
Functional Encryption for Quadratic Functions from
k-Lin, Revisited

Hoeteck Wee

NTT Research

Abstract. We present simple and improved constructions of public-key func-
tional encryption (FE) schemes for quadratic functions. Our main results are:

– an FE scheme for quadratic functions with constant-size keys as well as
shorter ciphertexts than all prior schemes based on static assumptions;

– a public-key partially-hiding FE that supports NC1 computation on public
attributes and quadratic computation on the private message, with ciphertext
size independent of the length of the public attribute.

Both constructions achieve selective, simulation-based security against unbounded
collusions, and rely on the (bilateral) k-linear assumption in prime-order bilin-
ear groups. At the core of these constructions is a new reduction from FE for
quadratic functions to FE for linear functions.

1 Introduction

In this work, we study functional encryption for quadratic functions. That is, we would
like to encrypt a message z to produce a ciphertext ct, and generate secret keys skf for
quadratic functions f , so that decrypting ct with skf returns f(z) while leaking no addi-
tional information about z. In addition, we want (i) short ciphertexts that grow linearly
with the length of z, as well as (ii) simulation-based security against collusions, so that
an adversary holding ct and secret keys for different functions f1, f2, . . . learns noth-
ing about z beyond the outputs of these functions. Functional encryption for quadratic
functions have a number of applications, including traitor-tracing schemes whose ci-
phertext size is sublinear in the total number of users [8,6,11,5,16]; obfuscation from
simple assumptions [4,18,19,13]; as well as privacy-preserving machine learning for
neural networks with quadratic activation functions [21].

1.1 Our Results

We present new pairing-based public-key functional encryption (FE) schemes for quadratic
functions, improving upon the recent constructions in [20,5,19,12]. Our main results
are:

– A FE scheme for quadratic functions with constant-size keys, whose ciphertext
size is shorter than those of all prior public-key schemes based on static assump-
tions [5,12]; moreover, when instantiated over the BLS12-381 curve where |G2| =
2|G1|, our ciphertext size basically matches that of the most efficient scheme in the
generic group model [21] (see Fig 1).

Scheme |ct| |sk| Assumption Security
BCFG17 [5] (6n1 + 1)|G1|+ (6n2 + 1)|G2| |G1|+ |G2| SXDH, 3-PDDHSEL-IND
RDGBP19 [21] (2n1 + 1)|G1|+ 2n2|G2| |G2| GGM AD-IND
G20 [12] (4n1 + 2n2 + 2)|G1|+ n2|G2| (3n1 + 2n2 + 2)|G2|SXDH, bi-2-Lin SA-SIM
GQ20 [14] (2n1 + 5)|G1|+ (2n2 + 5)|G2| 5|G1|+ 5|G2| SXDH, bi-2-Lin SA-SIM
this work ((k + 1)n1 + kn2 + k + 1)|G1|+ n2|G2| (k + 1)|G2| bi-k-Lin, k > 1 SA-SIM

(2n1 + 2n2 + 2)|G1|+ n2|G2| 2|G2| SXDH, bi-2-Lin SA-SIM

Fig. 1. Comparison with prior public-key functional encryption schemes for quadratic functions
f : Zn1

p × Zn2
p → Zp, as well as a concurrent work [14]. Note that |sk| ignores the contribution

from the function f , which is “public”. Here, SXDH=1-Lin, and bi-k-Lin (bilateral k-Lin) is a
strengthening of k-Lin. 3-PDDH asserts that [abc]2 is pseudorandom given [a]1, [b]2, [c]1, [c]2.
In bilinear groups where |G|2 = 2|G1|, we achieve |ct| = (2n1 + 4n2 + 2)|G1| under SXDH,
bi 2-Lin, almost matching |ct| = (2n1 + 4n2 + 1)|G1| in RDGBP19.

– A partially-hiding FE that supports NC1 computation on public attributes x and
quadratic computation on the private message z; moreover, the ciphertext size
grows linearly with z and independent of x. The previous constructions in [13,19]
have ciphertext sizes that grow linearly with both z and x.

Both constructions achieve selective1, simulation-based security against unbounded
collusions, and rely on the bilateral k-linear assumption in prime-order bilinear groups.

At the core of these constructions is a new reduction from public-key FE for quadratic
functions to that for linear functions. The reduction relies on the (bilateral) k-Lin as-
sumption, and blows up the input size by a factor k. Note that the trivial reduction blows
up the input size by |z|. Our reduction is simpler and more direct than the previous re-
ductions due to Lin [20] and Gay [12]: (i) we do not require function-hiding FE for
linear functions, and (ii) our reduction works directly in the public-key setting. Thanks
to (i), we can also decrease the secret key size from linear to constant.

1.2 Technical Overview

We proceed to provide an overview of our constructions. We rely on an asymmet-
ric bilinear group (G1,G2,GT , e) of prime order p where e : G1 × G2 → GT .
We use [·]1, [·]2, [·]T to denote component-wise exponentiations in respective groups
G1,G2,GT [10]. We use bold-face lower case to denote row vectors. The k-Lin as-
sumption in Gb asserts that

([A]b, [sA]b) ≈c ([A]b, [u]b), s← Zkp,A← Zk×`p ,u← Z`p, ` > k

The bilateral k-Lin assumption is a strengthening of k-Lin, and asserts that

([A]1, [sA]1, [A]2, [sA]2) ≈c ([A]1, [u]1, [A]2, [u]2)

Note that bilateral 1-Lin is false, for the same reason DDH is false in symmetric bilinear
groups.

1 We actually achieve semi-adaptive security [9], a slight strengthening of selective security.

2

FE for quadratic functions. Consider the class of quadratic functions over Znp × Znp
given by

(z1, z2) 7→ (z1 ⊗ z2)f>

where f ∈ Zn2

p is the coefficient vector. We will first mask z1, z2 in the ciphertext using:

[s1A1 + z1]1, [s2A2 + z2]2

where the matrices
[A1]1, [A2]2,A1,A2 ← Zk×np

are specified in the master public key. Next, observe that

((s1A1 + z1)⊗ (s2A2 + z2)) · f> = (z1 ⊗ z2)f> + cross terms (1)

Following [12,20], we will express the cross terms as a linear function evaluated on
inputs of length O(kn); the key difference in this work is that the linear function can be
derived from the master public key and f .

More precisely, we write

(s1A1 + z1︸ ︷︷ ︸
y1

)⊗ (s2A2 + z2︸ ︷︷ ︸
y2

) = (z1 ⊗ z2) + s1A1 ⊗ z2 + y1 ⊗ s2A2

= (z1 ⊗ z2) + (s1 ⊗ z2) · (A1 ⊗ In) + (y1 ⊗ s2) · (In ⊗A2)

= (z1 ⊗ z2) + (s1 ⊗ z2‖y1 ⊗ s2)
(
A1⊗In
In⊗A2

)
where the second equality uses the mixed-product property of the tensor product, which
tells us that (M1 ⊗M2)(M3 ⊗M4) = (M1M3) ⊗ (M2M4), and ‖ denotes row
vector concatenation. Multiplying both sides on the right by f> and rearranging the
terms yields:

(z1 ⊗ z2)f> = (y1 ⊗ y2)f> − (s1 ⊗ z2‖y1 ⊗ s2)Mf> (2)

where M :=
(
A1⊗In
In⊗A2

)
. As we mentioned earlier, the boxed term (= cross terms in (1))

(s1 ⊗ z2‖y1 ⊗ s2) ·Mf> (3)

corresponds to a linear computation where

– the input (s1 ⊗ z2‖y1 ⊗ s2) has length O(kn);
– the linear function Mf> can be computed given f and the matrices A1,A2 in the

public key.

The latter property pertaining to Mf> is what allows us to significantly simplify the
previous reductions in [20,12], since there is nothing “secret” about the linear function
Mf>. In the prior works, the linear function leaks information about the master secret
key beyond what can be computed from the master public key.

In particular, we can use a public-key FE for linear functions (linear FE for short)
[3,22,1] to compute (3). That is, we encrypt [s1 ⊗ z2‖y1 ⊗ s2]1, and generate a secret
key for [Mf>]2. The linear FE schemes in [3,22] extend readily to this setting where

3

both the input and function are specified “in the exponent”; moreover, these schemes
achieve selective, simulation-based security under the k-Lin assumption, with constant-
size secret keys. The linear FE ciphertext would lie in G1, whereas both M and the
secret key would lie in G2. Note that in order to compute [M]2, we would also publish
[A1]2 in the public key. We present a self-contained description of our quadratic FE in
Section A.

Security overview. Security, intuitively, is fairly straight-forward:

– First, observe that [y1]1, [y2] leaks no information about z1, z2, thanks to the k-Lin
assumption;

– Next, we can simulate the ciphertext and secret key for the linear FE given (s1 ⊗
z2‖y1⊗s2)Mf>, which we can rewrite as (z1⊗z2)f>−(y1⊗y2)f>. We can in turn
compute the latter given just y1,y2 and the output of the ideal functionality and
therefore the linear FE ciphertext-key pair leaks no additional information about
z1, z2.

In the reduction, we would need to compute [y1 ⊗ y2]2 in order to simulate the se-
cret key for the linear FE. This is something we can compute given either y1, [y2]2 or
[y1]2,y2. The latter along with publishing [A1]2 in the public key is why we require
the bilateral k-Lin assumption. For the most efficient concrete instantiation, we will
use the bilateral 2-Lin assumption together with SXDH (i.e., 1-Lin), where we sample
A1 ← Z2×n

p ,A2 ← Z1×n
p . We leave the question of basing quadratic FE solely on the

standard k-Lin assumption as an open problem.

Extension to partially hiding FE. Our approach extends readily to partially hiding FE
(PHFE) for the class

(

public︷︸︸︷
x ,

private︷ ︸︸ ︷
(z1, z2)) 7→ (z1 ⊗ z2)f(x)>

where f captures NC1 –more generally, any arithmetic branching program– computa-
tion on the public attribute x and outputs a vector in Zn2

p . Note that FE for quadratic
functions corresponds to the special case where f is a constant function (independent
of x). The idea behind the extension to PHFE is to replace f> in (2) with f(x) (the
decryptor can compute f(x) since x is public), which yields:

(z1 ⊗ z2)f(x)> = (y1 ⊗ y2)f(x)> − (s1 ⊗ z2‖y1 ⊗ s2)Mf(x)>

To compute the new boxed term, we will rely on the partially-hiding linear FE scheme
in [2] for the class

(

public︷︸︸︷
x ,

private︷︸︸︷
z) 7→ zf(x)>

We can augment the construction to take into account the matrix M; some care is
needed as the decryption algorithm only gets [M]2 and not M. In the ensuing scheme
as with [2], the ciphertext size grows linearly with the message and independent of x,
which we then inherit in our partially-hiding quadratic FE.

4

2 Preliminaries

Notations. We denote by s ← S the fact that s is picked uniformly at random from a
finite set S. We use ≈s to denote two distributions being statistically indistinguishable,
and ≈c to denote two distributions being computationally indistinguishable. We use
lower case boldface to denote row vectors and upper case boldcase to denote matrices.
We use ei to denote the i’th elementary row vector (with 1 at the i’th position and 0
elsewhere, and the total length of the vector specified by the context). For any positive
integer N , we use [N] to denote {1, 2, . . . , N}.

The tensor product (Kronecker product) for matrices A = (ai,j) ∈ Z`×m, B ∈
Zn×p is defined as

A⊗B =

a1,1B, . . . , a1,mB

. . . , . . . , . . .

a`,1B, . . . , a`,mB

 ∈ Z`n×mp.

The mixed-product property for tensor product says that

(A⊗B)(C⊗D) = (AC)⊗ (BD)

Arithmetic Branching Programs. A branching program is defined by a directed
acyclic graph (V,E), two special vertices v0, v1 ∈ V and a labeling function φ. An
arithmetic branching program (ABP), where p is a prime, computes a function f :
Znp → Zp. Here, φ assigns to each edge in E an affine function in some input variable
or a constant, and f(x) is the sum over all v0-v1 paths of the product of all the val-
ues along the path. We refer to |V | + |E| as the size of f . The definition extends in a
coordinate-wise manner to functions f : Znp → Zn′p . Henceforth, we use FABP,n,n′ to
denote the class of ABP f : Znp → Zn′p .

We note that there is a linear-time algorithm that converts any boolean formula,
boolean branching program or arithmetic formula to an arithmetic branching program
with a constant blow-up in the representation size. Thus, ABPs can be viewed as a
stronger computational model than all of the above. Recall also that branching pro-
grams and boolean formulas correspond to the complexity classes LOGSPACE and
NC1 respectively.

2.1 Prime-order Bilinear Groups

A generator G takes as input a security parameter 1λ and outputs a description G :=
(p,G1,G2,GT , e), where p is a prime of Θ(λ) bits, G1, G2 and GT are cyclic groups
of order p, and e : G1×G2 → GT is a non-degenerate bilinear map. We require that the
group operations in G1, G2, GT and the bilinear map e are computable in deterministic
polynomial time in λ. Let g1 ∈ G1, g2 ∈ G2 and gT = e(g1, g2) ∈ GT be the respective
generators. We employ the implicit representation of group elements: for a matrix M
over Zp, we define [M]1 := gM1 , [M]2 := gM2 , [M]T := gMT , where exponentiation
is carried out component-wise. Also, given [A]1, [B]2, we let e([A]1, [B]2) = [AB]T .
We recall the matrix Diffie-Hellman (MDDH) assumption on G1 [10]:

5

Assumption 1 (MDDHd
k,k′ Assumption) Let k, `, d ∈ N. We say that the MDDHd

k,`

assumption holds if for all PPT adversaries A, the following advantage function is
negligible in λ.

Adv
MDDHd

k,`

A (λ) :=
∣∣Pr[A(G, [M]1, [MS]1) = 1]− Pr[A(G, [M]1, [U]1) = 1]

∣∣
where G := (p,G1,G2,GT , e)← G(1λ), M← Z`×kp , S← Zk×dp and U← Z`×dp .

The MDDH assumption on G2 can be defined in an analogous way. Escala et al. [10]
showed that

k-Lin⇒ MDDH1
k,k+1 ⇒ MDDHd

k,` ∀ k, d ≥ 1, ` > k

with a tight security reduction. (In the setting where ` ≤ k, the MDDHd
k,` assumption

holds unconditionally.)
The bilateral MDDH assumption is defined analogously with the advantage func-

tion:∣∣Pr[A(G, [M]1, [MS]1 , [M]2, [MS]1) = 2]−Pr[A(G, [M]1, [U]1 , [M]2, [U]2) = 1]
∣∣

2.2 Partially-Hiding Functional Encryption (PHFE)

We recall the notion of partially-hiding functional encryption [15,22,4,7] for the func-
tion class

(x, z) ∈ Znp × Zn
′

p 7→ h(z)f(x)>

where h : Zn′p → Zn′′p is fixed and f ∈ FABP,n,n′′ is specified by the secret key. We
will be primarily interested in the settings h(z) = z and h(z1, z2) = z1 ⊗ z2, which
generalize FE for linear functions and quadratic functions respectively.

Syntax. A partially-hiding functional encryption scheme (PHFE) consists of four al-
gorithms:

Setup(1λ, 1n, 1n
′
, h) : The setup algorithm gets as input the security parameter 1λ

and function parameters 1n, 1n
′

and h : Zn′p → Zn′′p . It outputs the master public
key mpk and the master secret key msk.

Enc(mpk,x, z) : The encryption algorithm gets as input mpk and message x, z ∈
Znp × Zn′p . It outputs a ciphertext ct(x,z) with x being public.

KeyGen(msk, f) : The key generation algorithm gets as input msk and a function
f ∈ FABP,n,n′′ . It outputs a secret key skf with f being public.

Dec((skf , f), (ct(x,z),x) : The decryption algorithm gets as input skf and ct(x,z)

along with f and x. It outputs a value in Zp.

6

Correctness. For all (x, z) ∈ Znp × Zn′p and f ∈ FABP,n,n′′ , we require

Pr

Dec((ct(x,z),x, (skf , f)) = h(z)f(x)> :

(mpk,msk)← Setup(1λ, 1n, 1n
′
, h)

skf ← KeyGen(msk, f)

ct(x,z) ← Enc(mpk,x, z)

 = 1.

Remark 1 (Relaxation of correctness.). Our scheme only achieves a relaxation of cor-
rectness where the decryption algorithm takes an additional bound 1B (and runs in time
polynomial in B) and outputs h(z)f(x)> if the value is bounded by B. This limitation
is also present in prior works on (IP)FE from DDH and bilinear groups [1,3,20,5], due
to the reliance on brute-force discrete log to recover the answer “from the exponent”.
We stress that the relaxation only refers to functionality and does not affect security.

Security definition. We consider semi-adaptive [9] (strengthening of selective), simulation-
based security, which stipulates that there exists a randomized simulator (Setup∗,Enc∗,
KeyGen∗) such that for every efficient stateful adversary A,

(mpk,msk)← Setup(1λ, 1n, 1n
′
, h);

(x∗, z∗)← A(mpk);

ct∗ ← Enc(mpk, (x∗, z∗);

outputAKeyGen(msk,·)(mpk, ct∗)

 ≈c

(mpk,msk∗)← Setup∗(1λ, 1n, 1n

′
, h);

(x∗, z∗)← A(mpk);

ct∗ ← Enc∗(msk∗,x∗);

outputAKeyGen∗(msk∗,x∗,·,·)(mpk, ct∗)

such that wheneverAmakes a query f to KeyGen, the simulator KeyGen∗ gets f along
with h(z∗)f(x∗)>. We use AdvFE

A (λ) to denote the advantage in distinguishing the real
and ideal games.

3 Main Construction

In this section, we present our PHFE scheme for the class

(

public︷︸︸︷
x ,

private︷ ︸︸ ︷
(z1, z2)) ∈ Znp × Zn

′
1+n′2
p 7→ (z1 ⊗ z2)f(x)>, f ∈ FABP,n,n′1n

′
2

The scheme is SA-SIM-secure under the bilateral k-Lin assumption and the k′-Lin as-
sumption in G1,G2 (for the most efficient concrete instantiation, we set k = 2, k′ = 1).
In our scheme, decryption actually computes [(z1⊗ z2)f(x)>]T , whereas the simulator
only needs to get [(z1 ⊗ z2)f(x)>]2. Note that FE for quadratic functions is a special
case of our PHFE (where f has the quadratic function hard-wired into it). We present a
self-contained description of our quadratic FE in Section A.

As a building block, we rely on a SA-SIM-secure PHFE scheme (Setup0,Enc0,KeyGen0,Dec0)
for the class

(

public︷︸︸︷
x ,

private︷︸︸︷
z) ∈ Znp × Zk

′n′1+kn′2
p 7→ [zMf(x)>]T , f ∈ FABP,n,n′1n

′
2

parameterized by a matrix [M]2 ∈ G(k′n′1+kn′2)×n′1n
′
2

1 , where encryption gets [z]1 and
the simulator gets [zMf(x)>]2. We instantiate the building block in Section 4.

7

3.1 Our Scheme

– Setup(p, 1n, 1n
′
1 , 1n

′
2): Run G = (G1,G2,GT , e)← G(p). Sample

A1 ← Zk×n
′
1

p ,A2 ← Zk
′×n′2
p , (mpk0,msk0)← Setup0(p, 1n, 1k

′n′1+kn′2 , [M]2)

where

M :=

(
A1 ⊗ In′2
In′1 ⊗A2

)
∈ Z(k′n′1+kn′2)×n′1n

′
2

p

and output

mpk =
(
G, [A1]1, [A1]2, [A2]2, mpk0

)
and msk = msk0

Observe that given mpk, we can compute [M]2.
– Enc(mpk,x, (z1, z2)): Sample

s1 ← Zkp, s0, s2 ← Zk
′

p , ct0 ← Enc0

(
mpk0,x, [s1 ⊗ z2‖(s1A1 + z1︸ ︷︷ ︸

y1

)⊗ s2]1
)

and output
ct =

(
[s1A1 + z1︸ ︷︷ ︸

y1

]1, [s2A2 + z2︸ ︷︷ ︸
y2

]2, ct0
)

– KeyGen(msk, f): Output

skf ← KeyGen0(msk0, f)

– Dec(skf , f, ct,x): Output

[(y1 ⊗ y2) · f(x)>]T ·

(
Dec0(skf , (f, [M]2), ct0,x)

)−1

Correctness. First, observe that we have

(s1A1 + z1︸ ︷︷ ︸
y1

)⊗ (s2A2 + z2︸ ︷︷ ︸
y2

) = (z1 ⊗ z2) + s1A1 ⊗ z2 + y1 ⊗ s2A2

= (z1 ⊗ z2) + (s1 ⊗ z2) · (A1 ⊗ In′2) + (y1 ⊗ s2) · (In′1 ⊗A2)

= (z1 ⊗ z2) + (s1 ⊗ z2‖y1 ⊗ s2)M

(4)

where the second equality uses the mixed-product property of the tensor product. Mul-
tiplying both sides of (4) by f(x)> and rearranging the terms yields:

(z1 ⊗ z2)f(x)> = (y1 ⊗ y2)f(x)> − (s1 ⊗ z2‖y1 ⊗ s2)Mf(x)> (5)

Next, correctness of the underlying scheme tells us that

Dec0(skf , (f, [M]2), ct0,x) = (s1 ⊗ z2‖y1 ⊗ s2)Mf(x)>

Correctness then follows readily.

8

3.2 Simulator

We start by describing the simulator.

– Setup∗(p, 1n, 1n
′
1 , 1n

′
2): Run G = (G1,G2,GT , e)← G(p). Sample

A1 ← Zk×n
′
1

p ,A2 ← Zk
′×n′2
p , (mpk∗0,msk∗0)← Setup∗0(p, 1n, 1k

′n1+kn2)

and output

mpk∗ =
(
G, [A1]1, [A1]2, [A2]2, mpk∗0

)
and msk∗ = msk∗0

– Enc∗(msk∗0,x
∗): Sample

y1 ← Zn
′
1
p , y2 ← Zn

′
2
p , ct

∗
0 ← Enc∗0(msk∗0,x

∗)

and output
ct∗ =

(
[y1]1, [y2]1, ct

∗
0

)
– KeyGen∗(msk∗,x∗, f, [µ]2): Output

skf ← KeyGen∗0(msk∗0,x
∗, f, [(y1 ⊗ y2)f(x∗)]T · [µ]−1

2)

3.3 Proof of Security

We proceed via a series of games and we use Advi to denote the advantage of A in
Game i. Let x∗, (z∗1, z

∗
2) denote the semi-adaptive challenge.

Game 0. Real game.

Game 1. Replace (Setup0,Enc0,KeyGen0) in Game0 with (Setup∗0,Enc
∗
0,KeyGen

∗
0)

where

ct∗ = ([y1]1, [y2]2,Enc0(msk∗,x∗)), y1 = s1A1 + z∗1,y2 = s2A2 + z∗2

skf ← KeyGen∗0(msk∗0,x
∗, f, [(s1 ⊗ z∗2‖y1 ⊗ s2)Mf(x∗)>]2)

We have Game1 ≈c Game0, by security of the underlying PHFE scheme. The reduction
samples

A1 ← Zk×n
′
1

p ,A2 ← Zk
′×n′2
p , s1 ← Zkp, s0, s2 ← Zk

′

p ,

and upon receiving x∗, (z∗1, z
∗
2) from A, sends

x∗, s1 ⊗ z∗2‖(s1A1 + z∗1)⊗ s2

as the semi-adaptive challenge.

Game 2. Replace skf in Game 1 with

skf ← KeyGen∗0(msk∗0,x
∗, f, [(y1 ⊗ y2)f(x∗)>]2 · [(z∗1 ⊗ z∗2)f(x∗)>]−1

2)

Here, we have Game2 ≡ Game1, thanks to (5), which tells us that

[(y1 ⊗ y2)f(x∗)>]2 · [(z∗1 ⊗ z∗2)f(x∗)>]−1
2 = [(s1 ⊗ z∗2‖y1 ⊗ s2)Mf(x∗)>]2

9

Game 3. We replace [s1A1 + z∗1]1 in ct∗ in Game2 with [y1]1 where y1 ← Zn
′
1
q .

Then, we have Game3 ≈c Game2 via the bi-lateral k-Lin assumption. The assumption
tells us that for all z∗1,

([A1]1, [A1]2, [s
>A1 + z∗1]1, [s

>A1 + z∗1]2) ≈c ([A1]1, [A1]2, [y1]1, [y1]2)

where s ← Zkp,y1 ← Zn
′
1
p . Note that this holds even if z∗1 is adaptively chosen after

seeing [A1]1, [A1]2. The reduction then samples

A2 ← Zk
′×n′2
p , s2 ← Zk

′

p , (mpk∗0,msk∗0)← Setup∗0(p, 1n, 1k
′n1+kn2)

sets y2 := s2A2 + z∗2, and uses the fact that in Games 2 and 3,

– it can compute mpk∗, ct∗ given [A1]1, [A1]2, [y1]1 respectively;
– it can sample skf by using [y1]2,y2 to compute [y1 ⊗ y2]2.

Game 4. We replace [s2A2 + z∗2]1 in ct∗ in Game3 with [y2]1 where y2 ← Zn
′
2
q .

Then, we have Game4 ≈c Game3 via the k′-Lin assumption in G2. Here, we use the
fact that we can sample skf in Games 3 and 4 using y1, [y2]2 to compute [y1 ⊗ y2]2.

Finally, note that Game4 is exactly the output of the simulator.

4 Partially-Hiding FE for Linear Functions

In this section, we present our PHFE scheme for the class

(

public︷︸︸︷
x ,

private︷︸︸︷
z) 7→ [zMf(x)>]T

parameterized by a matrix [M]2, where encryption gets [z]1, and the simulator gets
[zMf(x)>]2. In fact, we present a scheme for a more general setting where the matrix
[M]2 is specified by the function corresponding to the secret key (that is, we allow a
different [M]2 for each secret key, rather than the same matrix for all keys). The scheme
is a somewhat straight-forward modification of that in [2]; some care is needed as the
decryption algorithm only gets [M]2 and not M. This scheme achieves simulation-
based semi-adaptive security under k-Lin. Most of the text in this section is copied
verbatim from [2], with minor adaptations to account for M.

4.1 Partial Garbling Scheme

The partial garbling scheme [2,17,22] for zf(x)> with f ∈ FABP,n,n′ is a randomized
algorithm that on input f outputs an affine function in x, z of the form:

pf,x,z =
(
z− t‖t(L1(x> ⊗ Im) + L0)

)
where L0 ∈ Zt×mnp ,L1 ∈ Zt×mp depends only on f ; t ← Ztp is the random coin and t
consists of the last n′ entries in t, such that given (pf,x,z, f,x), we can recover zf(x)>,
while learning nothing else about z.

10

Lemma 1 (partial garbling [2,17,22]). There exists four efficient algorithms (lgen, pgb,
rec, pgb∗) with the following properties:

– syntax: on input f ∈ FABP,n,n′ , lgen(f) outputs L0 ∈ Zt×mnp ,L1 ∈ Zt×mp , and

pgb(f,x, z; t) =
(
z− t, t(L1(x> ⊗ Im) + L0)

)
pgb∗(f,x, µ; t) =

(
−t, t(L1(x> ⊗ Im) + L0) + µ · e1

)
where t ∈ Ztp and t consists of the last n′ entries in t andm, t are linear in the size
of f .

– reconstruction: rec(f,x) outputs d>f,x ∈ Zn′+mp such that for all f,x, z, t, we have
pf,x,zd

>
f,x = zf(x)> where pf,x,z = pgb(f,x, z; t).

– privacy: for all f,x, z, we have pgb(f,x, z; t) ≈s pgb∗(f,x, zf(x)>; t) where the
randomness is over t← Ztp.

4.2 Construction

Our scheme Π is similar to Πone in [2], with the modifications marked using boxed
terms. We rely on partial garbling to compute pgb(f,x, zM ; t) instead of pgb(f,x, z; t)
“in the exponent” over GT ; applying the reconstruction algorithm (which requires know-
ing f,x but not M) then returns [zM f(x)>]T .

– Setup(1λ, 1n, 1n
′
): Run G = (p,G1,G2,GT , e)← G(1λ). Sample

A← Zk×(k+1)
p and W← Z(k+1)×n′

p , U← Z(k+1)×kn
p , V← Z(k+1)×k

p

and output

mpk =
(
G, [A]1, [AW]1, [AU]1, [AV]1

)
and msk =

(
W, U, V

)
.

– Enc(mpk, (x, z)): Sample s← Zkp and output

ctx,z =
(

[sA]1, [z + sAW]1, [sAU(x> ⊗ Ik) + sAV]1
)

and x.

Note that it is sufficient for Enc to get [z]1.
– KeyGen(msk, (f, [M]2)): Run (L1,L0) ← lgen(f) where L1 ∈ Zt×mnp ,L0 ∈

Zt×mp (cf. Section 4.1). Sample T← Z(k+1)×t
p and R← Zk×mp and output

skf,M =
(

[T+ WM]2, [TL1+U(In⊗R)]2, [TL0+VR]2, [R]2
)

and (f, [M]2).

where T refers to the matrix composed of the right most n′ columns of T.
– Dec((skf,M, (f, [M]2)), (ctx,z,x)): On input key:

skf,M =
(

[K1]2, [K2]2, [K3]2, [R]2
)

and (f, [M]2)

and ciphertext:
ctx,z =

(
[c0]1, [c1]1, [c2]1

)
and x

the decryption works as follows:

11

1. compute
[p1]T = e([c1]1, [M]2) · e([c0]1, [−K1]2) (6)

2. compute

[p2]T = e([c0]1, [K2(x> ⊗ Im) + K3]2) · e([−c2]1, [R]2) (7)

3. run df,x ← rec(f,x) (cf. Section 4.1), compute

[D]T = [(p1‖p2)d>f,x]T (8)

Correctness. For ctx,z and skf,M, we have

p1 = zM− sAT (9)
p2 = sATL1(x> ⊗ Im) + sATL0 (10)

(p1‖p2)d>f,x = zMf(x) (11)

Here (11) follows from the fact that

(p1‖p2) = pgb(f,x, zM; (sAT)) and df,x = rec(f,x)

and reconstruction of the partial garbling in (6); the remaining two equalities follow
from:

(9) z− sAT = (z+ sAW) · In′ − sA · (T+W)

(10) sATL1(x> ⊗ Im) + sATL0 = sA ·
(
(TL1 +U(In ⊗R))(x> ⊗ Im) + (TL0 +VR)

)
−
(
sAU(x> ⊗ Ik) + sAV

)
·R

in which we use the equality (In ⊗R)(x> ⊗ Im) = (x> ⊗ Ik)R. This readily proves
the correctness.

Simulator. We describe the simulator. We defer the analysis to Section B.

– Setup∗(1λ, 1n, 1n
′
): Run G = (p,G1,G2,GT , e)← G(1λ). Sample

A← Z(k+1)×k
p and W← Z(k+1)×n′

p , U← Z(k+1)×kn
p , V← Z(k+1)×k

p

c← Zk+1
p w̃← Zn′p , ṽ← Zkp

and output

mpk =
(
G, [A>]1, [A>W]1, [A>U]1, [A>V]1

)
msk∗ =

(
W, U, V, w̃, ṽ, c,C⊥,A,a⊥

)
where (A|c)>(C⊥|a⊥) = Ik+1. Here we assume that (A|c) has full rank, which
happens with probability 1− 1/p.

– Enc∗(msk∗,x∗): Output

ct∗ =
(

[c>]1, [w̃]1, [ṽ]1
)

and x∗.

12

– KeyGen∗(msk∗,x∗, (f, [M]2), [µ]2): Run

(L1,L0)← lgen(f) and ([p∗1]2, [p
∗
2]2)← pgb∗(f,x∗, [µ]2).

Sample T← Z(k+1)×t
p , û← Znmp and R← Zk×mp and output

sk∗f =
(
C⊥ · sk∗f [1] + a⊥ · sk∗f [2], [R]2

)
and f (12)

where

sk∗f [1] =
(

[A>T + A>WM]2, [A>TL1 + A>U(In ⊗R)]2, [A>TL0 + A>VR]2
)

sk∗f [2] =
(

[−(p∗1)> + w̃M]2, [û>]2, [(p∗2)> − û>(x∗ ⊗ Im) + ṽR]2
)

Here T refers to the matrix composed of the right most n′ columns of T. That is,

sk∗f =

 [C⊥(A>T+A>WM) +a⊥(−(p∗
1)
> + w̃M)]2,

[C⊥(A>TL1 +A>U(In ⊗R)) +a⊥(û>)]2 , [R]2

[C⊥(A>TL0 +A>VR) +a⊥
(
(p ∗

2)
> − û>(x∗ ⊗ Im) + ṽR

)
]2

References

1. M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Simple functional encryption
schemes for inner products. In J. Katz, editor, PKC 2015, volume 9020 of LNCS, pages
733–751. Springer, Heidelberg, Mar. / Apr. 2015.

2. M. Abdalla, J. Gong, and H. Wee. Functional encryption for attribute-weighted sums from
k-lin. In CRYPTO, 2020.

3. S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional encryption for inner products,
from standard assumptions. In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part III,
volume 9816 of LNCS, pages 333–362. Springer, Heidelberg, Aug. 2016.

4. P. Ananth, A. Jain, H. Lin, C. Matt, and A. Sahai. Indistinguishability obfuscation without
multilinear maps: New paradigms via low degree weak pseudorandomness and security am-
plification. In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019, Part III, volume
11694 of LNCS, pages 284–332. Springer, Heidelberg, Aug. 2019.

5. C. E. Z. Baltico, D. Catalano, D. Fiore, and R. Gay. Practical functional encryption for
quadratic functions with applications to predicate encryption. In J. Katz and H. Shacham,
editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 67–98. Springer, Heidelberg,
Aug. 2017.

6. D. Boneh, A. Sahai, and B. Waters. Fully collusion resistant traitor tracing with short cipher-
texts and private keys. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS,
pages 573–592. Springer, Heidelberg, May / June 2006.

7. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges. In
Y. Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253–273. Springer, Heidelberg,
Mar. 2011.

8. D. Boneh and B. Waters. A fully collusion resistant broadcast, trace, and revoke system.
In A. Juels, R. N. Wright, and S. De Capitani di Vimercati, editors, ACM CCS 2006, pages
211–220. ACM Press, Oct. / Nov. 2006.

9. J. Chen and H. Wee. Semi-adaptive attribute-based encryption and improved delegation for
Boolean formula. In M. Abdalla and R. D. Prisco, editors, SCN 14, volume 8642 of LNCS,
pages 277–297. Springer, Heidelberg, Sept. 2014.

13

10. A. Escala, G. Herold, E. Kiltz, C. Ràfols, and J. Villar. An algebraic framework for Diffie-
Hellman assumptions. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 129–147. Springer, Heidelberg, Aug. 2013.

11. S. Garg, A. Kumarasubramanian, A. Sahai, and B. Waters. Building efficient fully collusion-
resilient traitor tracing and revocation schemes. In E. Al-Shaer, A. D. Keromytis, and
V. Shmatikov, editors, ACM CCS 2010, pages 121–130. ACM Press, Oct. 2010.

12. R. Gay. A new paradigm for public-key functional encryption for degree-2 polynomials.
In A. Kiayias, M. Kohlweiss, P. Wallden, and V. Zikas, editors, PKC 2020, Part I, volume
12110 of LNCS, pages 95–120. Springer, Heidelberg, May 2020.

13. R. Gay, A. Jain, H. Lin, and A. Sahai. Indistinguishability obfuscation from simple-to-state
hard problems: New assumptions, new techniques, and simplification. Cryptology ePrint
Archive, Report 2020/764, 2020.

14. J. Gong and H. Qian. Simple and efficient fe for quadratic functions. Cryptology ePrint
Archive, Report 2020/1026, 2020.

15. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Predicate encryption for circuits from LWE.
In R. Gennaro and M. J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS,
pages 503–523. Springer, Heidelberg, Aug. 2015.

16. R. Goyal, V. Koppula, and B. Waters. New approaches to traitor tracing with embedded
identities. In D. Hofheinz and A. Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS,
pages 149–179. Springer, Heidelberg, Dec. 2019.

17. Y. Ishai and H. Wee. Partial garbling schemes and their applications. In J. Esparza, P. Fraig-
niaud, T. Husfeldt, and E. Koutsoupias, editors, ICALP 2014, Part I, volume 8572 of LNCS,
pages 650–662. Springer, Heidelberg, July 2014.

18. A. Jain, H. Lin, C. Matt, and A. Sahai. How to leverage hardness of constant-degree expand-
ing polynomials overa R to build iO. In Y. Ishai and V. Rijmen, editors, EUROCRYPT 2019,
Part I, volume 11476 of LNCS, pages 251–281. Springer, Heidelberg, May 2019.

19. A. Jain, H. Lin, and A. Sahai. Simplifying constructions and assumptions for io. IACR
Cryptology ePrint Archive, 2019:1252, 2019.

20. H. Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs.
In J. Katz and H. Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages
599–629. Springer, Heidelberg, Aug. 2017.

21. T. Ryffel, D. Pointcheval, F. Bach, E. Dufour-Sans, and R. Gay. Partially encrypted deep
learning using functional encryption. In Advances in Neural Information Processing Systems
32: NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, pages 4519–4530, 2019.

22. H. Wee. Attribute-hiding predicate encryption in bilinear groups, revisited. In Y. Kalai and
L. Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 206–233. Springer,
Heidelberg, Nov. 2017.

14

A Concrete Scheme for Quadratic Functions

We present a self-contained description of our functional encryption scheme for quadratic
functions specified by f ∈ Zn1×n2

p where

z1, z2 7→ (z1 ⊗ z2)f>

The scheme is SA-SIM-secure under the bilateral k-Lin assumption and the k′-Lin
assumption in G1,G2. For the most efficient concrete instantiation (cf. Fig 1), we set
k = 2, k′ = 1.

– Setup(p, 1n1 , 1n2): Run G = (G1,G2,GT , e)← G(p). Sample

A1 ← Zk×n1
p ,A2 ← Zk

′×n2
p ,A0 ← Zk

′×(k′+1)
p ,W← Z(k′+1)×(k′n1+kn2)

p ,

and output

mpk =
(
G, [A0]1, [A0W]1, [A1]1, [A1]2, [A2]2

)
and msk = W

– Enc(mpk, (z1, z2)): Sample s1 ← Zkp, s0, s2 ← Zk′p and output

ct =
(

[s1A1 + z1︸ ︷︷ ︸
y1

]1, [s2A2 + z2︸ ︷︷ ︸
y2

]2, [s0A0︸ ︷︷ ︸
c0

]1, [s0A0W + (s1 ⊗ z2 | y1 ⊗ s2)︸ ︷︷ ︸
y0

]1
)
∈ Gn1

1 ×G
n2
2 ×G

k′+1
1 ×Gk

′n1+kn2
1

– KeyGen(msk, f): Output

skf =

[
W ·

(
(A1 ⊗ In2

)f>

(In1
⊗A2)f>

)]
2

∈ G(k′+1)×1
2

– Dec(skf , f , ct): Parse skf = [k>]2 and output the discrete log of

[(y1 ⊗ y2) · f>]T · e([c0]1, [k
>]2) · e

(
[y0]1,

[(
(A1 ⊗ In2

)f>

(In1
⊗A2)f>

)]
2

)−1

B Security Proof for Section 4

We complete the security proof for the scheme Π in Section 4.2.

B.1 Proof

Theorem 1. For all A, there exist B1 and B2 with Time(B1),Time(B2) ≈ Time(A)
such that

AdvΠ
A(λ) ≤ Adv

MDDH1
k,k+1

B1
(λ) + Adv

MDDHn
k,mQ

B2
(λ) + 1/p

where n is length of public input x∗ in the challenge, m is the parameter depending on
size of function f and Q is the number of key queries.

Note that this yields a tight security reduction to the k-Lin assumption.

15

Game sequence. We use (x∗, z∗) to denote the semi-adaptive challenge and for nota-
tional simplicity, assume that all key queries fj share the same parameters t and m. We
prove Theorem 1 via a series of games.

Game0: Real game.

Game1: Identical to Game0 except that ct∗ for (x∗, z∗) is given by

ct∗ =
(

[c>]1, [(z∗)> + c>W]1, [c> U((x∗)> ⊗ Ik) + c> V]1
)

where c← Zk+1
p . We claim that Game0 ≈c Game1. This follows from MDDH1

k,k+1

assumption:
[A>]1, [s>A>]1 ≈c [A>]1, [c>]1 .

In the reduction, we sample W,U,V honestly and use them to simulate mpk and
KeyGen(msk, ·) along with [A>]1; the challenge ciphertext ct∗ is generated using
the challenge term given above. See Lemma 2 in Section ?? of supplementary ma-
terials for details.

Game2: Identical to Game1 except that the j-th query fj to KeyGen(msk, ·) is an-
swered with

skfj =
(
C⊥ · skfj [1] + a⊥ · skfj [2], [Rj]2

)
with

skfj [1] =
(

[A>Tj + A>WMj]2, [A>TjL1,j + A>U(In ⊗Rj)]2, [A>TjL0,j + A>ṼRj]2
)

skfj [2] =
(

[c>Tj + c>WMj]2, [c>TjL1,j + c>U(In ⊗Rj)]2, [c>TjL0,j + c>VRj]2
)

where (L1,j ,L0,j) ← lgen(fj), Tj ← Z(k+1)×t
p , Rj ← Zk×mp , c is the random-

ness in ct∗ and C⊥ is defined such that (A|c)>(C⊥|a⊥) = Ik+1 (cf. Setup∗ in
Section 4.2). By basic linear algebra, we have Game1 = Game2.

Game3: Identical to Game2 except that we replace Setup,Enc with Setup∗,Enc∗

where ct∗ is given by

ct∗ =
(

[c>]1, [w̃>]1, [ṽ>]1
)

and replace KeyGen(msk, ·) with KeyGen∗3(msk∗, ·), which works as KeyGen(msk, ·)
in Game2 except that, for the j-th query fj , we compute

skfj [2] =

 [t̃
>

j − (z∗)>Mj + w̃>Mj]2 , [t̃>j L1,j + ũ> (In ⊗Rj)]2,

[t̃>j L0,j −ũ>(In ⊗Rj)((x
∗)> ⊗ Im) + ṽ>Rj]2

where w̃, ṽ are given in msk∗ (output by Setup∗) and ũ ← Zknp , tj ← Ztp,Rj ←
Zk×mp . We claim that Game2 ≈s Game3. This follows from the following state-
ment: for any full-rank (A|c), we have

(A>U, c>U, A>W, c>W, A>V, c>V, A>Tj , c
>Tj)

≡ (A>U, ũ> , A>W, w̃> − (z∗)> , A>V, ṽ> − ũ>(x∗ ⊗ Ik) , A>Tj , t̃
>
j)

16

which is implied by Lemma ??. See Lemma 3 in Section ?? of supplementary
materials for details.

Game4: Identical to Game3 except that we replace KeyGen∗3 with KeyGen∗4 which
works as KeyGen∗3 except that, for the j-th query fj , we compute

skfj [2] =
(

[t̃
>

j−(z∗)>Mj+w̃>Mj]2, [t̃>jL1,j+ û>j]2, [t̃>jL0,j− û>j ((x∗)>⊗Im)+ṽ>Rj]2
)

where ûj ← Znmp and Rj ← Zk×mp . We claim that Game3 ≈c Game4. This
follows from MDDHn

k,mQ assumption which tells us that{
[ũ>(In ⊗Rj)]2, [Rj]2

}
j∈[Q]

≈c
{

[û>j]2 , [Rj]2
}
j∈[Q]

whereQ is the number of key queries. See Lemma 4 in Section ?? of supplementary
materials for details.

Game5: Identical to Game4 except that we replace KeyGen∗4 with KeyGen∗; this is the
ideal game. We claim that Game4 ≈s Game5. This follows from the privacy of par-
tial garbling scheme in Section 4.1. See Lemma 5 in Section ?? of supplementary
materials for details.

We use AdvxxA(λ) to denote the advantage of adversary A in Gamexx.

B.2 Lemmas

We prove the following lemmas showing the indistinguishability of adjacent games
listed above. This completes the proof of Theorem 1.

Lemma 2 (Game0 ≈c Game1). For all A, there exists B1 with Time(B1) ≈ Time(A)
such that

|Adv1
A(λ)− Adv0

A(λ)| ≤ Adv
MDDH1

k,k+1

B1
(λ).

Lemma 3 (Game2 ≈c Game3). For all A, we have Adv3
A(λ) ≈ Adv2

A(λ).

The proof is the same as before, except we replace cW , z∗ − w̃ in skfj [2] with
cWMj , z

∗Mj − w̃Mj

Proof (of Lemma 3). Recall that the difference between the two games lies in ct∗ and
skfj [2]: instead of computing

ct∗ =
(

[c>]1, [(z∗)> + c>W]1 , [c>U((x∗)> ⊗ Ik) + c>V]1
)

skfj [2] =
(

[c>Tj + c>WMj]2 , [c>Tj L1,j+ c>U (In⊗Rj)]2, [c>Tj L0,j+ c>VRj]2
)

in Game2, we compute
ct∗ =

(
[c>]1, [w̃>]1, [ṽ>]1

)
skfj [2] =

(
[t̃
>

j − (z∗)>Mj + w̃>Mj]2 , [t̃>j L1,j+ ũ> (In⊗Rj)]2, [t̃>j L0,j −ũ>(In ⊗Rj)((x
∗)> ⊗ Im) + ṽ>Rj]2

)
17

in Game3.
This follows readily from the following statement, which in turn follows from

Lemma ??: for all x∗, z∗,

(A>U, c>U , A>W, c>W , A>V, c>V , A>Tj , c>Tj)

≡ (A>U, ũ> , A>W, w̃> − (z∗)> , A>V, ṽ> − ũ>(x∗ ⊗ Ik) , A>Tj , t̃
>
j)

where U,W,V, w̃, ṽ are sampled as in Setup∗ and ũ← Zknp ,Tj ← Z(k+1)×t
p , tj ←

Ztp. We clarify that in the semi-adaptive security game, (x∗, z∗) are chosen after seeing
A>U,A>W,A>V. Since the two distributions are identically distributed, the distin-
guishing advantage remains 0 even for adaptive choices of x∗, z∗ via a random guessing
argument.

Finally, note that A>U,A>W,A>V,A>Tj are used to simulate mpk, skfj [1],
whereas the boxed/gray terms are used to simulate skfj [2]. This readily proves the
lemma. ut

Lemma 4 (Game3 ≈c Game4). For all A, there exists B2 with Time(B2) ≈ Time(A)
such that

|Adv4
A(λ)− Adv3

A(λ)| ≤ Adv
MDDHn

k,mQ

B2
(λ)

where n is length of public input x in the challenge, m is the maximum size of function
f and Q is the number of key queries.

Lemma 5 (Game4 ≈s Game5). For all A, we have Adv5
A(λ) ≈ Adv4

A(λ).

The proof is the same as before except we replace z∗ in skfj [2], pgb, pgb∗ with
z∗Mj and w̃ in skfj [2] with w̃Mj .

Proof. Recall that the difference between the two games lies in skfj [2]: instead of com-
puting

skfj [2] =
(

[t̃
>

j − (z∗)>Mj +w̃Mj]2, [t̃>jL1,j + û>j]2, [t̃>jL0,j − û>(x∗ ⊗ Im) +ṽ>R]2
)

in KeyGen∗4 (i.e., Game4), we compute

skfj [2] =
(

[t̃
>

j +w̃Mj]2, [û>j]2, [t̃>j (L1,j(x
∗ ⊗ Im) + L0,j) + e1 · z∗Mjfj(x

∗)> − û>j (x
∗ ⊗ Im) +ṽ>R]2

)
in KeyGen∗ (i.e., Game5). By change of variable û>j 7→ û>j − t̃>jL1,j for all j ∈ [Q] in
Game4, we can rewrite in the form:

skfj [2] =
(

[−p>j,1 + w̃Mj]2, [û>j]2, [p>j,2 − û>j (x
∗ ⊗ Im) + ṽ>R]2

)
where

(pj,1‖pj,2)←

{
pgb(fj ,x

∗, z∗Mj ; t̃j) in Game4

pgb∗(fj ,x
∗, z∗Mjfj(x

∗)>; t̃j) in Game5

Then the lemma immediately follows from the privacy of underlying partial garbling
scheme which means pgb(fj ,x

∗, z∗Mj) ≈s pgb∗(fj ,x∗, z∗Mjfj(x
∗)>). ut

18

	Functional Encryption for Quadratic Functions from k-Lin, Revisited

