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Abstract. Suppose Alice wants to convince Bob of the correctness of k
NP statements. Alice could send k witnesses to Bob, but as k grows the
communication becomes prohibitive. Is it possible to convince Bob using
smaller communication (without making cryptographic assumptions or
bounding the computational power of a malicious Alice)? This is the
question of batch verification for NP statements. Our main result is a new
interactive proof protocol for verifying the correctness of k UP statements
(NP statements with a unique witness) using communication that is poly-
logarithmic in k (and a fixed polynomial in the length of a single witness).

This result is obtained by making progress on a different question in
the study of interactive proofs. Suppose Alice wants to convince Bob that
a huge dataset has some property. Can this be done if Bob can’t even
read the entire input? In other words, what properties can be verified in
sublinear time? An Interactive Proof of Proximity guarantees that Bob
accepts if the input has the property, and rejects if the input is far (say
in Hamming distance) from having the property. Two central complexity
measures of such a protocol are the query and communication complex-
ities (which should both be sublinear). For every query parameter q,
and for every language in logspace uniform NC, we construct an inter-
active proof of proximity with query complexity q and communication
complexity (n/q) · polylog(n).

Both results are optimal up to poly-logarithmic factors, under rea-
sonable complexity-theoretic or cryptographic assumptions. The second
result, which is our main technical contribution, builds on a distance am-
plification technique introduced in a beautiful recent work of Ben-Sasson,
Kopparty and Saraf [CCC 2018].
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1 Introduction

The power of efficiently verifiable proof-systems is a central question in the
study of computation. It has been the focus of a rich literature spanning cryp-
tography and complexity theory. This literature has put forth and studied dif-
ferent notions of proof systems and different notions of efficient verification.
Interactive proofs, introduced in the seminal work of Goldwasser, Micali and
Rackoff [GMR89], are one of the most fundamental notions in this field. An
interactive proof is an interactive protocol between a randomized verifier and
an untrusted prover. The prover convinces the verifier of the validity of a com-
putational statement, usually framed as membership of an input x in a lan-
guage L. Soundness is unconditional. Namely, if the input is not in the lan-
guage, then no matter what (unbounded and adaptive) strategy a cheating
prover might employ, the verifier should reject with high probability over its
own coin tosses. Interactive proofs have had a dramatic impact on complexity
theory and on cryptography. Opening the door to randomized and interactive
verification led to revolutionary notions of proof verification, such as zero knowl-
edge interactive proofs [GMR89,GMW91] and probabilistically checkable proofs
(PCPs) [BGKW88,FRS94,BFL91,BFLS91,FGL+96,AS92,ALM+98]. Interactive
proof-systems also allow for more efficient verification of larger classes of com-
putations (compared with NP proof systems), as demonstrated in the celebrated
IP = PSPACE Theorem [LFKN92,Sha92].

Still, foundational questions about the power of interactive proof systems
have remained open. Our work studies two such questions:

1.1 Batch Verification

Can interactive proofs allow for more efficient batch verification of a collection
of NP statements?

Question 1:
How efficiently can an untrusted prover convince a verifier of the correctness of

k NP statements?

A naive solution is sending the k witnesses in their entirety. An honest prover,
who knows the witnesses, runs in polynomial time, but the communication grows
linearly with k. For the case of UP statements — NP statements with a unique
witness — we show a protocol where the communication complexity grows poly-
logarithmically with k (and the honest prover remains efficient):

Theorem 1 (Informally Stated, see Theorems 4.2 and 4.1) Let L ∈ UP
with witnesses of length m = m(n). There exists an interactive proof for verifying
that k instances x1, . . . , xk, each of length n, all belong to L. The communication
complexity is poly(log(k),m), where poly refers to a fixed polynomial that depends
only on the language L. The number of rounds is polylog(k). The verifier runs in
time Õ(k ·n)+polylog(k) ·poly(m), where n is the length of each of the instances.
The honest prover runs in time poly(k, n,m) given the k unique witnesses.



This resolves the communication complexity of batch verification for UP up
to poly(log(k),m) factors: under complexity-theoretic assumptions, even for k =
1 there are UP languages (e.g. unique SAT) for which every interactive proof
system requires communication complexity Ω(m) [GH98,GVW02]. When the
number of instances k is large, this can be a significant improvement over the
naive solution in which the prover sends over all k witnesses.

We note that for UP relations that are checkable in log-space uniform NC,
we can reduce the communication complexity to m · polylog(k,m). As discussed
above, this is tight up to polylog(k) factors (under complexity assumptions). We
also note that, assuming the existence of one-way functions, our batch verifica-
tion protocol (which is public coin) can be made zero-knowledge using standard
techniques [BGG+88] .

Comparison to prior work. A different solution can be obtained via the IP =
PSPACE theorem, by observing that the membership of k inputs in an NP lan-
guage can be decided in space O(log k+m·poly(n)), where n is the length of a sin-
gle input and m is the length of a single NP witness. Thus, by the IP = PSPACE
Theorem, there is an interactive proof for batch verification with communication
complexity poly(log k, n,m). A major caveat, however, is that the complexity of
proving correctness (the running time of the honest prover) is exponential in
poly(n,m). We, on the other hand, focus on batch verification where the honest
prover runs in polynomial time given the k NP witnesses. We refer to such an
interactive proof as having an efficient prover.3 Another significant drawback of
this solution is that the number of rounds becomes poly(m, log k).

Two recent works have constructed protocols for efficient batch verification
of UP statements. Reingold, Rothblum and Rothblum [RRR16] gave a protocol
with communication complexity polylog(k) · poly(m) + k · polylog(m). In a sub-
sequent work [RRR18] they eliminated the additive k factor but increased the
multiplicative factor, by showing a (constant-round) protocol with communica-
tion complexity kε · poly(m), for any ε > 0. Our main result achieves the best
of both worlds: eliminating the additive linear factor while preserving the poly-
logarithmic multiplicative factor (although our protocol has a larger number of
rounds than that of [RRR18]).

1.2 Interactive Proofs of Proximity

A different question (which turns out to be related) asks which statements can
be verified in sublinear time, i.e. without even reading the entire input. This
immediately raises the question of what computational model is used to cap-
ture “sublinear time”. Drawing inspiration from the literature on sublinear algo-
rithms, a natural choice is to adopt the perspective of property testing, a study
initiated by Rubinfeld and Sudan [RS96] and Goldreich, Goldwasser and Ron

3 Efficiency of the honest prover (given an NP witness) has been central in the study
of zero-knowledge interactive proofs [GMR89,GMW91]. It has also been central to
the study of efficient batch verification in recent works [RRR16,RRR18].



[GGR98], which considers highly-efficient randomized algorithms that solve ap-
proximate decision problems, while only inspecting a small fraction of the input.
Such algorithms, commonly referred to as property testers for a set S (say the
set of objects with some property), are given query access to an input, and are
required to determine whether the input is in S (has the property), or is far (say,
in Hamming distance) from every string in S (far from having the property). A
rich literature has put forward property testers for many natural properties.

Analogously, in the proof verification setting, Interactive Proofs of Proximity
(IPPs) aim to verify that a given input is close to a set (or a property). Given
a desired proximity parameter δ ∈ (0, 1], the soundness condition of standard
interactive proofs is relaxed: it should be impossible to convince the verifier to
accept statements that are δ-far (in fractional Hamming distance) from true
statements (except with small probability). Such proof-systems were first intro-
duced by Ergün, Kumar and Rubinfeld [EKR04] and were more recently further
studied by Rothblum, Vadhan and Wigderson [RVW13] and by Gur and Roth-
blum [GR13]. The verifier’s query complexity and running time, as well as the
communication, should all be sublinear in the input length. Other parameters of
interest include the (honest) prover’s running time and the number of rounds.

The hope is that IPPs can overcome inherent limitations of property testing:
for example, demonstrating specific properties where verifying proximity can be
significantly faster than the time needed to test (without a prover). Another goal
is showing that sublinear-time verification is possible for much richer families of
properties than those for which property testers exist. In particular, research
on property testing has focused on constructing testers for languages based on
their combinatorial or algebraic structure. This limitation seems inherent, be-
cause there exist simple and natural languages for which (provably) no sublinear
time property testers exist. In contrast, it is known that highly non-trivial IPPs
exist for every language that can be decided in bounded-polynomial depth or
space [RVW13,RRR16]. However, the optimal tradeoffs between the query and
communication complexities needed for proof verification were not known, and
this is the second foundational question we study:

Question 2:
What are the possible tradeoffs between the query and communication

complexities in interactive proofs of proximity, and for which statements?

For the case of languages in (uniform) NC—languages that can be decided by
polynomial-sized circuits of polylogarithmic depth—we show that the product
of the query and communication complexities can be quasi-linear.

Theorem 2 (Informally Stated, see Theorem 4.1) Let t = t(n) ≤ n be a

parameter. For every δ ≤ t·polylog(n)
n and every language L in log-space uniform

NC, there exists an IPP for L with respect to proximity parameter δ, with com-
munication complexity t · polylog(n) and query complexity O(1/δ). The verifier
runs in time Õ(t+ n/t) and the prover runs in time poly(n).



For example, by setting t(n) =
√
n we obtain an IPP for NC with query,

communication and verification complexity all Õ(
√
n). This result resolves the

question for such languages, up to polylogarithmic factors, as Kalai and Roth-
blum [KR15] showed that (under a reasonable cryptographic assumption) there
exists a language in NC1 for which the product of the query and communication
complexities cannot be sublinear.

Comparison and relationship to [RVW13]. Theorem 2 shows that the product of
the query complexity and the communication can be quasi-linear (for a distance
parameter that is the inverse of the query complexity). Rothblum, Vadhan and
Wigderson [RVW13] showed a similar statement, but the product of the query
and communication complexities was n1+o(1).

Our protocol builds on the framework developed in their work, introduc-
ing several new ideas and using a key distance amplification technique from
a beautiful recent work of Ben-Sasson, Kopparty and Saraf [BKS18]. We find
the improvement from n1+o(1) to Õ(n) to be significant: beyond the fact that
it provides a nearly-optimal (up to polylog(n) factors) trade-off for a founda-
tional problem, it allows for IPPs with polylog(n) communication and sublinear
query complexity. In prior work, achieving sublinear query complexity (for NC)
required no(1) communication. The importance of this distinction is exempli-
fied in the application of IPPs towards batch verification for UP [RRR18]. That
construction repeatedly uses IPPs with slightly-sublinear query complexity. The
communication of the resulting batch verification protocol is dominated by the
communication complexity of the IPPs. Indeed, the improved IPP of Theorem
2 is the key component behind the improved UP batch verification protocol of
Theorem 1.

1.3 Related Works

Batch Verification with Computational Soundness. If one is willing to settle
for computational soundness (i.e., soundness holds only against polynomial-time
cheating strategies) and to use cryptographic assumptions, then efficient batch
verification is possible for all of NP. In particular, Kilian [Kil92] gave an in-
teractive argument-system for all of NP based on collision-resistant hash func-
tions with only poly-logarithmic communication complexity. Since verifying the
membership of k instances in an NP language is itself an NP problem, we im-
mediately obtain a batch verification protocol with communication complexity
poly(log(n), log(k), κ), where κ is a cryptographic security parameter.

More recently, Brakerski, Holmgren and Kalai [BHK17] obtained an effi-
cient non-interactive batch-verification protocol assuming the existence of a
computational private information retrieval scheme. Non-interactive batch ver-
ification protocols also follow from the existence of succinct non-interactive
zero-knowledge arguments (zkSNARGs), which are known to exist under certain
strong, and non-falsifiable, assumptions (see, e.g. [Ish], for a recent survey).

We emphasize that the batch verification protocols of both [Kil92] and [BHK17]
only provide computational soundness and are based on unproven cryptographic



assumptions. In contrast, the result of Theorem 1 offers statistical soundness and
is unconditional.

Interactive Proofs of Proximity. Beyond the works [EKR04,RVW13,GR13] that
were mentioned above, interactive proofs of proximity have drawn considerable
attention [FGL14,GGR15,KR15,RRR16,GR17,BRV18,RRR18,CG18,GLR18,RR19,GRSY20].

In particular, we mention that a recent work of Ron-Zewi and Rothblum
[RR19, Theorem 3, see also Remark 1.3] shows that for every constant ε, every
language computable in polynomial-time and bounded polynomial space has an
IPP with communication complexity ε · n and constant query complexity. Note
that the product between the query and communication complexity in their
result is O(n), rather than n · polylog(n) as in Theorem 2. However, in constrast
to Theorem 2, their result is restricted to the regime of constant query complexity
and only yields communication complexity that is smaller by a constant factor
than that of the trivial solution (see Proposition 3.3).

1.4 Organization

Section 2 contains a technical overview of our techniques. In Section 3 we pro-
vide preliminaries and our main results are stated in Section 4. In Section 5 we
introduce the PVAL problem and show how to amplify its distance. Our efficient
PVAL IPP is in Section 6. Lastly, in Section 7 we use the results established in
the prior sections to prove Theorem 1 and Theorem 2.

2 Technical Overview

To prove Theorem 1 we rely on a recent result of Reingold et al. [RRR18] who
showed how to reduce the construction of UP batch verification protocol to that
of constructing efficient IPPs. In particular, via the connection established in
[RRR18], in order to prove Theorem 1, it suffices to prove Theorem 2 with
respect to cc = polylog(n).

Thus, in this overview we focus on proving Theorem 2. Our starting point
for the proof of Theorem 2 is the IPP construction for NC from [RVW13] (which
achieves weaker parameters than those of Theorem 2).

The [RVW13] protocol is centered around a parameterized problem called
PVAL, which stands for “Polynomial eVALuation” and is defined next. A key
step in the [RVW13] proof is showing that PVAL is “complete” for constructing
IPPs for NC. In more detail, for every language L ∈ NC, [RVW13] show an
interactive reduction, in which the verifier makes no queries to its input. At the
end of the reduction, the verifier generates a “parameterization” of the PVAL
problem so that if the original input x belonged to L then x belongs to PVAL,
whereas if x was far from L then, with high probability, x is also far from PVAL.

Thus, an efficient IPP for PVAL immediately yields an efficient IPP for L as
follows: the prover and verifier first engage in the interactive reduction to obtain



a parameterization of the PVAL problem. Then, the two parties run the efficient
IPP protocol to check proximity to the newly generated PVAL instance.

In this work we follow the same strategy. We do not modify the interactive
reduction step from [RVW13]. Our improved efficiency stems from a more effi-
cient IPP for PVAL (than that of [RVW13]), which suffices to obtain our main
results.

We start by defining a specific variant4 of the PVAL problem that suffices for
our purposes.

The PVAL Problem. Let F be a (sufficiently large) finite field. The PVAL problem
is parameterized by an integer t ∈ N, which we refer to as the arity, and a
dimension m ∈ N. In addition the problem is parameterized by t vectors j =
(j1, . . . , jt) ∈ (Fm)t and t scalars v = (v1, . . . , vt) ∈ Ft. The main input to
PVAL(t, j,v) is the truth table of a function f : {0, 1}m → F. We say that

f ∈ PVAL(t, j,v) if it holds that f̂(ji) = vi, for every i ∈ [t], where f̂ : Fm → F
is the multi-linear extension of f .5 Thus, the goal of the PVAL verifier is to
distinguish the case that (1) the multilinear extension f̂ of the input function f
is equal, at t given points, to t corresponding values, or (2) is far from any such
function. Note that the verifier is only allowed to make a sub-linear (i.e., � 2m)
number of queries to f , but is allowed to communicate with the (untrusted)
prover who has full access to f .

Our main technical contribution is an IPP for checking δ-proximity to PVAL(t, j,v)
with communication complexity roughly t·poly(m) and query complexity O(1/δ)
(see Theorem 6.1 for the formal statement). (Note that setting δ = 2m ·poly(m)/t
results in the product of the query and communication complexities being Õ(2m),
which is quasi-linear in the input length.) We proceed to describe the new IPP
for PVAL.

Attempt 1: Divide and Conquer. Fix a parameterization (t, j,v) for PVAL, where
j = (j1, . . . , jt) and v = (v1, . . . , vt), and consider a given input f : {0, 1}m → F.
Following [RVW13], we would like to first decompose the t claims that we are
given about f into claims about the underlying functions f0, f1 : {0, 1}m−1 → F,
where f0(·) ≡ f(0, ·) and f1(·) ≡ f(1, ·). To do so, the verifier asks the prover

to provide the contributions of f0 and f1 to the linear claims f̂(ji) = vi, for all
i ∈ [t]. In more detail, let us view each vector ji as ji = (χi, j

′
i) where χi ∈ F

and j′i ∈ Fm−1 (i.e., we isolate the first component of ji as χi and the remaining
components as an (m− 1)-dimensional vector j′i). The prover sends the vectors

v0,v1 ∈ Fm−1, where v0 = f̂0|j′ and v1 = f̂1|j′ . Note that the prover cannot send
arbitrary vectors since the verifier can check (and indeed does check) that v0 and
v1 are consistent with v. (I.e., that v = (1−χ̄)·v0+χ̄·v1, where χ̄ = (χ1, . . . , χt)
and the multiplication is pointwise.) See Fig. 1 for an illustration.

4 In particular, for simplicity and since it is sufficient for our results we consider
a variant of PVAL with respect to the multi-linear extension rather than a more
general low degree extension considered in [RVW13].

5 Recall that the multilinear extension f̂ : Fm → F of f : {0, 1}m → F is the unique
multilinear polynomial that agrees with f on {0, 1}m. See Section 3.1 for details.



Fig. 1. Decomposing the claims f |j = v.

A natural idea at this point, is to try to combine f0 and f1 (and the corre-
sponding claims that we have about them) into a single m− 1 variate function
on which we can recurse. For example, we can take a random linear combi-
nation of the two functions as follows: the verifier chooses random coefficients
c(0), c(1) ∈ F, sends them to the prover. The two parties then recurse on the input
f ′ = c(0) · f0 + c(1) · f1 wrt the claims f̂ ′|j′ = v′, with v′ = c(0) · v0 + c(1) · v1.6

Note that the input has shrunk by a factor of 2 and it is not too diffi-
cult to argue that if f was δ-far from PVAL(t, j,v) then f ′ is about δ-far from
PVAL(t, j′,v′). Thus, with very little communication (i.e., O(t · log(|F|)) we have
reduced the input size by half and preserved the distance. We can continue re-
cursing as such until the input reaches a sufficiently small size so that the verifier
can solve the problem by itself (or, rather, verifier can employ a “trivial” proto-
col, with 1/δ query complexity and linear communication in the size of the final
input).

The problem with this approach is that while the input size has shrunk by
half, as we recurse we will need to emulate each query to f ′ by using two queries
to f . Thus, while the input length has shrunk by half, the query complexity has
doubled and essentially no progress has been made. Indeed, if we unwind the
recursion, we see that the total query complexity in the proposed protocol is
linear in the input length.

6 Intuitively, the reason to use a random linear combination rather than some fixed
combination such as f0 + f1 is avoiding (w.h.p) the possibility that the differences
of f0 and f1 from their corresponding PVAL instances (i.e. the 0/1 vectors that can
be added to f0 and f1 to reach vectors in PVAL) cancel each other out.



Doubling the Distance: A Pipe Dream? For every b ∈ {0, 1}, let δb be the distance
of fb from PVAL(t, j′,vb) and let Pb ∈ PVAL(t, j′,vb) such that ∆(fb, Pb) = δb
(without getting into the details we remark that P0 and P1 will be unique in our
regime of parameters). Note that if f is δ-far from PVAL then δ0 + δ1 ≥ 2δ, since
otherwise f is δ-close to the function P ∈ PVAL(t, j,v) defined as P (σ,x) =
(1− σ) · P0(x) + σ · P1(x).

For every b ∈ {0, 1}, let Ib ⊆ {0, 1}m be the set of δb · 2m points on which Pb
and fb disagree (we refer to these as the “error pattern”). Suppose momentarily
that I0 and I1 have a small intersection (or are even disjoint). In such a case, f ′

is roughly δ0 + δ1 ≥ 2δ far from c0 ·P0 + c1 ·P1 ∈ PVAL(t, j′,v′). This leads us to
wonder whether f ′ could actually be 2δ far from PVAL(t, j′,v′) even when the
error patterns have a large intersection (rather than just δ far as in the analysis
above).

Note that if it is indeed the case that f ′ is 2δ far from the corresponding
PVAL instance then we have improved two parameters: both the distance and
the input size, while only paying in the query complexity. If we continue the
recursion now (stopping when the input size is of size roughly t) we obtain an
IPP for PVAL with poly-logarithmic overhead, as we desired.

Unfortunately, the above analysis was centered on the assumption that I0
and I1 have a small intersection, which we cannot justify. As a matter of fact,
for all we know, the two sets could very well be identical. In such a case, the
distance of f ′ from PVAL will indeed be (roughly) δ and we are back to square
one.

See Fig. 2 for an illustration for the possible “error patterns” of f0 and f1
and how they affect the “error patterns” of f ′.

Fig. 2. Possible Alignments of the “Noise”



We pause here for a detour, recalling the approach of [RVW13] (this is not
essential for understanding our construction and can be skipped). They observe
that if δ0 and δ1 are roughly equal, then the verifier can simply recurse on
one of them. This roughly maintains the distance, while avoiding doubling the
query complexity. On the other hand, if say δ0 � δ1, they show that the ran-
dom linear combination technique described above does increase the distance
(intuitively, the row with smaller distance cannot “cancel out” the error pattern
of the row with larger distance). We remark that they lose a constant multi-
plicative factor in this argument, which leads them to consider a decomposition
into polylog(n) many rows, rather than 2. Of course, the verifier does not know
whether δ0 ≈ δ1 or δ0 � δ1. However, they show that the verifier can “cover its
bases” by considering a small number of (approximations to the) decompositions
of the distance across rows. This results in the creation of O(log log n) smaller
recursive instances, where the product of the new distance and the new effective
query complexity of at least one of these instances is “good” (the definition of
“good” allows for losing super-constant multiplicative factors). Over the course
of Ω(log n/ log logn) recursive steps, the losses and the ballooning number of re-
cursive instances add up, and result in a roughly 2logn/ log logn = no(1) overhead
in the product between the final query and communication complexities.

Reducing the Intersection Size. A key new ingredient in our protocol is randomly
permuting the truth tables of the functions f0 and f1, in order to make the sets I0
and I1 (pseudo-)random, and therefore likely to have a small intersection. This
is inspired by the beautiful recent result of Ben Sasson, Kopparty and Saraf
[BKS18] on amplifying distances from the Reed-Solomon code. More precisely,
the verifier chooses random permutations π0, π1 : {0, 1}m → {0, 1}m (from a
suitable family of permutations, to be discussed below). We consider the new
functions f0 ◦ π0 and f1 ◦ π1. The hope is that the entropy induced by these
permutations will make the error patterns in f0 ◦ π0 and in f1 ◦ π1 have a small
intersection. Then, rather than recursing on c0 ·f0+c1 ·f1, we will aim to recurse
on f ′ = c0 · (f0 ◦ π0) + c1 · (f1 ◦ π1).

To make this approach work we have to overcome several difficulties. First,
we need to ensure that we can translate the claims that we have about f̂0 and

f̂1 into claims about f̂0 ◦ π0 and f̂1 ◦ π1. We do so by choosing π0 and π1 as
random affine maps over Fm, while ensuring that the restriction of these maps
to {0, 1}m forms a permutation. We argue that this ensures that:

f̂0 ◦ π0 ≡ f̂0 ◦ π0, (1)

and similarly for f1. To see that Eq. (1) holds, observe that if π0 is an affine
function, then both sides of the equation are multilinear polynomials that agree
on {0, 1}m. Therefore they must also agree on Fm.

Eq. (1) implies that the claims that we have about the multi-linear extensions
of f0 ◦ π0 and f1 ◦ π1 are simply permutations of the claims about f0 and f1,
respectively.

A second difficulty that arises at this point is that the claims that we have
about f0◦π0 and f1◦π1 are not “aligned”. The former claims are about positions



π−10 (j′) and the latter about π−11 (j′) (in the multi-linear extensions of f0 ◦π0 and
f1 ◦π1, respectively). Since the claims are not aligned, it unclear how to combine
them to get t claims about the input f ′.

As our first step toward resolving this difficulty, we have the prover “complete
the picture” by providing the verifier also with the (alleged) values of f̂0 ◦ π0 at

positions π−11 (j′) and those of f̂1 ◦ π1 at positions π−10 (j′).
Note that the prover can cheat to its heart’s desire about these claims, but

the point is that we now have a single set I = π−10 (j′) ∪ π−11 (j′) so that each
function fb is still δb far from the claims that we have about fb|I . Since the
claims are now properly aligned, we can derive a new sequence of claims about
f ′. More importantly, we prove a technical lemma (building on the result of
Ben Sasson et al. [BKS18]), showing that if f is δ-far from PVAL(t, j,v) then,
with high probability, f ′ is roughly 2δ-far from the corresponding PVAL instance
(induced by the prover’s new claims).

To summarize, the approach so far lets us double the distance in each iteration
as we desired. Unfortunately, it also raises a new problem: the arity of the new
PVAL instance that we generated has doubled - rather than just having t claims
we now have roughly 2t claims (corresponding to the size of the set I). See Fig. 3
for an illustration.

Fig. 3. Permuting the Inputs and Resulting Arity Growth

Arity Reduction Step. We resolve this final difficulty by once more employing
interaction, and using the prover in order to reduce the 2t claims that we have
about f0 ◦ π0 and f1 ◦ π1 to just t (aligned) claims each, while preserving the
distance.

The idea here is to consider a degree O(t) curve C : F→ Fm passing through

the set of points I. The prover sends to the verifier the values of f̂0 ◦ π0|C and



f̂1 ◦ π1|C . The verifier checks that that the provided values lie on a degree O(t)

univariate polynomial (since f̂b ◦ πb ◦ C has low degree, for both b ∈ {0, 1}). The
verifier also checks that the values that correspond to points in the set I, are
consistent with the claims that it has. The verifier now chooses a set of t random
points ρ = (ρ1, . . . , ρt) on the curve. The new claims about f̂0 and f̂1 are those
that correspond to the set of points in ρ. In particular, this lets us reduce the
number of claims from 2t to t.

We want to argue that this arity-reduction sub-protocol preserves the dis-
tance. This is accomplished by taking a union bound over all inputs that are
(roughly) 2δ-close to f ′, and showing that for each of them, the probability that
it satisfies the new claim is tiny. We conclude that f ′ is indeed (roughly) 2δ-far
from the resulting PVAL instance (a similar idea was used in the proof that PVAL
is complete [RVW13]).

3 Preliminaries

For a string x ∈ Σn and an index i ∈ [n], we denote by xi ∈ Σ the ith entry
in x. If I ⊆ [n] is a set then we denote by x|I the sequence of entries in x
corresponding to coordinates in I.

Let x, y ∈ Σn be two strings of length n ∈ N over a (finite) alphabet Σ. We

define the (relative Hamming) distance of x and y as∆ (x, y)
def
= |{xi 6= yi : i ∈ [n]}| /n.

If ∆ (x, y) ≤ ε, then we say that x is ε-close to y, and otherwise we say that x
is ε-far from y. We define the distance of x from a (non-empty) set S ⊆ Σn as

∆ (x, S)
def
= miny∈S ∆ (x, y). If ∆ (x, S) ≤ ε, then we say that x is ε-close to S

and otherwise we say that x is ε-far from S. We extend these definitions from
strings to functions by identifying a function with its truth table. For a set S ,
take its minimum distance to be the minimum, over all distinct vectors x, y ∈ S
of ∆(x, y). We use ∆(S) to denote the minimum distance of S. Fixing a vector
space, for a set S and a vector x, we denote (x + S) = {x + y : y ∈ S}. For a
scalar c, we denote (c · S) = {c · y : y ∈ S}.

3.1 Multivariate Polynomials and Low Degree Extensions

We recall some important facts on multivariate polynomials (see [Sud95] for a
far more detailed introduction). A basic fact, captured by the Schwartz-Zippel
lemma is that low degree polynomials cannot have too many roots.

Lemma 3.1 (Schwartz-Zippel Lemma). Let P : Fm → F be a non-zero
polynomial of total degree d. Then,

Pr
x∈Fm

[
P (x) = 0

]
≤ d

|F|
.

An immediate corollary of the Schwartz-Zippel Lemma is that two distinct poly-
nomials P,Q : Fm → F of total degree d may agree on at most a d

|F| -fraction of

their domain Fm.



Throughout this work we consider fields in which operations can be imple-
mented efficiently (i.e., in poly-logarithmic time in the field size). Formally we
define such fields as follows.

Definition 3.1. We say that an ensemble of finite fields F = (Fn)n∈N is con-
structible if elements in Fn can be represented by O(log(|Fn|)) bits and field
operations (i.e., addition, subtraction, multiplication, inversion and sampling
random elements) can all be performed in polylog(|Fn|) time given this represen-
tation.

A well known fact is that for every S = S(n), there exists a constructible
field ensemble of size O(S) and its representation can be found in polylog(S)
time (see, e.g., [Gol08, Appendix G.3] for details).

Let H be a finite field and F ⊇ H be an extension field of H. Fix an integerm ∈
N. A basic fact is that for every function φ : Hm → F, there exists a unique
extension of φ into a function φ̂ : Fm → F (which agrees with φ on Hm; i.e.,

φ̂|Hm ≡ φ), such that φ̂ is an m-variate polynomial of individual degree at most
|H|−1. Moreover, there exists a collection of |H|m functions {τ̂x}x∈Hm such that
each τ̂x : Fm → F is the m-variate polynomial of degree |H| − 1 in each variable
defined as:

τ̂x(z)
def
=
∏
i∈[m]

∏
h∈H\{xi}

zi − h
xi − h

.

and for every function φ : Hm → F it holds that

φ̂(z1, . . . , zm) =
∑
x∈Hm

τ̂x(z1, . . . , zm) · φ(x).

The function φ̂ is called the low degree extension of φ (with respect to F, H and

m). In the special case in which H = GF(2), the function φ̂ (which has individual
degree 1) is called the multilinear extension of φ (with respect to F| and m).

3.2 A Useful Permutation Family

Let m ∈ N. For every a ∈ GF(2m), let fa : (GF(2))m → (GF(2))m be defined as
fa(x) = a · x, where we identify elements in GF(2m) with vectors in (GF(2))m

in the natural way. Thus, for every a ∈ (GF(2))m, there exists a matrix Ma ∈
(GF(2))m×m such that f(x) = Ma · x. Note that if a 6= 0 then the matrix Ma is
invertible, and its inverse is given by Ma−1 .

Let F be a finite field that is an extension field of GF(2). For every a, b ∈
(GF(2))m consider the function πa,b : Fm → Fm defined as: πa,b(x) = Ma ·x+ b.
Let πa,b|(GF(2))m denote the restriction of πa,b to the domain (GF(2))m and let
Πm = {πa,b : a, b ∈ (GF(2))m, a 6= 0}.

Proposition 3.1. The following holds for every a, b ∈ (GF(2))m:

1. The function πa,b is an affine map over F.



2. If a 6= 0 then the function πa,b forms a permutation over Fm and πa,b|(GF(2))m

forms a permutation over (GF(2))m.
3. The function family {πa,b|(GF(2))m}a,b∈(GF(2))m is pairwise independent.
4. If F and GF(2m) are constructible, then given a, b ∈ (GF(2))m and x ∈ Fm

it is possible to compute πa,b(x) in time poly(m, log(|F|)).

Proof. Item 1 is evident from the construction. For Item 2, let a 6= 0 and take
any x, x′ ∈ Fm. Observe that if Ma · x+ b = Ma · x′ + b then Ma · (x− x′) = 0.
Multiplying both sides on the left by Ma−1 (a matrix in GF(2)m×m ⊆ Fm×m)
we get that x = x′ . Thus, πa,b is a permutation over Fm. Since the image of
πa,b|(GF(2))m lies in (GF(2))m this also means that πa,b|(GF(2))m is a permutation
over (GF(2))m.

For Item 3, let x1, x2, y1, y2 ∈ (GF(2))m with x1 6= x2. Then:

Pr
a,b

[Ma · x1 + b = y1 ∧Ma · x2 + b = y2] = Pr
a,b

[a · x1 + b = y1 ∧ a · x2 + b = y2]

= Pr
a,b

[(
a
b

)
·
(
x1 1
x2 1

)
=

(
y1
y2

)]
= 2−2m,

where in the first expression the arithmetic is over the field GF(2) and in the
second and third expressions the arithmetic is over GF(2m), and the last equality

follows from the fact that det

(
x1 1
x2 1

)
= x1 − x2 6= 0.

Lastly, for Item 4, observe that Ma can be generated in poly(m) time by
taking the product of a with a basis of (GF(2))m. Given the full description of
Ma, the product Ma · x+ b can be computed in poly(m, log(|F|)) time.

Proposition 3.2. Let φ : (GF(2))m → F and let φ̂ : Fm → F be its multilinear

extension. Let ψ = φ ◦ (πa,b|(GF(2))m) (a function over (GF(2))m), and let ψ̂ be
the multilinear extension of ψ. Then:

∀x ∈ Fm, (φ̂ ◦ πa,b)(x) = ψ̂(x).

Proof. By Proposition 3.1, the function πa,b is an affine map over F. Thus,

(φ̂ ◦ πa,b) is multilinear. By definition, ψ̂ is also multilinear (since it is a low

degree extension). We have that ψ̂ and φ̂ ◦ πa,b are both multilinear, and they
agree over (GF(2))m. By uniqueness of the multilinear extension, they must also
agree over Fm.

3.3 Succinct Descriptions

Throughout this work we use NC1 to refer to the class of logspace uniform
Boolean circuits of logarithmic depth and constant fan-in. Namely, L ∈ NC1

if there exists a logspace Turing machine M that on input 1n outputs a full
description of a logarithmic depth circuit C : {0, 1}n → {0, 1} such that for
every x ∈ {0, 1}n it holds that C(x) = 1 if and only if x ∈ L.



We next define a notion of succinct representation of circuits. Loosely speak-
ing, a function f : {0, 1}n → {0, 1} has a succinct representation if there is a
short string 〈f〉, of poly-logarithmic length, that describes f . That is, 〈f〉 can
be expanded to a full description of f . The actual technical definition is slightly
more involved and in particular requires that the full description of f be an NC1

(i.e., logarithmic depth) circuit:

Definition 3.2 (Succinct Description of Functions). We say that a func-
tion f : {0, 1}n → {0, 1} of size s has a succinct description if there exists a
string 〈f〉 of length polylog(n) and a logspace Turing machine M (of constant
size, independent of n) such that on input 1n, the machine M outputs a full
description of an NC1 circuit C such that for every x ∈ {0, 1}n it holds that
C(〈f〉 , x) = f(x). We refer to 〈f〉 as the succinct description of f .

We also define succinct representation for sets S ⊆ [k]. Roughly speaking
this means that the set can be described by a string of length polylog(k). The
formal definition is somewhat more involved:

Definition 3.3 (Succinct Description of Sets). We say that a set S ⊆
[k] of size s has a succinct description if there exists a string 〈S〉 of length
polylog(k) and a logspace Turing machine M such that on input 1k, the machine
M outputs a full description of a depth polylog(k) and size poly(s, log k) circuit
(of constant fan-in) that on input 〈S〉 outputs all the elements of S as a list (of
length s · log(k)).

We emphasize that the size of the circuit that M outputs is proportional to
the actual size of the set S, rather than the universe size k.

3.4 Interactive Proofs of Proximity

Loosely speaking, IPPs are interactive proofs in which the verifier runs in sub-
linear time in the input length, where the soundness requirement is relaxed to
rejecting inputs that are far from the language w.h.p. (for inputs that are not
in the language, but are close to it, no requirement is made). Actually, we will
think of the input of the verifier as being composed of two parts: an explicit input
x ∈ {0, 1}n to which the verifier has direct access, and an implicit (longer) input
y ∈ {0, 1}m to which the verifier has oracle access. The goal is for the verifier to
run in time that is sub-linear in m and to verify that y is far from any y′ such
that the pair (x, y′) are in the language. Since such languages are composed of
input pairs, we refer to them as pair languages.

Definition 3.4 (Interactive Proof of Proximity (IPP) [EKR04,RVW13]).
An interactive proof of proximity (IPP) for the pair language L is an interac-

tive protocol with two parties: a (computationally unbounded) prover P and a
computationally bounded verifier V. Both parties get as input x ∈ {0, 1}n and a
proximity parameter ε > 0. The verifier also gets oracle access to y ∈ {0, 1}m
whereas the prover has full access to y. At the end of the interaction, the following
two conditions are satisfied:



1. Completeness: For every pair (x, y) ∈ L, and proximity parameter ε > 0
it holds that

Pr
[(
P(y),Vy

)
(x, |y|, ε) = 1

]
= 1.

2. Soundness: For every ε > 0, x ∈ {0, 1}n and y that is ε-far from the set
{y′ : (x, y′) ∈ L}, and for every computationally unbounded (cheating) prover
P∗ it holds that

Pr
[(
P∗(y),Vy

)
(x, |y|, ε) = 1

]
≤ 1/2.

An IPP for L is said to have query complexity q = q(n,m, ε) if, for every
ε > 0 and (x, y) ∈ L, the verifier V makes at most q(|x|, |y|, ε) queries to y
when interacting with P. The IPP is said to have communication complexity
cc = cc(n,m, ε) if, for every ε > 0 and pair (x, y) ∈ L, the communication
between V and P consists of at most cc(|x|, |y|, ε) bits. If the honest prover’s
running time is polynomial in n and m, then we way that the IPP is doubly-
efficient.

The special case of IPPs in which the entire interaction consists of a sin-
gle message sent from the prover to the verifier is called MAPs (in analogy to
the complexity class MA) and was studied in [GR17,GGR15]. We will use the
following simple observation:

Proposition 3.3 (See, e.g., [GR17]). Every L ∈ DTIME(t) has an MAP
with respect to proximity parameter δ ∈ (0, 1) with communication complexity n
and query complexity O(1/δ). The verifier runs in time t+n+O(log(n)/ε). The
prover runs in time O(n)

Proof (Proof Sketch). The prover sends to the verifier a full description of the
input x (i.e., an n bit string). Given the message x′ received from the prover
(allegedly equal to the input x), the verifier first checks that x′ ∈ L (this step
requires no queries to x). The verifier further checks that x and x′ agree on a
random set of O(1/δ) coordinates.

Completeness is immediate, whereas to see that soundness holds, observe
that the prover must send x′ ∈ L, since otherwise the verifier rejects. If x is δ-far
from L then x and x′ disagree on a at least δ fraction of their coordinates and
so the verifier accepts with probability at most (1− δ)O(1/δ) = 1/2.

4 Our Results

Our first main result is an IPP for any language in NC with optimal query/communication
tradeoff (up to poly-logarithmic factors).

Theorem 4.1. Let δ = δ(n) ∈ (0, 1) be a proximity parameter and let L be a
pair language that is computable by logspace-uniform Boolean circuits of depth
D = D(n) ≥ log n and size S = S(n) ≥ n with fan-in 2 (where n denotes the
implicit input and nexp denotes the explicit input). Then, L has a public-coin
IPP for δ-proximity with perfect completeness and the following parameters:



– Soundness Error: 1/2.
– Query complexity: q = O(1/δ).
– Communication Complexity: cc = δ · n ·D · poly log(S).
– Round Complexity: D · polylog(S).
– Verifier Running Time: δ · n · nexppoly(D, log(S)) + (1/δ) · polylog(n).
– Prover Running Time: poly(S).

Furthermore, the verification procedure can be described succinctly as fol-
lows. At the end of the interaction either the verifier rejects or in time δ · n ·
poly(D, log(S)) it outputs a succinct description 〈Q〉 of a set Q ⊆ [n] of size
q and a succinct description 〈φ〉 of a predicate φ : {0, 1}q → {0, 1} so that its
decision predicate given an input function f is equal to φ(f |Q).

Our second main result (which relies on Theorem 4.1) is an interactive proof
for batch verification of any UP language, with communication complexity that
is optimal up to poly-logarithmic factors.

Theorem 4.2. For every UP language L with witness length m = m(n), whose
witness relation can be computed in logspace-uniform NC, there exists a public-
coin interactive proof (with perfect completeness) for verifying that k instances
x1, . . . , xk, each of length n ≤ poly(m), are all in L. The complexity of the
protocol is as follows:

– Communication complexity: m · polylog(k,m).
– Number of rounds: polylog(k,m).
– Verifier runtime: (n · k +m) · polylog(k,m).
– The honest prover, given the k unique witnesses, runs in time poly(m, k).

Using the Cook-Levin reduction, any UP language can be reduced to Unique-SAT
which is a UP language whose witness relation can be computed in logspace-
uniform NC, with only a poly(n,m) blowup to the witness size. Hence, Theo-
rem 4.2 yields the following corollary.

Corollary 4.1. For every UP language L with witness length m = m(n), there
exists a public-coin interactive proof (with perfect completeness) for verifying that
k instances x1, . . . , xk, each of length n ≤ poly(m), are all in L. The complexity
of the protocol is as follows:

– Communication complexity: poly(m, log(k)).
– Number of rounds: polylog(m, k).
– Verifier runtime: (n · k) · polylog(m, k) + poly(m, log k).
– The honest prover, given the k unique witnesses, runs in time poly(m, k).

5 The PVAL Problem

In this section we define the PVAL problem and state properties related to it
that we will need in our proof. Due to lack of space, all proofs in this section are
deferred to the full version.

Let F be a finite field, H ⊆ F and m ∈ N be an integer.



Definition 5.1. The PVAL problem is parameterized by an ensemble (F,H,m)n.
The explicit input to the problem is (n, t, j,v), where t ∈ N, j = (j1, . . . , jt) ∈
(Fm)t and v = v1, . . . , vt ∈ Ft. The implicit input is a function f : Hm → F.
YES instances of the problems are all functions f : Hm → F such that for every
i ∈ [t] it holds that f̂(ji) = vi, where f̂ is the low degree extension of f .

Since the low-degree extension is an error correcting code with high distance,
for sufficiently large randomly chosen location sets j, the induced PVAL problem
has large minimum distance:

Proposition 5.1 (PVAL on random locations has large distance). Let
H ⊆ F be finite fields, and let m, d be integers s.t. |F| ≥ 2m|H|. For t ≥ (d ·
log(|H|m · |F|) + κ) it is the case that:

Pr
j∈(Fm)t

[
∆(PVAL(t, j,0)) ≤ d

|H|m

]
< 2−κ.

The following key lemma builds on the distance amplification theorem for
Reed Solomon codes of Ben-Sasson, Kopparty and Saraf [BKS18].

Lemma 5.1. Fix a finite field F of characteristic 2 and integers m, t > 0. For
j ∈ (Fm)

t
, suppose that PVAL(t, j,0) has size strictly larger than 1 and minimal

distance λ. Let v′,v′′ ∈ Ft be vectors s.t. both PVAL(t, j,v′) and PVAL(t, j,v′′)
are non-empty. Let f ′ : {0, 1}m → F be at distance δ′ from PVAL(t, j,v′), and let
f ′′ : {0, 1}m → F be at distance δ′′ from PVAL(t, j,v′′). Consider permutations
σ, π ∈ Π, where Π is the useful collection of permutations over Fm defined in
Section 3.2. For scalars c′, c′′ ∈ F, define:

f , c′ · (f ′ ◦ σ) + c′′ · (f ′′ ◦ π),

and let Sσ,π ⊆ F2t be the set of pairs of vectors (u,w) s.t. the sets PVAL
(
2t, (σ−1(j), π−1(j)), (v′,u)

)
and PVAL

(
2t, (σ−1(j), π−1(j)), (w,v′′)

)
are non-empty. For (u,w) ∈ Sσ,π, de-

fine:

δσ,π,c′,c′′,u,w = ∆
(
f,PVAL

(
2t, (σ−1(j), π−1(j)), (c′ · (v′,u) + c′′ · (w,v′′))

))
.

Then for every ε ∈ [0, 1/2], taking

δ = max

(
δ′ + δ′′

2
,min(δ′ + δ′′ − δ′δ′′ − 2ε, λ/3− 3ε)

)
,

it is the case that:

Pr
σ,π←Π

[
∃(u,w) ∈ Sσ,π s.t. Pr

c′,c′′←F
[δσ,π,c′,c′′,u,w < δ] >

1

ε|F|
+

1

|F|

]
<

min(δ′, δ′′)

ε2 · 2m
+

2

2m

(2)



5.1 Interactive Proof for PVAL Emptiness

Our PVAL IPP will also utilize the following (standard) interactive proof for
checking whether a given PVAL instance (specified by the vector sequence j) is
empty.

Lemma 5.2. Let t,m ∈ N and F a finite field. There is a public-coin interac-
tive proof for the language L =

{
j ∈ (Fm)t : PVAL(t, j,0) 6= ∅

}
with perfect

completeness and the following parameters:

– Communication complexity: poly(m, log(t)).
– Round Complexity: poly(m, log(t)).
– Verifier running time: t · poly(m, log(|F|)).
– Prover running time: poly(2m, t).

6 Efficient IPP for PVAL

In this section we show our efficient IPP protocol for the PVAL problem.

Theorem 6.1 (IPP for PVAL). Let t,m ∈ N such that m ∈ [log(t), t
1/5

14 ].
Let F be a constructible finite field ensemble of characteristic 2 such that |F| =
Θ
(
2m · t2 ·m2

)
. Let j = (j1, . . . , jt) ∈ (Fm)t and v = (v1, . . . , vt) ∈ Ft such that

∆(PVAL(t, j,0)) ≥ (t/2m) · 1
14m2 .

Then, for every proximity parameter δ ≥ 200m3

2m the set PVAL(t, j,v) has a
public-coin IPP with respect to proximity parameter δ, with perfect completeness
and the following parameters:

– Soundness Error: 1/2.

– Query complexity: q = O
(

max
(
1/δ, 2

m

t · poly(m)
))

.

– Round complexity: poly(m).
– Communication Complexity: cc = t · poly(m).
– Verifier Running Time: (t+ q) · poly(m).
– Prover Running Time: poly(2m).

Furthermore, if δ > (t/2m) · 1
poly(m) then, the entire verification procedure can

be described succinctly as follows. At the end of the interaction either the verifier
rejects or in time poly(m) it outputs a succinct description 〈Q〉 of a set Q ⊆ [|2m|]
of size q and a succinct description 〈φ〉 of a predicate φ : {0, 1}q → {0, 1} so that
its decision predicate given an input function f is equal to φ(f |Q).

The rest of this section is devoted to the proof of Theorem 6.1.
The IPP protocol for PVAL is recursive. In each step we reduce the dimension

m by 1 (which shrinks the input size by half), while simultaneously (roughly)
doubling the distance of the problem from the relevant PVAL instance but also
doubling the query complexity.

We denote the starting dimension by m0 whereas the current dimension
(within the recursion) is denoted by m (initially we set m = m0. With that no-
tation, the efficient IPP protocol for PVAL is presented in Fig. 4. Its completeness,
soundness and complexity are analyzed in the subsequent subsections.



Efficient IPP for PVAL

Fixed parameters (unchanged in the recursion): PVAL arity parameter t ∈ N, a
maximal dimension m0 ∈ [log(t), t1/5/14] . A finite field F of characteristic 2 such that
|F| = Θ

(
2m0 · t2 ·m2

0

)
.

Parameters (modified in the recursion): dimension m ∈ [log(t),m0], proximity
parameter δ ∈ (0, 1). A sequence of vectors j = (j1, . . . , jt) ∈ (Fm)t and field elements
v = (v1, . . . , vt) ∈ Ft.

Invariants: let λ = ∆(PVAL(t, j,0)). We require that δ ≥ 200m3
0

2m
· (1 − 2

m0
)m0−m, and that

λ ≥ (t/2m) · 1
14m2

0
.

Verifier Input: oracle access to f : {0, 1}m → F.

Prover Input: direct access to f .

Goal: verify that ∀i ∈ [t], f̂(ji) = vi (recall that f̂ : Fm → F is the multilinear extension of f).

The Protocol:

1. (Base Case:) If m ≤ log(t), then the prover and verifier simply emulate the trivial MAP
protocol of Proposition 3.3 (with soundness error 1/100). The verifier accepts if the un-
derlying MAP verifier accepts and otherwise it rejects.

2. Otherwise (i.e., if m > log(t)), the protocol proceeds as follows.
3. For every i ∈ [t], decompose ji into ji = (χi, j

′
i) ∈ F× Fm−1.

4. For every i ∈ [t] and b ∈ {0, 1}, the prover computes and sends ζ
(b)
i = f̂(b, j′i).

5. The verifier receives
(
ζ̃
(b)
i

)
b∈{0,1},i∈[t]

and checks vi = (1− χi) · ζ̃(0)i + χi · ζ̃(1)i , ∀i ∈ [t].

6. The verifier random permutations π(0), π(1) ← Πm−1, where Πm−1 is the useful collection
of permutations over Fm−1 defined in Section 3.2. The verifier sends π(0) and π(1).

7. The verifier chooses t random points ρ1, . . . , ρt ∈ Fm−1. Let C : F → Fm−1 be a low

degree curve passing through the set of 3t points
{

(π(b))−1(j′i)
}

b∈{0,1},i∈[t]
∪{ρ1, . . . , ρt}.

In more detail, fix a canonical set of distinct field elements {λ(b)
i }b∈{0,1,⊥},i∈[t] ⊂ F. Let

C : F→ Fm−1 be the unique degree 3t−1 curve such that C(λ(b)
i ) = (π(b))−1(j′i), for every

i ∈ [t] and b ∈ {0, 1}, and C(λ(⊥)
i ) = ρi, for every i ∈ [t] (such a curve can be found by

interpolation). The verifier sends the values ρ1, . . . , ρt (which determine C) to the prover.
8. The prover sends to the verifier the degree O(m · t) univariate polynomials g(0) and g(1),

where g(b)(·) = f̂
(
b, π(b)

(
C(·)

))
, e.g., by sending their coefficient representations.

9. For every b ∈ {0, 1}, the verifier receives g̃(b) from the prover. The verifer checks that

for every b ∈ {0, 1} and i ∈ [t], it holds that g̃(b)(λ
(b)
i ) = ζ̃

(b)
i . The prover and verifier

also run the interactive proof of Lemma 5.2, with soundness error 1
100m0

to check that

PVAL
(

2t,
{
λ(b)

}
b∈{0,1},i∈[t],

{
g̃(b
′)(λ

(b)
i )
}
b∈{0,1},i∈[t]

)
6= ∅, for both b′ ∈ {0, 1}.

10. The verifier chooses at random ξ1, . . . , ξt ∈ F and c(0), c(1) ∈ F.
11. The parties recurse on the implicit input function f ′ : {0, 1}m−1 → F defined as f ′(x) =

c(0) · f(0, π(0)(x)) + c(1) · f(1, π(1)(x)) and the claim that for all i ∈ [t], it holds that
f̂ ′(C(ξi)) = c(0) · g̃(0)(ξi) + c(1) · g̃(1)(ξi) (a PVAL instance of dimension m − 1). Each of
the verifier’s queries to f ′ in the recursion are emulated by making 2 queries to f . The
proximity parameter in the recursion is set to be δ′ = min

(
2δ · (1− 2

m0
), (t/2m) · 1

1400m2
0

)
.

12. If any of the verifier’s checks failed then it rejects, otherwise it accepts.

Fig. 4. Efficient IPP for PVAL



6.1 Completeness

We prove that completeness holds by induction on m. The base case (i.e., m ≤
log(t)) follows from Step 1 in the protocol (while relying on Proposition 3.3).
We proceed to analyze the case m > log(t) (under the inductive hypothesis that
the protocol is complete for dimension m− 1).

Let j = (j1, . . . , jt) ∈ (Fm)t and v = (v1, . . . , vt) ∈ Ft. Suppose that f ∈
PVAL(t, j,v). As in the protocol, for every i ∈ [t], decompose ji into ji = (χi, j

′
i) ∈

F× Fm−1. Let j′
def
= (j′1, . . . , j

′
t) ∈ (Fm−1)t.

We show that all the checks made by the verifier in the protocol pass (when
interacting with the honest prover):

1. In Step 5, for every i ∈ [t]:

(1− χi) · ζ(b)i + χi · ζ(1)i = (1− χi) · f̂(0, j′i) + χi · f̂(1, j′i) = f̂(ji) = vi,

as required.
2. In Step 9, for every i ∈ [t] and b ∈ {0, 1}:

g(b)
(
λ
(b)
i

)
= f̂

(
b, π(b)

(
C
(
λ
(b)
i

)))
= f̂

(
b, π(b)

(
(π(b))−1 (j′i)

))
= f̂(b, j′i) = ζ

(b)
i ,

as required.
3. For Step 11, for every i ∈ [t], it holds that:

f̂ ′(C(ξi)) = c(0) · f̂
(
0, π(0) · C(ξi)

)
+ c(1) · f̂

(
1, π(1)(C(ξi))

)
= c(0) · g(0)(ξi) + c(1) · g(1)(ξi),

where the first equality follows from Proposition 3.2.

Since all the verifier’s checks pass, it accepts, and completeness follows.

6.2 Soundness

We prove, by induction on m, that the soundness error of the protocol is at most
m

10m0
+ 1

100 . The base case (i.e., m ≤ log(t)) is immediate from Step 1 (while
relying on Proposition 3.3). We proceed to analyze the case that m > log(t)
(under the inductive hypothesis that the protocol has soundness error at most
m−1
10m0

for dimension m− 1).

Let j = (j1, . . . , jt) ∈ (Fm)t and v = (v1, . . . , vt) ∈ Ft. Let δ = ∆
(
f,PVAL(t, j,v)

)
.

Fix a cheating prover strategy P̃ . Assume without loss of generality that P̃ is
deterministic (otherwise fix its best choice of randomness).

We start by defining several important values that will be used in the analysis.

Let
(
ζ̃
(b)
i

)
b∈{0,1},i∈[t]

be the (fixed) values sent by P̃ as its first message (i.e., in

Step 4). We may assume that

(1− χi) · ζ̃(0)i + χi · ζ̃(1)i = vi, (3)



for every i ∈ [t], since otherwise the verifier rejects in Step 5.

Define v(b) def
=
(
ζ̃
(b)
1 , . . . , ζ̃

(b)
t

)
∈ Ft. Also, for every i ∈ [t], decompose ji

into ji = (χi, j
′
i) ∈ F × Fm−1. Let j′

def
= (j′1, . . . , j

′
t) ∈ (Fm−1)t. Lastly, for every

b ∈ {0, 1}, let f (b)(·) def
= f(b, ·) and let δ(b)

def
= ∆

(
f (b),PVAL

(
t, j′,v(b)

))
.

Our goal will be to show that the input f ′ for the recursive step (i.e., Step 11)
has distance roughly 2δ from the corresponding PVAL instance (i.e., the distance
doubles). This is done in two steps: showing that f ′ has distance roughly δ(0) +
δ(1), and that this quantity is lower bounded by 2δ. Since it is simpler, we start
with the latter step.

Claim 6.2.

δ(0) + δ(1) ≥ 2δ.

Proof. For every b ∈ {0, 1}, let P (b) : {0, 1}m−1 → F such that P (b) ∈ PVAL
(
t, j′,v(b)

)
and ∆

(
P (b), f (b)

)
= δ(b). Such a P (b) exists as long as PVAL

(
t, j′,v(b)

)
6= ∅ and

note that otherwise δ(b) is infinite and the claim clearly holds).
Consider the function P : {0, 1}m → F defined as P (b,x) = P (b)(x). Observe

that ∆(P, f) = δ(0)+δ(1)

2 . On the other hand, for every i ∈ [t], b ∈ {0, 1} and
(j1, . . . , jm) ∈ Fm:

P̂ (j1, . . . , jm) = (1− j1) · P̂ (0, j2, . . . , jm) + j1 · P̂ (1, j2, . . . , jm)

= (1− j1) · P̂ (0)(j2, . . . , jm) + j1 · P̂ (1)(j2, . . . , jm), (4)

where both equalities can be verified by observing that they hold for all (j1, . . . , jm) ∈
{0, 1}m, and therefore hold also for all (j1, . . . , jm) ∈ Fm (since two multilinear
polynomials that agree on the Boolean hypercube agree everywhere).

Thus, for every i ∈ [t], it holds that

P̂ (ji) = (1− χi) · P̂ (0)(j′i) + χi · P̂ (1)(j′i)

= (1− χi) · ζ̃(0)i + χ · ζ̃(1)i

= vi,

where the first equality is by Eq. (4), the second equality follows from the fact
that P (b) ∈ PVAL

(
t, j′,v(b)

)
and the third equality from Eq. (3).

We conclude that f is
(
δ(0)+δ(1)

2

)
-close to PVAL(t, j,v) and so δ(0)+δ(1)

2 ≥ δ.

Now, let π(0), π(1) ← Π be the permutations sampled randomly by the verifier
in Step 6 and let ρ1, . . . , ρt ∈ F be the random values sampled in Step 7. As in
the protocol, let C : F → Fm−1 be the unique degree 3t − 1 curve such that

C(λ(b)i ) = (π(b))−1(j′i), for every i ∈ [t] and b ∈ {0, 1}, and C(λ(⊥)i ) = ρi, for
every i ∈ [t]. Let g̃(0) and g̃(1) be the degree O(m · t) univariate polynomials sent
by P̃ in Step 8. Note that C, g̃(0) and g̃(1) are all random variables that depend
on π(0), π(1) and ρ1, . . . , ρt.



We may assume without loss of generality that for every choice of π(0), π(1), ρ1, . . . , ρt
made by the verifier it holds that

∀i ∈ [t], b ∈ {0, 1} : g̃
(b)
i (λ

(b)
i ) = ζ̃

(b)
i , (5)

since otherwise the verifier immediately rejects in Step 9. Thus, we can modify
the prover P̃ to always send polynomials satisfying Eq. (5) without decreasing
P̃ ’s success probability.

For every c(0), c(1) ∈ F, define the function f ′
π(0),π(1),c(0),c(1)

: {0, 1}m−1 → F
as f ′

π(0),π(1),c(0),c(1)
(x) = c(0) · f(0, π(0)(x)) + c(1) · f(1, π(1)(x)).

Recall that δ(b) = ∆
(
f (b),PVAL

(
t, j′,v(b)

))
. We now invoke Lemma 5.1 on

f (0) and f (1) with ε
def
= δavg/m0, where δavg = (δ(0) + δ(1))/2. We obtain that:

Pr
π(0),π(1)←Π

[
∃u,w ∈ Sπ(0),π(1) s.t. Pr

c(0),c(1)∈F

[
δπ(0),π(1),c(0),c(1),u,w < δ∗

]
>

1

ε|F|
+

1

|F|

]
(6)

is less than min(δ(0),δ(1))
ε2·2m + 2

2m , where δπ(0),π(1),c(0),c(1),u,w is defined as the distance
of f ′

π(0),π(1),c(0),c(1)
from

PVAL

(
2t,
(

(π(0))−1(j′), (π(1))−1(j′)
)
,
(
c(0) ·

(
v(0),u

)
+ c(1) ·

(
w,v(1)

)))
,

and

δ∗
def
= max

(
δavg,min

(
δ(0) + δ(1) − δ(0) · δ(1) − 2ε, λ/3− 3ε

))
, (7)

and Sπ(0),π(1) ⊆ F2t is the set of pairs of vectors (u,w) such that the sets

PVAL
(
2t, ((π(0))−1(j′), (π(1))−1(j′)), (v(0),u)

)
and PVAL

(
2t, ((π(0))−1(j′), (π(1))−1(j′)), (w,v(1))

)
are non-empty.

We have that min(δ(0),δ(1))
ε2·2m + 2

2m ≤
δavg
ε2·2m + 2

2m =
m2

0

δavg·2m + 2
2m ≤

1
50m0

and

that 1
ε|F| + 1

|F| ≤
m0

δavg·2m0
+ 1

2m0
≤ m0

δavg·2m + 1
2m ≤

1
100m0

, where for both we used

the fact that δavg ≥ δ ≥ 100m3
0

2m (by Claim 6.2 and our invariant on δ) and our
setting of |F| and m. Thus, Eq. (6) implies that:

Pr
π(0),π(1)←Π

[
∃u,w ∈ Sπ(0),π(1) s.t. Pr

c(0),c(1)∈F

[
δπ(0),π(1),c(0),c(1),u,w < δ∗

]
>

1

100m0

]
(8)

is less than 1
50m0

. We proceed to show that δ∗ is lower bounded by (roughly) 2δ.

Proposition 6.1. δ∗ ≥ min
(
2δ · (1− 2

m0
), λ/100

)
.

Proof. Recall that δ∗ ≥ δavg and that δ∗ ≥ min(λ/3−3ε, δ(0)+δ(1)−δ(0)·δ(1)−2ε)
(see Eq. (7)). The proof of the proposition is based on a (somewhat tedious) case
analysis.

Suppose first that δ∗ ≥ δ(0) +δ(1)−δ(0) ·δ(1)−2ε. In this case the proposition
follows from the following claim:



Claim 6.3. δ(0) + δ(1) − δ(0) · δ(1) − 2ε ≥ 2δ · (1− 2
m0

).

Proof. By the AM-GM inequality it holds that:

δ(0) + δ(1) − δ(0) · δ(1) ≥ 2δavg − δ2avg.

We consider two cases. Suppose first that δavg ≤ 2/m0. Then,

2δavg − δ2avg − 2ε = 2δavg − δ2avg − 2δavg/m0 ≥ 2δ · (1− 2/m0),

where the inequality is based on Claim 6.2 and our presumed upper bound on
δavg. Thus, we may assume that δavg ≥ 2/m0. Then,

2δavg − δ2avg − 2ε ≥ δavg/2 ≥ 1/m0 ≥ 2δ · (1− 2/m0),

where the first inequality holds for sufficiently large m0 and using the fact that
δavg ≤ 1 and the last inequality from the fact that δ < 1

100m0
.

Thus, we may assume that δ∗ ≥ λ/3− 3ε.
Suppose now that ε < λ/300. Then, we have that δ ≥ λ/3− 3ε ≥ λ/100 and

we are done. Thus, we may assume that λ/300 ≤ ε = δavg/m0. On the other
hand, we have that δ∗ ≥ δavg ≥ m0

300 · λ ≥ λ/100, for sufficiently large m0.
This concludes the proof of Proposition 6.1.

Fix π(0) and π(1) such that the event specified in Eq. (8) does not hold. That
is, for every u,w ∈ Sπ(0),π(1) it holds that

Pr
c(0),c(1)∈F

[
δπ(0),π(1),c(0),c(1),u,w < δ∗

]
≤ 1

100m0
.

Let u =
(
g̃(0)(λ

(1)
1 ), . . . , g̃(0)(λ

(1)
t )
)

and w =
(
g̃(1)(λ

(0)
1 ), . . . , g̃(1)(λ

(0)
t )
)

. Sup-

pose that u,w 6∈ Sπ(0),π(1) then PVAL
(

2t,
{
λ(b)

}
b∈{0,1},i∈[t],

{
g̃(b
′)(λ

(b)
i )
}
b∈{0,1},i∈[t]

)
=

∅, for either b′ = 0 or b′ = 1. In Step 9 the verifier and prover run an interactive
proof to check that this is not the case and so the verifier rejects in this case
with probability at least 1− 1

100m0
. Thus, we may assume that u,w ∈ Sπ(0),π(1) .

In particular, this means that for all but 1
100m0

fraction of c(0), c(1) ∈ F, it
holds that f ′

π(0),π(1),c(0),c(1)
is at distance at least δ∗ from

PVAL

(
2t,
(

(π(0))−1(j′), (π(1))−1(j′)
)
, (ωk)k∈[2t]

)
,

where ωb·t+i = c(0) · g̃(0)i (λ
(b)
i ) + c(1) · g̃(1)i (λ

(b)
i ).

Let us fix c(0) and c(1) such that the foregoing statement holds. Let

δ′
def
= min

(
2δ · (1− 2

m0
), (t/2m) · 1

1400m2
0

)
(9)

and observe that by Proposition 6.1 (and the invariant lower bound on λ), it
holds that δ′ ≤ δ∗.



Claim 6.4. With all but 1
100m0

probability over the choice of ξ1, . . . , ξt ∈ F it
holds that the function f ′

π(0),π(1),c(0),c(1)
is at distance at least δ′ from the set

PVAL

(
t, (C(ξi))i∈[t] ,

(
c(0) · g̃(0)i (ξi) + c(1) · g̃(1)(ξi)

)
i∈[t]

)
.

Proof. Fix some h : {0, 1}m−1 → F at relative distance≤ δ′ ≤ δ∗ from f ′
π(0),π(1),c(0),c(1)

.

By our assumption on c(0) and c(1) we have h 6∈ PVAL
(

2t, ((π(0))−1(j′), (π(1))−1(j′)), (ωk)k∈[2t]

)
,

where ωb·t+i = c(0) · g̃(0)i (λ
(b)
i ) + c(1) · g̃(1)i (λ

(b)
i ). In particular, this means that

there exists some b ∈ {0, 1} and i ∈ [t] such that:

ĥ
(
C(λ(b)i )

)
6= c(0) · g̃(0)i (λ

(b)
i ) + c(1) · g̃(1)i (λ

(b)
i ).

The functions ĥ ◦ C and c(0) · g̃(0)(·) + c(1) · g̃(1)(·) are therefore different
polynomials of degree O(m · t). Thus, the probability over a random ξ ∈ Fm−1
that ĥ(C(ξ)) = g̃(0)(ξ) + c · g̃(1)(ξ) is at most O(m · t/|F|) ≤ 1/2. Therefore,

the probability that h ∈ PVAL

(
t, (C(ξi))i∈[t] ,

(
g̃
(0)
i (ξi) + c · g̃(1)(ξi)

)
i∈[t]

)
is at

most 2−t.
The number of functions h : {0, 1}m−1 → |F| that are δ′-close to f ′π,c is upper

bounded by (2m−1 ·|F|)δ′·2m−1 ≤ 2δ
′·2m·m·log(|F|). Therefore, by a union bound, we

have that f ′π,c is δ′-far from PVAL

(
t, (C(ξi))i∈[t] , c(0) ·

(
g̃
(0)
i (ξi) + c(1) · g̃(1)(ξi)

)
i∈[t]

)
,

with all but 2δ
′·2m·m·log(|F|)−t probability. Since δ′ ≤ (t/2m)· 1

1400m2
0
, we have that

this probability is upper bounded by 1
100m0

.

Assuming that the event stated in Claim 6.4 holds, the protocol is run re-
cursively on input f ′

π(0),π(1),c(0),c(1)
that is at least δ′-far from the relevant PVAL

instance. At this point we would like to argue that by the inductive hypothesis,
the verifier rejects with high probability. However, to do so, we still need to argue
that the recursive invocation satisfies all the prescribed invariants.

Claim 6.5. δ′ ≥ 200m3
0

2m−1 · (1− 2
m0

)m0−(m−1).

Proof. We consider two cases. If δ′ = 2δ · (1− 2
m0

) then:

δ′ ≥ 2

(
200m3

0

2m
· (1− 2

m0
)m0−m

)
· (1− 2

m0
) =

200m3
0

2m−1
· (1− 2

m0
)m0−(m−1),

as required. Otherwise,

δ′ = (t/2m) · 1

1400m2
0

≥ 200m3
0

2m−1
≥ 200m3

0

2m−1
· (1− 2

m0
)m0−(m−1),

where the first inequality follows from the fact that m0 ≤ t1/5/14.



Claim 6.6. With all but 1
100m0

probability over the choice of ρ1, . . . , ρt and

ξ1, . . . , ξt, it holds that λ′ ≥ (t/2m−1) · 1
14m2

0
, where λ′ = ∆(PVAL(t, j′,0)).

Proof. Observe that ξ1, . . . , ξt 6∈ {λ(b)i }b∈{0,1},i∈[t] with probability 1 − 2t2

|F| ≥
1− 1

200m0
.

Since the curve C passes through t random points (i.e., ρ1, . . . , ρt), the dis-
tribution over points through which the curve C passes is t-wise independent,

other than at the fixed points {λ(b)i }b∈{0,1},i∈[t]. Putting the above two facts

together, we obtain that with all but 1
200m0

probability, the set of points j′ =(
C(ξ1), . . . , C(ξt)

)
is uniformly distributed in (Fm−1)t.

Recall that λ′ = ∆(PVAL(t, j′,0)). By Proposition 5.1, since t ≥ t
14m2

0
·log(2m·

|F|) + log(200m0),

Pr

[
λ′ ≤ (t/2m−1) · 1

14m2
0

]
<

1

200m0
,

and the claim follows.

Thus, the invariants for the recursive step are satisfied and so the verifier
accepts in the recursion with probability at most m−1

10m0
+ 1/100. Overall, by

accounting for all of the bad events in the analysis above, we get that the verifier
accepts with probability at most:

m− 1

10m0
+ 1/100 + 5 · 1

100m0
≤ m

10m0
+ 1/100

as required.

6.3 Complexity

Communication Complexity. We first analyze the complexity of a single iteration
(i.e., excluding the recursion). The verifier only sends to the prover a specification
of the permutations π(0) and π(1) (which take 2m bits each), the values ρ1, . . . , ρt,
ξ1, . . . , ξt ∈ F and c(0), c(1) ∈ F. Overall the verifier-to-prover communication is

2m + (2t + 1) · log2(|F|). The prover in turn sends (ζ
(b)
i )i∈[t],b∈{0,1} and the

polynomials g̃(0) and g̃(1) (of degree O(t ·m)). Thus, the total prover to verifier
communication is O(t ·m · log(|F|)).

Thus, the overall communication complexity is given by cc(m) where cc(m) =
O(t ·m · log(|F|)) + cc(m− 1) if m > log(t) and cc(m) = 2m · log(|F|) otherwise.
Overall we have cc(m) ≤ O(m2 · t · log(|F|)).

Query Complexity. Denote the query complexity by q(m, δ). Note that if m ≤
log(t) then q(m, δ) = O(1/δ) and otherwise q(m, δ) = 2 · q(m− 1, δ′) = 2q

(
m−

1,min
(
2δ ·(1− 2

m0
), (t/2m) · 1

1400m2
0

))
. The stated query complexity follows from

the following claim.



Claim 6.7. There exists a fixed constant c such that for every m and δ it holds

that q(m, δ) ≤ c · (1− 2
m0

)−m ·max
(

1
δ ,

2800·2m·m2
0

t

)
.

Proof. We prove by induction on m. The base case m = log(t) is immediate.
Suppose that the claim holds for m− 1. Then:

q(m, δ) = 2q
(
m− 1,min

(
2δ · (1− 2

m0
), (t/2m) · 1

1400m2
0

))
Suppose first that 2δ · (1− 2

m0
) < (t/2m) · 1

1400m2
0
. Then,

q(m, δ) = 2q
(
m− 1, 2δ · (1− 2

m0
)
)

≤ 2c · (1− 2

m0
)−(m−1) ·max

( 1

2δ · (1− 2
m0

)
,

2m−1 ·m2
0

t

)
= c · (1− 2

m0
)−m ·max

(1

δ
,

2m ·m2
0

t

)
as required. Otherwise, 2δ · (1− 2

m0
) ≥ (t/2m) · 1

1400m2
0

and we have that:

q(m, δ) = 2q
(
m− 1, (t/2m) · 1

1400m2
0

)
≤ 2c · (1− 2

m0
)−(m−1) ·max

(1400 · 2m ·m2
0

t
,

2800 · 2m−1 ·m2
0

t

)
≤ c · (1− 2

m0
)−m · 2800 · 2m ·m2

0

t

≤ c · (1− 2

m0
)−m ·max

(1

δ
,

2800 · 2m ·m2
0

t

)
.

Prover Runtime. In every iteration, the prover only does elementary manipu-
lations of the truth table of f (and never needs to fully materialize the truth

table of f̂). It also runs the prover of Lemma 5.2. Overall its running time is
poly(2m,m0, log(|F|), t) = poly(2m0).

Verifier Runtime and Succinct Description. The queries made by the verifier
can be succinctly specified by the permutations π(0) and π(1) used through the
recursion as well as the random locations that it queries in the base case. The
total number of bits needed to describe the permutations is at most 2(m0)2. The
number of bits needed in the base case is equal to the total number of queries
divided by 2m0/t (since in each of the m0−log(t) iterations the number of queries
doubled) and multiplied by log(2m) = m (to specify the location). By the above

analysis this quantity is therefore upper bounded by O
(
t·m0

2m0
· max

(
1/δ, 2

m0

t ·

poly(m)
))

= O(poly(m) + t·m0

2m0
) · (1/δ)). If δ > (t/2m0) · 1

poly(m) this string has

poly(m) length as required.



Given the set of base points we can generate the list of q queries by repeatedly
applying the two permutations that we have for each level of the recursion. Since
the permutations can be computed in poly(m) time (see Proposition 3.1), we
obtain that a logspace Turing machine can generate a poly(m) depth circuit
that outputs the entire set of q query locations.

As for the succinct description of the verification predicate, observe that all
of the verifier’s checks that do not involve the input can be implemented in time
poly(t,m0, log(|F|)) = poly(t). The testing of the actual input only happens in
the case in which the prover sends over the alleged actual input f̃⊥ (which at
the end of the recursion has length t · log(|F|)). This string f̃⊥ is part of the
description of the verification predicate, together also with all of the c(0), c(1)

values generated in the recursion. Using these values it is possible to construct
a q · poly(m0, log(|F|)) size depth poly(m0) circuit that given the query answers
checks their consistency with f̃⊥.

7 Proving Theorem 4.1 and Theorem 4.2

Theorem 4.1 follows immediately by combining [RVW13, Theorem 1.3] with
Theorem 6.1, while setting t = δ · n · polylog(n).

In order to prove Theorem 4.2 we utilize an idea from the work of Reingold
et al. [RRR18] who used known IPP protocols to achieve batch verification for
UP languages. We restate a more general form of their reduction below. In the
interest of directness, we avoid defining or using Interactive Witness Verification
protocols, as they did. Instead, we use IPPs for pair languages:

Theorem 7.1 (From IPPs to UP batch verification (generalization of
[RRR18, Theorem 3.3])). Suppose that for every query parameter q = q(n) ∈
{1, . . . ,m}, and for every pair languages L that can be computed by log-space
uniform polynomial-size circuits with fan-in 2 and depth D = D(n), there exists
an interactive proof of proximity where the verifier is public-coin and, on input
(x, y), at the end of the interaction either the verifier rejects, or it outputs a
succinct description 〈Q〉 of a set Q ⊆ [|y|] of size q and succinct description 〈φ〉
of a predicate φ : {0, 1}q → {0, 1}, and for every input pair (x, y):

– Completeness: If (x, y) ∈ L then

Pr
[
V does not reject and φ(yQ) = 1

]
= 1.

– Soundness: If L(x) = ∅ (there is no y′ s.t. (x, y′) ∈ L), then for every
prover P∗:

Pr
[
V does not reject and φ(yQ) = 1

]
≤ 1/2.

Let cc = cc(q,D, n,m) be the communication complexity, r = r(q,D, n,m) the
number of rounds, Vtime(q,D, n,m) the verifier’s runtime, and assume that the
honest prover runs in polynomial time.

Then, for every UP language L with witness length m = m(n), whose witness
relation can be computed in NC, there exists a public-coin interactive proof (with



perfect completeness) for verifying that k instances x1, . . . , xk, each of length n,
are all in L. Taking D′ = polylog(n, k) and m′ = k · m, the complexity of the
protocol is as follows:

– Communication complexity: O
(
m+

∑log k
i=1 cc( k2i , D

′, n
′

2i ,
m′

2i )
)
.

– Number of rounds: O
(∑log k

i=1 r( k2i , D
′, n
′

2i ,
m′

2i )
)
.

– Verifier runtime: O
(
m log n+

∑log k
i=1 Vtime( k2i , D

′, n
′

2i ,
m′

2i )
)
.

– The honest prover, given the k unique witnesses, runs in polynomial time.

Theorem 4.2 now follows from Theorem 7.1 by utilizing the efficient IPPs for
NC given in Theorem 4.1.
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