
Lower Bounds for Multi-Server Oblivious RAMs

Kasper Green Larsen1?, Mark Simkin1??, and Kevin Yeo2

1 Computer Science Department, Aarhus University, {larsen,simkin}@cs.au.dk
2 Google LLC, kwlyeo@google.com

Abstract. In this work, we consider the construction of oblivious RAMs
(ORAM) in a setting with multiple servers and the adversary may cor-
rupt a subset of the servers. We present an Ω(logn) overhead lower
bound for any k-server ORAM that limits any PPT adversary to distin-
guishing advantage at most 1/4k when only one server is corrupted. In
other words, if one insists on negligible distinguishing advantage, then
multi-server ORAMs cannot be faster than single-server ORAMs even
with polynomially many servers of which only one unknown server is cor-
rupted. Our results apply to ORAMs that may err with probability at
most 1/128 as well as scenarios where the adversary corrupts larger sub-
sets of servers. We also extend our lower bounds to other important data
structures including oblivious stacks, queues, deques, priority queues and
search trees.

1 Introduction

With the ever increasing amount of data, it is becoming infeasible for users to
store their data on consumer machines such as phones or laptops. Therefore,
there has been significant movement to outsourcing data to larger cloud storage
providers. In this work, we focus on privacy-preserving storage protocols that
considers the setting where a client outsource the storages of data to a server
such as a cloud storage provider in a privacy-preserving manner. For privacy, the
client wishes to maintain privacy for the outsourced data from the adversarial
server as the outsourced data might be sensitive. In addition, the client wishes to
maintain the ability to perform operations over the outsourced data in an efficient
manner. As a first step, the client might consider encrypting the data locally and
only sending ciphertexts of the data to the server while storing the private key
exclusively in client memory. As a result, the server never sees the data in the
plaintext. However, the adversarial server will still observe the patterns of access
performed by the client to the encrypted data. Several works in the past decade
(see [23, 26, 31, 21] as some examples) have shown that access pattern leakage
can be used to compromise the privacy of the encrypted data. Therefore, it is
an important problem to also efficiently hide the patterns of access to encrypted
data to maintain privacy.

? Supported by a Villum Young Investigator Grant and an AUFF Starting Grant.
?? Supported by the European Unions’s Horizon 2020 research and innovation program

under grant agreement No 669255 (MPCPRO) and No 731583 (SODA).

2 Kasper Green Larsen, Mark Simkin, and Kevin Yeo

To solve the problem of hiding patterns of access to data, Goldreich and Os-
trovsky [17] introduced the oblivious RAM (ORAM) primitive. Oblivious RAMs
consider the problem of enabling a client to outsource an array with n entries,
each consisting of exactly r bits, to the server, while enabling the client to both
retrieve and perform update operations on any of the n array entries. The server
itself consists of a memory of cells, each storing w bits. The client performs array
update and retrieval operations by reading and writing to the server memory
cells in a manner that hides the underlying operation being performed.

In terms of access pattern privacy, oblivious RAMs provide the guarantee
that the adversarial server will learn no information about the sequence of array
operations performed by the client except the total number of array operations
performed. In more detail, any adversary that is given two plaintext sequences of
array operations of equal length and observes the pattern of server cell accesses
incurred by an ORAM, cannot determine which of the two plaintext sequences
induced the observed ORAM access pattern.

The ORAM primitive is extremely powerful because it can be used in a
blackbox manner to convert any non-oblivious algorithm/data structure into an
oblivious version. In particular, every plaintext retrieval or update of memory
performed by the non-oblivious algorithm/data structure will be replaced with
an ORAM operation. Therefore, an important problem is constructing efficient
ORAMs that may be used to also construct efficient algorithms/data structures
for more complex tasks. For this reason, ORAM has been a well-studied topic
over the past decade.

Efficiency of ORAMs is typically measured in terms of the bandwidth over-
head. The bandwidth overhead is defined as the multiplicative factor of the extra
number of server cells that must be accessed to process a single ORAM opera-
tion, i.e. if the ORAM accesses t server cells on an ORAM operation, then the
bandwidth overhead is tr/w. Goldreich and Ostrovsky [17] presented the first
ORAM with poly-logarithmic amortized bandwidth overhead per operation. A
series of works [44, 18, 47, 19, 28, 48] continued improving the efficiency until re-
cent works by Patel et al. [40] introduced an ORAM with O(log n log log n)
bandwidth overhead and Asharov et al. [1] presented an ORAM with O(log n)
bandwidth. Other variants of ORAM such as statistically-secure ORAMs [10, 9],
parallel ORAMs [2, 7, 5] and garbled RAMs [15, 14, 38] have also been studied.
Additionally, there has been work for efficiently constructing other oblivious data
structures [49] including priority queues [25, 46]. To summarize, there are opti-
mal Θ(log n) constructions for oblivious arrays (RAMs), stacks, queues, deques
and priority queues in the single-server setting.

There has also been a lot of work proving lower bounds on the efficiency of
ORAMs. Goldreich and Ostrovsky [17] presented an Ω(log n) lower bound with
certain restrictions of statistical adversaries and a no-coding assumption using a
“balls-and-bins” model. Larsen and Nielsen [35] improve these lower bounds by
considering computational adversaries where ORAMs can encode memory in any
possible manner. Further works investigate the question of whether relaxations of
the original ORAM setting allow for more efficient constructions and prove that

Lower Bounds for Multi-Server Oblivious RAMs 3

the essentially same lower bound holds for other oblivious data structures [24,
34], weaker differentially private guarantees [43] and weaker adversaries [22].
A natural open question that remains is whether one can find a meaningful
relaxation that allows us to break the logarithmic barrier. In this work, we
investigate whether having access to multiple non-colluding servers can help us
achieve this goal.

The ability to construct asymptotically faster schemes using multiple non-
colluding servers has been exhibited previously in another privacy-preserving
data structure known as private information retrieval (PIR). PIR was intro-
duced by Chor et al. [8] for the information-theoretic setting with multiple non-
colluding servers and Kushilevitz and Ostrovsky [30] for the computationally-
secure setting with a single server. PIR and ORAM mainly differ in the capa-
bility of the client and server to hold state. PIR requires that both the client
and server are stateless (beyond the server being able to hold a static database).
In particular, clients are not even able to hold a private key that may be used
between multiple queries. In contrast, ORAM enables both the client and server
to be stateful and use information between multiple queries. For more informa-
tion comparing ORAM and PIR, we refer readers to Section 1.2 of [41]. In the
single-server variant of information-theoretic PIR, there are several proofs show-
ing at least linear Ω(n) bandwidth is required for each query [27, 16]. These are
matched by the simplest construction of information-theoretic PIR where the
client downloads the entire database on each query. On the other hand, PIR in
the two non-colluding servers scenario may be constructed using sublinear band-
width. The original works by Chor et al. [8] showed that there existed two-server
statistically-secure PIR constructions with O(

√
n) and O(n1/3) bandwidth. In

more recent works, it has been shown that there exist PIR schemes in the two
non-colluding servers setting with sub-polynomial bandwidth [11].

As the multi-server setting considers weaker adversaries, the lower bounds
for the single-server setting [35, 43] do not directly apply. Therefore, it seems
plausible that oblivious data structures can be constructed in this model with
faster efficiency than their single-server counterparts. While there have been sev-
eral works [37, 12, 29, 20, 4, 6] that consider oblivious RAMs in the two (or more)
non-colluding servers model, all of them have an overhead of at least Ω(log n),
meaning that they are not asymptotically faster than single-server oblivious
RAMs and data structures. This leads to the natural question of whether it is
possible to construct o(log n) overhead oblivious RAMs and data structures in
the multiple non-colluding servers setting.

Before presenting our results, we find it insightful to discuss two simple strate-
gies for implementing multi-server ORAMs. In a setup with k servers, one naive
approach is to pick a uniform random server and simply store the array there,
without any obfuscation. This gives a great overhead of O(1) (for r = Θ(w)),
but unfortunately security is very weak: A single adversarial server can distin-
guish two sequences of operations with probability 1/k. Another simple strategy
is to just ignore the first k − 1 servers and run an optimal single-server ORAM

4 Kasper Green Larsen, Mark Simkin, and Kevin Yeo

on the last server. This gives an overhead of O(log n) but fails to exploit the
multi-server setting. Is there anything in between these two extremes?

Our main result is a surprising negative resolution to this question, that is, if
one insists on o(log n) overhead, then the only solution is to pick a random server
and store the array there without any obfuscation, resulting in 1/k distinguishing
probability for an adversarial server!

1.1 Our Results

Before we formally present our main contributions of this paper, we start by
briefly describing the setting for which our lower bounds will apply. Our sce-
nario consists of k ≥ 2 servers that a client may use to host storage of parts
of an oblivious RAM construction. We strictly consider weak, probabilistically
polynomial time adversaries that can corrupt exactly one server and see all the
probes performed by the ORAM on the corrupted server. As we are proving
lower bounds, our results also apply to stronger adversaries that may be able to
corrupt a large number of servers such as a constant fraction of all k servers. By
the same argument, our lower bound also applies to computationally unbounded
adversaries.

We note our ORAM lower bounds apply to the natural setting where op-
erations arrive in an online manner. That is, the ORAM must complete one
operation before receiving the next operation. Furthermore, the adversary is
aware of when the processing of one operation ends and the processing of an-
other operation begins.

Finally, we prove our lower bounds in the cell probe model of Yao [51]. In
this model, the memory of the k servers is viewed as cells of w bits. The only
measured cost is the number of probes performed to server cells. Computation,
accessing memory stored on the client, generating randomness and querying the
random oracle (if one exists) is completely free. Once again, since we are proving
lower bounds, our results also apply to more natural cost models where these
operations are charged appropriately.

We now present our main result:

Theorem 1 (Informal). Any online k-server ORAM with n blocks of mem-
ory, consisting of r ≥ 1 bits each, must have expected amortized overhead of
Ω(log(nr/m)) on sequences of Θ(n) operations where the client has m bits of
memory. This holds for probabilistically polynomial time adversaries that corrupt
exactly one server and have a distinguishing advantage of at most 1/4k for any
pair of length n sequences.

For the natural setting where r ≤ m ≤ n1−ε for any constant ε > 0, the
above lower bound simplifies to Ω(log n). The above lower bound holds in the
random oracle model, for any number of servers k and for any cell size w.

Using the above result, we show that multi-server ORAMs cannot be asymp-
totically faster than single-server ORAMs for any reasonable number of servers.

Lower Bounds for Multi-Server Oblivious RAMs 5

Corollary 1 (Informal). For any k = poly(n), any k-server ORAM where
probabilistically polynomial time adversaries that corrupt one of the k servers
have negligible distinguishing advantage, must have Ω(log n) overhead, which is
asymptotically equivalent to the optimal single-server ORAM.

Finally, we note that our lower bounds may be extended to other important
data structures including stacks, queues, deques, priority queues and search trees.

Theorem 2 (Informal). Any online k-server oblivious stacks, queues, deques,
priority queues or search trees storing at most n elements, consisting of r ≥ 1
bits each, must have expected amortized overhead of Ω(log(nr/m)) on sequences
of n operations where the client has m bits of memory. This holds for probabilis-
tically polynomial time adversaries that corrupt exactly one server and have a
distinguishing advantage of at most 1/4k for any pair of length n sequences of
operations.

1.2 Our Techniques

In this section, we present an overview of the new techniques needed to prove
our lower bound. To do this, we briefly overview the previous lower bound for
ORAMs in the single-server setting by Larsen and Nielsen [35]. In addition, we
show why the original proof fails for the setting when there exists multiple servers
where the adversary may corrupt a single server. Larsen and Nielsen [35] used
the information transfer technique introduced by Patrascu and Demaine [45].
For a sequence of n ORAM operations, each either a read or a write into one
of n array entries, the information transfer tree is a complete binary tree with
exactly n leaf nodes where the first operation is assigned to the leftmost node,
the second operation is assigned to the second leftmost node and so forth. As we
consider the cell probe model, each operation consists of a series of cell probes.
Here a cell probe is simply an access to a server memory cell. For each probe p
to a cell c, we identify both the operation that incurred p as well as the most
recent, past operation that overwrote the contents of cell c. The cell probe p is
assigned to the lowest common ancestor of the two leaf nodes associated with
the operation performing p and the most recent, past operation that overwrote
the probed cell. If the probed cell was never overwritten previously, the probe
is not assigned to any node in the tree. Note that all cell probes are assigned to
at most one node in the tree. Therefore, a lower bound on the number of total
assigned probes results in a cell probe lower bound.

Consider any internal node v in the information transfer tree and the nd
left and right leaf nodes of the subtree rooted at v. Consider the sequence z of
nd write operations associated with the left leaf nodes each consist of writing
uniformly at random chosen r-bit strings into nd unique indices. Furthermore,
suppose the operations in the right subtree of z perform nd read operations
that retrieve the nd different random bit strings written in the left subtree. If
most of the nd read operations in the right subtree return the right answer,
then a large portion of the r · nd bits of entropy generated in write operations

6 Kasper Green Larsen, Mark Simkin, and Kevin Yeo

in the left subtree must be transferred to the answers of read operations in the
right subtree. Information may only be transferred between the left and right
subtree through client storage and the probes assigned to the root of the subtree
v. As client storage is typically small, this implies a large number of probes
must be assigned to v with high probability. Otherwise, one can construct an
impossible compression scheme of the r · nd random bits generated in the left
subtree. Suppose there exists another sequence y of n ORAM operations that
assigns significantly less probes to v. We can construct a simple and efficient
adversary that distinguishes the two sequences by simply counting the number
of probes assigned to v in polynomial time, which contradicts the obliviousness
assumption. The application of this argument to many nodes of the information
transfer tree suffices to prove the single-server ORAM lower bound.

Moving to the multi-server setting with k ≥ 2 servers, the adversary is able
to only see the probes performed to one server. For any multi-server ORAM
construction that performs most of its probes to a single server, we can extend
the adversary from the single-server setting by corrupting a server uniformly at
random. As a result, the adversary is able to distinguish with probability Ω(1/k)
unless y also assigns similarly large number of probes with high probability to
the corrupted server. However, there might exist intelligent schemes that evenly
distribute all probes across all k servers such that the adversary will only be able
to see a small number of probes. Even worse, the probes might be distributed
such that the probability any server sees even one probe is small when the
number of servers is large such as k = Ω(n2). Therefore, the challenge is proving
that sequence y must also assign a large number of probes to v even when the
adversary corrupts only a single server.

We now give intuition as to why these simpler counting adversaries do not
suffice to prove lower bounds for k-server ORAMs with the current techniques.
Going back to the proof framework of [35], we can consider an impossible se-
quence y that assigns a small number of probes to v in expectation. We need to
show that the adversary can distinguish sequences y and z where z is the worst-
case sequence for node v that maximizes the number of probes assigned to node
v described in the previous paragraph. In the proof of [35], it was critically shown
that the number of probes assigned by z to v is large with very high probability.
This is a strong statement about the distribution of probes (as opposed to just
bounding the expected number of probes assigned to v) that showed the count-
ing adversary to distinguish with an impossible advantage. We note that this
argument heavily utilizes the fact that the contents of cells of probes assigned to
node v encode almost all the information generated in the left subtree of v. Un-
fortunately, these techniques do not work for multi-server ORAM schemes that
can arbitrarily distribute probes to different servers. There is no requirement or
guarantee that by restricting to probes that are both assigned to node v and all
occur on a single server, the contents of these probed cells still encode the r-bit
random strings generated in the left subtree of v. For example, a multi-server
scheme might distribute the r-bit random strings across several servers using an
information-theoretic secret sharing scheme. Therefore, the necessary guarantees

Lower Bounds for Multi-Server Oblivious RAMs 7

needed for the simple counting adversary to successfully distinguish sequences y
and z might not be true in the multiple server setting.

The main idea of our proof technique is to consider a more sophisticated
adversary that groups the number of observable probe counts to the corrupted
server that are assigned to node v into geometrically increasing sets, [20, 21),
[21, 22), . . . , [2j ,∞) for sufficiently large j. The new adversary will attempt to
distinguish sequences y and z by finding a grouping of probe counts that are
more likely for sequence y instead of sequence z. If sequence z results in a probe
count in group [2i, 2i+1) with probability p, then sequence y must also result in a
probe count in that group with probability at least p− ε if the adversary should
not be able to distinguish the sequences y and z with probability greater than
ε. As a result, we can show that the expectation of the probe counts assigned to
v to each server by y must be similarly large as under z, completing the proof.

1.3 Related Works

There has been two previous works showing that proving lower bounds for certain
oblivious data structures in weaker settings will be difficult. Boyle and Naor [3]
show that proving lower bounds for offline ORAMs that receive all operations
ahead of time is as hard as proving sorting circuit lower bounds. Weiss and
Wichs [50] prove that lower bounds for read-only ORAMs would imply unknown
lower bounds in either sorting circuits and/or locally decodable codes.

There are also many works that have proved lower bounds in the cell probe
model for data structures without privacy guarantees. Yao [51] introduced the
cell probe model as a model for proving lower bounds. Fredman and Saks [13]
presented the chronogram technique to prove almost logarithmic lower bounds.
Patrascu and Demanie [45] introduced the information transfer technique to
prove logarithmic lower bounds. Panigrahy et al. [39] present the cell-sampling
technique to prove almost logarithmic lower bounds for static data structures.
Larsen [32, 33] presented the first super-logarithmic lower bounds for data struc-
tures with Θ(log n)-bit outputs. The first super-logarithmic lower bounds for
decision data structures was proved in [36]. The above list only several examples
of the many works in cell probe lower bounds.

2 Formal Model

We prove our lower bounds in a variant of the oblivious cell probe model of
Larsen and Nielsen [35], adapted to a setting with k servers. In this model, an
ORAM consists of k servers S1, . . . , Sk, each with a server memory of w-bit
cells, where each cell has an integer address in [K] for some K ≤ 2w. We also
assume k ≤ 2w such that a cell has enough bits to store the index of a server.
An ORAM is furthermore equipped with a client memory of m bits, which is
free to access. A multi-server ORAM processes read and write operations by
reading and writing to memory cells at the servers. For read operations, the

8 Kasper Green Larsen, Mark Simkin, and Kevin Yeo

ORAM terminates by announcing the answer to the read based on what it has
probed.

We refer to the reading and writing of a memory cell simply as probing it -
also to distinguish reading and writing cells from read and write operations.
The running time is defined as the number of cells it probes when processing
read and write operations. Randomized ORAMs furthermore have access to an
arbitrarily long uniform random bit string R, which is referred to as the random
oracle bit string. The bit string R is drawn before any operations are performed
on the ORAM and is chosen independently of the future operations. We say that
a randomized ORAM has failure probability δ if for every sequence of operations
op1, . . . , opM , and for every query opi in that sequence, the probability that opi
is answered correctly is at least 1− δ.

When processing read and write operations, the cells probed and the con-
tents written to cells in each step may be an arbitrary deterministic function
of the client memory, random oracle bit string and contents of all other cells
probed so far while processing the current operation. The ORAM is also allowed
to update the client memory in each step, again setting the contents to an ar-
bitrary deterministic function of the current memory, random oracle bit string
and contents of cells probed so far. Allowing an arbitrary deterministic func-
tion abstracts away the instruction set of a normal RAM and allows arbitrary
computations free of charge.

To define the security requirements of a multi-server ORAM, let

y := (op1, . . . , opM)

denote a sequence of M read and write operations. Let

A(y) := (A(op1), . . . , A(opM))

denote the corresponding probe sequence, where each A(opi) is the list of probes
made while processing opi. Note that A(y) is a deterministic function of the
random oracle bit string and the sequence y. Each probe in a list A(opi) is
described by a tuple (s, a), where s is the index of the server where the probe is
made and a is the address of the memory cell accessed at the server. For a server
Si, we let A|Si

(opj) denote the sub list of A(opj) containing only the probes
(s, a) with s = i. We similarly define A|Si

(y) = (A|Si
(op1), . . . , A|Si

(opM)) as
the probes seen by server Si. A multi-server ORAM is secure if it satisfies the
following security guarantee:

Definition 1 (Security). A multi-server ORAM is (ε, δ)-secure if the following
two properties hold:

Indistinguishability: For any two sequences of operations y and z of the same
length n and for any server Si, their probe sequences A|Si

(y) and A|Si
(z)

cannot be distinguished with probability better than ε by an algorithm which
is polynomial time in n. Formally, if A|Si,n denotes the image of A|Si

on
sequences of length n and f : A|Si,n → {0, 1} denotes a polynomial time

Lower Bounds for Multi-Server Oblivious RAMs 9

computable function, then it must be the case that |Pr[f(A|Si
(y)) = 1] −

Pr[f(A|Si
(z)) = 1]| ≤ ε for any two sequences y and z of length n. Here the

probability is taken over the randomness R of the ORAM.

Correctness: The ORAM has failure probability at most δ.

3 Lower Bound

We use the information transfer technique by Patrascu and Demaine [45], mod-
ified to multiple servers. We consider various sequences of n read and write
operations to an ORAM O with memory size n. The read and write opera-
tions store and retrieve r-bit strings and the servers have cell size w bits. We
prove the following theorem

Theorem 3. Any ORAM with k servers that is (1/4k, 1/128)-secure, has server
cell size w bits, has client memory size m bits and that supports storing r-bit
values in n entries, must make an expected amortized Ω(r log(nr/m)/w) probes
per operation over sequences of n operations.

First we define the information transfer tree T . For any sequence of n op-
erations x = op1, . . . , opn, we construct a binary tree T with the operations as
leaves. When processing the operations opi, we assign the probes in A(opi) to
the nodes of T . For each probe p = (s, a) ∈ A(opi), consider the last time the
cell (s, a) was probed during op1, . . . , opn. If opj with j ≤ i denotes the last op-
eration in which the cell was probed, we assign p to the lowest common ancestor
of opi and opj in T . If p is the first probe to access (s, a) we do not assign it
to any node of T . For each node v of T , we let P (x, v) denote the set of probes
assigned to v while processing x (note the P (x, v) is a random variable due to
the randomness R of the ORAM).

Observe that any probe is assigned to at most one node of T .

We now consider a fixed “dummy” sequence of operations:

y := read(0),read(0),read(0), · · · ,read(0)

which always just reads the first ORAM memory cell. We say that the root of
T has depth 0 and the leaves have depth log n. For simplicity, we also assume
n is a power of two. For a node v ∈ T , we use d(v) to denote its depth. We will
prove the following:

Lemma 1. If O is (1/4k, 1/128)-secure and has client memory size m, then for
any node v ∈ T of depth d = d(v) ≤ log(nr/m)− 6, it holds that ER[|P (y, v)|] =
Ω(nr/(w2d)).

10 Kasper Green Larsen, Mark Simkin, and Kevin Yeo

Lemma 1 immediately gives our result, since by linearity of expectation we get
that the total number of probes T made by O satisfies:

E[T] ≥
∑
v∈T

E[|P (y, v)|]

≥
log(nr/m)−6∑

d=0

∑
v∈T :d(v)=d

E[|P (y, v)|]

≥
log(nr/m)−6∑

d=0

2d ·Ω(nr/(w2d))

= Ω(nr log(nr/m)/w).

Thus what remains is to prove Lemma 1. To do so, consider a node v ∈ T of
depth d(v) ≤ log(nr/m) − 6. We consider a distribution Dv over sequences of
n operations op1, . . . , opn. The distribution is as follows: For every opi that is
outside the subtree rooted at v, we let opi = read(0). We let the nd = n/2d+1

operations in v’s left subtree be write(1, r1), . . . ,write(nd, rnd
) where each ri

is a uniform random r-bit string. We let the nd operations in v’s right subtree be
read(1), . . . ,read(nd). As in previous ORAM lower bounds, we first argue that
under distribution Dv, there must be many probes assigned to v in expectation:

Lemma 2. Let z ∼ Dv be a sequence of n operations. If O is (1/4k, 1/128)-
secure and has client memory size m, then Prz,R[|P (z, v)| ≥ (1/12)nr/(w2d)] ≥
3/4.

We defer the proof of Lemma 2 to Section 3.1 as it follows previous proofs
uneventfully.

We will now use the security guarantees ofO and Lemma 2 to prove Lemma 1.
To do so, start by partitioning the set P (x, v) into k sets P|S1

(x, v), . . . , P|Si
(x, v)

where P|Si
(x, v) contains all probes to a cell at server Si while processing a

sequence of operations x. Let z ∼ Dv. For each j ∈ {0, . . . , log(nr/(48w2d))}
define qi,j as

qi,j := Pr
z,R

[|P|Si
(z, v)| ∈ [2j , 2j+1)].

when j < log(nr/(48w2d)), and define

qi,log(nr/(48w2d)) := Pr
z,R

[|P|Si
(z, v)| ≥ nr/(48w2d)].

Similarly, define
q̂i,j := Pr

R
[|P|Si

(y, v)| ∈ [2j , 2j+1)].

and
q̂i,log(nr/(48w2d)) := Pr

R
[|P|Si

(y, v)| ≥ nr/(48w2d)].

We first observe that for all i, j, we must have q̂i,j ≥ qi,j − 1/4k. To see this,
observe that if q̂i,j < qi,j − 1/4k then for an x ∈ {y, z}, the server Si can

Lower Bounds for Multi-Server Oblivious RAMs 11

distinguish whether x = y or x = z with probability greater than 1/4k as follows:
When seeing A|Si

(x), output 1 if |P|Si
(x, v)| ∈ [2j , 2j+1) and 0 otherwise. Notice

that this information can be computed from A|Si(x). As a technical caveat, note
that z is random and not a fixed sequence as in the definition of the security
guarantee. But if the adversary can distinguish the random z from y, then by
averaging, there must exist a fixed sequence in the support of z which can also
be distinguished from y with the same advantage. Hence q̂i,j ≥ qi,j − 1/4k for
all i, j.

We now split the proof in two cases. Assume first that
∑
i qi,log(nr/(48w2d)) ≥

1/2. In this case, we have
∑
i q̂i,log(nr/(48w2d)) ≥ 1/2− k/4k = 1/4. By linearity

of expectation, this implies ER[|P (y, v)|] ≥ (1/4)(nr/48w2d) = Ω(nr/(w2d)) as
claimed. Next, assume that

∑
i qi,log(nr/(48w2d)) < 1/2. By Lemma 2, we have

Pr
z,R

[|P (z, v)| ≥ (1/12)nr/(w2d)] ≥ 3/4.

Now let E denote the event that for all i, we have:

|P|Si
(z, v)| < nr/(48w2d).

Note that

Pr
z,R

[¬E] =
∑
i

Pr[|P|Si
(z, v)| ≥ nr/(48w2d)] =

∑
i

qi,log(nr/(48w2d)) < 1/2

where the last inequality is by the assumption made previously. Therefore,
Prz,R[E] > 1/2. We then have:

Pr
z,R

[|P (z, v)| ≥ (1/12)nr/(w2d) ∧ E] ≥ 1− 1/4− (1− Pr
z,R

[E]) = Pr
z,R

[E]− 1/4

Therefore

Pr
z,R

[|P (z, v)| ≥ (1/12)nr/(w2d) | E] = Pr
z,R

[|P (z, v)| ≥ (1/12)nr/(w2d) ∧ E]/ Pr
z,R

[E]

≥ (Pr
z,R

[E]− 1/4)/ Pr
z,R

[E]

= 1− 1/(4 Pr
z,R

[E])

≥ 1/2.

This implies that

Ez,R[|P (z, v)| | E] ≥ (1/24)nr/(w2d).

We will show that this means that

ER[|P (y, v)|] = Ω(nr/(w2d)).

To see this, consider what happens if we modify the definition of P (z, v) such
that we set P (z, v) = ∅ if there is at least one server Si such that |P|Si

(z, v)| ≥

12 Kasper Green Larsen, Mark Simkin, and Kevin Yeo

nr/(48w2d). Let P ∗(z, v) denote this modified version of P (z, v) and let q∗i,j
denote the corresponding versions of the qi,j ’s. We clearly have q∗i,j ≤ qi,j for all
i, j. Moreover, conditioned on E, we have P (z, v) = P ∗(z, v). It follows that

Ez,R[|P ∗(z, v)|] = Pr
z,R

[E]Ez,R[|P (z, v)| | E] ≥ (1/48)nr/(w2d).

At the same time, we also have

Ez,R[|P ∗(z, v)|] ≤
k∑
i=1

log(nr/(48w2d))−1∑
j=0

q∗i,j2
j+1

Using that q∗i,j ≤ qi,j , this means that

k∑
i=1

log(nr/(48w2d))−1∑
j=0

qi,j2
j+1 ≥ (1/48)nr/(w2d).

Now q̂i,j ≥ qi,j − 1/4k thus

k∑
i=1

log(nr/(48w2d))−1∑
j=0

q̂i,j2
j+1 ≥ (1/48)nr/(w2d)−

k∑
i=1

log(nr/(48w2d))−1∑
j=0

2j+1/4k

= (1/48)nr/(w2d)−
k∑
i=1

2log(nr/(48w2d))+1/4k

= (1/48)nr/(w2d)− (1/96)nr/(w2d)

= (1/96)nr/(w2d).

But

ER[|P (y, v)|] ≥
k∑
i=1

log(nr/(48w2d))∑
j=0

q̂i,j2
j

≥ (1/2)

k∑
i=1

log(nr/(48w2d))−1∑
j=0

q̂i,j2
j+1

= Ω(nr/(w2d)).

This completes the proof of Lemma 1.

3.1 Proof of Lemma 2

We prove this via an encoding argument. An encoder Alice and a decoder Bob
share access to the random oracle bit string R used by O. Alice receives as input
the nd = n/2d+1 random bit strings r1, . . . , rnd

given as arguments to the write
operations in v’s left subtree and wants to transmit them to Bob. By Shannon’s
source coding theorem, if Alice sends a prefix free code, then the expected length
of the message must be at least ndr = nr/2d+1 bits. They proceed as follows:

Lower Bounds for Multi-Server Oblivious RAMs 13

Encoding. Alice constructs the sequence of operations z = op1, . . . , opn where
the write operations in v’s left subtree write the values r1, . . . , rnd

to entries
1, . . . , nd, and the read operations in v’s right subtree read the entries 1, . . . , nd.
All opi outside v’s subtree are simply read(0) operations. Thus z is distributed
according to Dv. Alice runs the sequence of operations on O and constructs
the set P (z, v) and also counts how many of the read operations in v’s right
subtree that fail to return the correct answer. Let f denote the number of read
operations that err. Her message to Bob is as follows:

1. If f ≥ nd/16 or |P (z, v)| ≥ (1/12)nr/(w2d), then Alice sends a 0-bit, followed
by ndr = nr/2d+1 bits giving a naive encoding of r1, . . . , rnd

. This costs
1 + nr/2d+1 bits.

2. Otherwise, Alice starts by sending a 1-bit. Alice encodes all f ≤ nd/16
erring queries by encoding f using log(n) bits and the identity of the f
queries using log

(
nd

f

)
bits. The answer of the f erring queries are triv-

ially encoded using fr bits. For each probe p = (s, a), Alice sends s, a
and the contents of the cell with address a at server Ss as it was im-
mediately after processing the operations in v’s subtree. She also sends
the contents of the client memory as it was immediately after processing
v’s left subtree. This costs 1 + |P (z, v)|(log k + 2w) + log(n) + log

(
nd

f

)
+

fr + m. Using Stirling’s approximation, we get that the cost is at most
1 + |P (z, v)|(log k + 2w) + log(n) + f log(nde/f). This is maximized when
f = nd/16 meaning the encoding size is at most 1 + |P (z, v)|(log k + 2w) +
(1/16)nr/2d+1 +(1/16) log(16e)n/2d+1. As log(16e) < 6, we get the above is
at most 1 + |P (z, v)|(log k+ 2w) + (7/16)nr/2d+1. Using the assumption on
the size of |P (z, v)| and that k fits in a single word, we get the encoding is
at most 1 + 3w(1/12)nr/2d+ (7/16)nr/2d+1 +m = 1 + (15/16)nr/2d+1 +m.
We required d ≤ log(nr/m)− 6, hence m ≤ nr/2d+6 and it follows that the
cost is no more than 1 + (31/32)nr/2d+1.

Decoding. Bob starts by checking the first bit of Alice’s message. If this is a
0-bit, Bob immediately recovers r1, . . . , rnd

from the remaining part of Alice’s
message. Otherwise, Bob identifies the f erring queries and naively decodes their
answers. Next, Bob reconstructs the set P (z, v) and the contents of those cells
as they were right after processing v’s left subtree. Bob now runs O using the
randomness R on the sequence z until just before v’s left subtree (this is solely
read(0) operations, so Bob knows these). He then skips over all operations in
the left subtree and continues running the read(1), . . . ,read(nd) in v’s right
subtree. While processing these operations, Bob checks each cell that is probed.
If the cell is in P (z, v), Bob knows the contents from Alice’s message. If it is
not in P (z, v), then Bob already knows the contents as they were not updates
during v’s left subtree by definition of P (z, v). Thus Bob can process all the
read operations and recovers r1, . . . , rnd

.

Analysis. Let α = Pr[|P (z, v)| < (1/12)nr/(w2d)]. Then the probability that
Alice sends a non-trivial encoding (step 2.) is at least 1−(1−α)−1/8 = α−1/8.

14 Kasper Green Larsen, Mark Simkin, and Kevin Yeo

This follows by a union bound and Markov’s inequality since E[f] = nd/128 due
to O having error probability at most 1/128 implying that Pr[f > nd/16] ≤ 1/8.
The expected length of the encoding is hence at most

1 + (1− α+ 1/8)nr/2d+1 + (α− 1/8)(31/32)nr/2d+1.

This is less than ndr for any constant α > 1/8. We thus conclude that Pr[|P (z, v)| ≥
(1/12)nr/(w2d)] ≥ 3/4.

4 Extension to Oblivious Data Structures

In this section, we show that the above lower bound may be extended to other
oblivious data structures including stacks, queues, deques, priority queues and
search trees using techniques by Jacob et al. [24]. We describe how to modify
the lower bound to handle stacks and queues. Since one can use deques, priority
queues and search trees to simulate a stack and/or queue, we only need to prove
a lower bound for oblivious stacks and queues.

For the “dummy” sequence of operations in the lower bound, we will use the
following sequence for both stacks and queues:

push(0̄),pop(),push(0̄),pop(), . . . ,push(0̄),pop()

where 0̄ is the all-zeroes bit string of length r. The lower bound also requires
designing a worst case sequence for each node v in the information transfer tree.
If we let nd be the number of operations in the left and right subtree of v, then
we make the operations of the leaf nodes of the subtree rooted at v be

push(r1), . . . ,push(rnd
),pop(), . . . ,pop()

where each ri is also a uniformly random r-bit string. Outside v’s subtree, we
make alternating push(0̄),pop() operations. This sequence has the desired prop-
erty (for both stacks and queues) that the queries to the right subtree of v have
to retrieve the random strings generated from the left subtree of v. The rest
of the lower bound proof proceeds identically using these new hard operational
sequences for stacks and queues.

Theorem 4. Any oblivious stack, queue, deque, priority queue or search tree
with k servers that is (1/4k, 1/128)-secure, has server cell size w bits, has client
memory size m bits and that supports storing up to n r-bit elements, must make
an expected amortized Ω(r log(nr/m)/w) probes per operation over sequences of
n operations.

5 Conclusions

In this work, we study oblivious data structures that enable performing oper-
ations without revealing information about these operations. There has been a

Lower Bounds for Multi-Server Oblivious RAMs 15

long line of work for oblivious data structures that has led to tight Θ(log n)
constructions for many oblivious data structures. However, this means there is a
significant gap between plaintext and oblivious operations for many data struc-
tures such as arrays (RAMs). A natural next question is: are there any settings
where we can achieve meaningful privacy with smaller o(log n) overhead? This
question was investigated in [43, 42] that considered weaker differentially private
access hiding only operational sequences that differ in very few operations. Ad-
ditionally, [22] considered weaker adversaries that may not view the beginning
and ending of operations. In both cases, the weakening of the adversaries was not
sufficient to achieve o(log n) overhead. We continue along this line of research
by showing weaker adversaries that only corrupt one server in the multi-server
model does not suffice to achieve o(log n) overhead.

References

1. G. Asharov, I. Komargodski, W.-K. Lin, K. Nayak, E. Peserico, and E. Shi. Op-
tORAMa: Optimal oblivious RAM. Cryptology ePrint Archive, Report 2018/892.

2. E. Boyle, K.-M. Chung, and R. Pass. Oblivious parallel RAM and applications. In
Theory of Cryptography Conference, pages 175–204. Springer, 2016.

3. E. Boyle and M. Naor. Is there an oblivious RAM lower bound? In Proceedings of
the 2016 ACM Conference on Innovations in Theoretical Computer Science, pages
357–368. ACM, 2016.

4. P. Bunn, J. Katz, E. Kushilevitz, and R. Ostrovsky. Efficient 3-party distributed
oram. IACR Cryptology ePrint Archive, 2018:706, 2018.

5. T.-H. H. Chan, Y. Guo, W.-K. Lin, and E. Shi. Oblivious hashing revisited,
and applications to asymptotically efficient ORAM and OPRAM. In International
Conference on the Theory and Application of Cryptology and Information Security,
pages 660–690. Springer, 2017.

6. T.-H. H. Chan, J. Katz, K. Nayak, A. Polychroniadou, and E. Shi. More is less:
Perfectly secure oblivious algorithms in the multi-server setting. In International
Conference on the Theory and Application of Cryptology and Information Security,
pages 158–188. Springer, 2018.

7. B. Chen, H. Lin, and S. Tessaro. Oblivious parallel RAM: improved efficiency
and generic constructions. In Theory of Cryptography Conference, pages 205–234.
Springer, 2016.

8. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval.
In Foundations of Computer Science, 1995. Proceedings., 36th Annual Symposium
on, pages 41–50. IEEE, 1995.

9. K.-M. Chung, Z. Liu, and R. Pass. Statistically-secure ORAM with Õ(log2 n)
overhead. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 62–81. Springer, 2014.

10. I. Damg̊ard, S. Meldgaard, and J. B. Nielsen. Perfectly secure oblivious RAM
without random oracles. In Theory of Cryptography Conference, pages 144–163.
Springer, 2011.

11. Z. Dvir and S. Gopi. 2-server pir with subpolynomial communication. Journal of
the ACM (JACM), 63(4):39, 2016.

12. S. Faber, S. Jarecki, S. Kentros, and B. Wei. Three-party oram for secure compu-
tation. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 360–385. Springer, 2015.

16 Kasper Green Larsen, Mark Simkin, and Kevin Yeo

13. M. Fredman and M. Saks. The cell probe complexity of dynamic data structures.
In Proceedings of the twenty-first annual ACM symposium on Theory of computing,
pages 345–354. ACM, 1989.

14. S. Garg, S. Lu, R. Ostrovsky, and A. Scafuro. Garbled RAM from one-way func-
tions. In Proceedings of the forty-seventh annual ACM symposium on Theory of
computing, pages 449–458. ACM, 2015.

15. C. Gentry, S. Halevi, S. Lu, R. Ostrovsky, M. Raykova, and D. Wichs. Garbled
RAM revisited. In Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, pages 405–422. Springer, 2014.

16. O. Goldreich, H. Karloff, L. J. Schulman, and L. Trevisan. Lower bounds for linear
locally decodable codes and private information retrieval. In Proceedings 17th IEEE
Annual Conference on Computational Complexity, pages 175–183. IEEE, 2002.

17. O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious
RAMs. Journal of the ACM (JACM), 1996.

18. M. T. Goodrich and M. Mitzenmacher. Privacy-preserving access of outsourced
data via oblivious RAM simulation. In International Colloquium on Automata,
Languages, and Programming, pages 576–587. Springer, 2011.

19. M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia. Privacy-
preserving group data access via stateless oblivious RAM simulation. In Proceed-
ings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms,
pages 157–167. Society for Industrial and Applied Mathematics, 2012.

20. S. D. Gordon, J. Katz, and X. Wang. Simple and efficient two-server oram. In
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, pages 141–157. Springer, 2018.

21. P. Grubbs, M.-S. Lacharité, B. Minaud, and K. G. Paterson. Learning to recon-
struct: Statistical learning theory and encrypted database attacks. Cryptology
ePrint Archive, Report 2019/011.

22. P. Hub’avcek, M. Koucký, K. Král, and V. Sĺıvová. Stronger lower bounds for
online ORAM. CoRR, abs/1903.03385, 2019.

23. M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure on search-
able encryption: Ramification, attack and mitigation. In NDSS, 2012.

24. R. Jacob, K. G. Larsen, and J. B. Nielsen. Lower bounds for oblivious data struc-
tures. In SODA ’19, 2019.

25. Z. Jafargholi, K. G. Larsen, and M. Simkin. Optimal oblivious priority queues
and offline oblivious ram. Cryptology ePrint Archive, Report 2019/237, 2019.
https://eprint.iacr.org/2019/237.

26. G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill. Generic attacks on secure
outsourced databases. In CCS ’16, 2016.

27. I. Kerenidis and R. De Wolf. Exponential lower bound for 2-query locally decod-
able codes via a quantum argument. Journal of Computer and System Sciences,
69(3):395–420, 2004.

28. E. Kushilevitz, S. Lu, and R. Ostrovsky. On the (in) security of hash-based obliv-
ious RAM and a new balancing scheme. In Proceedings of the twenty-third annual
ACM-SIAM symposium on Discrete Algorithms, pages 143–156. Society for Indus-
trial and Applied Mathematics, 2012.

29. E. Kushilevitz and T. Mour. Sub-logarithmic distributed oblivious ram with small
block size. arXiv preprint arXiv:1802.05145, 2018.

30. E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. In Foundations of Computer Sci-
ence, 1997. Proceedings., 38th Annual Symposium on, pages 364–373. IEEE, 1997.

Lower Bounds for Multi-Server Oblivious RAMs 17

31. M.-S. Lacharité, B. Minaud, and K. G. Paterson. Improved reconstruction attacks
on encrypted data using range query leakage. In IEEE S&P ’18, 2018.

32. K. G. Larsen. The cell probe complexity of dynamic range counting. In Proceedings
of the forty-fourth annual ACM symposium on Theory of computing, pages 85–94.
ACM, 2012.

33. K. G. Larsen. Higher cell probe lower bounds for evaluating polynomials. In
2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, pages
293–301. IEEE, 2012.

34. K. G. Larsen, T. Malkin, O. Weinstein, and K. Yeo. Lower bounds for oblivious
near-neighbor search. arXiv preprint arXiv:1904.04828, 2019.

35. K. G. Larsen and J. B. Nielsen. Yes, there is an Oblivious RAM lower bound! In
Annual International Cryptology Conference, pages 523–542. Springer, 2018.

36. K. G. Larsen, O. Weinstein, and H. Yu. Crossing the logarithmic barrier for
dynamic boolean data structure lower bounds. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, pages 978–989. ACM, 2018.

37. S. Lu and R. Ostrovsky. Distributed oblivious ram for secure two-party computa-
tion. In Theory of Cryptography Conference, pages 377–396. Springer, 2013.

38. S. Lu and R. Ostrovsky. Black-box parallel garbled RAM. In Annual International
Cryptology Conference, pages 66–92. Springer, 2017.

39. R. Panigrahy, K. Talwar, and U. Wieder. Lower bounds on near neighbor search
via metric expansion. In 2010 IEEE 51st Annual Symposium on Foundations of
Computer Science, pages 805–814. IEEE, 2010.

40. S. Patel, G. Persiano, M. Raykova, and K. Yeo. PanORAMa: Oblivious RAM with
logarithmic overhead. In FOCS ’18, 2018.

41. S. Patel, G. Persiano, and K. Yeo. Private stateful information retrieval. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pages 1002–1019. ACM, 2018.

42. S. Patel, G. Persiano, and K. Yeo. What storage access privacy is achievable
with small overhead? In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, pages 182–199. ACM, 2019.

43. G. Persiano and K. Yeo. Lower bounds for differentially private RAMs. In EU-
ROCRYPT ’19, 2019.

44. B. Pinkas and T. Reinman. Oblivious RAM revisited. In Annual Cryptology
Conference, pages 502–519. Springer, 2010.

45. M. Pǎtraşcu and E. D. Demaine. Logarithmic lower bounds in the cell-probe model.
SIAM Journal on Computing, 35(4):932–963, 2006.

46. E. Shi. Path oblivious heap. Cryptology ePrint Archive, Report 2019/274, 2019.
https://eprint.iacr.org/2019/274.

47. E. Stefanov, E. Shi, and D. Song. Towards practical oblivious RAM. arXiv preprint
arXiv:1106.3652, 2011.

48. E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas.
Path ORAM: an extremely simple oblivious RAM protocol. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security, pages
299–310. ACM, 2013.

49. X. S. Wang, K. Nayak, C. Liu, T. Chan, E. Shi, E. Stefanov, and Y. Huang.
Oblivious data structures. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pages 215–226. ACM, 2014.

50. M. Weiss and D. Wichs. Is there an oblivious ram lower bound for online reads?
In Theory of Cryptography Conference, pages 603–635. Springer, 2018.

51. A. C.-C. Yao. Should tables be sorted? Journal of the ACM (JACM), 28(3):615–
628, 1981.

