
On Average-Case Hardness in TFNP
from One-Way Functions?

Pavel Hubá£ek1[0000−0002−6850−6222], Chethan Kamath2, Karel
Král1[0000−0002−6557−9354], and Veronika Slívová1[0000−0003−4514−9098]

1 Charles University
{hubacek,kralka,slivova}@iuuk.mff.cuni.cz

2 Northeastern University
ckamath@protonmail.com

Abstract. The complexity class TFNP consists of all NP search prob-
lems that are total in the sense that a solution is guaranteed to exist
for all instances. Over the years, this class has proved to illuminate sur-
prising connections among several diverse sub�elds of mathematics like
combinatorics, computational topology, and algorithmic game theory.
More recently, we are starting to better understand its interplay with
cryptography.

We know that certain cryptographic primitives (e.g. one-way permuta-
tions, collision-resistant hash functions, or indistinguishability obfusca-
tion) imply average-case hardness in TFNP and its important subclasses.
However, its relationship with the most basic cryptographic primitive �
i.e., one-way functions (OWFs) � still remains unresolved. Under an addi-
tional complexity theoretic assumption, OWFs imply hardness in TFNP
(Hubá£ek, Naor, and Yogev, ITCS 2017). It is also known that average-
case hardness in most structured subclasses of TFNP does not imply
any form of cryptographic hardness in a black-box way (Rosen, Segev,
and Shahaf, TCC 2017) and, thus, one-way functions might be su�cient.
Speci�cally, no negative result which would rule out basing average-case
hardness in TFNP solely on OWFs is currently known. In this work, we
further explore the interplay between TFNP and OWFs and give the �rst
negative results.

As our main result, we show that there cannot exist constructions of
average-case (and, in fact, even worst-case) hard TFNP problem from
OWFs with a certain type of simple black-box security reductions. The
class of reductions we rule out is, however, rich enough to capture many
of the currently known cryptographic hardness results for TFNP. Our re-
sults are established using the framework of black-box separations (Im-
pagliazzo and Rudich, STOC 1989) and involve a novel application of
the reconstruction paradigm (Gennaro and Trevisan, FOCS 2000).

? This research was supported in part by the Grant Agency of the Czech Repub-
lic under the grant agreement no. 19-27871X, by the Charles University projects
PRIMUS/17/SCI/9, UNCE/SCI/004, and GAUK 1568819, and by the Charles Uni-
versity grant SVV-2017-260452. The second author is supported by the IARPA grant
IARPA/2019-19-020700009.

2 Hubá£ek et al.

Keywords: TFNP · PPAD · Average-case hardness · One-way functions
· Black-box separations.

1 Introduction

The complexity class TFNP of total search problems [?], i.e., with syntactically
guaranteed existence of a solution for all instances, holds a perplexing place in the
hierarchy of computational complexity classes. The standard method for arguing
computational hardness in TFNP is via clustering these problems into subclasses
characterised by the existential argument guaranteeing their totality [?]. This
approach was particularly successful in illuminating the connections between
search problems in seemingly distant domains such as combinatorics, computa-
tional topology, and algorithmic game theory (see, for example, [?, ?, ?, ?, ?] and
the references therein). However, all results of this type ultimately leave open
the possibility of the existence of polynomial time algorithms for all of TFNP.

An orthogonal line of work, which can be traced to Papadimitriou [?], shows
the existence of hard problems in subclasses of TFNP under cryptographic as-
sumptions. Such conditional lower bounds for structured subclasses of TFNP
were recently given under increasingly more plausible cryptographic assump-
tions [?, ?, ?, ?, ?, ?, ?, ?, ?]. The end of the line in this sequence of results
would correspond to a �dream theorem� establishing average-case hardness in
one of the lower classes in the TFNP hierarchy (e.g. CLS [?]) under some weak
general cryptographic assumptions (e.g. the existence of one-way functions).

An informative parallel for the limits of this methodology can be drawn
by considering average-case hardness of decision problems (i.e., languages) in
NP∩coNP. The existence of a hard-on-average decision problem in NP∩coNP fol-
lows from the existence of hard-core predicates for any one-way permutation [?].
However, the existence of injective one-way functions is insu�cient for black-box
constructions of hard-on-average distributions for languages in NP ∩ coNP even
assuming indistinguishability obfuscation [?] (in fact, [?] ruled out even black-
box constructions of worst-case hardness in NP∩coNP using these cryptographic
primitives).

For total search problems, the existence of hard-on-average TFNP distribu-
tions is straightforward either from one-way permutations or collision-resistant
hash functions. Moreover, there exist constructions of hard-on-average TFNP
distributions either assuming indistinguishability obfuscation and one-way func-
tions [?, ?] or under derandomization-style assumptions and one-way functions [?].
On the other hand, no analogue of the impossibility result for basing average-
case hardness in NP ∩ coNP on (injective) one-way functions [?] is currently
known for TFNP. Rosen, Segev, and Shahaf [?] showed that most of the known
structured subclasses of TFNP do not imply (in a black-box way) any form of
cryptographic hardness; thus, it is plausible that hard-on-average distributions
in TFNP can be based solely on the existence of one-way functions.

Rosen et al. [?] also provided some insight into the structure of hard-on-
average distributions in TFNP. They showed that any hard-on-average distribu-

On Average-Case Hardness in TFNP from One-Way Functions 3

tion of a TFNP problem from any primitive which exists relative to a random
injective trapdoor function oracle (e.g. one-way functions, injective trapdoor
functions, or collision-resistant hash functions) must result in instances with
a nearly exponential number of solutions. Even though the [?] result restricts
the structure of hard-on-average distributions in TFNP constructed from these
cryptographic primitives, it certainly does not rule out their existence. Indeed,
a collision-resistant hash function constitutes a hard-on-average TFNP distribu-
tion, albeit with an exponential number of solutions.

Motivated by the signi�cant gap between negative and positive results, we
revisit the problem of existence of average-case hardness in TFNP under weak
general cryptographic assumptions and address the following question:

Are (injective) one-way functions su�ciently structured to imply
hard-on-average total search problems?

Towards answering this question, we provide negative results and show that
simple fully black-box constructions of hard-on-average TFNP distributions from
injective one-way functions do not exist.

1.1 Our Results

We recall the details of the construction of a hard-on-average distribution in
TFNP from one-way permutations to highlight the restrictions on the type of
reductions considered in our results.

Consider the total search problem Pigeon, in which you are given a length-
preserving n-bit function represented by a Boolean circuit C and are asked to
�nd either a preimage of the all-zero string (i.e., x ∈ {0, 1}n : C(x) = 0n) or a
non-trivial collision (i.e., x 6= x′ ∈ {0, 1}n : C(x) = C(x′)). Pigeon is complete
for a subclass of TFNP known as PPP, and Papadimitriou [?] gave the following
construction of a hard Pigeon problem from one-way permutations. Given a
(one-way) permutation f : {0, 1}n → {0, 1}n and a challenge y ∈ {0, 1}n for
inversion under f , the reduction algorithm de�nes an instance of Pigeon by the
oracle-aided circuit Cfy computing the function Cfy(x) = f(x)⊕ y. It is not hard
to see that the instance of Pigeon Cfy has a unique solution corresponding to
the preimage of y under f and, therefore, any algorithm solving it breaks the
one-wayness of f .

Note that the above construction of a hard (on average) TFNP problem is
extremely simple in various aspects:

� The construction is fully black-box, i.e., the Pigeon instance can be imple-
mented via an oracle-aided circuit treating the one-way permutation as a
black-box and the reduction inverts when given oracle access to an arbitrary
solver for Pigeon.

� The reduction is many-one, i.e., a single call to a Pigeon-solving oracle
su�ces for �nding the preimage of y.

4 Hubá£ek et al.

� The reduction is f -oblivious, i.e., the oracle-aided circuit Cfy de�ning the
Pigeon instance depends only on the challenge y and does not depend on
the one-way permutation f in the sense that Cfy itself can be fully speci-
�ed without querying f . In other words, given the challenge y, the instance
Cfy submitted to the Pigeon oracle by the reduction is, as an oracle-aided
circuit, identical for all permutations f .

� The reduction is deterministic, i.e., it simply passes y to specify the Pigeon
instance.

Such a fully black-box construction ofPigeon with a deterministic f -oblivious
many-one reduction exists also assuming collision-resistant hash functions exist
(folklore). Speci�cally, for any hash function h : {0, 1}n → {0, 1}n−1 from the
collision-resistant family, the Pigeon instance is de�ned as Ch(x) = h(x) ‖ 1,
where ‖ represents the operation of string concatenation. Since Ch concatenates
the value h(x) with 1 for any input x, it never maps to the all-zero string and,
therefore, has the same collisions as h. Note that, unlike in the above construc-
tion from one-way permutations, the instances resulting from collision-resistant
hash functions do not have a unique solution. In fact, there are always at least
2n−1 nontrivial collisions (even in two-to-one functions where each y ∈ {0, 1}n−1
has exactly two preimages) and this structural property is inherent as shown
by Rosen et al. [?]. Importantly, the property of having nearly exponentially
many solutions is not in contradiction with the resulting distribution being hard-
on-average. Currently, there is no actual evidence suggesting that average-case
hardness in TFNP cannot be based on the existence of injective one-way func-
tions.

The above constructions motivate us to study whether there exist such �sim-
ple� constructions of an average-case hard TFNP problem under weaker cryp-
tographic assumptions such as the existence of injective one-way functions, and
we answer this question in negative (see Section 3.2 for the formal statement
of Theorem 1).

Theorem 1 (Main Theorem - Informal). There is no e�cient fully black-
box construction of a worst-case hard TFNP problem from injective one-way func-
tions with a randomized f -oblivious non-adaptive reduction.

Thus, we actually rule out a larger class of fully black-box constructions
with reductions to injective one-way functions than the deterministic f -oblivious
many-one reductions from the motivating examples of average-case hardness of
Pigeon from one-way permutations, respectively collision-resistant hash func-
tions. We rule out even constructions of worst-case hard TFNP problems us-
ing randomized f -oblivious non-adaptive3 reductions. The formal de�nitions of
fully black-box constructions with f -oblivious non-adaptive reductions are given
in Section 3.1 (see De�nition 2 and De�nition 3).

Even though restricted, our results are the �rst step towards the full-�edged
black-box separation of TFNP and (injective) one-way functions. We note that

3 Reductions which can ask multiple queries in parallel to the TFNP oracle.

On Average-Case Hardness in TFNP from One-Way Functions 5

the full-�edged separation would necessarily subsume the known separation of
collision-resistant hash functions and injective one-way functions [?], for which,
despite the recent progress, there are only non-trivial proofs [?, ?, ?].

1.2 Our Techniques

Our results employ the framework of black-box separations [?, ?, ?]. The ap-
proach suggested in [?] for demonstrating that there is no fully black-box con-
struction of a primitive P from another primitive Q is to come up with an oracle
O relative to which Q exists, but every black-box implementation CQ of P is
broken. However, as explained in [?, ?], this approach actually rules out a larger
class of constructions (so-called �relativized� constructions), and to rule out just
fully black-box constructions it su�ces to use the so-called two-oracle technique
[?]. Here, the oracle O usually consists of two parts: an idealised implementation
of the primitive Q and a �breaker� oracle for primitive P . In our context, P cor-
responds to a TFNP problem and the oracle O comprises of a random injective
function (which yields an injective one-way function) and a procedure Solve
which provides a solution for any instance of a TFNP problem. To rule out the
existence of fully black-box constructions of hard-on-average TFNP problems
from injective one-way functions, one then has to argue that access to such a
�breaker� oracle Solve for TFNP does not help any reduction R in inverting in-
jective one-way functions. Designing such a Solve oracle and then arguing that
it does not help inverting injective one-way function, which we carry out using
the reconstruction paradigm of Gennaro ond Trevisan [?], constitute the main
technical challenges. Before giving an overview of these two steps, we explain
the structural insight that is key to our separation, and guided us in the design
of the two steps.

The existence of a �useless� solution. At the core of our negative result is a new
structural insight about TFNP instances constructed from (injective) one-way
functions. Observe that any one-way function gives rise to a search problem with
a hard-on-average distribution which is total over its support (but all instances
outside its support have no solution). Speci�cally, for any one-way function f :
{0, 1}n → {0, 1}n+1, an instance is any y ∈ {0, 1}n+1 and the solution for y
is any x ∈ {0, 1}n such that f(x) = y. The hard-on-average distribution then
corresponds to sampling x uniformly from {0, 1}n and outputting the instance
y = f(x) (as in the standard security experiment for one-way functions). When
attempting to construct a hard search problem which is truly total and has a
solution for all instances (not only for the support of the hard distribution), one
has to face the frustrating obstacle in the form of �useless� solutions which do not
help the reduction in inverting its challenge y. Note that, as the resulting TFNP
problem must be total for all oracles f , there must exist a solution even for oracles
with no preimage for the challenge y. By a simple probabilistic argument, it
follows that for a random oracle f and a random challenge y, with overwhelming

6 Hubá£ek et al.

probability, there exists a solution to any TFNP instance which does not query
a preimage of y, i.e., a �useless� solution from the perspective of the reduction.4

Thus, demonstrating a black-box separation would be straightforward if the
TFNP solver knew which challenge y is the reduction attempting to invert. Our
solver would simply output such a �useless� solution and we could argue via
the reconstruction paradigm that no reduction can succeed in inverting y given
access to our solver. In this work, we show that it is possible to construct a TFNP
solver which returns such a �useless� solution with overwhelming probability even
though the solver does not know the input challenge of the reduction.

Reduction-speci�c Solve. Note that a reduction in a fully black-box construction
must succeed in breaking the primitive P when given access to any oracle Solve
(see De�nition 2). In other words, to rule out the existence of constructions with
a fully black-box reduction, it is su�cient to show that for every reduction
there exists a Solve which is not helpful in inverting; in particular, Solve
may depend on the reduction. To enable Solve to answer the reduction's query
with a �useless� solution with overwhelming probability, we take exactly this
approach and construct a reduction-speci�c Solve for any construction of a
TFNP problem from injective one-way functions. We signi�cantly di�er in this
respect from the previous works which relied on the reconstruction paradigm of
Gennaro and Trevisan [?], e.g., the works which employed the collision-�nding
oracle of Simon [?, ?, ?, ?, ?]. We note that the possibility of designing a breaker
oracle which depends on the fully black-box construction was exploited already
by Gertner, Malkin, and Reingold [?], who considered Solve which depends
on the implementation rather than the reduction algorithm (as in our case).
That is, to rule out the construction of a primitive P from a primitive Q, they
considered an oracle Solve that depends on the implementation CQ of the
primitive P , whereas in our case Solve depends on the reduction algorithm R
that is supposed to break Q given access to an algorithm that breaks CQ. The
possibility of proving black-box separations via reduction-speci�c oracles was
also observed in the work of Hsiao and Reyzin [?] who, nevertheless, did not
have to leverage this observation in their proofs.

On a high level, given that Solve can use the code of the reduction R, Solve
can simulate R on all possible challenges y to identify the set of challenges on
which R outputs the present instance that Solve needs to solve. As we show,
the solution then can be chosen adversarially so that it avoids such solutions of
interest to the reduction. To turn this intuition into a formal proof, one needs
to show that our Solve indeed does not help in inverting injective one-way
functions and we do so along the lines of the reconstruction paradigm of [?].

4 Note that the above argument fails in the case of one-way permutations, where the
challenge y ∈ {0, 1}n is in the image for any permutation f : {0, 1}n → {0, 1}n. The
construction of a TFNP problem then simply does not have to deal with the case
when the challenge y is not in the image of f , and it can ensure that every solution
is useful for inverting the challenge y. Indeed, the hard instances Cf

y of Pigeon from
one-way permutations described in Section 1.1 have a unique solution on which Cf

y

always queries a preimage of y under any f .

On Average-Case Hardness in TFNP from One-Way Functions 7

Applying the compression argument. Two important subtleties arise in the proof
when we try to turn the reduction into a pair of compression and decompres-
sion algorithms, which we explain next. First, the reconstruction paradigm is
conventionally applied to random permutations [?, ?], whereas the reduction
R and the algorithm Solve are designed for random injective functions. The
natural approach is to simply proceed with the same style of proof even in
our setting. Speci�cally, one would presume that a similar incompressibility ar-
gument can be leveraged if we manage to somehow encode the image of the
random injective function. While this intuition is correct in the sense that it
allows correct compression and reconstruction, it turns out that the space re-
quired to encode the image is too prohibitive for reaching the desired contra-
diction with known information-theoretic lower bounds on the expected length
of encoding for a random injective function. To resolve this issue, we construct
compressor and decompressor algorithms for a random permutation, but we
equip the algorithms with shared randomness in the form of a random injec-
tive function h : {0, 1}n → {0, 1}n+1 independent of the random permutation
π : {0, 1}n → {0, 1}n to be compressed. Whenever the compressor and decom-
pressor need to provide the reduction or Solve with access to the injective func-
tion f : {0, 1}n → {0, 1}n+1, they compose the permutation π with the shared
injective function h and then pass o� the composed injective function f = h ◦ π
to the reduction. With this modi�cation, we are able to show that any reduc-
tion which succeeds in inverting injective one-way functions given access to our
Solve can be used to compress a random permutation on {0, 1}n below a stan-
dard information-theoretic lower bound on the size of a pre�x-free encoding of
such random variable. We note that this is reminiscent of the approach used in
[?] for separating injective one-way functions from one-way permutations.

Second, we cannot employ the actual oracle Solve in our compression and
decompression algorithms: even though we can use the reduction when compress-
ing and decompressing the random permutation, we must be able to consistently
simulate Solve without accessing the whole permutation. In general, the choice
of the �breaker� oracle that can be simulated e�ciently without too many queries
to the permutation (e.g., the collision �nding oracle of Simon [?, ?]) is a cru-
cial part of the whole proof, and, a priori, it is unclear how to design a TFNP
solver which also has such a property. Nevertheless, we show that there exists a
Solve which can be e�ciently simulated given only (su�ciently small) partial
information about the permutation.

f -oblivious reductions. As our Solve simulates the reduction on possible chal-
lenges y, we need for technical reasons that the reduction is f -oblivious (namely,
for correctness of our encoding and decoding algorithms). However, we believe
that f -obliviousness is not overly restrictive as it is a natural property of secu-
rity reductions. Besides the two fully black-box constructions of Pigeon with
f -oblivious reductions described in section 1.1, f -oblivious security reductions
appear also in the cryptographic literature � see for example the standard se-
curity reduction in the Goldreich-Levin theorem establishing the existence of
hard-core predicate for any one-way function (note that this particular security

8 Hubá£ek et al.

reduction is also non-adaptive). An orthogonal notion of a π-oblivious construc-
tion appears in the work of Wee [?]. However, it is the implementation of the
constructed primitive which is �oblivious� to the one-way permutation π in his
work.

1.3 Related Work

TFNP and its subclasses. The systematic study of total search problems was ini-
tiated by Megiddo and Papadimitriou [?] with the de�nition of complexity class
TFNP. They observed that a �semantic� class such as TFNP is unlikely to have
complete problems, unless NP = coNP. As a resolution, Papadimitriou [?] de-
�ned �syntactic� subclasses of TFNP with the goal of clustering search problems
based on the various existence theorems used to argue their totality. Perhaps the
best known such class is PPAD [?], which captures the computational complexity
of �nding Nash equilibria in bimatrix games [?, ?]. Other subclasses of TFNP
include:

� PPA [?], which captures computational problems related to the parity argu-
ment like Borsuk-Ulam theorem or fair division [?];

� PLS [?], de�ned to capture the computational complexity of problems amenable
to local search and its �continuous� counterpart CLS ⊆ PLS [?] (in fact
CLS ⊆ PLS ∩ PPAD), which captures �nding the computational complexity
of �nding (approximate) local optima of continuous functions and contains
interesting problems from game theory (e.g., solving the simple stochastic
games of Condon or Shapley); and

� PPP [?] and PWPP ⊆ PPP [?], motivated by the pigeonhole principle and
contain important problems related to �nding collisions in functions.

The relative complexity of some of these classes was studied in [?] as it was shown
using (worst-case) oracle separations that many of these classes are distinct.

Cryptographic hardness in TFNP. Hardness from standard cryptographic prim-
itives was long known for the �higher� classes in TFNP like PPP and PPA. We
have already mentioned that one-way permutations imply average-case hardness
in PPP [?] and existence of collision-resistant hashing (e.g. hardness of integer
factoring or discrete-logarithm problem in prime-order groups) implies average-
case hardness in PPP (as well as in PWPP). In addition, Je°ábek [?], building on
the work of Buresh-Oppenheim [?], showed that PPA is no easier than integer
factoring.

However, it is only recently that we are better understanding the crypto-
graphic hardness of the lower classes in TFNP. This was catalysed by the result
of Bitansky et al. [?] who reduced hardness in PPAD to indistinguishability ob-
fuscation (and injective OWFs) expanding on Abbot, Kane, and Valiant [?];
Hubá£ek and Yogev [?] extended this result to CLS ⊆ PLS∩PPAD. The underly-
ing assumption was relaxed further to cryptographic assumptions that are more
plausible than indistinguishability obfuscation in [?, ?, ?]. Using similar ideas,

On Average-Case Hardness in TFNP from One-Way Functions 9

Bitansky and Gerichter [?] presented a construction for hard-on-average distribu-
tions in the complexity class PLS in the random oracle model. Building on these
results, a �urry of recent works [?, ?, ?, ?, ?] further weakened the assumptions
required for proving average-case hardness in CLS to sub-exponential hardness
of learning with errors, bringing us closer to proving average-case hardness in
CLS under a standard concrete cryptographic assumption.

One-way functions and TFNP. Hubá£ek et al. [?] showed that average-case hard-
ness in NP (which is implied by OWFs) implies average-case hardness in TFNP
under complexity theoretical assumptions related to derandomization. Pass and
Venkitasubramaniam [?] recently complemented the [?] result by showing that
when OWFs do not exist, average-case hardness in NP implies average-case hard-
ness in TFNP. However, a de�nitive relationship between OWFs and TFNP has
remained elusive. This prompted Rosen et al. [?] to explore impossibility of re-
ducing TFNP hardness to OWFs. They gave a partial answer by showing that
there do not exist hard-on-average distributions of TFNP instances over {0, 1}n

with 2n
o(1)

solutions from any primitive which exists relative to a random injec-
tive trapdoor function oracle (e.g. one-way functions). Their main observation
was that the argument in [?], which separates one-way functions from one-way
permutations, can be strengthened to separate other unstructured primitives
from structured primitives (such as problems in TFNP). However, it seems that
the [?] argument has been exploited to its limits in [?], and, therefore, it is not
clear whether their approach can be extended to fully separate one-way func-
tions and TFNP. Thus, the situation is contrasting to NP ∩ coNP, the decision
counterpart of TFNP, whose relationship with (injective) OWFs is much better
studied. In particular, we know that hardness is implied by one way permuta-
tions but injective OWFs, even with indistinguishability obfuscation, (and, there-
fore, public-key encryption) cannot imply hardness in NP∩ coNP in a black-box
way [?].

2 Preliminaries

Unless stated otherwise, all logarithms are base two. For X ⊆ {0, 1}∗, we use
X to denote the set {0, 1}∗ \ X. For strings x, y ∈ {0, 1}∗, we use x <lex y or
y >lex x to denote that x is lexicographically strictly smaller than y.

Notation 2 (Functions) Let X,Y ⊆ {0, 1}∗, f : X → Y be a function and
X ′ ⊆ X be a set.

1. f � X ′ denotes the restriction of f on X ′, i.e., the function f ′ : X ′ → Y such
that ∀x ∈ X ′ : f ′(x) = f(x).

2. Dom(f) denotes the domain of f , i.e., the set X.

3. Im(f) denotes the image of f , i.e., the set {f(x) | x ∈ X} ⊆ Y .
4. f [X ′] denotes the image of the restriction of f onX ′, i.e., the set Im(f � X ′).

10 Hubá£ek et al.

Notation 3 (Injective functions) We denote by Injmn the set of all injective
functions from {0, 1}n to {0, 1}m. For the special case when n = m we get the
set of all permutations on {0, 1}n.

The set Inj is the set of all functions f : {0, 1}∗ → {0, 1}∗, such that f can

be interpreted as a sequence f =
{
fn | fn ∈ Injm(n)

n

}
n∈N

of injective functions,

where m : N→ N is an injective function such that for all n ∈ N : m(n) > n and
m(n) ≤ 100nlogn.

We say that the function m is the type of f and we de�ne the corresponding
type operator τ : Inj → (N→ N) such that τ(f) = m.

We denote the set of all possible types by T, i.e.,

T = {µ : N→ N | ∃f ∈ Inj such that τ(f) = µ}.

Through the paper fn denotes the function f � {0, 1}n (i.e., restriction of f
to the domain {0, 1}n.), where f ∈ Inj.

In our proofs, we often compose a function de�ned on all binary strings with
a function de�ned only for binary strings of certain length; namely, we often want
to compose a function from Inj with a permutation of n-bit strings. The desired
resulting function should always be a function from all binary strings. For the
ease of exposition, we extend the standard notation for function composition as
follows.

Notation 4 (Function composition) Let X,Y, Z be any sets such that X ⊆
Y and let f : X → Y and g : Y → Z. We de�ne the function g ◦ f : Y → Z as:

(g ◦ f)(x) =

{
g(f(x)) if x ∈ X,
g(x) if x ∈ Y \X.

Finally, we recall some basic information-theoretic results about pre�x-free
codes.

De�nition 1 (Pre�x-free code). A set of code-words C ⊆ {0, 1}∗ is a pre�x-
free code if there are no two distinct c1, c2 ∈ C such that c1 is a pre�x (ini-
tial segment) of c2, i.e., for any two distinct c1, c2 ∈ C there exists 0 ≤ j <
min(|c1|, |c2|) such that (c1)j 6= (c2)j.

Proposition 1 (Theorem 5.3.1 in [?]). The expected length L of any pre�x-
free binary code for a random variable X is greater than or equal to the entropy
H(X).

Corollary 1. To encode a uniformly random permutation π ∈ Injnn using pre�x-
free encoding it takes at least log(2n!) bits in expectation.

Proof. The entropy of a uniformly randomly chosen permutation from Injnn is
log (2n!) as we choose uniformly at random from 2n! distinct permutations. By
Proposition 1, we get that the expected size of the encoding is at least log (2n!).

ut

On Average-Case Hardness in TFNP from One-Way Functions 11

3 Separating TFNP and Injective One-Way Functions

3.1 Fully Black-Box Construction of Hard TFNP Problem from
iOWF

Below, we give a de�nition of fully black-box construction of a (worst-case) hard
TFNP problem from an injective one-way function.

De�nition 2 (Fully black-box construction of a worst-case hard TFNP
problem from iOWF). A fully black-box construction of a worst-case hard
TFNP problem from injective one-way function is a tuple (R, TR, C, TC , p) of
oracle-aided algorithms R,C, functions TR, TC , and a polynomial p satisfying
the following properties:

1. R and C halt on all inputs: For all f ∈ Inj, n ∈ N, and y, i, s ∈ {0, 1}∗,
the algorithm Rf (1n, y) halts in time TR(|y|), and the algorithm Cf (i, s)
halts in time TC(|i|+ |s|).

2. Correctness: For all f ∈ Inj and for all i ∈ {0, 1}∗, there exists s ∈ {0, 1}∗
such that |s| ≤ p(|i|) and Cf (i, s) = 1, i.e., for any instance of the TFNP
problem there exists a solution of polynomial length.

3. Fully black-box proof of security: There exists a polynomial p′ such that
for all f ∈ Inj and any oracle-aided algorithm Solve, if

∀i ∈ {0, 1}∗ : Solvef (i) returns s such that Cf (i, s) = 1

then for in�nitely many n ∈ N,

Pr
x←{0,1}n,R

[
Rf,Solve(1n, f(x)) = x

]
≥ 1

p′(n)
.

De�nition 2 has the following semantics. The deterministic algorithm C spec-
i�es the TFNP problem and the algorithm R is the (security) reduction which,
given access to any TFNP solver, breaks the security of any injective one-way
function. For example in the case of the hard Pigeon problem from one-way
permutations discussed in Section 1.1, C would be an algorithm which on input
(Cfy , x), respectively (Cfy , x, x

′), outputs 1 if and only if Cfy(x) = 0n, respectively

Cfy(x) = Cfy(x
′). The reduction algorithm R(1n, y) simply queries the TFNP

solver Solve with the instance i = Cfy , i.e., a circuit computing the function

Cfy(x) = f(x) ⊕ y, and outputs the solution s returned by Solve for which, by
construction, f(s) = y.

Below, we provide some additional remarks on important points in the above
de�nition.

Reduction-speci�c Solve. Let us emphasize the order of quanti�ers restricting
the security reduction in De�nition 2:

∃(R, TR, C, TC , p) ∀f ∀Solve :
Solve

f solves the TFNP problem C =⇒ Rf,Solve inverts f .

12 Hubá£ek et al.

Importantly, the reduction must invert when given access to any oracle
Solve. As a consequence, in order to establish a separation, the above state-
ment is negated and it su�ces to show that for every reduction there exists a
solver (see proof of [?, Proposition 1] for more details). Thus, in the proof an
oracle separation, the oracle Solve may even depend on the behaviour of the
reduction R, and, in particular, Solve can simulate the security reduction R on
an arbitrary input. We exploit these properties in establishing our results.

Constructions of worst-case vs. average-case hardness in TFNP. Our De�nition 2
considers constructions of a worst-case hard TFNP problem � the reduction has
access to Solve which is promised to return a solution to any instance of the
TFNP problem. To capture constructions of average-case hardness in TFNP, we
would need to extend the construction with an e�ciently sampleable distribution
D of instances of the TFNP problem and require the reduction to invert when
given access to any Solve that returns solutions for instances coming from the
speci�c distribution D (see De�nition 5.1 in [?]). However, given that we are
proving a black-box separation, showing impossibility for worst-case hardness is
a stronger result.

The quality of Solve. Note that we consider security reductions which invert
given access to Solve which outputs a solution with probability 1, whereas
some de�nitions in the literature allow the reduction to work only with some
non-negligible probability. This also makes our negative result stronger � it is
potentially easier to give a reduction when given access to Solve which is guar-
anteed to always return a solution.

Direct and indirect queries to f . The security reduction R can learn something
about f in various ways. It may query f directly or the information might
be deduced from the solution of some queried instance of the TFNP problem
returned by Solve. We introduce the following notation in order to distinguish
where queries originate, which allows us to reason about the view the security
reduction has over the function f in our proof of Theorem 1.

Notation 5 (Query sets Q) We distinguish the following sets of queries to
oracles depending on where these queries originated and which oracle is queried.

� Let Q(Cf (i, s)) denote the set of all preimages x ∈ {0, 1}∗ on which the
oracle f has been queried by C running on an input (i, s).

� Let QSolve(R
f,Solve(1n, y)) denote the set of all instances i ∈ {0, 1}∗ on

which the oracle Solve has been queried by R running on a security param-
eter n and challenge y.

� Let Qdir
f (Rf,Solve(1n, y)) denote the set of preimages x ∈ {0, 1}∗ on which the

oracle f has been queried by R running on an input y and security parameter
n.

� Let Qindir
f (Rf,Solve(1n, y)) denote the set of all preimages x ∈ {0, 1}∗ on

which the oracle f has been queried indirectly, i.e., it has been queried by
C running on an input (i, s) where i ∈ QSolve(R

f,Solve(1n, y)) and s =
Solve

f (i).

On Average-Case Hardness in TFNP from One-Way Functions 13

� Let Qf (R
f,Solve(1n, y)) = Qdir

f (Rf,Solve(1n, y)) ∪Qindir
f (Rf,Solve(1n, y)).

Note that these sets may not be disjoint. When f is a partial function (i.e., when
f is not de�ned on all inputs) the query set contains all queries queried up to
the point of the �rst unde�ned answer and the query with the unde�ned answer
is included as well.

Restrictions on the power of the reduction. We consider various restricted classes
of security reductions as de�ned below.

De�nition 3 (Deterministic/randomized, many-one/non-adaptive, f-
oblivious reductions). Let (R, TR, C, TC , p) be a fully black-box construction
of a hard TFNP problem from injective one-way functions.

We distinguish deterministic / randomized reductions. For a randomized se-
curity reduction, we extend the input of R to a triple (1n, y; r), where the mean-
ing of n, resp. y, remains unchanged (i.e., n is the security parameter, y is the
challenge), and r ∈ {0, 1}∗ is the randomness of the security reduction.

The security reduction R is many-one if for all f ∈ Inj, for any oracle Solve
and for all y ∈ {0, 1}∗, Rf,Solve(1n, y) makes a single query to the oracle Solve.

The security reduction R is non-adaptive if for all f ∈ Inj, for any oracle
Solve and for all y ∈ {0, 1}∗, all the queries of Rf,Solve(1n, y) to the oracle
Solve are submitted in parallel (i.e., the queries to Solve do not depend on the
answers received from Solve).

The security reduction R is f -oblivious if for all y ∈ {0, 1}∗, for any or-
acle Solve, and any pair of functions f, f ′ ∈ Inj, the distributions of queries
QSolve(R

f,Solve(1n, y)) and QSolve(R
f ′,Solve(1n, y)) are identical (i.e., the queries

to Solve depend only on the input y and are independent of the oracle f).

3.2 Impossibility for a Deterministic f-Oblivious Many-One
Reduction

In this section, we show that there is no fully black-box construction of a hard
TFNP problem from injective one-way functions with a deterministic f -oblivious
many-one reduction. The proof of this result is already non-trivial and highlights
our main technical contributions. In Section 3.3, we explain how to extend this re-
sult to rule out fully black-box constructions even with a randomized f -oblivious
non-adaptive reduction. For lack of space, we omit the proofs of the technical
lemmata and instead, for interested readers, provide pointers to the appropriate
part of full version [?].

Theorem 1. There is no fully black-box construction (R, TR, C, TC , p) of a
worst-case hard TFNP problem from injective one-way functions with determin-
istic f -oblivious many-one reduction with success probability at least 2−0.1n such
that both running times TR, TC ∈ O(npolylog(n)).

In the above theorem, the running time of both R and C is restricted to
quasi-polynomial. Note that the standard notion of cryptographic constructions

14 Hubá£ek et al.

Algorithm 1: The oracle Solve.

Hardwired : a fully black-box construction (R, TR, C, TC , p) of a hard TFNP
problem from iOWF

Oracle access: an injective function f = {fn}n∈N ∈ Inj
Input : an instance i ∈ {0, 1}∗
Output : a solution s ∈ {0, 1}∗ such that Cf (i, s) = 1

1 Compute Yi =
⋃TC(|i|+p(|i|))

n=1

{
y ∈ Im(fn) | i ∈ QSolve(R

f,Solve(1n, y))
}

2 Compute Ni = {n ∈ N | Yi ∩ Im(fn) 6= ∅}
3 for n ∈ Ni do

4 Compute Yi,n = Yi ∩ Im(fn)
5 end

6 Compute Si,f =
{
s ∈ {0, 1}∗ | |s| ≤ p(|i|) and Cf (i, s) = 1

}
7 while True do

8 Bi,f = {s ∈ Si,f | f [Q(Cf (i, s))] ∩ Yi = ∅}
9 if Bi,f 6= ∅ then

10 return lexicographically smallest s ∈ Bi,f

11 end

12 Choose n ∈ Ni such that
|Yi,n|
2n

is maximized.
13 Set Ni = Ni \ {n}
14 Set Yi = Yi \ Yi,n

15 end

requires R,C to run in polynomial time in order to be considered e�cient. We
are ruling out a broader class of potentially less e�cient reductions.

The proof of Theorem 1 uses, on a high level, a similar template as other
black-box separations in the literature. That is, we design an oracle O relative
to which (injective) one-way functions exist but TFNP is broken (even in the
worst case). We follow the two-oracle approach [?], and, therefore, our oracle
O = (f,Solve) consist of:

1. f ∈ Inj: a sequence of random injective functions which implements injective
one-way functions; and

2. Solve: a reduction-speci�c oracle that solves TFNP instances.

That a random injective function is one-way is a well-established result (see,
e.g., Claim 5.3 in [?] for the more general case of random functions). The bulk
of technical work revolves around showing that f remains one-way even in the
presence of Solve. For any fully black-box construction with a deterministic f -
oblivious many-one reduction, we provide an oracle Solve which �nds a solution
for any TFNP instance (i.e., TFNP is easy in the presence of Solve) and argue
that it does not help the reduction in inverting injective one-way functions. The
description of our oracle Solve is given in Algorithm 1 and it is explained below.

Oracle Solve: Let (R, TR, C, TC , p) be the construction of a hard TFNP prob-
lem from injective one-way function with a deterministic f -oblivious many-one
security reduction which is hardwired in the oracle Solve. Ideally, Solve should

On Average-Case Hardness in TFNP from One-Way Functions 15

output a solution i which gives the reduction R no information about the in-
version of its challenge y. Unfortunately, Solve is unaware of the particular
challenge y on which Rf (1n, y) queried Solve with the instance i. Nevertheless,
Solve can compute the set Yi of all challenges y on which the reduction would
query the instance i.5 The challenges in Yi become �protected� and Solve will
attempt to provide a solution which does not reveal a preimage of any y ∈ Yi,
i.e., s such that Cf (i, s) does not make an f -query on a preimage of any y ∈ Yi.

Note that we could run into a potential technical issue when de�ning Yi, as
the set of all challenges y on which R queries the instance i might be in�nite.
However when the instance i is queried by the security reduction R on some
very long challenge y then C contributes no indirect query to f−1(y) as the
running time of C depends only on the length of the instance i. More formally:
the running time of C is bounded by TC(|i|+ p(|i|)) thus C cannot query f on
longer inputs. Therefore, we can consider only possible challenges y from Im(fn)
for n ≤ TC(|i|+ p(|i|)).

On lines 2�6, Solve computes the following auxiliary sets Ni, Yi,n, and Si,f .
The set Ni contains all the input lengths for the preimages x such that the
reduction Rf,Solve(1n, f(x)) queries the instance i. Solve then splits Yi into
subsets Yi,n using the input lengths of interest in Ni. Finally, Solve computes
the set Si,f which is the set of all possible solutions for the instance i.

The strategy of Solve is to return a solution from the set of �benign� solutions
Bi,f , which do not induce any query to preimages of the protected challenges in
Yi. If there is any such benign solution then Solve simply halts and returns the
lexicographically smallest one. Unfortunately, it might be the case that every
solution queries a preimage of some y ∈ Yi, e.g., if the instance i is queried for
all challenges y of a given preimage length n and on each solution s at least one
x of length n is queried (i.e., Bi,f = ∅ unless we remove Yi,n from Yi). Since
Solve in general cannot output a solution while protecting the whole set Yi, it
will proceed to gradually relax the condition on the set of protected challenges.

Note that we might allow Solve to return a solution even though it induces
queries to preimages of protected challenges, as long as the reduction queries the
instance i on the corresponding image length often enough, as any �xed solution
induces only a bounded number of queries to f (bounded by TC). Therefore, if
the set of challenges on which R queries i is dense enough w.r.t. some image
length then, with overwhelming probability, an arbitrary solution will be benign
for the random challenge y given to the reduction. Thus, we allow Solve to
return a solution revealing preimages of challenges from the auxiliary set Yi,n

maximizing
|Yi,n|
2n . If the fraction

|Yi,n|
2n is small then Solve is able to �nd a

benign solution which protects the preimages of length n (see [?, Claim 13]).

Whereas, if the fraction
|Yi,n|
2n is large enough then any �xed solution will be

benign w.r.t. the actual challenge of R with overwhelming probability as each

5 Here we crucially rely on f -obliviousness of the reduction algorithm R which ensures
that Yi depends only on the image of f , which allows SolveSim to simulate Solve
without querying f on too many inputs.

16 Hubá£ek et al.

Algorithm 2: The algorithm Encoden.

Hardwired : a fully black-box construction (R, TR, C, TC , p) of a hard
TFNP problem from iOWF

Common Input: an injective function h ∈ Inj shared with Decoden
Input : a permutation π ∈ Injnn on {0, 1}n
Output : an encodingM of π

1 f = h ◦ π, i.e., f(x) =

{
h(π(x)) for all x of length n

h(x) otherwise

2 INVf =
{
y ∈ Im(hn) | RSolve,f (1n, y) = f−1(y)

}
3 Gf =

{
y ∈ INVf | f−1(y) /∈ Qindir

f (Rf,Solve(1n, y))
}

4 Yf = ∅ and Xf = ∅
5 while Gf 6= ∅ do
6 Pick lexicographically smallest y ∈ Gf

7 Gf = Gf \
(
f [Qf (R

f,Solve(1n, y))] ∪ {y}
)

8 Yf = Yf ∪ {y} and Xf = Xf ∪ {f−1(y)}
9 end

10 if |Xf | < 20.6n then

11 returnM = (0, π)
12 end

13 else

14 returnM = (1, |Xf |, Yf , Xf , σ = f � ({0, 1}n \Xf)) ∈

{0, 1}
1+n+

⌈
log (2n

|Yf |)
⌉
+

⌈
log (2n

|Xf |)
⌉
+dlog(|{0,1}n\Xf |!)e

15 end

solution can induce queries to only a small number of preimages of challenges
from the set Yi,n (see [?, Claim 12]).

In order to show formally that Solve does not help in inverting the injective
one-way function, we employ an incompressibility argument similar to [?]. Specif-
ically, we present algorithms Encoden (given in Algorithm 2) and Decoden

(given in Algorithm 3) which utilize the reduction R to allow compression of
a random permutation more succinctly than what is information-theoretically
possible. When compressing the random permutation by Encoden, we have ac-
cess to the whole permutation and we can e�ectively provide the reduction with
access to Solve. However, to be able to use the reduction also in the Decoden,
we have to be able to simulate access to our Solve oracle given access only to
a partially de�ned oracle f (as we are reconstructing f). For the description of
the algorithm SolveSim, which simulates the Solve oracle for the purpose of
decoding in Decoden, see Algorithm 4.

Encoden algorithm: The algorithm Encoden (Algorithm 2) uses the reduction
R to compress a random permutation π on bit strings of length n. Note that
even though R succeeds in inverting an injective function, for technical reasons,
we leverage its power in order to compress a permutation. One particular issue
we would run into when trying to compress an injective function f which is not

On Average-Case Hardness in TFNP from One-Way Functions 17

surjective is that the encoding would have to comprise also of the encoding of
the image of f which might render the encoding ine�cient.

Nevertheless, in order to use the reduction for compressing, we must provide
it with oracle access to an injective function which is not a bijection. Thus, we
equip Encoden (as well as Decoden) with an injective function h. Encoden
then computes the function f as a composition of the functions h ◦ π and uses
the reduction with respect to the composed oracle f . We emphasize that h is
independent of π, therefore it cannot be used in order to compress π on its own.

First, Encoden computes the set INVf which is the set of all challenges y on
which the reduction successfully inverts (i.e., the reduction returns f−1(y)). Then
Encoden computes the set Gf , which is the set of �good� challenges y, on which
the reduction successfully inverts even though Solve returns a solution which
does not induce a query to any preimage of y. This set is used to reduce the size
of the trivial encoding of f � the part of f corresponding to the challenges in Gf
will be algorithmically reconstructed by Decoden using the security reduction
R.

Speci�cally, Encoden computes Yf , the subset of Gf for which the preim-
ages will be algorithmically reconstructed, as follows: Encoden processes the
challenges y in Gf one by one in lexicographically increasing order and stores
all f -queries needed for reconstruction by R (i.e, for any x such that there was
an f -query x, the element f(x) is removed from the �good� set Gf as we cannot
reconstruct the preimage of y using R without knowing the image of x under f).

Encoden outputs an encoding M which describes the size of Xf , the sets
Yf and Xf (where Xf is the set of preimages corresponding to Yf), and the
partial function representing the function f on inputs of length n outside of Xf .
Thus, the encoding saves bits by not revealing the bijection between Xf and
Yf which is algorithmically reconstructed instead (Lemma 4). Speci�cally, the
size of Xf (equal to the size of Yf) can be encoded using log 2n = n bits. Yf
is a subset of Im(fn) = Im(hn) and it is encoded using dlog

(
2n

|Yf |
)
e bits as the

index of the corresponding subset of size |Yf | (the set Xf is encoded in a similar
manner). Finally, the bijection between {0, 1}n \Xf and Im(f)\Yf is encoded as
the index of the corresponding permutation on a set of size | {0, 1}n \Xf | using
dlog (| {0, 1}n \Xf |!)e bits.

A small technicality arises when the set Xf , respectively the set Yf , is not
large enough, the above mentioned encoding would be ine�cient as the trivial
encoding outputting the whole description of the permutation π would use fewer
bits. Thus, Encoden simply outputs the trivial encoding when Xf is too small.
The �rst bit of the encoding distinguishes between the two cases.

Decoden algorithm: The encoding returned by Encoden is uniquely decodable
by Decoden given in Algorithm 3 (see [?, Section 4.2]). When the output of
Encoden starts with 0, the rest of the encoding is an explicit encoding of π and
we are immediately done with its reconstruction. If the output starts with bit
1, the following n bits represent |Xf | = |Yf |. Decoden then reads the following⌈
log
(

2n

|Xf |
)⌉

bits of the encoding to reconstruct the set Yf (as the j-th subset of

18 Hubá£ek et al.

Algorithm 3: The algorithm Decoden.

Hardwired : a fully black-box construction (R, TR, C, TC , p) of a hard
TFNP problem from iOWF

Common Input: an injective function h ∈ Inj shared with Encoden
Input : an encodingM
Output : a permutation π ∈ Injnn

1 ParseM = (b,M′), where b ∈ {0, 1}
2 if b = 0 then
3 Decode π fromM′
4 return π

5 end

6 ParseM′ = (|Xf |, Yf , Xf , σ)

7 Set partial function f ′ =

{
σ for inputs of length n

h otherwise
// f ′ is defined only

outside Xf

8 while Yf 6= ∅ do
9 Pick lexicographically smallest y ∈ Yf

10 Let f ′′(x) =

{
y for all x ∈ Dom(h) \Dom(f ′)

f ′(x) otherwise

11 x = Rf ′′,SolveSim(h,f ′,·)(1n, y)
12 Let f ′(x) = y
13 Set Yf = Yf \ {y}
14 end

15 return π = (h−1 ◦ f ′) � {0, 1}n

2n of size |Xf |). Similarly, Decoden reconstructs the set Xf using the following⌈
log
(

2n

|Xf |
)⌉

bits. The remaining bits represent σ, a restriction of f on all the

n-bit inputs outside of Xf , given by the index of the corresponding bijection
between {0, 1}n \Xf and Im(f)\Yf . Note that such encoding of σ does preserve
the structure of the restriction but it looses the information about the domain
and image of σ. However, both are easy to reconstruct. The domain is simply
{0, 1}n\Xf and the image of σ can be computed from Yf and the common input
h as Im(σ) = Im(f) \ Yf = Im(h ◦ π) \ Yf = Im(h) \ Yf .

Decoden then computes the remaining preimages one by one in lexico-
graphic order using the security reduction R, adding the reconstructed mapping
into a partial function f ′. Note that during the computation of the preimage of
y, the reduction might make an f -query on x which has no de�ned output. But
as Decoden takes y ∈ Yf in the same order as Encoden added them to the
set Yf , this happens if and only if the preimage of y is being queried. Thus, we
answer any such query by y (it is crucial that this happens only for f -queries
made directly by R) which is captured in the de�nition of the auxiliary function
f ′′ de�ned by Decoden and used as the oracle for the security reduction R.

On Average-Case Hardness in TFNP from One-Way Functions 19

Once Encoden �nds the preimages of all challenges y from Yf , the function
f ′ is de�ned everywhere. To reconstruct the permutation π on {0, 1}n, Decoden
can simply compose the inverse of h with the reconstructed function f ′.

SolveSim algorithm: For the ease of presentation we usually do not explicitly
mention the oracle h as it is given by context (we run Decoden and SolveSim)
with respect to only one h at a time.

The computation of the algorithm SolveSim (Algorithm 4) is similar to the
computation of Solve (Algorithm 1). First, SolveSim computes the sets Yi.
There is one big di�erence between Solve and SolveSim. As SolveSim does
not have access to the whole f it uses h or the partial knowledge of f , namely
the partial function f ′ everywhere f is used in the Solve algorithm.

� We use h whenever we need to determine the image of fn for some n. As ∀n ∈
N : Im(hn) = Im(fn) using Im(hn) instead of Im(fn) makes no di�erence to
the computation.

� The second place where h is used instead of f is when SolveSim computes
the set Yi. Speci�cally, when determining images y for which the security
reduction R queries the given instance i, the algorithm SolveSim computes
the same Yi as if it used f by the f -obliviousness of the security reduction.

� In all other places, SolveSim uses the partial knowledge of f (i.e., the partial
function f ′). This causes a real di�erence in the computation. In particular,
the set Si,f ′ (as computed by SolveSim) may di�er a lot from Si,f (as
computed by Solve) as some solutions from Si,f potentially query some
unknown parts of f . Thus, the set Si,f ′ computed by SolveSim is just a
subset of the whole Si,f . The set Si,f ′ contains only the solutions SolveSim
is �aware of� (f ′ is de�ned for all queries and thus SolveSim may verify
the solution). The rest of the computation is practically the same, except
that SolveSim is restricted just to the set of solutions Si,f ′ . The main trick
is that we make sure that SolveSim is aware of the solution which should
be returned and it does not matter that it ignores other solutions of the
instance.

Structure of the proof of Theorem 1. For ease of presentation and understanding,
we divide the proof into four lemmata, Lemma 1 through 4. For lack of space,
their proofs are provided in the full version [?]. Lemma 1 shows that given an
instance i of the TFNP problem represented by the algorithm Cf , our Solve
always returns a solution, i.e., an s such that Cf (i, s) = 1 (formal proof is given
in [?, Section 4.1]). Thus, any distribution of instances of the TFNP problem is
easy in the presence of Solve.

Lemma 1. For any instance i ∈ {0, 1}∗ and any f ∈ Inj, the algorithm Solve
f (i)

halts and returns a solution, i.e., it returns a string s ∈ {0, 1}∗ such that
|s| ≤ p(|i|) and Cf (i, s) = 1.

To argue that Solve does not help in inverting injective functions, we analyze
the joint properties of the algorithms Encoden and Decoden. First, we show

20 Hubá£ek et al.

Algorithm 4: The algorithm SolveSim.

Hardwired : a fully black-box construction (R, TR, C, TC , p) of a hard TFNP
problem from iOWF

Input : A function h ∈ Inj, partial injective function f ′ ∈ Inj, and an
instance i ∈ {0, 1}∗

Output : Solution, i.e., s ∈ {0, 1}∗ such that Cf ′
(i, s) = 1

1 Compute Yi =
⋃TC(|i|+p(|i|))

n=1

{
y ∈ Im(hn)

∣∣ i ∈ QSolve(R
h,Solve(1n, y))

}
2 Compute Ni = {n ∈ N | Yi ∩ Im(hn) 6= ∅}
3 for n ∈ Ni do

4 Compute Yi,n = Yi ∩ Im(hn)
5 end

6 Compute

Si,f ′ =
{
s ∈ {0, 1}∗

∣∣∣ |s| ≤ p(|i|) and Q(Cf ′
(i, s)) ⊆ Dom(f ′) and Cf ′

(i, s) = 1
}

7 while True do

8 Bi,f ′ = {s ∈ Si,f ′ | f [Q(Cf ′
(i, s))] ∩ Yi = ∅} // "benign" solutions

9 if Bi,f ′ 6= ∅ then
10 return lexicographically smallest s ∈ Bi,f ′

11 end

12 Choose n ∈ Ni such that
|Yi,n|
2n

is maximized.
13 Set Ni = Ni \ {n}
14 Set Yi = Yi \ Yi,n

15 end

that Decoden always returns the correct permutation encoded by Encoden

(see [?, Section 4.2] for the formal proof).

Lemma 2. For all n ∈ N, π ∈ Injnn, and h ∈ Inj,

Decode
h
n(Encode

h
n(π)) = π,

where Encoden, respectively Decoden, is given in Algorithm 2, respectively
Algorithm 3.

We crutialy rely on f -obliviousness of the reduction for the proof of Lemma 2.
It is the property which allows us to simulate the algorithm Solve during the
decoding phase, as SolveSim needs to be able to compute the same set Yi as
Solve does. Moreover, SolveSim cannot query f on all preimages as Solve does
when computing Yi. Due to f -obliviousness of the reduction, we may substitute
f by h in the computation of Yi in SolveSim as the resulting set depends only
on the image of the function given to R as an oracle (and Im(f) = Im(h)).

Second, we show that the encoding output by Encoden is pre�x-free (see
[?, Section 4.3]).

Lemma 3. Let h ∈ Inj be any injective function and n ∈ N, then the encoding
given by the algorithm Encoden (Algorithm 2) is pre�x-free, i.e.,

∀π, π′ ∈ Injnn such that π 6= π′ : Encodehn(π) is not a pre�x of Encodehn(π
′).

On Average-Case Hardness in TFNP from One-Way Functions 21

Finally, we bound the expected size of the encoding given by Encoden

(see [?, Section 4.4]) which contradicts the information-theoretic bound implied
by Corollary 1.

Lemma 4. Let (R, TR, C, TC , p) be a fully black-box construction of a hard TFNP
problem from an injective one-way function. Assume n ∈ N is large enough so
that n ≥ 50 and 2q(n) + 1 ≤ 20.2n, where q(n) is the maximal number of f -
queries made by C on the queried instance. Let the success probability of R be
β ≥ 2−0.1n, i.e., for any f we have

Pr
x←{0,1}n

[Rf,Solve(1n, f(x)) = x] = β ≥ 2−0.1n.

Then

∃h ∈ Inj : Eπ←Injnn,h←Inj [|Encodehn(π)|] ≤ log 2n!− 8

10
n20.1n.

We claim (see [?, Claim 10]) that the upper bound 2q(n) + 1 ≤ 20.2n used
in the statement of the lemma is without loss of generality for large enough n
and for all quasi-polynomial (and, hence, also for e�cient) algorithms R,C. We
use this fact again in the proof of the main theorem (Theorem 1), and refer the
readers to [?, Section 4.4] for the precise statement and its proof.

Equipped with the above lemmata, we next prove Theorem 1.

Proof (of Theorem 1). Suppose to the contrary that there is such a reduction
(R, TR, C, TC , p). By Lemma 1, the algorithm Solve (Algorithm 1) returns a
valid solution with probability one. Thus, the reduction R must invert f with
high probability when given access to any oracle f ∈ Inj and our oracle Solve,
i.e.,

Pr
x←{0,1}n

[
Rf,Solve(1n, f(x)) = x

]
≥ 1

p′(n)

for some polynomial p′ and in�nitely many n ∈ N.
Let n ∈ N be large enough such that

1. 2q(n) + 1 ≤ 20.2n,
2. Prx←{0,1}n

[
Rf,Solve(1n, f(x)) ∈ f−1(f(x))

]
≥ 1

p′(n) ,

where q(n) is the maximal number of f -queries made by C on the queried in-
stance. As already pointed out, the quasi-polynomial bounds on running times
TC , TR ∈ O(npolylog(n)) imply that q(n) ∈ o(20.2n) (see [?, Claim 10]). Thus,
for large enough n, the upper bound 2q(n) + 1 ≤ 20.2n holds without loss of
generality.

For any h ∈ Inj, we can use the algorithm Encode
h
n (Algorithm 2) to

encode a given permutation π ∈ Injnn. Decodability of the encoding follows
from Lemma 2. Moreover, by Lemma 3, the encoding is a pre�x-free code. By
Lemma 4, there is a function h ∈ Inj such that the pair of algorithms Encodehn

22 Hubá£ek et al.

and Decode
h
n de�nes an encoding of π ← Injnn with expected length at most

log(2n!)− 8
10n2

0.1n. This contradicts the information-theoretic bound on the ex-
pected length of any pre�x-free encoding of a random permutation on {0, 1}n
given by Corollary 1. ut

3.3 Extensions

In this section, we state some extensions to the result in the previous section.
We refrain from providing the details and refer the readers to [?, Section 5].

First, it is possible to extend our proof from Section 3.2 to rule out even non-
adaptive security reductions which submit multiple queries to the oracle Solve in
parallel, though still f -obliviously, as de�ned in De�nition 3. The description of
the algorithms Solve, Encoden, Decoden, and SolveSim remain unchanged,
but we require a slightly di�erent analysis tailored for non-adaptive reductions.
We refer the readers to [?, Section 5.2] for the details.

Second, we can extend our results to randomised reductions with additional
changes to our algorithm Solve. One could imagine that the construction has
some instance i created for a concrete challenge y, on which R queries i with high
probability. But R might also query the instance i for many other challenges y′

(on each of them with small probability) to hide the real challenge y. Thus we
need to take the probability of querying the instance i into account. Roughly
speaking, the Solve for randomised reductions is an extension of the Solve
given in Algorithm 1 taking this probability into account. SolveSim is designed
accordingly and thanks to f -obliviousness we are still able to show that the
simulation is faithful. The rest of the changes involve modifying the existing
argument taking into account the changes to Solve and SolveSim. We refer
the readers to [?, Section 5.3] for the details.

4 Conclusions

In this work, we have shown that there are intrinsic barriers preventing sim-
ple fully black-box constructions of hard TFNP problems from injective one-way
functions. The main technical contribution of our work is the technique of de-
signing a �TFNP-breaker� oracle Solve which depends on the reduction.

The natural direction towards extending our results would be attempting
to lift the restriction to f -oblivious and non-adaptive reductions. One reason
for why this might be challenging is that a black-box separation of TFNP and
injective one-way functions would subsume the separation of collision-resistant
hash functions and one-way functions [?], for which, despite the recent progress,
there are only non-trivial proofs [?, ?, ?].

Acknowledgements

We wish to thank the anonymous reviewers for their comments which helped us
to clarify the presentations of our results.

	On Average-Case Hardness in TFNP from One-Way Functions

