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Abstract. Information-theoretic private information retrieval (PIR)
schemes have attractive concrete efficiency features. However, in the
standard PIR model, the computational complexity of the servers must
scale linearly with the database size.
We study the possibility of bypassing this limitation in the case where the
database is a truth table of a “simple” function, such as a union of (multi-
dimensional) intervals or convex shapes, a decision tree, or a DNF formula.
This question is motivated by the goal of obtaining lightweight homomor-
phic secret sharing (HSS) schemes and secure multiparty computation
(MPC) protocols for the corresponding families.
We obtain both positive and negative results. For “first-generation” PIR
schemes based on Reed-Muller codes, we obtain computational shortcuts
for the above function families, with the exception of DNF formulas for
which we show a (conditional) hardness result. For “third-generation”
PIR schemes based on matching vectors, we obtain stronger hardness
results that apply to all of the above families. Our positive results yield
new information-theoretic HSS schemes and MPC protocols with at-
tractive efficiency features for simple but useful function families. Our
negative results establish new connections between information-theoretic
cryptography and fine-grained complexity.

1 Introduction

Secure multiparty computation (MPC) [61,49,15,27] allows two or more parties to
compute a function of their secret inputs while only revealing the output. Much of
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the large body of research on MPC is focused on minimizing communication com-
plexity, which often forms an efficiency bottleneck. In the setting of computational
security, fully homomorphic encryption (FHE) essentially settles the main ques-
tions about asymptotic communication complexity of MPC [46,24,47,23]. However,
the information-theoretic (IT) analog of the question, i.e., how communication-
efficient IT MPC protocols can be, remains wide open, with very limited negative
results [45,53,38,37,2,35,5]. These imply superlinear lower bounds only when the
number of parties grows with the total input length. Here we will mostly restrict
our attention to the simple case of a constant number of parties with security
against a single, passively corrupted, party.

On the upper bounds front, the communication complexity of classical IT
MPC protocols from [15,27] scales linearly with the circuit size of the function
f being computed. With few exceptions, the circuit size remains a barrier even
today. One kind of exceptions includes functions f whose (probabilistic) degree is
smaller than the number of parties [9,6]. Another exception includes protocols that
have access to a trusted source of correlated randomness [53,36,32,20]. Finally,
a very broad class of exceptions that applies in the standard model includes
“complex” functions, whose circuit size is super-polynomial in the input length. For
instance, the minimal circuit size of most Boolean functions f : {0, 1}n → {0, 1}
is 2Ω̃(n). However, all such functions admit a 3-party IT MPC protocol with
only 2Õ(

√
n) bits of communication [43,10]. This means that for most functions,

communication is super-polynomially smaller than the circuit size. Curiously, the
computational complexity of such protocols is bigger than 2n even if f has circuits
of size 2o(n). These kind of gaps between communication and computation will
be in the center of the present work.

Beyond the theoretical interest in the asymptotic complexity of IT MPC
protocols, they also have appealing concrete efficiency features. Indeed, typical
implementations of IT MPC protocols in the honest-majority setting are faster by
orders of magnitude than those of similar computationally secure protocols for the
setting of dishonest majority.4 Even when considering communication complexity
alone, where powerful tools such as FHE asymptotically dominate existing IT
MPC techniques, the latter can still have better concrete communication costs
when the inputs are relatively short. These potential advantages of IT MPC
techniques serve to further motivate this work.

1.1 Homomorphic Secret Sharing and Private Information Retrieval

We focus on low-communication MPC in a simple client-server setting, which is
captured by the notion of homomorphic secret sharing (HSS) [16,18,21]. HSS can
be viewed as a relaxation of FHE which, unlike FHE, exists in the IT setting. In
an HSS scheme, a client shares a secret input x ∈ {0, 1}n between k servers. The
servers, given a function f from some family F , can locally apply an evaluation
4 It is often useful to combine an IT protocol with a lightweight use of symmetric
cryptography in order to reduce communication costs (see, e.g.,[48,33,3]); we will use
such a hybrid approach in the context of optimizing concrete efficiency.
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function on their input shares, and send the resulting output shares to the client.
Given the k output shares, the client should recover f(x). In the process, the
servers should learn nothing about x, as long as at most t of them collude.

As in the case of MPC, we assume by default that t = 1 and consider a
constant number of servers k ≥ 2. A crucial feature of HSS schemes is compactness
of output shares, typically requiring their size to scale linearly with the output size
of f and independently of the complexity of f . This makes HSS a good building
block for low-communication MPC. Indeed, HSS schemes can be converted into
MPC protocols with comparable efficiency by distributing the input generation
and output reconstruction [18].

An important special case of HSS is (multi-server) private information retrieval
(PIR) [29]. A PIR scheme allows a client to retrieve a single bit from an N -bit
database, which is replicated among k ≥ 2 servers, such that no server (more
generally, no t servers) learns the identity of the retrieved bit. A PIR scheme
with database size N = 2n can be seen as an HSS scheme for the family F of all
functions f : {0, 1}n → {0, 1}.

PIR in the IT setting has been the subject of a large body of work; see
[63] for a partial survey. Known IT PIR schemes can be roughly classified into
three generations. The first-generation schemes, originating from the work of
Chor et al. [29], are based on Reed-Muller codes. In these schemes the com-
munication complexity is N1/Θ(k). In the second-generation schemes [13], the
exponent vanishes super-linearly with k, but is still constant for any fixed k.
Finally, the third-generation schemes, originating the works of Yekhanin [62]
and Efremenko [43], have sub-polynomial communication complexity of No(1)

with only k = 3 servers or even k = 2 servers [41]. (An advantage of the 3-server
schemes is that the server answer size is constant.) These schemes are based on a
nontrivial combinatorial object called a matching vectors (MV) family.

As noted above, a PIR scheme with database size N = 2n can be viewed as
an HSS scheme for the family F of all functions f (in truth-table representation).
Our work is motivated by the goal of extending this to more expressive (and
succinct) function representations. While a lot of recent progress has been made
on the computational variant of the problem for functions represented by circuits
or branching programs [17,18,39,44,54,22], almost no progress has been made for
IT HSS. Known constructions are limited to the following restricted types: (1)
HSS for general truth tables, corresponding to PIR, and (2) HSS for low-degree
polynomials, which follow from the multiplicative property of Shamir’s secret-
sharing scheme [57,15,27,34]. Almost nothing is known about the existence of
non-trivial IT HSS schemes for other useful function families, which we aim to
explore in this work.

1.2 HSS via Computational Shortcuts for PIR

Viewing PIR as HSS for truth tables, HSS schemes for more succinct function
representations can be equivalently viewed as a computationally efficient PIR
schemes for structured databases, which encode the truth tables of succinctly
described functions. While PIR schemes for general databases require linear
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computation in N [14], there are no apparent barriers that prevent computational
shortcuts for structured databases. In this work we study the possibility of designing
useful HSS schemes by applying such shortcuts to existing IT PIR schemes.
Namely, by exploiting the structure of truth tables that encode simple functions,
the hope is that the servers can answer PIR queries with o(N) computation.

We focus on the two main families of IT PIR constructions: (1) first-generation
“Reed-Muller based” schemes, or RM PIR for short; and (2) third-generation
“matching-vector based” schemes, or MV PIR for short. RM PIR schemes are
motivated by their simplicity and their good concrete communication complexity
on small to medium size databases, whereas MV PIR schemes are motivated by
their superior asymptotic efficiency. Another advantage of RM PIR schemes is
that they naturally scale to bigger security thresholds t > 1, increasing the number
of servers by roughly a factor of t but maintaining the per-server communication
complexity. For MV PIR schemes, the comparable t-private variants require at
least 2t servers [7].

1.3 Our Contribution

We obtain the following main results. See Section 2 for a more detailed and more
technical overview.

Positive results for RM PIR. We show that for some natural function families,
such as unions of multi-dimensional intervals or other convex shapes (capturing,
e.g., geographical databases), decision trees, and DNF formulas with disjoint
terms, RM PIR schemes do admit computational shortcuts. In some of these
cases the shortcut is essentially optimal, in the sense that the computational
complexity of the servers is equal to the size of the PIR queries plus the size of
the function representation (up to polylogarithmic factors). In terms of concrete
efficiency, the resulting HSS schemes can in some cases be competitive with
alternative techniques from the literature, including lightweight computational
HSS schemes based on symmetric cryptography [19], even for large domain sizes
such as N = 240. This may come at the cost of either using more servers (k ≥ 3 or
even k ≥ 4, compared to k = 2 in [19]) or alternatively applying communication
balancing techniques from [29,11,60] that are only efficient for short outputs.

Negative results for RM PIR. The above positive result may suggest that
“simple” functions admit shortcuts. We show that this can only be true to a limited
extent. Assuming the Strong Exponential Time Hypothesis (SETH) assumption
[26], a conjecture commonly used in fine-grained complexity [59], we show that
there is no computational shortcuts for general DNF formulas. More broadly,
there are no shortcuts for function families that contain hard counting problems.

Negative results for MV PIR. Somewhat unexpectedly, for MV PIR schemes,
the situation appears to be significantly worse. Here we can show conditional
hardness results even for the all-1 database. Of course, one can trivially realize an
HSS scheme for the constant function f(x) = 1. However, our results effectively
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rule out obtaining efficient HSS for richer function families via the MV PIR route,
even for the simple but useful families to which our positive results for RM PIR
apply. This shows a qualitative separation between RM PIR and MV PIR.

Our negative results are obtained by exploiting a connection between shortcuts
in MV PIR and counting problems in graphs that we prove to be ETH-hard. While
this only rules out a specific type of HSS constructions, it can still be viewed as
a necessary step towards broader impossibility results. For instance, proving that
(computationally efficient) HSS for simple function families cannot have No(1)

share size inevitably requires proving computational hardness of the counting
problems we study, simply because if these problems were easy then such HSS
schemes would exist. We stress that good computational shortcuts for MV PIR
schemes, matching our shortcuts for RM PIR schemes, is a desirable goal. From
a theoretical perspective, they would give rise to better information-theoretic
HSS schemes for natural function classes. From an applied perspective, they
could give concretely efficient HSS schemes and secure computation protocols (for
the same natural classes) that outperform all competing protocols on moderate-
sized input domains. (See the full version for communication break-even points.)
Unfortunately, our negative results give strong evidence that, contrary to prior
expectations, such shortcuts for MV PIR do not exist.

Positive results for tensored and parallel MV PIR. Finally, we show
how to bypass our negative result for MV PIR via a “tensoring” operator and
parallel composition. The former allows us to obtain the same shortcuts we get
for RM PIR while maintaining the low communication cost of MV PIR, but
at the cost of increasing the number of servers. This is done by introducing
an exploitable structure similar to that in RM PIR through an operation that
we called tensoring. In fact, tensoring can be applied to any PIR schemes with
certain natural structural properties to obtain new PIR with shortcuts. The
parallel composition approach is restricted to specific function classes and has
a significant concrete overhead. Applying either transformation to an MV PIR
scheme yields schemes that no longer conform to the baseline template of MV
PIR, and thus the previous negative result does not apply.

2 Overview of Results and Techniques

Recall that the main objective of this work is to study the possibility of obtaining
non-trivial IT HSS schemes via computational shortcuts for IT PIR schemes. In
this section we give a more detailed overview of our positive and negative results
and the underlying techniques.

From here on, we let N = 2n be the size of the (possibly structured) database,
which in our case will be a truth table encoding a function f : {0, 1}n → {0, 1}
represented by a bit-string f̂ of length ` = |f̂ | ≤ N . We are mostly interested in
the case where `� N . We will sometimes use ` to denote a natural size parameter
which is upper bounded by |f̂ |. For instance, f̂ can be a DNF formula with `
terms over n input variables. We denote by F the function family associating
each f̂ with a function f and a size parameter `, where ` = |f̂ | by default.
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For both HSS and PIR, we consider the following efficiency measures:

– Input share size α(N): Number of bits that the client sends to each server.
– Output share size β(N): Number of bits that each server sends to the client.
– Evaluation time τ(N, `): Running time of server algorithm, mapping an input

share in {0, 1}α(N) and function representation f̂ ∈ {0, 1}` to output share
in {0, 1}β(N).

When considering PIR (rather than HSS) schemes, we may also refer to α(N) and
β(N) as query size and answer size respectively. The computational model we use
for measuring the running time τ(N, `) is the standard RAM model by default;
however, both our positive and negative results apply (up to polylogarithmic
factors) also to other standard complexity measures, such as circuit size.

Any PIR scheme PIR can be viewed as an HSS scheme for a truth-table
representation, where the PIR database is the truth-table f̂ of f . For this
representation, the corresponding evaluation time τ must grow linearly with N .
If a more expressive function family F supports faster evaluation time, we say
that PIR admits a computational shortcut for F . It will be useful to classify
computational shortcuts as strong or weak. A strong shortcut is one in which the
evaluation time is optimal up to polylogarithmic factors, namely τ = Õ(α+β+`).
(Note that α + β + ` is the total length of input and output.) Weak shortcuts
have evaluation time of the form τ = O(` ·Nδ), for some constant 0 < δ < 1. A
weak shortcut gives a meaningful speedup whenever ` = No(1).

2.1 Shortcuts in Reed-Muller PIR

The first generation of PIR schemes, originating from the work of Chor et al. [29],
represent the database as a low-degree multivariate polynomial, which the servers
evaluate on each of the client’s queries. We refer to PIR schemes of this type as
Reed-Muller PIR (or RM PIR for short) since the answers to all possible queries
form a Reed-Muller encoding of the database. While there are several variations
of RM PIR in the literature, the results we describe next are insensitive to the
differences. In the following focus on a slight variation of the original k-server RM
PIR scheme from [29] (see [11]) that has answer size β = 1, which we denote by
PIRkRM. For the purpose of this section we will mainly focus on the computation
performed by the servers, for the simplest case of k = 3 (PIR3

RM), as this is the
aspect we aim to optimize. For a full description of the more general case we
refer the reader to Section 4.

Let F = F4 be the Galois field of size 4. In the PIR3
RM scheme, the client views

its input i ∈ [N ] as a pair of indices i = (i1, i2) ∈ [
√
N ] × [

√
N ] and computes

two vectors qj1, q
j
2 ∈ F

√
N for each server j ∈ {1, 2, 3}, such that {qj1} depend on

i1 and {qj2} depend on i2. Note that this implies that α(N) = O(
√
N). Next,

each server j, which holds a description of a function f : [
√
N ]× [

√
N ]→ {0, 1},

computes an answer aj =
∑
i′1,i
′
2∈[
√
N ] f(i′1, i′2)qj1[i′1]qj2[i′2] with arithmetic over F

and sends the client a single bit which depends on aj (so β(N) = 1). The client
reconstructs f(i1, i2) by taking the exclusive-or of the 3 answer bits.
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Positive Results for RM PIR The computation of each server j, aj =∑
i′1,i
′
2∈[
√
N ] f(i′1, i′2)qj1[i′1]qj2[i′2], can be viewed as an evaluation of a multivariate

degree-2 polynomial, where {f(i′1, i′1)} are the coefficients, and the entries of
qj1, q

j
2 are the variables. Therefore, to obtain a computational shortcut, one should

look for structured polynomials that can be evaluated in time o(N). A simple but
useful observation is that computational shortcuts exist for functions f which are
combinatorial rectangles, that is, f(i1, i2) = 1 if and only if i1 ∈ I1 and i2 ∈ I2,
where I1, I2 ⊆ [

√
N ]. Indeed, we may write

aj =
∑

i′1,i
′
2∈[
√
N ]

f(i′1, i′2)qj1[i′1]qj2[i′2] =
∑

(i′1,i′2)∈(I1,I2)

qj1[i′1]qj2[i′2] (1)

=

∑
i′1∈I1

qj1[i′1]

∑
i′2∈I2

qj2[i′2]

 . (2)

Note that if a server evaluates the expression using Equation (1) the time is
O(N), but if it instead uses Equation (2) the time is just O(

√
N) = O(α(N)).

Following this direction, we obtain non-trivial IT HSS schemes for some natural
function classes such as disjoint unions of intervals and decision trees.

Theorem 1 (Decision trees, formal version Theorem 9). PIRkRM admits
a weak shortcut for decision trees (more generally, disjoint DNF formulas).
Concretely, for n variables and ` leaves (or terms), we have τ(N, `) = O(` ·
N1/(k−1)), where N = 2n.

Theorem 2 (Union of disjoint intervals, formal version Theorems 10
and 11). For every positive integers d ≥ 1 and k ≥ 3 such that d|k − 1,
PIRkRM admits a strong shortcut for unions of ` disjoint d-dimensional intervals
in
(
[N1/d]

)d. Concretely, τ(N, `) = O(N1/(k−1) + `).

Better shortcuts running in Õ(N1/(k−1) + ` · N1/3(k−1)) are also possible.
Moreover, by expressing (discretized) convex bodies as unions of intervals, we
generalize the result for interval functions to convex body membership functions.

Negative Results for RM PIR All of the previous positive results apply to
function families F for which there is an efficient counting algorithm that given
f̂ ∈ F returns the number of satisfying assignments of f . We show that this is
not a coincidence: efficient counting can be reduced to finding a shortcut for f̂
in PIRkRM. This implies that computational shortcuts are impossible for function
representations for which the counting problem is hard. Concretely, following
a similar idea from [52], we show that a careful choice of PIR query can be
used to obtain the parity of all evaluations of f as the PIR answer. The latter
is hard to compute even for DNF formulas, let alone stronger representation
models, assuming standard conjectures from fine-grained complexity: either the
Strong Exponential Time Hypothesis (SETH) or, with weaker parameters, even
the standard Exponential Time Hypothesis (ETH) [26,25].
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Theorem 3 (No shortcuts for DNF under ETH, formal version Corol-
laries 2 and 3). Assuming (standard) ETH, PIRkRM does not admit a strong
shortcut for DNF formulas for sufficiently large k. Moreover, assuming SETH,
for any k ≥ 3, PIRkRM does not admit a weak shortcut for DNF formulas.

2.2 Hardness of Shortcuts for Matching-Vector PIR

Recall that MV PIR schemes are the only known PIR schemes achieving sub-
polynomial communication (that is, No(1)) with a constant number of servers.
We give strong evidence for hardness of computational shortcuts for MV PIR.
We start with a brief technical overview of MV PIR.

We consider here a representative instance of MV PIR from [43,12], which
we denote by PIR3

MV,SC. This MV PIR scheme is based on two crucial combina-
torial ingredients: a family of matching vectors and a share conversion scheme,
respectively. We describe each of these ingredients separately.

A family of matching vectors MV consists of N pairs of vectors {ux, vx} such
that each matching inner product 〈ux, vx〉 is 0, and each non-matching inner
product 〈ux, vx′〉 is nonzero. More precisely, such a family is parameterized by
integers m,h,N and a subset S ⊂ Zm such that 0 6∈ S. A matching vector
family is defined by two sequences of N vectors {ux}x∈[N ] and {vx}x∈[N ], where
ux, vx ∈ Zhm, such that for all x ∈ [N ] we have 〈ux, vx〉 = 0, and for all x, x′ ∈ [N ]
such that x 6= x′ we have 〈ux, vx′〉 ∈ S. We refer to this as the S-matching
requirement. Typical choices of parameters are m = 6 or m = 511 (products of
two primes), |S| = 3 (taking the values (0, 1), (1, 0), (1, 1) in Chinese remainder
notation), and h = No(1) (corresponding to the PIR query length).

A share conversion scheme SC is a local mapping (without interaction) of
shares of a secret y to shares of a related secret y′, where y ∈ Zm and y′ is in
some other Abelian group G. Useful choices of G include F2

2 and F9
2 corresponding

to m = 6 and m = 511 respectively. The shares of y and y′ are distributed using
linear secret-sharing schemes L and L′ respectively, where L′ is typically additive
secret sharing over G. The relation between y and y′ that SC should comply with
is defined by S as follows: if y ∈ S then y′ = 0 and if y = 0 then y′ 6= 0. More
concretely, if (y1, . . . , yk) are L-shares of y, then each server j can run the share
conversion scheme on (j, yj) and obtain y′j = SC(j, yj) such that (y′1, . . . , y′k) are
L′-shares of some y′ satisfying the above relation. What makes share conversion
nontrivial is the requirement that the relation between y and y′ hold regardless
of the randomness used by L for sharing y.

Suppose MV and SC are compatible in the sense that they share the same set
S. Moreover, suppose that SC applies to a 3-party linear secret-sharing scheme
L over Zm. Then we can define a 3-server PIR scheme PIR3

MV,SC in the following
natural way. Let f : [N ] → {0, 1} be the servers’ database and x ∈ [N ] be the
client’s input. The queries are obtained by applying L to independently share
each entry of ux. Since L is linear, the servers can locally compute, for each
x′ ∈ [N ], L-shares of yx,x′ = 〈ux, vx′〉. Note that yx,x = 0 ∈ Zm and yx,x′ ∈ S
(hence yx,x′ 6= 0) for x 6= x′. Letting yj,x,x′ denote the share of yx,x′ known
to server j, each server can now apply share conversion to obtain a L′-share
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y′j,x,x′ = SC(j, yj,x,x′) of y′x,x′ , where y′x,x′ = 0 if x 6= x′ and y′x,x′ 6= 0 if x = x′.
Finally, using the linearity of L′, the servers can locally compute L′-shares ỹj of
ỹ =

∑
x′∈[N ] f(x′) ·y′x,x′ , which they send as their answers to the client. Note that

ỹ = 0 if and only if f(x) = 0. Hence, the client can recover f(x) by applying the
reconstruction of L′ to the answers and comparing ỹ to 0. When L′ is additive
over G, each answer consists of a single element of G.

Shortcuts for MV PIR Imply Subgraph Counting The question we ask
in this work is whether the server computation in the above scheme can be sped
up when f is a “simple” function, say one for which our positive results for RM
PIR apply. Somewhat unexpectedly, we obtain strong evidence against this by
establishing a connection between computational shortcuts for PIR3

MV,SC for useful
choices of (MV,SC) and the problem of counting induced subgraphs. Concretely,
computing a server’s answer on the all-1 database and query xj requires computing
the parity of the number of subgraphs with certain properties in a graph defined
by xj . By applying results and techniques from parameterized complexity [28,42],
we prove ETH-hardness of computational shortcuts for variants of the MV PIR
schemes from [43,12]. In contrast to the case of RM PIR, these hardness results
apply even for functions as simple as the constant function f(x) = 1.

The variants of MV PIR schemes to which our ETH-hardness results apply
differ from the original PIR schemes from [43,12] only in the parameters of
the matching vectors, which are worse asymptotically, but still achieve No(1)

communication complexity. The obstacle which prevents us from proving a similar
hardness result for the original schemes from [43,12] seems to be an artifact of
the proof, instead of an inherent limitation (more on this later). We therefore
formulate a clean hardness-of-counting conjecture that would imply a similar
hardness result for the original constructions from [43,12].

We now outline the ideas behind the negative results, deferring the technical
details to Section 5. Recall that the computation of each server j in PIR3

MV,SC
takes the form ∑

x′∈[N ]

f(x′) · SC(j, yj,x,x′),

where yj,x,x′ is the j-th share of 〈ux, vx′〉. Therefore, for the all-1 database (f = 1),
for every S-matching vector family MV and share conversion scheme SC from L
to L′ we can define the (MV,SC)-counting problem #(MV,SC).

Definition 1 (Server computation problem). For a Matching Vector family
MV and share conversion SC, the problem #(MV,SC) is defined as follows.

– Input: a valid L-share yj of some ux ∈ Zhm (element-wise),
– Output:

∑
x′∈[N ] SC(j, yj,x,x′), where yj,x,x′ is the share of 〈ux, vx′〉.

Essentially, the server computes N inner products of the input and the matching
vectors using the homomorphic property of the linear sharing, maps the results
using the share conversion and adds the result to obtain the final output.
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Let MVwGrol be a matching vectors family due to Grolmusz [50,40], which is used
in all third-generation PIR schemes (see Section 5, Fact 1). For presentation, we
focus on the special case #(MVwGrol,SCEfr), where SCEfr is a share conversion due
to Efremenko [43], which we present in Section 3.3. Note that all the results that
follow also hold for the share conversion of [12], denoted by SCBIKO. The family
we consider, MVwGrol, is associated with the parameters r ∈ N and w : N → N,
such that the size of the matching vector family is

(
r

w(r)
)
, and the length of

each vector is h =
( r

≤Θ
(√

w(r)
)). By choosing w(r) = Θ(

√
r) and r such that

N ≤
(

r
w(r)

)
, the communication complexity of PIRkMVwGrol,SCEfr

is h = 2O(
√
n logn),

where N = 2n, which is the best asymptotically among known PIR schemes.
Next, we relate #(MVwGrol,SCEfr) to ⊕IndSub(Φ,w), the problem of deciding

the parity of the number of w-node subgraphs of a graph G that satisfy graph
property Φ. Here we consider the parameter w to be a function of the number of
nodes of G. We will be specifically interested in graph properties Φ = Φm,∆ that
include graphs whose number of edges modulo m is equal to ∆. Formally:

Definition 2 (Subgraph counting problem). For a graph property Φ and pa-
rameter w : N→ N (function of the number of nodes), the problem ⊕IndSub(Φ,w)
is defined as follows.

– Input: Graph G with r nodes.
– Output: The parity of the number of induced subgraphs H of G such that:
(1) H has w(r) nodes; (2) H ∈ Φ.

We let Φm,∆ denote the set of graphs H such that |E(H)| ≡ ∆ mod m.

The following main technical lemma for this section relates obtaining compu-
tational shortcuts for PIRkMV,SC to counting induced subgraphs.

Lemma 1 (From MV PIR to subgraph counting). If #(MVwGrol,SCEfr)
can be computed in No(1) (= ro(w)) time, then ⊕IndSub(Φ511,0, w) can be decided
in ro(w) time, for any nondecreasing function w : N→ N.

The Hardness of Subgraph Counting The problem ⊕IndSub(Φ511,0, w) is
studied in parameterized complexity theory [42] and falls into the framework
of motif counting problems described as follows in [56]: Given a large structure
and a small pattern called the motif, compute the number of occurrences of the
motif in the structure. In particular, the following result can be derived from
Döfer et al. [42].

Theorem 4. [42, Corollary of Theorem 22] ⊕IndSub(Φ511,0, w) cannot be solved
in time ro(w) unless ETH fails.

Theorem 4 is insufficient for our purposes since it essentially states that no
machine running in time ro(w) can successfully decide ⊕IndSub(Φ511,0, w) for
any pair (r, w). It other words, it implies hardness of counting for some weight
parameter w, while for our case, we have specific function w(r).

10



Fortunately, in [28] it was shown the counting of cliques, a very central motif,
is hard for cliques of any size as long as it is bounded from above by O(rc) for
an arbitrary constant c < 1 (

√
r, log r, log∗ r, etc.), assuming ETH. Indeed, after

borrowing results from [28] and via a more careful analysis of the proof of [42,
Theorem 22], we can prove the following stronger statement about its hardness.

Theorem 5. For some efficiently computable function w = Θ(log r/ log log r),
⊕IndSub(Φ511,0, w) cannot be solved in time ro(w), unless ETH fails.

Denote by MV∗ the family MVwGrol with w(r) = Θ(log r/ log log r) as in Theo-
rem 5. Lemma 1 and Theorem 5 imply the impossibility result for strong shortcuts
for PIR schemes instantiated with MV∗. Note that such an instantiation of MVwGrol
yields PIR schemes with subpolynomial communication 2O(n3/4polylog n).

Theorem 6. [No shortcuts in Efremenko MV PIR, formal version Theorem 15]
#(MV∗,SCEfr) cannot be computed in No(1) (= ro(w)) time, unless ETH fails.
Consequently, there are no strong shortcuts for the all-1 database for PIR3

MV∗,SCEfr
.

It is natural to ask whether hardness for other ranges of parameters such as
w = Θ(

√
r) holds for ⊕IndSub(Φ511,0, w) in the spirit of Theorem 5. This is also

of practical concern because the best known MVw
Grol constructions fall within

such ranges. In particular, if we can show ⊕IndSub(Φ511,0, Θ(
√
r)) cannot be

decided in ro(
√
r) time, it will imply that PIRkP,C for P = MVΘ(

√
r)

Grol and C = SCEfr

does not admit strong shortcuts for the all-1 database, since α(n) = No(1) but
τ(n) = NΩ(1).

In fact, the problem ⊕IndSub(Φ511,0, w) is plausibly hard, and can be viewed
as a variant of the fine-grained-hard Exact-k-clique problem [59]. Consequently,
we make the following conjecture.

Conjecture 1 (Hardness of counting induced subgraphs). ⊕IndSub(Φm,∆, w) can-
not be decided in ro(w) time, for any integers m ≥ 2, 0 ≤ ∆ < m, and for every
function w(r) = O(rc), 0 ≤ c < 1.

For the impossibility results in this paper, we are only concerned with w(r) =
Θ(
√
r), and (m,∆) = (511, 0) or (m,∆) = (6, 4).

2.3 HSS from Generic Compositions of PIRs

Our central technique for obtaining shortcuts in PIR schemes is by exploiting the
structure of the database. For certain PIR schemes where the structure is not
exploitable, such as those based on matching vectors, we propose to introduce
exploitable structures artificially by composing several PIR schemes. Concretely,
we present two generic ways, tensoring and parallel PIR composition, to obtain a
PIR which admits shortcuts for some function families by composing PIRs which
satisfy certain natural properties. For details, we refer to the full version.

11



Tensoring First we define a tensoring operation on PIR schemes, which generi-
cally yields PIRs with shortcuts, at the price of increasing the number of servers.

Theorem 7 (Tensoring, informal). Let PIR be a k-server PIR scheme sat-
isfying some natural properties. Then there exists a kd-server PIR scheme PIR⊗d
with the same (per server) communication complexity that admits the same
computational shortcuts as PIRd+1

RM does.

When PIR is indeed instantiated with a matching-vector PIR, Theorem 7
gives HSS schemes for disjoint DNF formulas or decision trees with the best
asymptotic efficiency out of the ones we considered.

Corollary 1 (Decision trees from tensoring, informal). There is a 3d-
server HSS for decision trees, or generally disjoint DNF formulas, with α(N) =
Õ
(

26
√
n logn

)
, β(N) = O(1) and τ(N, `) = Õ

(
N1/d+o(1) + ` ·N1/3d), where n

is the number of variables and ` is the number of leaves in the decision tree.

Parallel PIR Composition For the special case of interval functions, we can
do even better with the second technique. We show that by making parallel
invocations to HSS for point functions, it is possible to obtain HSS for the class
of sparsely-supported DNF functions. In particular, this yields an HSS for union
of intervals with the best asymptotic complexity among our constructions. This
approach however does not generalize to better asymptotic results for decision
trees or DNF formulas due to known lower bounds for covering codes [30].

Theorem 8 (Intervals from parallel composition, informal). There is a
3-server HSS for unions of ` d-dimensional intervals with α(N) = Õ

(
26
√
n logn

)
,

β(N) = O(log( 1
ε )) and τ(N, `) = Õ

(
log( 1

ε )` · 26
√
n logn

)
.

2.4 Concrete Efficiency

Motivated by a variety of real-world applications, the concrete efficiency of
PIR has been extensively studied in the applied cryptography and computer
security communities; see, e.g., [31,51,55,58,1] and references therein. Many of
the application scenarios of PIR can pontentially benefit from the more general
HSS functionality we study in this work. To give a sense of the concrete efficiency
benefits we can get, consider following MPC task: The client holds a secret input
x and wishes to know if x falls in a union of a set of 2-dimensional intervals held
by k servers, where at most t servers may collude (t = 1 by default). This can be
generalized to return a payload associated with the interval to which x belongs.
HSS for this “union of rectangles” function family can be useful for securely
querying a geographical database.

We focus here on HSS obtained from the PIRkRM scheme, which admits strong
shortcuts for multi-dimensional intervals and at the same time offers attractive
concrete communication complexity. For the database sizes we consider, the
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concrete communication and computation costs are much better than those of
(computational) single-server schemes based on fully homomorphic encryption.
Classical secure computation techniques are not suitable at all for our purposes,
since their communication cost would scale linearly with the number of intervals.
The closest competing solutions are obtained via symmetric-key-based function
secret sharing (FSS) schemes for intervals [17,19] (see full version for details).

We instantiate the FSS-based constructions with k = 2 servers, since the
communication complexity in this case is only O(λn2) for a security parameter
λ [19]. For k ≥ 3 (and t = k − 1), the best known FSS schemes require O(λ

√
N)

communication [17]. Our comparison focuses on communication complexity which
is easier to measure analytically. Our shortcuts make the computational cost
scale linearly with the server input size, with small concrete constants. Below we
give a few data points to compare the IT-PIR and the FSS-based approaches.

For a 2-dimensional database of size 230 = 215 × 215 (which is sufficient to
encode a 300×300 km2 area with 10×10 m2 precision), the HSS based on PIRkRM
with shortcuts requires 16.1, 1.3, and 0.6 KB of communication for k = 3, 4
and 5 respectively, whereas FSS with k = 2 requires roughly 28 KB. For these
parameters, we expect the concrete computational cost of the PIR-based HSS to
be smaller as well.

We note that in PIRkRM the payload size contributes additively to the commu-
nication complexity. If the payload size is small (a few bits), it might be beneficial
to base the HSS on a “balanced” variant of PIRkRM proposed by Woodruff and
Yekhanin [60]. Using the Baur-Strassen algorithm [8], we can get the same short-
cuts as for PIRkRM with rougly half as many servers, at the cost of longer output
shares that have comparable size to the input shares. Such balanced schemes
are more attractive for short payloads than for long ones. For a 2-dimensional
database of size 230 = 215 × 215, the HSS based on balanced PIRkRM with 1-bit
payload requires 1.5 and 0.2 KB communication for k = 2 and 3 respectively.

Our approach is even more competitive in the case of a higher corruption
threshold t ≥ 2, since (as discussed above) known FSS schemes perform more
poorly in this setting, whereas the cost of PIRkRM scales linearly with t. Finally,
PIRkRM is more “MPC-friendly” than the FSS-based alternative in the sense that
its share generation is non-cryptographic and thus is easier to distribute via an
MPC protocol.

3 Preliminaries

Let m,n ∈ N with m ≤ n. We use {0, 1}n to denote the set of bit strings of length
n, [n] to denote the set {1, . . . , n}, and [m,n] to denote the set {m,m+ 1, . . . , n}.
The set of all finite-length bit strings is denoted by {0, 1}∗. Let v = (v1, . . . , vn)
be a vector. We denote by v[i] or vi the i-th entry v. Let S,X be sets with S ⊆ X.
The set membership indicator χS,X : X → {0, 1} is a function which outputs 1
on input x ∈ S, and outputs 0 otherwise. When X is clear from the context, we
omit X from the subscript and simply write χS .
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3.1 Function Families

To rigorously talk about a function and its description as separate objects, we
define function families in a fashion similar to that in [17].

Definition 3 (Function Families). A function family is a collection of tuples
F = {Fn = (Xn,Yn, Pn, En)}n∈N where Xn ⊆ {0, 1}∗ is a domain set, Yn ⊆
{0, 1}∗ is a range set, Pn ⊆ {0, 1}∗ is a collection of function descriptions, and
En : Pn × Xn → Yn is an algorithm, running in time O(|Xn|), defining the
function described by each f̂ ∈ Pn.

Concretely, each f̂ ∈ Pn describes a corresponding function f : Xn → Yn
defined by f(x) = En(f̂ , x). Unless specified, from now on we assume that
Xn = {0, 1}n and Yn = F2. When there is no risk of confusion, we will describe
a function family by Fn instead of F = {Fn}n∈N, write f instead of f̂ , and write
f ∈ Fn or f ∈ F instead of f̂ ∈ Pn.

Definition 4 (All Boolean Functions). The family of all Boolean functions
is a tuple ALLn = (Xn,Yn, Pn, En) where Pn is a set containing the truth table
f̂ of f for each f : Xn → Yn, and En is the selection algorithm such that
En(f̂ , x) = f̂ [x].

We next define combinatorial rectangle functions, each of which is parame-
terized with a combinatorial rectangle, and it outputs 1 whenever the input lies
in the rectangle. This family is central to the shortcuts that we obtain for the
Reed-Muller PIR and the PIRs obtained by tensoring.

Definition 5 (Combinatorial Rectangles). Let d ∈ N, X 1, . . . ,X d be sets
and cr : X 1 × · · · × X d → F2 be a function. We say that cr is a (d-dimensional)
combinatorial rectangle function if the truth table of cr forms a (d-dimensional)
combinatorial rectangle. In other words, for each i ∈ [d], there exist subsets
Si ⊆ X i such that cr(x1, . . . , xd) = 1 if and only if xi ∈ Si for all i ∈ [d]. A
combinatorial rectangle function cr can be described by ĉr = (S1, . . . ,Sd) of length
|ĉr| = O(n), and an evaluation algorithm ECR such that ECR(ĉr, x) = cr(x).

Definition 6 (Sum of Combinatorial Rectangles). Let `, d ∈ N. The family
of `-sum d-dimensional combinatorial rectangle functions is a tuple SUMCR`,d

n =
(Xn,Yn, Pn, En) where Xn = X 1

n × · · · × X dn for some sets X 1
n , . . . ,X dn , Pn =

{ĉr}ĉr=( ˆcr1,...,ĉr`) is the set of all `-tuples of descriptions of combinatorial rectangle
functions with domain Xn, and E(ĉr, x) =

∑`
i=1 ECR(ĉri, x) =

∑`
i=1 cri(x). That

is, SUMCR`,d
n defines all functions of the form f = cr1 + . . .+ cr`.

We next define natural special cases of combinatorial rectangle functions. The
first are interval functions which output 1 when the input falls into specified
intervals. The second are DNF formulas.

Definition 7 (Interval Functions). Let `, d ∈ N with d|n. The family of `-sum
d-dimensional interval functions is a tuple SUMINT`,dn = (Xn,Yn, Pn, En) where

14



– Xn =
(
{0, 1}n/d

)d,
– Yn = F2,
– Pn =

{
(aji , b

j
i )i∈[`],j∈[d] : aji , b

j
i ∈ {0, 1}n/d

}
, and

– E
(

(aji , b
j
i )i∈[`],j∈[d], x

)
=
∑`
i=1 χ

∏d

j=1
[aj
i
,bj
i
](x).

In a similar fashion we define INT`,dn = (Xn,Yn, Pn, E′n) to be the family of
`-union d-dimensional interval functions, where

E′n

(
(aji , b

j
i )i∈[`],j∈[d], x

)
=
∨̀
i=1

χ∏d

j=1
[aj
i
,bj
i
](x).

Moreover, let INT`,dn = (Xn,Yn, P ′n, E′n) be the family of disjoint `-union d-
dimensional interval functions, where P ′n ⊆ Pn is restricted to only include cases
such that at most a single indicator χ∏d

j=1
[aj
i
,bj
i
] outputs 1 for a given x.

The function family SEG`
n := DINT`,1n corresponds to a disjoint union of

one-dimensional intervals.
Next, we say that F`n is a subfamily of G`n if their domain and range sets, Xn

and Yn, match, and any function f ∈ F`n can be expressed as a sum (over Yn) of
O(1) functions from G`n.
Proposition 1 (Intervals are Rectangles). SUMINT`,dn is a subfamily of
SUMCR`,d

n . In particular, any single interval function with description {(ai, bi)}i∈[d]
corresponds to the combinatorial rectangle with description {Si = {ai, ai +
1, . . . , bi}}i∈[d].
Definition 8 (DNF Formulas). Let ` ∈ N. The family of functions com-
puted by `-sum disjunctive terms is a tuple SUMDNF`n = (Xn,Yn, Pn, En)
where Pn = {(c1, . . . , c`)}c1,...,c` consists of all `-tuples of disjunctive terms
over n Boolean variables, and En is such that En((c1, . . . , c`), (x1, . . . , xn)) =∑`

i=1 ci(x1, . . . , xn). c1, . . . , c` are called the terms of the DNF formula.
In a similar fashion, the family of functions computed by `-term DNFs is a tu-

ple DNF`n = (Xn,Yn, Pn, E′n) where En is such that En((c1, . . . , c`), (x1, . . . , xn)) =⋃`
i=1 ci(x1, . . . , xn).
Finally, the family of functions computed by `-term disjoint DNFs is a tuple

DDNF`n = (Xn,Yn, P ′n, E′n) where P ′n ⊆ Pn is restricted to only include cases
such that at most a single term ci outputs 1 for any given x.

Functions computed by decision trees of ` leaves can also be computed by
`-term disjoint DNF formulas. Therefore the shortcuts we obtain for (disjoint)
DNFs apply to decision trees as well.

While the dimension d is not part of the description of DNF formulas over
n boolean variables x1, . . . , xn, by introducing a interdmediate “dimension” pa-
rameter d and partitioning the n variables into d parts, we can represent the
DNF formula as a d-dimensional truth table. More concretely, every dimension
corresponds to the evaluations of nd variables. Through this way, we can embed
the function into combinatorial rectangles.
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Proposition 2 (DNFs are Rectangles). For any dimension d ∈ [n], the
family SUMDNF`n is a subfamily of SUMCR`,d

n .

Remark 1 (Disjoint union and general union). The ability to evaluate the sum
variants of DNF and INT implies the ability to evaluate the disjoint union because
disjoint union can be carried out as a summation. However, the general operation
of union is more tricky if the addition is over F2. It is possible to perform union by
(1) having summations over Zm for a large enough m such as m > `, which blows
up the input and output share size by a factor of O(log `); or by (2) sacrificing
perfect correctness for ε-correctness, using random linear combinations, thus
multiplying the output share size by O(log(1/ε)). Note that this only works
for disjunctions and not for more complex predicates. For instance, for depth-3
circuits we don’t have a similar technique.

3.2 Secret sharing

A secret sharing scheme L = (Share,Dec) is a tuple of algorithms. Share allows a
secret message s ∈ K to be shared into n parts, s1, . . . , sn ∈ K ′ such that they
can be distributed among servers S1, . . . , Sn in a secure way. Typically, any single
share sj reveals no information about s in the information-theoretic sense. Dec
allows authorized server sets to recover s from their respective shares {sj}.

We only consider linear secret sharing schemes L : K → K ′ in which K and
K ′ are additive groups and the shares satisfy that {sjL + s′jL} is a valid sharing
of s + s′ under L. We will use linear secret sharing schemes over finite fields
and over rings of the form Zm. Another feature of these schemes that we will
require, is that the client’s reconstruction algorithm for s is a linear function of
(some of) the shares s1, . . . , sn. Linear secret sharing schemes can be viewed as
homomorphic secret sharing schemes, endowed with a linear homomorphism Eval,
which we will define more formally in Definition 9.

An additive secret-sharing scheme Ladd over an Abelian group splits a secret
into random group elements that add up to the secret. For other types of linear
secret-sharing, our results will mostly treat them abstractly and will not be
sensitive to the details of their implementation; see [12] for formal definitions of
the flavors of “Shamir’s scheme” and “CNF scheme” we will refer to.

3.3 HSS and PIR

Definition 9 (Information-Theoretic HSS). An information-theoretic k-
server homomorphic secret sharing scheme for a function family Fn, or k-HSS
for short, is a tuple of algorithms (Share,Eval,Dec) with the following syntax:

– Share(x): On input x ∈ Xn, the sharing algorithm Share outputs k input
shares, (x1, . . . , xk), where xi ∈ {0, 1}α(N), and some decoding information
η.

– Eval(ρ, j, f̂ , xj): On input ρ ∈ {0, 1}γ(n), j ∈ [k], f̂ ∈ Pn, and the share xj,
the evaluation algorithm Eval outputs yj ∈ {0, 1}β(N), corresponding to server
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j’s share of f(x). Here ρ are public random coins common to the servers and
j is the label of the server.

– Dec(η, y1, . . . , yk): On input the decoding information η and (y1, . . . , yk), the
decoding algorithm Dec computes a final output y ∈ Yn.

We require the tuple (Share,Eval,Dec) to satisfy correctness and security.

Correctness Let 0 ≤ ε < 1. We say that the HSS scheme is ε-correct if for any
f ∈ Fn and x ∈ Xn

Pr

Dec
(
η, y1, . . . , yk

)
= f(x) :

ρ ∈R {0, 1}γ(n)(
x1, . . . , xk, η

)
← Share(x)

∀j ∈ [k] yj ← Eval(ρ, j, f̂ , xj)

 ≥ 1− ε.

If the HSS scheme is 0-correct, then we say the scheme is perfectly correct.

Security Let x, x′ ∈ Xn be such that x 6= x′. We require that for any j ∈ [k] the
following distributions are identical

{xj : (x1, . . . , xk, η)← Share(x)} ≡ {x′j : (x′1, . . . , x′k, η′)← Share(x′)}.

For perfectly correct HSS we may assume without loss of generality that Eval
uses no randomness and so γ(n) = 0. In general, we will omit the randomness
parameter ρ from Eval for perfectly correct HSS and PIR. Similarly, whenever
Dec does not depend on η we omit this parameter from Share and Dec as well.

An HSS is said to be additive [21] if Dec simply computes the sum of the
output shares over some additive group. This property is useful for composing
HSS for simple functions into one for more complex functions. We will also be
interested in the following weaker notion which we term quasiadditive HSS.

Definition 10 (Quasiadditive HSS). Let HSS = (Share,Eval,Dec) be an HSS
for a function family F such that Yn = F2. We say that HSS is quasiadditive
if there exists an Abelian group G such that Eval outputs elements of G, and
Dec(y1, . . . , yk) computes an addition ỹ = y1 + . . .+ yk ∈ G and outputs 1 if and
only if ỹ 6= 0.

Definition 11 (PIR). If the tuple HSS = (Share,Eval,Dec) is a perfectly correct
k-HSS for the function family ALLn, we say that HSS is a k-server private
information retrieval scheme, or k-PIR for short.

Finally, the local computation Eval is modelled by a RAM program.

Definition 12 (Computational shortcut in PIR). Let PIR = (Share,Eval,Dec)
be a PIR with share length α(N), and F be a function family. We say that PIR
admits a strong shortcut for F if there is an algorithm for Eval which runs in
quasilinear time τ(N, `) = Õ(α(N) + β(N) + `) for every function f ∈ F , where
` = |f̂ | is the description length of f . In similar fashion, we say that PIR admits
a (weak) shortcut for F if there is an algorithm for Eval which runs in time
τ(N, `) = O(` ·Nδ), for some constant 0 < δ < 1.
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ShareRM(x):

1. Let d = k−1. Divide x ∈ {0, 1}n into d pieces x = (x1, . . . , xd) ∈
(
{0, 1}n/d

)d.
2. For every i ∈ [d] compute a unit vector ei ∈ FN

1/d
2 as ei[z] =

{
1, z = xi

0, z 6= xi
.

3. Let F = F2κ be a field with 2κ > k elements. Let α1, . . . , αk ∈ F be distinct
nonzero field elements. Draw random vectors r1, . . . , rd ∈R FN

1/d
and compute

qji := ei + riαj for i ∈ [d] and j ∈ [k].
4. The share of each server j ∈ [k] is xj := (qj1, . . . , q

j
d). Output (x1, . . . , xk).

EvalRM(j, f̂ , xj = (qj1, . . . , q
j
d)):

1. Let λj :=
∏
` 6=j α`/(α` − αj) be the j’th Lagrange coefficient. Compute

ỹj = λj
∑

(x′1,...,x
′
d

)∈{0,1}n

f(x′
1, . . . , x

′
d)

d∏
i=1

(qji )[x
′
i]

2. Output yj = σ(ỹj), where σ : F → F2 is a homomorphism with respect to
addition such that σ(z) = z for z ∈ F2.

DecRM(y1, . . . , yk): Output y = y1 + . . .+ yk.

HSS Parameters: Input share size α(N) = O(N1/d), output share size β(N) = 1.

Fig. 1. The scheme PIRkRM.

4 Shortcuts for Reed-Muller PIR

Let 3 ≤ k ∈ N and d = k − 1 be constants. The k-server Reed-Muller based PIR
scheme PIRkRM = (ShareRM,EvalRM,DecRM) is presented in Figure 1.

We observe that, in k-server Reed-Muller PIR PIRkRM, the sum of products

∑
(x′1,...,x′d)∈{0,1}n

f(x′1, . . . , x′d)
d∏
i=1

(qji )[x
′
i]

can be written as a product of sums if f is a combinatorial rectangle function.
Consequently PIRkRM admits a computational shortcut for d-dimensional combi-
natorial rectangles, which gives rise to shortcuts for intervals and DNFs as they
are special cases of combinatorial rectangles (Propositions 1 and 2).

Lemma 2. PIRkRM admits a strong shortcut for the function family of single d-
dimensional combinatorial rectangle, i.e., SUMCR1,d

n . More concretely, τ(N, `) =
O(α(N)) = O(N1/d).

Proof. Naturally, the client and server associate x = (x1, . . . , xd) as the input to
the funcions f from SUMCR1,d

n . Let f̂ = ĉr = {S1, . . . ,Sd} be the combinatorial
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rectangle representing f . Given f̂ , the computation carried out by server j is

EvalRM(j, f̂ , xj = (qj1, . . . , q
j
d)) = σ

λj ∑
(x′1,...,x′d)∈S1×...×Sd

d∏
i=1

qji [x
′
i]

 (3)

= σ

λj d∏
i=1

∑
x′
i
∈Si

qji [x
′
i]

 (4)

If the server evaluates the expression using Equation (3) the time is O(N), but if
it instead uses Equation (4) the time is O(dmaxi{|Si|}) = O(2nd ) = O(α(N)).

Theorem 9. PIRkRM admits a weak shortcut for the function family SUMCR`,d
N .

More concretely, τ(N, `) = O(`α(N)) = O(`N1/d). The same shortcut exists for
decision trees with ` leaves, or, more generally, SUMDNF`n and DDNF`n.

Proof. This is implied by Lemma 2, by noting that f = cr1 + . . . cr` over the
common input x. In particular, the final Eval algorithm makes ` calls to the
additive HSS given by Lemma 2, so the running time is O(`α(N)) = O(`2nd ).

An algorithm, presented in the full version, improves the efficiency of Theorem 9
for decision trees to Õ(α(n) + ` · α(n)1/3).

4.1 Intervals and Convex Shapes

By Proposition 1, one obtains weak shortcuts for d-dimensional intervals. In fact,
one can obtain strong shortcuts by the standard technique of precomputing the
prefix sums in the summation Equation (4).

Theorem 10. PIRkRM admits a strong shortcut for the function family SUMINT`,dn .
More concretely, τ(N, `) = O(α(N)+`) = O(N1/d+`). The same shortcut applies
to DINT`,dn .

Segments and Low-Dimensional Intervals Every segment can be split into
at most (2d−1) d-dimensional intervals. The splitting (deferred to the full version)
works by comparing the input x ∈ {0, 1}n with the endpoints a, b ∈ ({0, 1}n/d)d
in a block-wise manner.

Theorem 11. PIRkRM admits a strong shortcut for the function families SEG`
n.

Generally, for every integer d′|d, PIRkRM admits a strong shortcut for the function
families DINTd

′,`
n (or SUMINTd

′,`
n ). More concretely, τ(N, `) = O(N1/d + `).

Shortcut for Convex Shapes At a high level, convex body functions are
functions whose preimage of 1 forms a convex body in the d-dimensional cube
Xn := ({0, 1}n/d)d. The following theorem follows from the fact that we can
efficiently split a d-dimensional convex body into O(N (d−1)/d) d-dimensional
intervals in a “Riemann-sum” style.
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Theorem 12 (Convex bodies, Informal). There is a perfectly correct k-
server HSS for the function class of `-unions of convex shapes with α(n) =
O(N1/(k−1)), β(n) = 1 and τ(n) = O(`N (k−2)/(k−1)).

We show that the bound is essentially the best achievable by splitting the shape
into union of intervals. Finally, we show that on the other hand, for more regular
shapes like circles, strong shortcuts are possible if one settles for an approximated
answer. Detailed discussion of such results are deferred to the full version.

Theorem 13 (Circle approximation, Informal). There is a perfectly correct
k-server HSS for the function class of `-unions of ε-approximations of circles
with α(n) = O(N1/(k−1)), β(n) = 1 and τ(n) = O(α(n) + 1

ε `).

4.2 Compressing Input Shares

The scheme PIR3
RM described above can be strictly improved by using a more

dense encoding of the input. This results in a modified scheme PIR3
RM′ with

α′(N) =
√

2 ·N1/2, a factor
√

2 improvement over PIR3
RM. This is the best known

3-server PIR scheme with β = 1 (up to lower-order additive terms [11]). In the
full version, we show that with some extra effort, similar shortcuts apply also to
the optimized PIR3

RM′ .

4.3 Negative Results for RM PIR

Although we have shortcuts for disjoint DNF formulas, similar shortcut for more
expressive families with counting hardness is unlikely. The idea is similar in spirit
to [52, Claim 5.4]. The lower bounds for PIR3

RM also hold for PIR3
RM′ .

Theorem 14. Let F be a function family for which PIRkRM admits a weak shortcut
with τ(N, `) = T . Then, there exists an algorithm Count2 : Pn → F2 running
in time O(T +

∣∣∣f̂ ∣∣∣), that when given f̂ ∈ Pn, computes the parity of |{x ∈ Xn :
f(x) = 1}|.

Proof. Recall that the server computes the following expression in PIRkRM:

σ

λj ∑
(x′1,...,x′k−1)∈Xn

f(x′1, . . . , x′k−1)
k−1∏
i=1

(qji )[x
′
i]

 .

To compute the required parity, instead of using e1, . . . , en in the original ShareRM
in step 3 (see Figure 1), we use the vectors 1N1/d

, . . . , 1N1/d , i.e., the all-one
vectors. After calling Eval on all the respective shares and decoding the output,
one obtains ∑

(x′1,...,x′k−1)∈{0,1}n
f(x′1, . . . , x′k−1) = |{x ∈ Xn : f(x) = 1}| (mod 2).

The total time of the algorithm is O(T +
∣∣∣f̂ ∣∣∣).
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We recall the following conjecture commonly used in complexity theory.

Conjecture 2 (Strong Exponential Time Hypothesis (SETH)). SAT cannot be
decided with high probability in time O(2(1−ε)n) for any ε > 0.

By the isolation lemma from [25], SETH is known to imply that ⊕SAT, which
is similar to SAT except that one need to compute the parity of the number
of satisfying assignments, cannot by solved in time O(2(1−ε)n). The number of
satifying assignemnts to a CNF formula equals 2n − r, where r is the number of
satisfying assignments to its negation. Since the negation of a CNF formula is
in DNF, ⊕DNF cannot be decided in O(2(1−ε)n) as well. Therefore we have the
following corollary.

Corollary 2. For any k, there exists a polynomially bounded ` such that PIRkRM
does not admit a weak shortcut for the function family DNF`n, unless SETH fails.

Proof. By Theorem 14, if there is a weak shortcut for any polynomially bounded
`, i.e., an algorithm computing Eval for any function in DNF`n in time O(N1−ε),
then one can decide ⊕DNF in time O(N1−ε).

Note that the hardness for DNF`n is not contradictory to the fact that larger
field size or random linear combinations help evaluating general DNFs (see
Remark 1) because our proof heavily relies on the fact that we work over a small
field (which has several efficiency benefits) and that the shortcut is deterministic.

Conjecture 3 (Exponential Time Hypothesis (ETH)). SAT requires time O(2δn),
for some δ > 0, to be decided with high probability.

In a similar fashion, assuming the ETH, we can obtain the weaker result that
strong shortcuts are impossible given k is large, namely when k > 1

δ .

Corollary 3. Assume ETH. For some large enough k and some polynomially
bounded `, PIRkRM does not admit a strong shortcut for the function family DNF`n.

5 On Shortcuts for Matching Vector PIR

Matching vectors (MV) based PIR schemes in the literature can be cast into a
template due to [12]. As described in the introduction, this template has two
ingredients: (1) a matching vector family; (2) a share conversion. A complete
specification is given in the full version.

We describe the server computation in more detail, in particular, we present
the structure of the matching vector family on which MV PIR is based. In
PIRkMV,SC each server j is given as input xj ∈ Zhm which is a secret share of ux.
Then, for every x′ ∈ [N ], the server j homomorphically obtains yj,x,x′ which is
the j-th share of 〈ux, vx′〉. Next, each server j computes a response∑

x′∈[N ]

f(x′)SC(j, yj,x,x′).
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Therefore, for the all-1 database (f(x) = 1), for every S-matching vector family
MV and share conversion scheme SC from L to L′ we can define the (MV,SC)-
counting problem, #(MV,SC), see Definition 1.

We consider #(MVwGrol,SC), where MVwGrol is a matching vectors family due
to Grolmusz [40], which is used in all third-generation PIR schemes, which we
present in Fact 1, and SC ∈ {SCEfr,SCBIKO}.

#(MV,SC) displays a summation of converted shares of inner products. The
actual computation carried out is determined by the structure of vx′ and hence
the instance of the MV used. Here we describe the graph-based matching vector
family, first given in [40].

Instantiation of Grolmusz’s family There is an explicitly constructable S-Matching
Vector family for m = p1p2 with α(N) = No(1) based on the intersecting set
family in [50] for the canonical set S = Sm = {(0, 1), (1, 0), (1, 1)} ⊆ Zp1 × Zp2

(in Chinese remainder notation). Here we give a more detailed description of
their structure in the language of hypergraphs.

Fact 1 (The parameterized MVw
Grol, modified from [40]) Let m = p1p2

where p1 < p2 are distinct primes. For any integer r and parameter function
w(r), one can construct an S-matching vector family {ux, vx ∈ Zhm}x∈[N ] where
N =

(
r

w(r)
)
and h =

(
r
≤d
)
for d ≤ p2

√
w(r). Moreover, the construction is

hypergraph-based in the following sense:
Let [r] be the set of vertices. Every index x ∈ [N ] corresponds to a set Tx ⊂ [r]

of w(r) nodes. The vector vx has entires in {0, 1} and its coordinates are labelled
with ζ ⊂ [r] which are hyperedges of size at most d nodes. Moreover, vx[ζ] = 1 iff
the vertices of the hyperedge ζ are all inside Tx. Therefore the inner product can
be evaluated as

〈ux, vx′〉 =
∑

ζ⊆Tx′ ,|ζ|≤d

ux[ζ] =
∑

ζ⊆Tx,|ζ|≤d

ux′ [ζ] =
∑

ζ⊆Tx∩Tx′ ,|ζ|≤d

1.

In other words, the inner product is carried out by a summation over all the
hyperedges lying within a given vertex subset Tx′ . Under this view, we will call
|Tx′ | = w(r) the clique size parameter.

By setting MVwGrol with w = Θ(
√
r), we obtain from Fact 1 and the definition

of PIRkMVwGrol,SC, a PIR scheme with α(N) = 2O(2p2
√
n logn), which is state of the

art in terms of asymptotic communication complexity. We prove Fact 1 in the
full version.

5.1 A Reduction From a Subgraph Counting Problem for SCEfr

In this section we relate the server computation to a subgraph counting problem.
For this we rely on the hypergraph-based structure of the matching vector family,
in combination with the share conversion SCEfr. More concretely, we relate
#(MVwGrol,SCEfr) to the problem ⊕IndSub(Φ511,0, w), see Definition 2 and the
preceding discussion.
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We prove the following which relates obtaining computational shortcuts for
PIRkMV,SC to counting induced subgraphs.

Lemma 3 (Hardness of (MVw
Grol,SCEfr)-counting). If #(MVwGrol,SCEfr)

can be computed in No(1) (= ro(w)) time, then ⊕IndSub(Φ511,0, w) can be decided
in ro(w) time, for any nondecreasing function w : N→ N.

In particular, if we can show ⊕IndSub(Φ511,0, Θ(
√
r)) cannot be decided in

ro(
√
r) time under some complexity assumption, it will imply that PIRk

MVΘ(
√
r)

Grol ,SCEfr

does not admit strong shortcuts for the all-1 database under the same assumption,
as α(N) = No(1) holds and τ(N, `) = No(1) is impossible.

Proof (Proof of Lemma 3). Let m = 511. Recall that N =
(
r
w

)
and h =

(
r
≤d
)

where d ≤ p2
√
w. Suppose A is an algorithm solving #(MVwGrol,SCEfr) with these

parameters that runs in time No(1) = ro(w). By definition of ShareEfr, the input
to A is a vector xj ∈ Zhm. To homomorphically obtain a share of 〈ux, vx′〉, where
x is the client’s input, the server first computes 〈xj , vx′〉. For any instance G in
⊕IndSub(Φm,0, w) with |V (G)| = r, we define the following vector q ∈ Zhm: for
every hyperedge ζ where |ζ| ≤ d,

q[ζ] =
{

0 if ζ /∈ E(G)
1 if ζ ∈ E(G).

(5)

Note that for any |ζ| 6= 2 we have q[ζ] = 0. By Fact 1 and how q is constructed,
for every x′ ∈ [N ],

〈q, vx′〉 =
∑

ζ⊂Tx′ ,|ζ|≤d

q[ζ] =
∑

ζ⊂Tx′ ,ζ∈E(G)

1.

Therefore the value of the inner product is the number of edges in the subgraph
induced by the nodes in Tx′ . For ` = 1, . . . , (m−1), we feed ` ·q into the algorithm
A. The output will be∑

x′∈[N ]

SCEfr(j, 〈` · q, vx′〉) =
∑
x′∈[N ]

ajγ
〈`·q,vx′ 〉 = aj

∑
x′∈[N ]

γ`〈q,vx′ 〉

= aj
∑

b∈{0,...,m−1}

∑
x′:〈q,vx′ 〉=b

γb`

= aj
∑

b∈{0,...,m−1}

cb(γ`)b,

where cb ∈ {0, 1} (recall that the field F29 has characteristic 2) is the parity of
the number of induced w-subgraphs, whose number of edges is congruent to b
modulo m. This is because cb counts the number of elements in the set {x′ ∈ [N ] :
〈q, x′〉 = b} = {x′ ∈ [N ] :

∑
ζ⊂Tx′ ,ζ∈E(G) 1 = b}. Consequently, the bit c0 is the

answer bit to the problem ⊕IndSub(Φm,0, w). Note that after each call to A, we
obtain evaluation of the degree-(m−1) polynomial Q(Γ ) = aj

∑
b∈{0,...,m−1} cbΓ

b
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at Γ = γ`. Since the points {γ`}m−1
`=0 are distinct, we can perform interpolation to

recover cb for any b ∈ {0, . . . ,m− 1}. In particular, we can compute the desired
bit c0. The overall running time is O(m2) +mro(w) = ro(w).

In the full version, we show that a similar reduction holds for SCBIKO as well,
except that we consider the problem ⊕IndSub(Φ6,4, w).

5.2 Hardness of Subgraph Counting

As described in Section 2.2, we have the following plausible conjecture, and
it turns out that its hardness can be based on ETH for a suitable choice of
parameter.

Conjecture 4 (Hardness of counting induced subgraphs). ⊕IndSub(Φm,∆, w) can-
not be decided in ro(w) time, for any integers m ≥ 2, 0 ≤ ∆ < m, and for every
function w(r) = O(rc), 0 ≤ c < 1.

Note that Conjecture 4 does not rule out weak shortcuts. However, it seems
that even weak shortcuts would be difficult to find when instantiated with
matching vectors from Fact 1. Indeed, for the related problem of hyperclique
counting, algorithms which are faster than the naïve one are known only for the
special case when hyperedges are edges (e.g.[4]).

Basing on ETH. Proving Conjecture 4 is difficult as it is a fine-grained lower
bound. However, by assuming ETH, we can prove Conjecture 4 partially, in the
sense that for a specific choice of w(r), the lower bound does hold.

Lemma 4. There is an efficiently computable function w(r) = Θ(log r/ log log r),
such that if ⊕IndSub(Φ511,0, w) or ⊕IndSub(Φ6,4, w) can be decided in ro(w(r))

time, then ETH fails.

Proof. This follows from ETH
Lemma 5
≤ Clique(k(r))

Lemma 6
≤ ⊕IndSub(Φ,w)

for Φ ∈ {Φ511,0, Φ6,4}.

Next, we sketch how to perform the steps of the reduction in the proof of
Lemma 4.

Reducing clique decision to ETH. Let Clique(k(r)) be the problem that, given
a graph G with r nodes, decide whether a clique of size k(r) exists in G. As a
direct corollary of [28, Theorem 5.7], we have the following lemma.

Lemma 5. There is an efficiently computable function k(r) = Θ(log r/ log log r),
such that if Clique(k(r)) can be solved in ro(k(r)) time, then ETH fails.
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Reducing induced subgraph counting to clique decision By reproducing the reduc-
tion in [42], we have the following (proofs deferred to the full version).

Lemma 6. Let k(r) = Θ(log r/ log log r) as in Lemma 5. Then, there is an
efficiently computable size parameter w(r) = Θ(log r/ log log r) such that if
⊕IndSub(Φ511,0, w) or ⊕IndSub(Φ6,4, w) can be decided in ro(w(r)) time, then
one can decide Clique(k(r)) in ro(k(r)) time.

While Lemma 5 could be proven to hold for k(r) = Θ(
√
r) as well, as discussed

in Section 2.2, by reproducing the reduction in [42], Lemma 6 only holds for
k(r) = o(log r).

Hardness of subgraph counting Finally, our main theorem follows from Conjec-
ture 4 and Lemmas 3 and 4. To this end, denote by MV∗ the family MVwGrol
obtained by instantiating w(r) with this specific parameter.

Theorem 15. #(MV∗,SC) cannot be computed in No(1) (= ro(w)) time, unless
ETH fails. Moreover, assuming Conjecture 4, the same holds for MVwGrol with
w = Θ(

√
r). Here SC is either SCEfr or SCBIKO.

6 Concrete Efficiency

While this paper deals with computational shortcuts, in this section we will make
comparisons exclusively with respect to communication. The main reason we
compare communication is that for our main positive results, computation scales
at most quasi-linearly with the size of the inputs, and thus is essentially the
best one can hope for. Moreover, it is hard to make exact “apples to apples”
comparisons for computation (what are the units?) Perhaps most importantly,
for the problems to which our positive results apply (e.g., unions of convex
shapes), the (asymptotic and concrete) computational efficiency of our schemes
dominate those of competing approaches (FHE, brute-force PIR, garbled circuits,
GMW-style protocols). Due to the concrete inefficiency of HSS from generic
composition of PIRs, we will focus exclusively on HSS from shortcuts for PIRkRM.

Cryptographic Share Compression In the full version we describe a simple
method [33] to compress the queries of PIRkRM = (Share,Eval,Dec), at the cost of
making the scheme only computationally secure, utilizing share conversion from
Shamir secret sharing to CNF secret sharing (c.f. [12] for relevant definitions).

Communication Complexity In Table 1 we compare the communication
complexity for unions of disjoint two dimensional intervals. For two dimensional
intervals, FSS requires queries of length O(λ(logN)2) [19].

It is worth mentioning that private geographical queries were already con-
sidered in [58]. However, there the two dimensional plane is tesselated with
overlapping shapes of the same size, which reduces the problem to the task of
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Domain size Reed-Muller[29]
(k = 3)

Reed-Muller[29]
(k = 4)

Reed-Muller[29]
(k = 5)

FSS[19]
(k = 2)

210 0.05 KB 0.05 KB 0.06 KB 3.1 KB
215 0.1 KB 0.1 KB 0.1 KB 7.0 KB
220 0.6 KB 0.2 KB 0.3 KB 12.5 KB
225 2.9 KB 0.5 KB 0.4 KB 19.5 KB
230 16.1 KB 1.3 KB 0.6 KB 28.1 KB
235 90.6 KB 3.7 KB 1.1 KB 38.3 KB
240 512.1 KB 11.5 KB 2.2 KB 50.0 KB
270 16.0 GB 11.3 MB 362.3 KB 153.1 KB

Table 1. Total communication complexity for the task where the client holds a secret
index x in a grid [

√
N ]× [

√
N ] and it wishes to privately learn (with security threshold

t = 1) if it is contained in a collection of ` two dimensional intervals held by k servers.
The computational cost for FSS and Reed-Muller is Õ(comm + `), where comm is the
communication complexity. The latter is obtained via our shortcuts. Note that for k = 4
the aforementioned computational cost is obtainable only when considering grids with
dimensions [N1/3]× [N2/3]. For grids with dimensions [

√
N ]× [

√
N ] the computational

cost becomes Õ(comm + `
√

comm). See [19, Corollary 3.20] for how the numbers in last
column were computed. Share compression was applied to Reed-Muller.

evaluating multipoint functions. Therefore, this approach can be seen as a simply
reducing the size of the problem. In contrast, here we allow for a better tradeoff
between precision and computation. Our solution is more expressive, as it allows
for shapes of high and low precision simultaneously.

Larger Security Threshold In this section we consider the applicability of
our PIR-based HSS to security models with larger security threshold. Specifically,
we will consider the case where we allow at most two colluding servers. However,
lending to its PIR backbone, our HSS constructions scale well for higher security
thresholds.

Indeed, there is an analogue of PIRkRM with 2 security threshold, such that
for O(

√
N) and O(N1/3) total communication, the number of required servers is

5 and 7, respectively. Moreover, this PIR scheme retains all the computational
shortcuts of PIRkRM and its shares can be compressed as well. Alternatively,
employing multiparty FSS [17] (for multipoint functions) requires only 3 servers.
However, in stark contrast to two party FSS, multiparty FSS requires O(λ

√
N)

total communication. Moreover, it is not clear how to obtain an FSS for one
dimensional intervals in this setting, let alone two dimensional intervals. We
conclude our HSS wins by two orders of magnitude.

Another approach to increase the security threshold of FSS is via the generic
tensoring technique of [7], which preserves the communication complexity. Nev-
ertheless, this scales worse with larger security threshold t, requiring 2t servers,
compared to 2t + 1 servers via Reed-Muller PIR. Furthermore, this approach
is not computationally efficient, requiring O(N) computation. We provide a
description of the tensoring of [7] in the full version.
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In Table 2 we compare the communication complexity of FSS with our HSS
for the simple task of PIR, as more expressive function families are unavailabe
for higher security thresholds for FSS.

Domain size Reed-Muller[29]
(t = 2, k = 5)

FSS[19]
(t = 2, k = 3)

210 0.2 KB 3.0 KB
215 0.6 KB 17.0 KB
220 1.2 KB 96.0 KB
225 4.7 KB 543.1 KB
230 24.4 KB 3.0 MB
235 136.2 KB 17.0 MB
240 768.4 KB 96.0 MB
270 24.0 GB 3.0 TB

Table 2. Total communication complexity for the task where the client holds a secret
index x in [N ] and it wishes to privately learn (with security threshold t = 2) if its
contained in a collection of ` points in [N ] held by k servers. The computational cost for
FSS and Reed-Muller is Õ(comm + `), where comm is the communication complexity.
Data for FSS was obtained from [17, Theorem 7]. Share compression was applied to
Reed-Muller.

Other settings In the full version, we show how to make our schemes more
efficient whenever the payload size is small (a few bits), by basing our shortcuts
on a “balanced” variant of PIRkRM, proposed by Woodruff and Yekhanin [60]. In
addition, we discuss our schemes in the context of distributed share generation and
argue that our schemes are more “MPC-friendly” than the FSS-based alternative.
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