge simulation Let ρ be the randomness used by PSim. R does all the
steps from (1) to (5) in the selective reduction above and can simulate the
challenge answer for the challenge query from A. That is, there exists a
challenge simulation algorithm CSim such that in the selective game above,
if π0 ← PSample0(1λ), then R perfectly simulates Expd-goal-atk

A,Σ (λ, coin) and it
holds that

CSim(π0, ρ, t
∗, challenge, coin)

p
≈ Ca(PP, t∗, challenge, coin).

In addition, if π1 ← PSample1(1λ), then the output of CSim(π1, ρ, t
∗, challenge,

coin) is a valid challenge answer, but independent of coin and Pr[coin =
coin∗] = 1

2 . This property immediately implies

AdvDA
Π,E↔R(λ) ≥ 1

2Advd-goal-atk
A,Σ (λ).

Due to space limitations, we omit the proof.
Answer checkability: There exists an efficient validity check algorithm Valid

for Q such that for all (PP,MSK) ← PGen(1λ), query ← Q, answer ←
OMSK(query),

Pr[Valid(PP, query, answer) = >] = 1− negl(λ).

On the other hand, for all b ∈ {0, 1}, π ← PSampleb(1λ), t∗ ∈ T , PP ←
PSim(π, t∗; ρ), query such that Adml(t∗, query) = ⊥,

Pr[Valid(PP, query,OSim(π, ρ, t∗, query)) = >] ≤ negl(λ).
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Attack substitution: R can solve a problem π if we have a valid answer
answer∗ ∈ P for query∗ ∈ Q such that Adml(t∗, query∗) = ⊥ (i.e., in-
admissible query) instead of a successful adversary A in the selective re-
duction. That is, there exists an efficient algorithm Solve such that for all
b ∈ {0, 1}, π ← PSampleb(1λ), t∗ ∈ T , query∗ ∈ Q, answer∗ ∈ P such
that Valid(PP, query∗, answer∗) = > and Adml(t∗, query∗) = ⊥, we have that
Solve(π, ρ, t∗, query∗, answer∗) outputs sol for π and

AdvDA
Π,E↔R(λ) > negl(λ),

where ρ is the randomnesses to sample PP in the selective reduction.
Problem instance simulation: We can perfectly simulate a problem instance

and randomness used to generate PP in PSim if we have a master secret key
of Σ. That is, there exists an efficient algorithm MSKtoP such that for all
(PP,MSK)← PGen(1λ), π ← PSample0(1λ), all ρ← RPSim, and all t∗ ∈ T ,

(π′, ρ′,PP)
p
≈ (π, ρ,PP′),

where (π′, ρ′)← MSKtoP(1λ,MSK, t∗), PP′ = PSim(π, t∗; ρ), ρ′ is a random-
ness to simulate PP via PSim, and RPSim is the randomness space of PSim.
We can relax this condition to statistical indistinguishability for uniformly
random t∗ (instead of all t∗ ∈ T ).

On canonical property. As we can see in concrete examples (not only) in Sec-
tions 4.3 and 4.5 (but also in many works), well-known selectively secure schemes
have canonical ABO reductions. If a scheme has a reduction that must interact
with the challenger in an assumption to simulate OMSK, then the reduction is
not canonical. Interestingly, even if a reduction is allowed to interact with the
challenger, the reduction could be canonical as long as the reduction does not need
the interaction for simulating OMSK. More specifically, a canonical reduction is
allowed to interact with the challenger in the assumption to simulate a challenge
answer. See the full version for such an example.

Due to space limtations, we omit the general definition of canonical ABO
reductions that also captures the TBE case.

Table 4 shows concrete example of spaces and oracles for various cryptographic
primitives.

On validity check algorithm. The validity check algorithm in Def. 4.3 verifies
that a value in P is a correct value for input query ∈ Q. Let ρmka ← Rmka and
answer = C(query, ρmka). Then, Valid is described as follows.

Valid(PP, query, ρq, answer) :=Valid-Out(PP, str, C(str, ρmka)) SIG/IBE/ABE

4.3 Concrete Examples
First, we list the references of well-known schemes that fall into the class of
canonical ABO reductions [13,9,49,37,30,11,17,6,2,53,3,40,25,10,26]. Note that
this is not the exhaustive list.
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Table 4: Concrete sets, oracle, and admissible condition of ABO reductions for encryption.

ABO reduction tag-based PKE IBE KP-ABE

T tag space T AG identity space ID attribute space AT T
Q tag space T AG identity space ID policy space POL
P plaintext space PT ∪ {⊥} secret key space SK secret key space SK
H plaintext space PT 2 plaintext space PT 2 plaintext space PT 2

I T AG × CT CT CT
OMSK dec oracle Dec(dk, ·) key oracle KeyGen(MSK, ·) key oracle KeyGen(MSK, ·)
Adml(·, ·) = > t∗ 6= t t∗ 6= id P(t∗) = ⊥

Next, we present concrete examples by picking up well-known selectively
secure schemes. We often omit parameters if it is clear from the context.

Example 4.1 (Boneh-Boyen IBE). The Boneh-Boyen IBE scheme BB consists
of the following algorithms.

Setup(1λ) :
– Generate params := (p,G,GT , e,G)← Gbmp(1λ).
– Choose x, y ← Zp and h← Zp and set G1 := Gx, G2 := Gy, H := Gh.
– Output MPK := (params, G,G1, G2, H) and MSK := (MPK, x, y, h).

KeyGen(MSK, id) :
– For id ∈ Zp, choose r ← Zp and output SKid := (Gx2(Gid

1 ·H)r, Gr).
Enc(MPK,m) :

– For M ∈ GT , choose s← Zp and output CT := (e(G1, G2)s ·M,Gs, (Gid
1 ·

H)s).
Dec(SKid,CT) :

– Parse skid = (D1, D2) and CT = (C0, C1, C2), output C0 · e(C2, D2) ·
e(C1, D1)−1.

The reduction algorithm R of BB IBE scheme consists of three algorithms
(PSim,OSim,CSim). Below, we let π := (G,Gx, Gy, Gz, T ), t∗ := id∗, query := idi,
query := ⊥, ρq := ⊥, challenge := (M0,M1), be a DBDH instance, the target
identity, a query to the key generation oracle, a sub-query, the randomness to
sample query ∈ Qaux, the challenge messages, respectively.

PSim(π, t∗): This algorithm is given a DBDH instance π and a target identity
t∗ = id∗ and simulate MPK. It chooses β ← Zp, sets G1 := Gx, G2 := Gy,
and H := G−id∗

1 ·Gβ , and outputs MPK := (G,G1, G2, H). The randomness
ρ of this algorithm is ρ := β

OSim(π, ρ, t∗, query): This algorithms simulate secret keys for identity query =
idi ∈ Zp such that idi 6= id∗ = t∗. It parses ρ = β, chooses r ← Zp and
outputs SKidi = (D1, D2) where

D1 := G
−β

idi−id∗

2 (Gidi
1 H)r, D2 := G

−1
idi−id∗

2 Gr.

The randomness ρo of this algorithm is ρo = r.



24 R. Nishimaki

CSim(π, ρ, t∗, challenge, coin): This algorithms simulate a challenge ciphertext for
challenge = (M0,M1) under identity t∗ = id∗. It parses ρ = β and outputs

CT∗ := (Mcoin · T,Gz, (Gz)β).

The auxiliary ABO reduction algorithms of BB IBE scheme consists of three
algorithms (Valid,Solve,MSKtoP).

Valid(MPK, query, ρq, answer): This algorithm parses MPK = (G,G1, G2, H), query
= (id,⊥), ρq = ⊥, and answer = (D1, D2) (this is secret key SKid for identity
id) and checks

e(G,D1) = e(G1, G2) · e(Gid
1 H,D2). (1)

If it holds, then output >. Otherwise, outputs ⊥.
Solve(π, ρ, t∗, query∗, ρq, answer∗): First, this algorithm parses id∗ = t∗, query∗ =

(id∗,⊥), ρ = β, and ρq = ⊥. It chooses M0,M1 and coin ← {0, 1} and
computes

CT∗ := (Mcoin · T,Gz, (Gz)β).

(this is the same as the output of CSim(π, ρ, t∗, challenge, coin)). Then, it
parses answer∗ = (Gx2(Gid∗

1 H)r, Gr) and decrypts CT∗ by using (Gx2(Gid∗
1 H)r, Gr).

If it obtains Mcoin, then outputs 0, otherwise 1.
MSKtoP(1λ,MSK, t∗): First, this algorithms parses MSK = (MPK, x, y, h), chooses

z ← Zp, and computes β := x · id∗ + h. Then, it outputs π := (G,Gx, Gy, Gz,
e(G,G)xyz) and ρ′ := β = x · id∗ + h.

Theorem 4.1. Boneh-Boyen IBE scheme has a canocanil ABO reduction to the
DBDH problem.

Due to space limitations, we omit the proof.

4.4 All-But-N Reductions

We can extend canonical ABO reductions to canonical all-but-N (ABN) reduc-
tions. Here, N is an a-priori bounded/unbounded polynomial of the security
parameter. Roughly speaking, a canonical ABN reduction punctures N points
~t∗ = (t∗1, . . . , t∗N ) ∈ T N in a master secret-key based algorithm MSKAlg instead
of a single point t∗.

We omit the definition due to space limitations. Basically, we simply replace
a signle point t∗ with N points ~t∗ = (t∗1, . . . , t∗N ) and require Adml(t∗i , query) = >
for all i ∈ [N ] for admissible queries. See the full version for details.

4.5 Concrete Examples of canonical ABN Reductions

It is easy to extend ABO reductions to ABN reductions for pairing-based schemes
by using (weak) programmable hash functions [33,32]. Due to space limitations, we
omit details. We can obtain the modified Boneh-Boyen IBE scheme, which has a
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canonical all-but-N reduction, by using programmable hash Hw(X) :=
∏n
i=0 H

Xi

i

where the hash key is (H0, H1, . . . ,HN ) instead of the Boneh-Boyen hash function
HBB(X) := GX1 H where the hash key is (G1, H).

The rough idea is as follows. The ABN reduction is given a DBDH instance
π = (G,Gx, Gy, Gz, T ) and target identities ~t∗ = ~id∗ = (id∗1, . . . , id

∗
N ), and

simulates MPK. It chooses id∗0 ← Zp and (β0, . . . , βN ) ← ZN+1
p , and computes

(α0, . . . , αN ) such that
∑N
i=0 αi ·ti =

∏N
i=0(t−id∗i ) ∈ Zp[t]. Then, it sets G1 := Gx,

G2 := Gy, and Hi := Gαi1 · Gβi , and outputs MPK := (G,Gx, G2, H0, . . . ,HN ).
By this parameter setting, we can implement canonical ABN reductions in a
simlar way to the ABO reduction of Boneh-Boyen IBE. See the full version for
detail.

5 Message-Less Watermarking via Canonical
ABO-reductions

In this section, we present a message-less watermarking scheme from all-but-one
reductions. We focus on using canonical ABO reductions for the decisional case.
It is easy to adapt that for the computational case, so we omit it.

First, we present our watermarking scheme WMΣ = (WMSetup,Mark,Extract)
for Σ. Let MSK be a master secret-key generated by the setup algorithm of Σ.
WMΣ is a public mark and public extraction scheme. Thus, we do not need
watermarking secret-key wsk.

WMSetup(1λ):
– Choose t∗ ← T and output wpp := t∗.

Mark(wpp,MSK):
– Read MSK and generate (π′, ρ′)← MSKtoP(1λ,MSK, t∗).
– Generate a circuit f̃Σ [π′, ρ′, t∗] described in Fig. 3.

Extract(wpp,PP, C ′):
– Choose query← Q such that Adml(t∗, query) = >.
– Sample ρo ← Rmka and compute answer ← C ′(query, ρo).
– Check Valid(PP, query, answer) ?= >. If the equation holds, then output

unmarked. Otherwise, marked.

Marked master secret-key f̃Σ [π′, ρ′, t∗]

Hardwired: π′, ρ′, t∗.
Input: An input query ∈ Q to MSKAlg and randomness ρo ∈ Rmka.
Procedure: Compute and output answer← OSim(π′, ρ′, t∗, query; ρo).

Fig. 3: The description of f̃Σ
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Remark 5.1. Even a useless circuit that outputs ⊥ for all inputs is marked in the
watermarking scheme above since Valid(PP, query, ρq,⊥) = ⊥ for any PP, query,
and ρq. To prevent this trivial watermarking, we need to check whether a circuit
is similar to a master secret-key based algorithm whose corresponding master
public parameter is PP. Although we omit this checking procedure for simplicity
here (our final goal is achieving message-embedding schemes), we present test
algorithms for this check in Sec. 6.
Theorem 5.1. Let Σ be a master secret-key based scheme with (T ,Q,P,Rmka)
associated with sub-query space Qt, aux-query space Qaux, challenge space H,
challenge answer space I, and admissible condition Adml. If Σ has a canonical
all-but-one reduction to a hard problem Π, then there exists a message-less
watermarking scheme WMΣ for master secret-keys of Σ and WM satisfies Def. 3.5
with parameter ε = 1/poly(λ) under the assumption that Π is hard.

The intuition of security is that adversaries cannot recover the functionality
of MSKAlg(MSK, ·) for input t∗ from the oracle simulation algorithm OSim since
OSim is punctured at t∗ (explained in Sec. 1.3). Due to space limitations, we
omit the proof.

6 Message-Embedding Watermarking via Canonical
ABN-reductions

In this section, we present a message-embedding watermarking scheme from
canonical all-but-N reductions.

6.1 How to Test Circuit Similarity
Before we describe our message-embedding watermarking scheme, we present
how to test a circuit is similar to the original circuit to be watermarked.

Test circuits by master public parameters. We define test algorithms Test de-
scribed in Fig. 4 to verify that a circuit C ′ is close to a master secret-key based
algorithm whose master secret key is MSK that corresponds to a master public
parameter PP. We have two versions of Test since there are a few differences
between one for signature/IBE/ABE/IPE/PE and one for TBE. However, we
omit that of TBE due to space limitations. We set parameters 0 < ε1 < ε2 < 1/2
where ε2 − ε1 > 1/poly(λ).
Theorem 6.1. Assume that 0 < ε1 < ε2 < 1/2 where ε2 − ε1 > 1/poly(λ). For
all (PP,MSK)← PGen(1λ),
– For all C ′(·, ·) ∼=ε1 MSKAlg(MSK, ·; ·), Pr[Test(PP, C ′) = >] ≥ 1− negl(λ).
– For all C ′(·, ·) 6∼=ε2 MSKAlg(MSK, ·; ·), Pr[Test(PP, C ′) = >] ≤ negl(λ).
We omit the proof due to space limitations.
By the theorem, we can verify whether C ′(·, ·) ∼=ε1 MSKAlg(MSK, ·; ·) or not

if ε1 = 1/2− 1/poly(λ). That is, if the adversary A in ε-unremovability game is
ε-admissible where ε = 1/2 + 1/poly(λ), then the circuit C∗ output by A passes
the test.
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Inputs: A public parameter PP and a circuit C′.
Parameters: δ := (ε2 − ε1)/2, S := λ/δ2, ε := (ε1 + ε2)/2.

Set cnt := 0. For i = 1, . . . , S, do

1. Choose zi ← Q and ρi ←Rmka.
2. If Valid-Out(PP, zi, C′(zi, ρi)) = ⊥, then sets cnt := cnt + 1.

If cnt ≤ εS, then output >. Otherwise ⊥.

Fig. 4: Test algorithm Test for IBE or signature

6.2 Message-Embedding Scheme

We present our message-embedding watermarking scheme msWMΣ = (WMSetup,
Mark,Extract) for Σ. We consider none of ABE, IPE, and PE for the message-
embedding scheme since we do not have (canonical) ABN reductions of them.
Thus, T = Qt in the rest of this section. Note that we implicitly assume that the
master secret key MSK of Σ includes the corresponding public parameter PP.
We use a PRF (PRF.Gen,PRF.Eval) such that PRF.Eval(K, ·) : {0, 1}|PP| × [`]×
{0, 1} → T T . We show only for the decisional case, but it is easy to adapt to the
computational case.

WMSetup(1λ):
– Let T := λ.
– Generate K ← PRF.Gen(1λ) and set wpp := ⊥ and wsk := K. We omit

wpp hereafter since it is ⊥.
Mark(wsk,MSK, ω):

– Compute ti = (t(1)
i , . . . , t

(T )
i ) ← PRF.Eval(K, (PP, i, ωi)) for i ∈ [`] and

set tω := {ti}i∈[`].
– Read MSK and generate (π′, ρ′)← MSKtoP(1λ,MSK, tω).
– Generate a circuit f̃Σ [π′, ρ′, tω] described in Fig. 5.

Extract(wsk,PP, C ′):
– Compute bPP ← Test(PP, C ′). If bPP = ⊥, then output Invalid-Key and

halt. Otherwise, do the following steps.
– Compute t̃i,b = (t̃(1)

i,b , . . . , t̃
(T )
i,b ) ← PRF.Eval(K, (PP, i, b)) for i ∈ [`] and

b ∈ {0, 1}.
– For i ∈ [`], b ∈ {0, 1}, set query(j)

i,b := t̃
(j)
i,b , compute answer(j)

i,b ← C ′(query(j)
i,b , ρo,j).

Let N̂i,b be the number of indices j ∈ [T ] such that Valid(PP, query(j)
i,b , answer(j)

i,b ) =
⊥.
• If there exists an index i ∈ [`] where N̂i,0, N̂i,1 < T or N̂i,0 = N̂i,1 = T ,
then output ⊥.

• Otherwise, for each i ∈ [`], let ω′i ∈ {0, 1} be the unique bit where
N̂i,ω′

i
= T ∧ N̂i,1−ω′

i
< T and output ω′ := ω′1 . . . ω

′
`.
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Marked master secret-key f̃Σ [π′, ρ′, tω]

Hardwired: π′, ρ′, tω.
Input: An input query ∈ Q to MSKAlg and randomness ρo ∈ Rmka.
Procedure: Compute and output answer← OSim(π′, ρ′, tω, query; ρo).

Fig. 5: The description of f̃Σ

Theorem 6.2. Let Σ be a master secret-key based scheme with (T ,Q,P,Rmka)
associated with challenge space H, challenge answer space I, and admissible
condition Adml. If Σ has a canonical all-but-N reduction to a hard problem Π and
PRF is a PRF where N = `λ, then there exists a message-embedding watermarking
scheme msWMΣ for master secret keys of Σ and msWMΣ satisfies Def. 3.5 with
parameter ε = 1/2 + 1/poly(λ) under the assumption that Π is hard.

Due to space limitations, we omit the proof.
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