
Cryptographic Shallots: A Formal Treatment of
Repliable Onion Encryption

Megumi Ando1 and Anna Lysyanskaya2

1 MITRE, Bedford, MA 01730 USA
2 Brown University, Providence, RI 02912 USA

Abstract. Onion routing is a popular, efficient, and scalable method
for enabling anonymous communications. To send a message m to Bob
via onion routing, Alice picks several intermediaries, wraps m in multiple
layers of encryption — a layer per intermediary — and sends the resulting
onion to the first intermediary. Each intermediary peels off a layer of
encryption and learns the identity of the next entity on the path and
what to send along; finally Bob learns that he is the recipient and recovers
the message m.

Despite its wide use in the real world, the foundations of onion rout-
ing have not been thoroughly studied. In particular, although two-way
communication is needed in most instances, such as anonymous Web
browsing or anonymous access to a resource, until now no definitions or
provably secure constructions have been given for two-way onion routing.
Moreover, the security definitions that existed even for one-way onion
routing were found to have significant flaws.

In this paper, we (1) propose an ideal functionality for a repliable
onion encryption scheme; (2) give a game-based definition for repliable
onion encryption and show that it is sufficient to realize our ideal func-
tionality; and finally (3), our main result is a construction of repliable
onion encryption that satisfies our definitions.

1 Introduction

Suppose Alice wants to send a message to Bob, anonymously, over a point-to-
point network such as the Internet. What cryptographic techniques exist to make
this possible? One popular approach is onion routing: Alice sends her message
through intermediaries, who mix it with other traffic and forward it on to Bob.
To make this approach secure from an adversary eavesdropping on the network,
she needs to wrap her message in several layers of encryption, one for each
intermediary, giving rise to the term onion routing.

As originally proposed by Chaum [10], onion routing meant that Alice just
uses regular encryption to derive each subsequent layer of her onion before send-
ing it on to the first intermediary. I.e., if the intermediaries are Carol (public key
pkC), David (public key pkD), and Evelyn (public key pkE), then to send message
m to Bob (public key pkB), Alice forms her onion by first encrypting m under
pkB , then encrypting the resulting destination-ciphertext pair (Bob, cB) under



pkE , and so forth:O = EncpkC ((David,EncpkD ((Evelyn,EncpkE ((Bob,EncpkB (m))))))).
If we use this approach using regular public-key encryption, then the “peeled”
onion O′ that Carol will forward to David is going to be a shorter (in bit length)
ciphertext than O, because ciphertexts are longer than the messages they en-
crypt. So even if Carol serves as an intermediary for many onions, an eavesdrop-
ping adversary can link O and O′ by their lengths, unless Carol happens to also
be the first intermediary for another onion.

To ensure that all onions are the same length, no matter which layer an inter-
mediary is responsible for, Camenisch and Lysyanskaya [5] introduced onion en-
cryption, a tailor-made public-key encryption scheme where the adversary can’t
tell how far an intermediary, e.g. Carol, is from an onion’s destination, even
for adversarial Carol. They gave an ideal functionality [6] for uni-directional
onion encryption and a cryptographic scheme that, they argued, UC-realized it.
However, their work did not altogether solve the problem of anonymous commu-
nication via onion routing. As Kuhn et al. [21] point out, there were significant
definitional issues. Also, as, for example, Ando et al. [2, 3] show, onion routing
by itself does not guarantee anonymity, as a sufficient number of onions need to
be present before any mixing occurs.

Those issues aside, however, Camenisch and Lysyanskaya (CL) left open the
problem of “repliable” onions. In other words, once Bob receives Alice’s message
and wants to respond, what does he do? This is not just an esoteric issue. If one
wants to do basic online tasks anonymously — e.g., browse the Web incognito
or anonymously fill out a feedback form — a two-way channel between the
anonymous original sender (here, Alice) and their interlocutor (here, Bob) needs
to be established. Although CL outlined an initial idea for how to reply to an
onion, they don’t provide any definitions or proofs. Babel [18], Mixminion [14],
Minx [16], and Sphinx [15] all provide mechanisms for the recipient to reply to
the sender but don’t provide any formal definitions or proofs either. This left a
gap between proposed ideas for a repliable onion encryption scheme and rigorous
examinations of these ideas. For instance, Kuhn et al. [21] pointed out a fatal
security flaw in the current state-of-the-art, Sphinx. They also pointed out some
definitional issues in the CL paper and proposed fixes for some of these issues
but left open the problem of formalizing repliable onion encryption.

The challenge. Let us see why repliable onion encryption is not like other types of
encryption. Traditionally, to be able to prove that an encryption scheme satisfies
a definition of security along the lines of CCA2 security, we direct honest parties
(for example, an intermediary Iris) to check whether a ciphertext (or, for our
purposes, an onion) she has received is authentic or has been “mauled;” Iris
can then refuse to decrypt a “mauled” ciphertext (correspondingly, process a
“mauled” onion). Most constructions of CCA2-secure encryption schemes work
along these lines; that way, in the proof of security, the decryption oracle does
not need to worry about decrypting ciphertexts that do not pass such a validity
check, making it possible to prove security. This approach was made more explicit
by Cramer and Shoup [12, 13] who defined encryption with tags, where tags
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defined the scope of a ciphertext, and a ciphertext would never be decrypted
unless it was accompanied by the correct tag.

The CL construction of onion encryption also works this way; it uses CCA2-
secure encryption with tags to make it possible for each intermediary to check
the integrity of an onion it received. So when constructing an onion, the sender
had to construct each layer so that it would pass the integrity check, and in
doing so, the sender needed to know what each layer was going to look like. This
was not a problem for onion security in the forward direction since the sender
knew all the puzzle pieces — the message m and the path (e.g. Carol, David,
Evelyn) to the recipient Bob — so the sender could compute each layer and
derive the correct tag that would allow the integrity check to pass. But in the
reverse direction, the recipient Bob needs to form a reply onion without knowing
part of the puzzle pieces. He should not know what any subsequent onion layers
will look like: if he did, then an adversarial Bob, together with an adversarial
intermediary and the network adversary, will be able to trace the reply onion as
it gets back to Alice. So he cannot derive the correct tag for every layer. The
sender Alice cannot do so either since she does not know in advance what Bob’s
reply message is going to be. So it is not clear how a CCA2-style definition can
be satisfied at all.

At the same time, it is important to make sure that reply onions are indis-
tinguishable (even to intermediaries who process them) from forward onions. As
pointed out in prior work [14], this is crucial because “replies may be very rare
relative to forward messages, and thus much easier to trace.” Thus, making sure
that they are hidden among the more voluminous forward traffic is desirable.

Our first contribution: a definition of secure repliable onion encryption. We
define security by describing an ideal functionality FROES in the simplified UC
model [7]; from now on we refer to it as the SUC model. We chose the SUC
model so that our functionality and proof did not have to explicitly worry about
network issues and other subtleties of the full-blown UC model [6].

As should be expected of secure onion routing, FROES represents onions orig-
inating at honest senders or formed as replies to honest senders, using bit strings
that are computed independently on the contents of messages, their destinations,
whether the onion is traveling in the forward direction or is a reply, and identities
and number of intermediaries that follow or precede an honest intermediary. To
process an onion, an honest party P sends it to the functionality FROES, which
then informs P what its role is — an intermediary, the recipient, or the original
sender of this onion. If P is an intermediary, the functionality sends it a string
that represents the next layer of the same onion (also formed independently of
the input). If P is the recipient, P learns the contents of the message m and
whether the onion can be replied to, and can direct the functionality to create a
reply onion containing a reply message r. Finally, if P is the sender of the origi-
nal onion, then he learns r, the reply; he also learns to which one of his previous
outgoing onions this one is the response. We describe FROES in Section 3.

It is important to note that our functionality FROES is defined in such a way
that it allows for a scheme in which checking that an onion has been “mauled”
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is not entirely the job of each intermediary. More precisely, we think of the onion
as consisting of two pieces. The first piece is the header H that, in FROES, is a
pointer to a data structure that contains the onion’s information. The second
piece is the payload, the content C that can be thought of as a pointer to a
data structure inside FROES that contains the message m. The content C does
not undergo an integrity check until it gets to its destination. This is how we
overcome the challenge (above) of having a definition that enables replies.

Our second contribution: a game-style definition of secure repliable onion en-
cryption. Although UC-style definitions of security are a good way to capture
the security properties of a novel cryptographic object such as secure repliable
onion encryption, they can be difficult to work with. The SUC model makes the
job easier, but it is still cumbersome to prove that a construction SUC-realizes
an ideal functionality, especially one as involved as FROES. So to make it easier,
we provide a game-style definition, called “repliable-onion security” in Section 4.

This definition boils down to a game between an adversary and a challenger.
The challenger generates the key pairs for two participants under attack: a
sender S and an honest intermediary I. Similar to CCA2-security for public-
key encryption, the challenger also responds (before and after the creation of a
challenge onion) to the adversary’s queries to S and I; i.e. the adversary may
send onions to the parties under attack and learn how these onions are peeled.
The adversary then requests that a challenge repliable onion be formed by S;
the adversary picks the recipient R for this onion, as well as the message m to be
routed to R, and the identities and public keys of all the intermediaries on the
path from S to R (other than S and I) and the return path from the recipient
to the sender. The honest intermediary I must appear somewhere on this path:
either (a) I is on the forward path from S to R, or (b) I is the recipient, or
(c) I is on the return path from R to S. The challenger then tosses a coin, and
depending on the outcome, forms the challenge onion in one of two ways; the
adversary’s job to win the game is to correctly guess the outcome of the coin
toss. If the coin comes up heads, the challenger forms the onion correctly, using
the routing path provided by the adversary. If it comes up tails, then the chal-
lenger makes a “switch:” he forms two unrelated onions, one from S to I, and
the other from I back to S; the details depend on whether this is case (a), (b),
or (c). He then patches up the oracles for S and I so as to be able to pretend
that the challenge onion was formed correctly. For details, see Section 4.

In Section 5, we show that our game-based definition is sufficient to SUC-
realize FROES and that its non-adaptive variant is necessary: any repliable onion
encryption scheme SUC-realizing FROES will satisfy it.

Here is how we overcome the definitional challenge of having a CCA2-style
definition while enabling replies. When forming a repliable onion, the sender S
will generate not just the onion to send on to the first intermediary, but, as
a byproduct of forming that onion, will generate all the onion layers — to be
precise, the header Hi and the content Ci of the ith onion layer for every i —
on the path from himself to the recipient R. However, in the return direction, S
is unable to know in advance the content of the onion (otherwise the recipient
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cannot send a return message); but the sender can still form just the header parts
{Hi} of those onion layers. So it is the headers that must satisfy CCA2-style non-
malleability, while the content accompanying the header can be “mauled” on its
way to its destination, be it the recipient R, or, in the case of a reply onion,
the original sender S. However, upon arrival to its destination, any “mauled”
content should be peeled to ⊥.

Our main contribution: realizing secure repliable onion encryption. We resolve
the problem that CL left open fifteen years ago of constructing provably secure
repliable onion encryption. Namely, we give a scheme, which we call shallot
encryption, for repliable onion encryption. Our scheme is based on a CCA2-
secure cryptosystem with tags, a strong PRP (in other words, a block cipher),
and a collision-resistant hash function.

In a nutshell, here is how our construction works. As we explained above, we
split up the onion into two pieces, the header H and the content C. H contains
(in layered encryption form) the routing information and symmetric keys that
are needed to process C. C contains the message and, in case this is a forward
onion, instructions for forming the reply onion; this part is wrapped in layers of
symmetric encryption. This way, the original sender Alice can form the headers
for all the layers of the reply onion even though she does not know the contents of
the reply in advance; Bob’s contribution to the reply onion is just the content C.
Each intermediary is responsible for peeling a layer off of H, learning its key k,
and applying a strong PRP keyed by k to the contents C. The adaptive security
properties guarantee that H cannot be “mauled,” but checking the integrity of
C is postponed until the onion gets to its destination — recipient Bob or original
sender Alice — who check it using a MAC key. This is also why our scheme is
called shallot encryption: the layered structure of the resulting onion resembles
a shallot! (Shallots are a sub-family of onions.) See Section 6 for details.

Related work. Onion routing and mixes were introduced by David Chaum in
1981 [10]. Since then, tremendous interest from applied security researchers re-
sulted in numerous implementations [11,14,22,23].

Tor [14, 17] is the most widely used tool for anonymizing Internet com-
munications; according to statistics shared by the Tor Project (https://www.
torproject.org/), an estimated two million users use Tor daily. Tor’s approach
is not, strictly speaking, onion encryption as defined here because no public keys
are used for encryption; also, its live connection design is vulnerable to traffic
analysis [19,24,25].

Despite its practical relevance and widely used implementations, the theo-
retical foundations of onion routing are somewhat shaky. None of the imple-
mentation papers cited above provided definitions or proofs of security. In 2005,
Camenisch and Lysyanskaya (CL) provided the first formal definition of secure
onion encryption [5]; this was done in Canetti’s UC framework [6]. They also
gave a game-based definition (onion-security) that they claimed was equivalent
to one in the UC model and the first provably secure onion encryption scheme.
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CL mentioned the possibility of having a reply option (as did Chaum), but their
formal treatment did not extend to it.

In a recent paper, Kuhn et al. [21] found a mistake in CL’s game-based
definition. In a nutshell, CL’s onion-security game proceeded as follows: An
adversary attacking an honest participant P is given P ’s public key and specifies
the input to the algorithm for forming an onion. This input includes the identities
and public keys of all the intermediaries and the final recipient and the contents
of the message m; P is somewhere on the routing path. The challenger either
responds with a correctly formed onion or with an onion whose routing path is
cut off at P , i.e., for the latter type, P is the recipient of a random unrelated
message m′. Kuhn et al. pointed out that, although this property indeed hides
where the onion is headed after P , it does not hide where the onion has been
before it got to P . Thus, CL’s proof that their onion-security definition was
sufficient to UC-realize Fonion had a missing step, which Kuhn et al. found.
Kuhn et al. also showed how to use this unfortunate theoretical mistake to attack
Sphinx [15]. In addition to pointing out this flaw, Kuhn et al. proposed a new
game-based definition that implied the realizability of CL’s ideal functionality
Fonion. However, they do not tackle repliable onions.

2 Repliable onion encryption: syntax and correctness

Here, we give the formal input/output (I/O) specification for a repliable onion
encryption scheme. In contrast to the CL I/O specification for uni-directional
onion encryption scheme [5], a repliable onion encryption scheme contains an
additional algorithm, FormReply, for forming return onions. This algorithm al-
lows the recipient of a message contained in a repliable onion to respond to the
anonymous sender of the message without needing to know who the sender is.

In this paper, an onion O is a pair, consisting of the (encrypted) content C
and the header H, i.e., O = (H,C). The maximum length of a path of an onion,
be it the forward path or the return path, is N ; we assume that N is one of the
public parameters pp. The algorithm for forming onions, FormOnion, also takes
as one of its parameters, the label `. This is so that when the sender receives a
reply message m′ along with the label `, the sender can identify to which message
m′ is responding.

Definition 1 (Repliable onion encryption scheme I/O). The set Σ =
(G,FormOnion,ProcOnion,FormReply) of algorithms satisfies the I/O specifica-
tion of a repliable onion encryption scheme for the label space L(1λ), the message
space M(1λ), and a set P of router names if:
– G is a probabilistic polynomial-time (p.p.t.) key generation algorithm. On

input the security parameter 1λ (written in unary), the public parame-
ters pp, and the party name P , the algorithm G returns a key pair, i.e.,
(pk(P ), sk(P ))← G(1λ, pp, P ).

– FormOnion is a p.p.t. algorithm for forming onions. On input
i. a label ` ∈ L(1λ) from the label space,
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ii. a message m ∈M(1λ) from the message space,
iii. a forward path P→ = (P1, . . . , Pd) (d stands for destination),
iv. the public keys pk(P→) associated with the parties in P→,
v. a return path P← = (Pd+1, . . . , Ps) (s stands for sender), and

vi. the public keys pk(P←) associated with the parties in P←,
the algorithm FormOnion returns a sequence O→ = (O1, . . . , Od) of
onions for the forward path, a sequence H← = (Hd+1, . . . ,Hs) of
headers for the return path, and a key κ, i.e., (O→, H←, κ) ←
FormOnion(`,m, P→, pk(P→), P←, pk(P←)). Note: the key κ contains some
state information that the sender of the onion might need for future refer-
ence; a scheme can still satisfy our definition if κ = ⊥.

– ProcOnion is a deterministic polynomial-time (d.p.t.) algorithm for pro-
cessing onions. On input an onion O, a router name P , and the secret
key sk(P ) belonging to P , the algorithm ProcOnion returns (role, output),
i.e., (role, output) ← ProcOnion(O,P, sk(P )). When role = I (for “interme-
diary”), output is the pair (O′, P ′) consisting of the peeled onion O′ and the
next destination P ′ of O′. When role = R (for “recipient”), output is the
message m for recipient P . When role = S (for “sender”), output is the
pair (`,m) consisting of the label ` and the reply message m for sender P .

– FormReply is a d.p.t. algorithm for replying to an onion. On input a re-
ply message m ∈ M(1λ), an onion O, a router name P , and the secret
key sk(P ) belonging to P , the algorithm FormReply returns the onion O′ and
the next destination P ′ of O′, i.e., (O′, P ′) ← FormReply(m,O,P, sk(P )).
Note: FormReply may output (⊥,⊥) if P is not the correct recipient of O.

2.1 Onion evolutions, forward paths, return paths and layerings

Here, we define what it means for a repliable onion encryption scheme to be
correct. Before we do this, we first define what onion evolutions, paths, and
layerings are; the analogous notions for the unrepliable onion encryption scheme
were introduced by Camenisch and Lysyanskaya [5].

Let Σ = (G,FormOnion,ProcOnion,FormReply) be a repliable onion encryp-
tion scheme for the label space L(1λ), the message space M(1λ), and the set
P of router names. Let H ⊆ P be parties with honestly formed keys. For any
P 6∈ H, let sk(P ) = ⊥ (i.e., secret keys that were not formed honestly are not
well-defined for the purposes of this experiment).

Let O1 = (H1, C1) be an onion received by party P1 ∈ H, not necessarily
formed using FormOnion.

We define a sequence of onion-location pairs recursively as follows: Let d be
the first onion layer of (H1, C1) that when peeled, produces either “R” or “S” (if
it exists, otherwise d =∞). For all i ∈ [d−1], let (rolei+1, ((Hi+1, Ci+1), Pi+1)) =
ProcOnion((Hi, Ci), Pi, sk(Pi)). Let s = d if peeling (Hd, Cd) produces “S.”
Otherwise, let m ∈ M(1λ) be a reply message from the message space,
and let ((Hd+1, Cd+1), Pd+1) = FormReply(m, (Hd, Cd), Pd, sk(Pd)). Let s be
the first onion layer of (Hd+1, Cd+1) that when peeled, produces either “R”
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or “S” (if it exists, otherwise s = ∞). For all i ∈ {d + 1, . . . , s − 1}, let
(rolei+1, ((Hi+1, Ci+1), Pi+1)) = ProcOnion((Hi, Ci), Pi, sk(Pi)).

We call the sequence E(H1, C1, P1,m) = ((H1, C1, P1), . . . , (Hs, Cs, Ps)) of
onion-location pairs the “evolution of the onion (H1, C1) starting at party P1

given m as the reply message.” The sequence P→(H1, C1, P1,m) = (P1, . . . , Pd)
is its forward path; the sequence P←(H1, C1, P1,m) = (Pd+1, . . . , Ps) is its return
path; and the sequence L(H1, C1, P1,m) = (H1, C1, . . . ,Hd, Cd, Hd+1, . . . ,Hs) is
its layering.

Definition 2 (Correctness). Let G, FormOnion, ProcOnion, and FormReply
form a repliable onion encryption scheme for the label space L(1λ), the message
space M(1λ), and the set P of router names.

Let N be the upper bound on the path length (in public parameters pp). Let
P = (P1, . . . , Ps), |P | = s ≤ 2N be any list (not containing ⊥) of router names
in P. Let d ∈ [s] be any index in [s] such that d ≤ N and s − d + 1 ≤ N .
Let ` ∈ L(1λ) be any label in L(1λ). Let m,m′ ∈ M(1λ) be any two messages
in M(1λ).

For every party Pi in P , let (pk(Pi), sk(Pi)) ← G(1λ, pp, Pi) be Pi’s key
pair. Let P→ = (P1, . . . , Pd), and let pk(P→) be a shorthand for the public keys
associated with the parties in P→. Let P← = (Pd+1, . . . , Ps), and let pk(P←) be
a shorthand for the public keys associated with the parties in P←.

Let ((H1, C1), . . . , (Hd, Cd), Hd+1, . . . ,Hs, κ) be the output of FormOnion on
input the label `, the message m, the forward path P→ = (P1, . . . , Pd), the
public keys pk(P→) associated with the parties in P→, the return path P← =
(Pd+1, . . . , Ps), and the public keys pk(P←) associated with the parties in P←.

The scheme Σ is correct if with overwhelming probability in the security
parameter λ,

i. Correct forward path.
– P→(H1, C1, P1,m

′) = (P1, . . . , Pd).
– For every i ∈ [d] and content C such that |C| = |Ci|, P→(Hi, C, Pi,m

′) =
(Pi, . . . , Pd).

ii. Correct return path.
– P←(H1, C1, P1,m

′) = (Pd+1, . . . , Ps).
– For every i ∈ {d+ 1, . . . , s}, reply message m′′, and content C such that
|C| = |Ci|, P→(Hi, C, Pi,m

′′) = (Pd+1, . . . , Ps).
iii. Correct layering. L(H1, C1, P1,m

′) = (H1, C1, . . . ,Hd, Cd, Hd+1, . . . ,Hs),
iv. Correct message. ProcOnion((Hd, Cd), Pd, sk(Pd)) = (R,m),
v. Correct reply message. ProcOnion((Hs, Cs), Ps, sk(Ps)) = (S, (`,m′))

where (Hs, Cs) are the header and content of the last onion in the evolu-
tion E(H1, C1, P1,m

′).

Note that we define onion evolution, (forward and return) paths, and layering
so that we can articulate what it means for an onion encryption scheme to be
correct. We define correctness to mean that how an onion peels (the evolution,
paths, and layerings) exactly reflects the reverse process of how the onion was
built up. Thus, for our definition to make sense, both ProcOnion and FormReply
must be deterministic algorithms.
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3 FROES: onion routing in the SUC Framework

Here, we provide a formal definition of security for a repliable onion encryption
scheme. We chose to define security in the simplified universal composability
(SUC) model [7] as opposed to the universal composability (UC) model [6] as
this choice greatly simplifies how communication is modeled. Additionally, since
SUC-realizability implies UC-realizability [7], we do not lose generality by sim-
plifying the model in this manner. In the SUC model, the environment Z can
communicate directly with each party P by writing inputs into P ’s input tape
and by reading P ’s output tape. The parties communicate with each other and
also with the ideal functionality through an additional party, the router R.

3.1 Ideal functionality FROES

In this section, honest parties are capitalized, e.g., P , Pi; and corrupt parties are
generally written in lowercase, e.g., p, pi. An onion formed by an honest party
is honestly formed and is capitalized, e.g., O, Oi; whereas, an onion formed by a
corrupt party is generally written in lowercase, e.g., o, oi. Recall that an onion
O is a pair, consisting of the content C and the header H, i.e., O = (H,C).

How should we define the ideal functionality of a repliable onion encryption
scheme? Honestly formed onions in an onion routing protocol should mix at
honest nodes. This property is what enables anonymity from the standard ad-
versary who can observe the network traffic on all communication links. Ideally,
onions should mix (i) even if the distances from their respective origins or the
distances to their respective destinations differ, and (ii) regardless of whether
they are forward or return onions. Here, we define the ideal functionality so that
a scheme that realizes it necessarily satisfies properties (i) and (ii) above.

Intuitively, onions mix iff onion layers are (computationally) unrelated to
each other. Let O′ be the onion we get from peeling the onion O. If the values of
O and O′ are correlated with each other, then O cannot mix with other onions.
Conversely, if the values O and O′ are unrelated to each other, then O can mix
with other onions. However, the adversary necessarily knows how some onions
layers are linked together. If the corrupt party p peels onion o, getting peeled
onion o′, then p knows that o and o′ are linked.

Thus, we settle on our idea for an ideal functionality FROES (ROES, for “repli-
able onion encryption scheme”) as follows: Let a segment of a routing path be a
subpath of the path consisting of a sequence of corrupt parties possibly ending
with a single honest party. Note that if there are two consecutive honest parties,
(Alice, Bob) on the routing path, then (Bob) is a segment of the path. Each
routing path can be uniquely broken up into a sequence (s1, . . . , su) of non-
overlapping segments, such that each segment si contains exactly one honest
participant, except for the last segment that may end in an adversarial recipient.
For i 6= j, onion layers corresponding to segment si should be computationally
unrelated to the layers corresponding to segment sj .

Thus, the ideal functionality FROES forms the onion layers for each segment
of a routing path separately and independently from each other. FROES internally
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keeps tracks of how these layers are linked using two data structures, OnionDict
and PathDict. If FROES forms an onion layer O for Alice (the last party of a
segment) that should peel to an onion layer O′ for Bob (the first party of the
next segment), then it keeps track of this link in OnionDict; the output (O′,Bob)
is stored under the label (Alice, O). FROES initially forms and stores the onion
links only for the forward path and stores the return path in PathDict; onion links
for the return path are generated later on when they are needed. To produce
the onion layers for a segment, FROES runs the algorithm SampleOnion, which it
gets from the ideal adversary A.

Sometimes, the environment Z instructs an ideal party to process an onion O
(or form a reply to an onion O), not stored in either OnionDict or PathDict. If
the header of O is not honestly formed, then FROES processes it according to the
algorithm ProcOnion (or FormReply) supplied by A. Otherwise, if O is the result
of “mauling” just the content of an honestly formed onion X that peels to X ′,
then FROES returns the onion O′ with the same header as X ′. To do this, it runs
the algorithm CompleteOnion, also provided by A.

Suppose honest sender Sandy sent an onion to adversarial recipient Robert.
Robert responds; eventually an honest intermediary Iris will receive an onion O
which contains Robert’s response to Sandy. When FROES is called by Iris with
onion O, it will be tipped off to the fact that O = (H,C) is a return onion
from Robert to Sandy because the header H will be stored in PathDict. At this
point, FROES knows what path the onion will have to follow from now on and
will be able to create the correct onion layers using SampleOnion and store them
in OnionDict. Once the return onion makes its way to Sandy, Sandy will ask
FROES to process it; at this point, FROES will need to know the return message
r that Robert sent to Sandy. The algorithm RecoverReply serves that purpose:
from Robert’s onion O (received by Iris) it recovers his response r.

So, at setup, the algorithms ProcOnion, FormReply, SampleOnion
CompleteOnion, and RecoverReply are provided to FROES by A.

Figure 1 gives a summary of the ideal functionality FROES for repliable onion
encryption. Below, we provide a formal, detailed description of FROES.

Setting up. The ideal functionality FROES handles requests from the environ-
ment on behalf of the ideal honest parties. During setup, FROES gets the following
from the ideal adversary A. For each algorithm in items (iii)-(vi) below, we first
describe the input of the algorithm in normal font and then, in italics, provide
a brief preview of how the algorithm will be used. FROES only runs for a poly-
nomial number of steps which is specified in the public parameters pp and can
time out on running these algorithms from the ideal adversary.

i. The set P of participants.
ii. The set Bad of corrupt parties in P (see Remark 4).

iii. The repliable onion encryption scheme’s G, ProcOnion, and FormReply al-
gorithms. G is used for generating the honest parties’ keys. ProcOnion is
used for processing onions formed by corrupt parties. FormReply is used for
replying to onions formed by corrupt parties.

10



IdealSetup

1: Get from ideal adversary A:

P, Bad, G, ProcOnion,

FormReply, SampleOnion,
CompleteOnion, RecoverReply.

2: Initialize dictionaries OnionDict
and PathDict.

IdealFormOnion(`,m, P→, P←)

1: Break forward path into

segments.

2: Run SampleOnion on segments
to generate onion layers.

3: Store onion layers in OnionDict.
4: Store label ` and (rest of) return

path in PathDict.

IdealProcOnion((H,C), P )

1: If (P,H) is “familiar,” i.e., stored in one of our

dictionaries

- If (P,H,C) in OnionDict, return next stored
onion layer.

- Else if exists (P,H, (X 6= C)) in OnionDict,
return output of CompleteOnion and stored
next party (if stored next party exists), or “⊥”

(if next party doesn’t exist).

- Else if (P,H, ?) in PathDict, return output of
IdealFormOnion on message recovered using

RecoverReply and label and path stored in

PathDict.
2: Else if (P,H) is not familiar, return output of

ProcOnion((H,C), P, sk(P )).

IdealFormReply(m, (H,C), P )

1: If (P,H,C) in PathDict, return output of

IdealFormOnion on m and label and path stored in

PathDict.
2: Else, return output of

FormReply(m, (H,C), P, sk(P )).

Fig. 1: Summary of ideal functionality FROES.

iv. The p.p.t. algorithm SampleOnion(1λ, pp, p→, p←,m) that takes as input the
security parameter 1λ, the public parameters pp, the forward path p→, the
(possibly empty) return path p←, and the (possibly empty) message m. The
routing path (p→, p←) = (p1, . . . , pi, Pi+1) is always a sequence (p1, . . . , pi)
of adversarial parties, possibly ending in an honest party Pi+1. FROES fails
if SampleOnion ever samples a repeating header or key.

SampleOnion is used to compute an onion to send to p1 which will be
“peelable” all the way to an onion for Pi+1. If the return path p← is non-
empty and ends in an honest party Pi+1, SampleOnion produces an onion o
for the first party p1 in p→ and a header H for the last party Pi+1 in p←.
Else if the return path p← is empty, and the forward path p→ ends in an
honest party Pi+1, SampleOnion produces an onion o for the first party p1 in
p→ and an onion O for the last party Pi+1 in p→. Else if the return path p←

is empty, and the forward path p→ ends in a corrupt party pi, SampleOnion
produces an onion o for the first party p1 in p→.

v. The p.p.t. algorithm CompleteOnion(1λ, pp, H ′, C) that takes as input 1λ,
pp, the the party P , the header H ′, and the content C, and outputs an
onion O = (H ′, C ′). FROES fails if CompleteOnion ever produces a repeating
onion. CompleteOnion produces an onion (H ′, C ′) that resembles the result
of peeling an onion with content C.

vi. The d.p.t. algorithm RecoverReply(1λ, pp, O, P ) that takes as input 1λ, pp,
the onion O, and the party P , and outputs a label ` and a reply message m.
This algorithm is used for recovering the label ` and reply message m from
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the return onion O that carries the response from a corrupt recipient to an
honest sender.

Let sid denote the session id specific the parameters that the setup, above,
creates. F sid

ROES denotes the session of FROES with this sid. F sid
ROES generates a

public key pair (pk(P ), sk(P )) for each honest party P ∈ P \ Bad using the key
generation algorithm G and sends the public keys to their respective party. (If
working within the global PKI framework, each party then relays his/her key
to the global bulletin board functionality [9].) F sid

ROES also creates the following
(initially empty) dictionaries:

– The onion dictionary OnionDict supports:
• A method put((P,H,C), (role, output)) that stores under the label

(P,H,C): the role “role” and the output “output.” Should participant P
later direct F sid

ROES to process onion O = (H,C), it will receive the values
(role, output) stored in OnionDict corresponding to (P,H,C).

• A method lookup(P,H,C) that looks up the entry (role, output) corre-
sponding to the label (P,H,C). This method will be used when P directs
F sid

ROES to process onion O = (H,C).
– The return path dictionary PathDict supports:
• A method put((P,H,C), (P←, `)) that stores under the label (P,H,C):

the return path P← and the label `. This method is used to store the
return path P← for the onion corresponding to label `.

• A method lookup(P,H,C) that looks up entry (P←, `) corresp. to the
label (P,H,C). Should P later direct F sid

ROES to either reply to the onion
(H,C) or to process an onion with header H, the stored return path P←

and label ` will be used to form the rest of the return onion layers.

These data structures are stored internally at and accessible only by F sid
ROES.

Forming an onion. After setup, the environment Z can instruct an honest
party P to form an onion using the session id sid, the label `, the message m,
the forward path P→, and the return path P←. To form the onion, P forwards
the instruction from Z to F sid

ROES (via the router R).

The goal of the ideal functionality F sid
ROES is to create and maintain state in-

formation for handling an onion O (the response to the “form onion” request).
O should be “peelable” by the parties in the forward path P→, internally associ-
ated with the return path P←, and for the purpose of realizing this functionality
by an onion encryption scheme, each layer of the onion should look “believ-
able” as onions produced from running FormOnion, ProcOnion, or FormReply.
Importantly, O and its onion layers should reveal no information to A:

– Each onion routed to an honest party Pi is formed initially with just (Pi) as
the routing path and, therefore, reveals only that it is for Pi. When forming
the onion, no message is part of the input; this ensures that the onion is
information-theoretically independent of any message m.

– For every party pi or Pi in the forward path, let next(i) denote the index of
the next honest party Pnext(i) following pi. For example, if the forward path
is (P1, p2, p3, P4, P5, p6, p7), then next(2) = 4.
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Conceptually, each onion routed to an adversarial party pi is formed by
“wrapping” an onion layer for each corrupt party in (pi, . . . , pnext(i)−1) (or
(pi+1, . . . , p|P→|) if no honest party after pi exists) around an onion formed
for an honest party Pnext(i) (or a message if no honest party after pi exists).
This reveals at most the sequence (pi, . . . , pnext(i)−1, Pnext(i)) (or the sequence
(pi, . . . , p|P→|) and the message m if no honest party after pi exists). How
this wrapping occurs depends on the internals of the SampleOnion algorithm
provided by the ideal adversary.

To ensure these, FROES partitions the forward path P→ into segments:

Let Pf (f , for first) be the first honest party in the forward path. The first
couple of segments are (p1, . . . , pf−1, Pf ), (pf+1, . . . , pnext(f)−1, Pnext(f)), etc.

For each segment (pi, . . . , pj−1, Pj), the ideal functionality F sid
ROES sam-

ples onions (hi, ci) and (Hj , Cj) using the algorithm SampleOnion, i.e.,
((hi, ci), (Hj , Cj)) ← SampleOnion(1λ, pp, (pi, . . . , pj−1, Pj), (),⊥). As we ex-
plained when introducing the SampleOnion input/output structure, (hi, ci) is
the onion that is intended for the participant pi ∈ Bad; once the adversarial
participants take turns peeling it, the innermost layer (Hj , Cj) can be processed
by the honest participant Pj .

If the recipient Pd is honest, this process will create all the onions in
the forward direction. Suppose that the recipient pd is corrupt. Let Pe (e,
for end) be the last honest party in the forward path P→, and let Pnext(d)

denote the first honest party in the return path P←. F sid
ROES also runs

SampleOnion(1λ, pp, (pe+1, . . . , pd), (pd+1, . . . , pnext(d)−1, Pnext(d)),m); as we ex-
plained when introducing the SampleOnion input/output structure, this produces
an onion oe+1 and a header Hnext(d).

For every honest intermediary party Pi in the forward path, F sid
ROES stores

under the label (Pi, Hi, Ci) in the onion dictionary OnionDict the role “I,” the
(i+1)st onion layer (Hi+1, Ci+1), and destination Pi+1. The (d+1)st onion layer
doesn’t exist for the innermost layer (Hd, Cd) for an honest recipient Pd. In this
case, F sid

ROES stores just the role “R” and the message m.

If the recipient Pd is honest, F sid
ROES stores the entry ((Pd, Hd, Cd), (P

←, `)) in
the dictionary PathDict. Otherwise if the recipient pd is corrupt, F sid

ROES stores the
entry ((Pnext(d), Hnext(d), ∗), (p←, `)) in PathDict where p← = (pnext(d)+1, . . . , Ps).
“∗” is the unique symbol that means “any content.”

Example. The recipient P7 is honest. The forward path is P→ =

(P1, p2, p3, P4, P5, p6, P7 ), and the return path is P← = (p8, p9, P10, p11, P12).

In this case, the first segment is (P1), and the second segment is (p2, p3, P4) and
so on; and

(⊥, (H1, C1))←SampleOnion(1λ, pp, (P1), (),⊥)

((h2, c2), (H4, C4))←SampleOnion(1λ, pp, (p2, p3, P4), (),⊥)

(⊥, (H5, C5))←SampleOnion(1λ, pp, (P5), (),⊥)

((h6, c6), (H7, C7))←SampleOnion(1λ, pp, (p6, P7), (),⊥).
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F sid
ROES stores in OnionDict and PathDict:

OnionDict.put((P1, H1, C1), (I, ((h2, c2), p2)))

OnionDict.put((P4, H4, C4), (I, ((H5, C5), P5)))

OnionDict.put((P5, H5, C5), (I, ((h6, c6), p6)))

OnionDict.put((P7, H7, C7), (R,m)),

PathDict.put((P7, H7, C7), ((p8, p9, P10, p11, P12), `)).

After updating OnionDict and PathDict, F sid
ROES returns the first onion O1 =

(H1, C1) to party P (via the router R). Upon receiving O1 from F , P outputs
the session id sid and O1.

Processing an onion. After setup, the environment Z can instruct an honest
party P to process an onion O = (H,C) for the session id sid. To process the
onion, party P forwards the instruction to the ideal functionality F sid

ROES (via the
router R).
Case 1: There is an entry (role, output) under the label (P,H,C) in OnionDict.

In this case, F sid
ROES responds to P (via the router R) with (role, output).

Case 2: There is no entry under the label (P,H,C) in OnionDict, but there
exists X 6= C such that there is an entry (I, ((H ′, X ′), P ′)) under the label
(P,H,X) in OnionDict. This means that, P has received an onion with a
properly formed header, but an improperly formed content. This is where we
use the algorithm CompleteOnion to direct FROES how to peel this “mauled”
onion. Recall that CompleteOnion was provided by the adversary at setup.
F sid

ROES uses it to sample an onion (H ′, C ′) ← CompleteOnion(1λ, pp, H ′, C).
FROES then stores the new entry (I, ((H ′, C ′), P ′)) under the label (P,H,C)
in OnionDict, and responds to P with (I, ((H ′, C ′), P ′)).

Case 3: There is no entry under the label (P,H,C) in OnionDict, but there
exists X 6= C such that there is an entry (R,m) under the label (P,H,X) in
OnionDict. This means that P is the intended recipient of the onion (H,X)
but instead just received the properly formed header H with “mauled” con-
tent C. In this case, F sid

ROES responds to P with (R,⊥).
Case 4: There is no entry under the label (P,H,C) in OnionDict, but there

exists X 6= C such that there is an entry (S, (`,m)) under the label (P,H,X)
in OnionDict. This means that P was the original sender of an onion, and
header H is the correct header for his reply onion; but the content C got
“mauled” in transit: the correct reply onion was supposed to have content X
(according to in OnionDict). F sid

ROES responds to P with (S,⊥).
Case 5: There is no entry starting with (P,H) in OnionDict, but there is an

entry (P←, `) under the label (P,H, ∗) in PathDict. This means that P is the
first honest intermediary on the return path of an onion whose recipient was
adversarial. FROES needs to compute the reply message m′ that the adver-
sarial recipient meant to send back to the honest sender. This is the purpose
of the RecoverReply algorithm that the adversary provides to FROES at setup.
Let m′ be the message obtained by running RecoverReply(1λ, pp, O, P ).
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Next, FROES computes the layers of the reply onion. If P← is not empty,
F sid

ROES runs its “form onion” code (Section 3.1) with (`,m′) as the “message,”
P← as the forward path, and the empty list “()” as the return path. (The
code is run with auxiliary information for correctly labeling the last party
in P← as the sender.) F sid

ROES responds to P with (I, ((H ′, C ′), P ′)), where
(H ′, C ′) is the returned onion, and P ′ is the first party in P←.

Otherwise if P← is empty, then P is the recipient of the return onion, so
F sid

ROES responds to P with (S, (`,m′)).
Case 6: F sid

ROES doesn’t know how to peel O (i.e., there is no entry starting with
(P,H) in OnionDict and no entry under (P,H, ∗) in PathDict). In this case,
O does not have an honestly formed header; so, F sid

ROES responds to P with
(role, output) = ProcOnion(1λ, pp, O, P, sk(P )) (recall that ProcOnion is an
algorithm supplied by the ideal adversary at setup).

The cases above cover all the possibilities. Upon receiving the response
(role, output) from F sid

ROES, P outputs the session id sid and (role, output).

Forming a reply. After setup, the environment Z can instruct an honest
party P to form a reply using the session id sid, the reply message m, and
an onion O = (H,C). To form the return onion, P forwards the instruction to
the ideal functionality F sid

ROES (via the router R).
Case 1: There is an entry (P←, `) under the label (P,H,C) in PathDict. Then
F sid

ROES runs its “form onion” code (see Section 3.1) with (`,m) as the “mes-
sage,” P← as the forward path, and the empty list “()” as the return path.
(The code is run with auxiliary information for correctly labeling the last
party in P← as the sender.) F sid

ROES responds to P (via the router R) with
the returned onion O′ and the first party P ′ in P←.

Case 2: No entry exists for (P,H,C) in PathDict. Then P is replying to an
onion formed by an adversarial party, so F sid

ROES replies to P with (O′, P ′) =
FormReply(1λ, pp,m,O, P, sk(P )). Upon receiving the response (O′, P ′) from
F sid

ROES, P outputs the session id sid and (O′, P ′).

3.2 SUC-realizability of FROES

Recall what it means for a cryptographic scheme to SUC-realize FROES [7].

Ideal protocol. In the ideal onion routing protocol, the environment Z interacts
with the participants by writing instructions into the participants’ input tapes
and reading their output tapes. Each input is an instruction to form an onion,
process an onion, or form a return onion. When an honest party P receives
an instruction from Z, it forwards the instruction to FROES via the router R.
Upon receiving a response from FROES (via R), P outputs the response. Corrupt
parties are controlled by the adversary A and behave according to A. F sid

ROES does
not interact with A after the setup phase. At the end of the protocol execution,
Z outputs a bit b. Let IDEALFROES,A,Z(1λ, pp) denote Z’s output after executing
the ideal protocol for security parameter 1λ and public parameters pp.
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Real protocol. Let Σ be a repliable onion encryption scheme. The real onion
routing protocol for Σ is the same as the ideal one (described above), except
that the honest parties simply run Σ’s algorithms to form and process onions.
Let REALΣ,A,Z(1λ, pp) denote Z’s output after executing the real protocol.

Definition 3 (SUC-realizability of FROES). The repliable onion encryption
scheme Σ SUC-realizes the ideal functionality FROES if for every p.p.t. real-
model adversary A, there exists a p.p.t. ideal-model adversary S s.t. for ev-
ery polynomial-time environment Z, there exists a negligible function ν(λ) s.t.∣∣Pr

[
IDEALFROES,S,Z(1λ, pp) = 1

]
− Pr

[
REALΣ,A,Z(1λ, pp) = 1

]∣∣ ≤ ν(λ).

Remark 4. The set Bad of corrupted participants is selected non-adaptively, at
setup time. Adaptive security is notoriously challenging to realize in the standard
model for public-key encryption: As Canetti et al. [8] demonstrated, adaptively
secure encryption requires non-committing encryption. A single-layer onion is
already a public-key ciphertext, so any reasonable formulation of an onion rout-
ing ideal functionality would imply public-key encryption and, thus, would also
require non-committing encryption. Non-committing encryption in the standard
model requires that public keys can only be used once for a single ciphertext
and, thus, is impossible in the standard PKI model. It is possible to realize it
in the random-oracle (RO) model, and so in the RO model, adaptively secure
onion routing may be possible. We leave this for future work, however.

Remark 5. In describing the ideal functionality, we made an implicit assumption
that for every instruction to form an onion, the keys match the parties on the
routing path. However, generally speaking, the environment Z can instruct an
honest party to form an onion using the wrong keys for some of the parties on
the routing path. Using the dictionary OnionDict, it is easy to extend our ideal
functionality to cover this case: the ideal functionality would store in OnionDict,
every onion layer for an honest party, starting from the outermost layer, until
it reaches a layer with a mismatched key. To keep the exposition clean, we will
continue to assume that router names are valid, and keys are as published.

Remark 6. As originally noted by Camenisch and Lysyanskaya [5], the environ-
ment is allowed to repeat the same input (e.g., a “process onion” request) in
the UC framework (likewise, in the SUC framework). Thus, replay attacks are
not only allowed in our model but inherent in the SUC framework. The reason
that replay attacks are a concern is that they allow the adversary to observe
what happens in the network as a result of repeatedly sending an onion over
and over again — which intermediaries are involved, etc — and that potentially
allows the adversary to trace this onion. Our functionality does not protect from
this attack (and neither did the CL functionality), but a higher-level protocol
can address this by directing parties to ignore repeat “process onion” and “form
reply” requests. Other avenues to address this (which can be added to our func-
tionality, but we chose not to so as not to complicate it further) may include
letting onions time out, so the time frame for repeating them could be limited.
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Remark 7. The way that an ideal adversarial participant interacts with FROES

to form an onion is by creating an onion in any way it wants and sending it over
the network (which, in the SUC model, is controlled by the environment that
writes to the participants’ input tapes and reads their output tapes) to an ideal
honest participant, who then calls FROES to process it. When an ideal honest
party is a recipient of such an onion and replies to it with response r, this falls
under case (2) of the IdealFormReply interface of FROES. The resulting onion is
returned to the ideal honest party who then puts it on its output tape, to be read
by the environment, who, depending on the algorithm FormReply, immediately
learns r without having to route the onion through the network. Thus, FROES

itself does not need any additional interfaces to interact with an ideal adversarial
participant.

4 Repliable-onion security: a game-based definition

In the previous section, we gave a detailed description of an ideal functional-
ity FROES of repliable onion encryption in the SUC model. However, given the
complexity of the description, proving that an onion encryption scheme realizes
FROES seems onerous. To address this, we provide an alternative, game-based
definition of security that implies realizability of FROES. We call this definition,
repliable-onion security.

Informally, our repliable-onion security requires that the following three prop-
erties hold: (a) No adversary can tell (with a non-negligible advantage over ran-
dom guessing) whether an honest transmitter of an honestly formed onion is
the sender of the onion or an intermediary on the forward path. (b) Given an
honestly formed onion O received by the recipient, no adversary can tell (with
non-negligible advantage) whether the recipient is replying to O or sending an
onion unrelated to O. (c) No adversary can tell (with non-negligible advantage)
whether an honest transmitter of an honestly formed onion is the sender of the
onion or an intermediary on the return path.

We formalize each of these three security properties by defining three corre-
sponding security games. In each game, the adversary is given oracles for pro-
cessing onions on behalf of the honest parties under attack. The adversary also
selects additional inputs of each game, such as the identities of intermediaries,
the message conveyed by the onion, etc.

In Figure 2, we give the high-level description of the game ROSecurityGame
and its three variants: (a), (b), and (c). The variants differ only in steps 4 and 5.

Formal description of ROSecurityGame variant (a). We now expand on
what we described in Figure 2 and provide a formal, detailed description of
ROSecurityGame for the first variant, (a).

ROSecurityGame(1λ, Σ,CompleteOnion,A) is parametrized by the se-
curity parameter 1λ, the repliable onion encryption scheme Σ =
(G,FormOnion,ProcOnion,FormReply), the p.p.t. algorithm CompleteOnion, and
the adversary A.
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1: A picks honest parties’ router names I and S. I is the honest intermediary router under
attack, while S is the honest sender under attack.

2: C sets keys for honest parties I and S.

3: A gets access to oracles—O.POI, O.FRI, O.POS, and O.FRS— for processing onions and
replying to them on behalf of I and S.

4: A provides input for the challenge onion: a label `, a message m, a forward path

P→ = (P1, . . . , Pd), a return path P← = (Pd+1, . . . , Ps), and keys associated with the
routing path (P→, P←). If the return path is non-empty, it ends with S so that Ps = S.

I appears somewhere on the routing path so that Pj is the first appearance of I on the

path. The location of Pj determines which variant of the security game the adversary is
playing:

(a) Pj is an intermediary on the forward path (i.e., j < d),

(b) Pj is the recipient (i.e., j = d) or
(c) Pj is on the return path (i.e., j > d).

5: C flips a coin b←$ {0, 1}. If b = 0, C forms the onion O as specified by A. If b = 1, C
forms the onion O with a “switch” at I and modifies (“rigs”) the oracles accordingly.

(a) To peel the challenge onion O on behalf of forward-path intermediary I, O.POI will

form (in answer to a query from A) a new onion using the remainder of the routing
path. To peel an onion O′ 6= O with the same header as the challenge onion, O.POI

uses the algorithm CompleteOnion.

(b) To form a reply to the challenge onion O on behalf of I, O.FRI will form a new
onion using the return path as the forward path (and the empty return path).

(c) To peel the challenge onion O on behalf of the return-path intermediary I, O.POI

will form a new onion using the remainder of the return path as the forward path
(and the empty return path).

6: A once again gets oracle access to O.POI, O.FRI, O.POS, and O.FRS.

7: A guesses b′ and wins if b′ = b.

Fig. 2: Summary of the repliable onion security game, ROSecurityGame. The param-
eters of the game are the security parameter λ, the repliable onion encryption scheme
Σ, the p.p.t. algorithm CompleteOnion and the adversary A.

1. The adversary A picks two router names I, S ∈ P (“I” for intermediary and
“S” for sender) and sends them to the challenger C.

2. The challenger C generates key pairs (pk(I), sk(I)) and (pk(S), sk(S)) for
I and S using the key generation algorithm G and sends the public keys
(pk(I), pk(S)) to A.

3. A is given oracle access to (i) O.POI(·), (ii) O.FRI(·, ·), (iii) O.POS(·), and
(iv) O.FRS(·, ·) where
i-ii. O.POI(·) and O.FRI(·, ·) are, respectively, the oracle for answering “pro-

cess onion” requests made to honest party I and the oracle for answering
“form reply” requests made to I.

iii-iv. O.POS(·) and O.FRS(·, ·) are, respectively, the oracle for answering “pro-
cess onion” requests made to honest party S and the oracle for answering
“form reply” requests made to S

. Since ProcOnion and FormReply are deterministic algorithms, WLOG, the
oracles don’t respond to repeating queries.

4. A chooses a label ` ∈ L(1λ) and a message m ∈ M(1λ). A also chooses
names of participants on a forward path P→ = (P1, . . . , Pd), and a return
path P← = (Pd+1, . . . , Ps) such that (i) if P← is non-empty, then Ps = S,
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and (ii) I appears somewhere on P→ before the recipient. For each Pi 6∈
{S, I}, A also chooses its public key pk(Pi). A sends to C the parameters for
the challenge onion: `, m, P→, the public keys pk(P→) of the parties in P→,
P← and the public keys pk(P←) of the parties in P←.

5. C samples a bit b←$ {0, 1}.
If b = 0, C runs FormOnion on the parameters specified by A, i.e.,

((O0
1, . . . , O

0
d), H

←, κ)← FormOnion(`,m, P→, pk(P→), P←, pk(P←)).
In this case, the oracles—O.POI(·), O.FRI(·, ·), O.POS(·), and O.FRS(·, ·)—
remain unmodified.

Otherwise, if b = 1, C performs the “switch” at honest party Pj
on the forward path P→, where Pj is the first appearance of I on
the forward path. C runs FormOnion twice. First, C runs it on input
a random label x←$L(1λ), a random message y←$M(1λ), the “trun-
cated” forward path p→ = (P1, . . . , Pj), and the empty return path “(),”
i.e., ((O1

1, . . . , O
1
j ), (), κ) ← FormOnion(x, y, p→, pk(p→), (), ()). C then runs

FormOnion on a random label x′←$L(1λ), the message m (that had been
chosen by A in step 4), the remainder q→ = (Pj+1, . . . , Pd) of the for-
ward path, and the return path P←, i.e., ((O1

j+1, . . . , O
1
d), H

←, κ′) ←
FormOnion(x′,m, q→, pk(q→), P←, pk(P←)),

We modify the oracles as follows. Let O1
j = (H1

j , C
1
j ) and O1

j+1 =

(H1
j+1, C

1
j+1), and let H1

s be the last header in H←. O.POI does the fol-
lowing to “process” an onion O = (H,C):

i. If O = O1
j and ProcOnion(O,Pj , sk(Pj)) = (R, y), then return

(I, (O1
j+1, Pj+1)).

ii. If O = O1
j and ProcOnion(O,Pj , sk(Pj)) 6= (R, y), then fail.

iii. If O 6= O1
j but H = H1

j and ProcOnion(O,Pj , sk(Pj)) = (R,⊥), then

return (I, ((H1
j+1,CompleteOnion(H1

j+1, C)), Pj+1)).

iv. If O 6= O1
j but H = H1

j and ProcOnion(O,Pj , sk(Pj)) 6= (R,⊥), then fail.
O.POS does the following to “process” an onion O:
v. If the header of O is H1

s and ProcOnion(O,Ps, sk(Ps)) = (R,m′) for some
message m′ 6= ⊥, then return (S, (`,m′)).

vi. If the header of O is H1
s and ProcOnion(O,Ps, sk(Ps)) = (R,⊥), then

return (S,⊥).
vii. If the header of O is H1

s and ProcOnion(O,Ps, sk(Ps)) 6= (R,m′) for any
message m′, then fail.

All other queries are processed as before.
C sends to A, the first onion Ob1 in the output of FormOnion.

6. A submits a polynomially-bounded number of (adaptively chosen) queries
to oracles O.POI(·), O.FRI(·, ·), O.POS(·), and O.FRS(·, ·).

7. Finally, A guesses a bit b′ and wins if b′ = b.

Brief formal descriptions of ROSecurityGame variants (b) and (c). Vari-
ant (b) differs from variant (a) in steps 4 and 5. In step 4, Pj is the recipient
as opposed to an intermediary on the forward path. In step 5, the challenger
still samples a random bit b←$ {0, 1} and, if b = 0, forms the challenge onion as
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specified by the adversary. If b = 1, the challenger runs FormOnion on input a
random label, a random message, the forward path (provided by the adversary),
and the empty path. The oracle for forming a reply on behalf of I is modified so
that the oracle replies with the output of FormOnion on input a random label,
a random message, the return path (provided by the adversary), and the empty
path “().” For the full description, see Appendix A.

Variant (c) also differs from variant (a) in steps 4 and 5. In step 4, Pj is
an intermediary on the return path (Pd+1, . . . , Ps), i.e., j > d, as opposed to an
intermediary on the forward path (P1, . . . , Pd). In step 5, the challenger still sam-
ples a random bit b←$ {0, 1} and, if b = 0, forms the challenge onion as specified
by the adversary. If b = 1, the challenger runs FormOnion on input a random
label, a message (provided by the adversary), the forward path (P1, . . . , Pd), and
the subpath (Pd+1, . . . , Pj). The oracle for processing an onion on behalf of I
is modified so that the oracle replies with the output of FormOnion on input a
random label, a random message, the rest of the return path (Pj+1, . . . , Ps), and
the empty path “().” For the full description, see Appendix A.

Definition 8 (Repliable-onion security). A repliable onion en-
cryption scheme Σ is repliable-onion secure if there exist a p.p.t.
algorithm CompleteOnion and a negligible function ν : N 7→
R such that every p.p.t. adversary A wins the security game
ROSecurityGame(1λ, Σ,CompleteOnion,A) with negligible advantage, i.e.,∣∣Pr

[
A wins ROSecurityGame(1λ, Σ,CompleteOnion,A)

]
− 1

2

∣∣ ≤ ν(λ).

Remark on Definition 8. An onion formed by running a secure onion encryp-
tion scheme and received (resp. transmitted) by an honest party P does not
reveal how many layers are remaining (resp. came before) since the adversary
cannot distinguish between the onion and another onion formed using the same
parameters except with the path truncating at the recipient (resp. sender) P .

5 Repliable-onion security ⇒ SUC-realizability of FROES

Theorem 9. If the onion encryption scheme Σ is correct (Definition 2) and
repliable-onion secure (Definition 8), then it SUC-realizes the ideal functionality
FROES (Definition 3).

To do this, we must show that for any static setting (fixed adversary A,
set Bad of corrupted parties, and public key infrastructure), there exists a sim-
ulator S such that for all Z, there exists a negligible function ν : N 7→ R such
that

∣∣Pr
[
IDEALFROES,S,Z(1λ, pp) = 1

]
− Pr

[
REALΣ,A,Z(1λ, pp) = 1

]∣∣ ≤ ν(λ).
We first provide a description of the simulator S:
Recall that during setup, the ideal adversary (i.e., S) sends to the ideal func-

tionality, (i) the set P of participants, (ii) the set Bad ⊆ P of corrupted parties,
(iii) the onion encryption scheme’s algorithms: G, ProcOnion, and FormReply,
(iv) the algorithm SampleOnion, (v) the algorithm CompleteOnion, and (vi) the
algorithm RecoverReply. (See Section 3.1 for the syntax of these algorithms.)
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In order for our construction to be secure, the simulator S must provide items
(i)-(vi) to FROES such that when the ideal honest parties respond to the environ-
ment, one input at a time, the running history of outputs looks like one produced
from running the real protocol using the onion encryption scheme.

To complete the description of S, we must provide internal descriptions of
how the last three items above – SampleOnion, CompleteOnion, and RecoverReply
– work. Since we are in the static setting, we will assume, WLOG, that these
algorithms “know” who is honest, who is corrupt, and all relevant keys. See
Figure 3 for a summary of the simulator.

Send to FROES:

P, Bad, G, ProcOnion, FormReply,

SampleOnion, CompleteOnion,

RecoverReply.

CompleteOnion(H′, C)

Let CO be an algorithm such that no

adversary can win ROSecurityGame
with non-negligible probability. Such
an algorithm must exist since Σ is

repliable-onion secure.

CompleteOnion = CO.

SampleOnion(p→, p←,m)

SampleOnion just runs FormOnion on the segments p→

and p← using a random label and, depending on

whether the first segment contains the corrupt
recipient, either the correct message m (if it does) or a

random one (if it doesn’t).

RecoverReply(O,P )

Return the message from running
ProcOnion(O,P, sk(P )).

Fig. 3: Summary of simulator S

Description of simulator S. We now expand on the summary in Figure 3.

Sampling an onion. Let F sid
ROES denote the ideal functionality corresponding to

the static setting. When the ideal functionality F sid
ROES receives a request from

the honest party P to form an onion using the label `, the message m, the
forward path P→, and the return path P←, F sid

ROES partitions the routing path
(P→, P←) into non-overlapping “segments” where each segment is a sequence
of adversarial parties that must end in a single honest party, unless it ends
in the adversarial recipient. (See Section 3.1 for a more formal description of
these segments.) F sid

ROES runs the algorithm SampleOnion independently on each
segment of the routing path. Additionally, if the forward path ends in a corrupt
party, F sid

ROES runs SampleOnion on the last segment of the forward path and the
first segment of the return path. Using SampleOnion in this way produces onions
with the property that onions belonging to different segments are information-
theoretically unrelated to each other.

The algorithm SampleOnion takes as input the security parameter 1λ, the
public parameters pp, the forward path p→, and the return path p←.
Case 0: The routing path (p→, p←) is not a sequence of adversarial parties,

possibly ending in an honest party. In this case, the input is invalid, and
SampleOnion returns an error.
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Case 1: The return path p← is non-empty and ends in an honest
party Pj . In this case, SampleOnion first samples a random label
x←$L(1λ) and then runs FormOnion on the label x, the message m
(from the “form onion” request), the forward path p→ = (p1, . . . , pi),
the public keys pk(p→) associated with the parties in p→, the re-
turn path p← = (pi+1, . . . , Pj), and the public keys pk(p←) associated
with the parties in p←. Finally, SampleOnion outputs the first onion o1
and the last header Hj in the output ((o1, . . . , oi), (hi+1, . . . ,Hj), κ) ←
FormOnion(1λ, pp, x,m, p→, pk(p→), p←, pk(p←)).

Case 2: The return path p← is empty, and the forward path p→ ends in an
honest party Pi. In this case, SampleOnion first samples a random label
x←$L(1λ) and a random message y←$M(1λ) and then runs FormOnion on
the label x, the message y, the forward path p→ = (p1, . . . , Pi), the public
keys pk(p→) associated with the parties in p→, the empty return path “(),”
and the empty sequence “()” of public keys. Finally, SampleOnion outputs
the first onion o1 and the last onion Oi in the output ((o1, . . . , Oi), (), κ)←
FormOnion(1λ, pp, x, y, p→, pk(p→), (), ()).

Case 3: The return path p← is empty, and the forward path p→ ends in
a corrupt party pi. In this case, SampleOnion first samples a random la-
bel x←$L(1λ) and then runs FormOnion on the label x, the message m
(from the “form onion” request), the forward path p→ = (p1, . . . , pi),
the public keys pk(p→) associated with the parties in p→, the empty
return path “(),” and the empty sequence “()” of public keys. Finally,
SampleOnion outputs the first onion o1 in the output ((o1, . . . , oi), h

←, κ)←
FormOnion(1λ, pp, x,m, p→, pk(p→), (), ()).

Completing an onion. The environment Z can modify just the content of an hon-
estly formed onion O = (H,X), leaving the header H intact. When Z instructs
an honest party P to process this kind of onion O = (H,C), the ideal function-
ality F sid

ROES runs the algorithm CompleteOnion to produce an onion (H ′, C ′) that
(i) looks like the output of ProcOnion on (H,C) and (ii) has the same header H ′

that F sid
ROES assigned to the peeled onion (H ′, X ′) of (H,X).

Since the onion encryption scheme Σ is repliable-onion secure (Definition 8),
by definition, there exist an algorithm CO and a negligible function ν such that no
adversary can win ROSecurityGame(1λ, Σ,CO,A) with probability greater than
ν(λ). We shall use this algorithm as the simulator’s CompleteOnion algorithm,
i.e., CompleteOnion = CO.

Recovering a reply message. The environment Z can instruct an honest party
P to process a return onion O formed by a corrupt recipient pd in response to
an onion from an honest sender; P can be an intermediary party on the return
path or the original sender. In such a situation, the ideal functionality F sid

ROES

runs the algorithm RecoverReply to recover the reply message from O.
The algorithm RecoverReply(1λ, pp, O, P ) simply runs ProcOnion(O,P, sk(P ))

and returns the message in the output (if it exists). If no message is returned,
then RecoverReply outputs an error.
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Proof sketch of Theorem 9. We now show that the view that any environ-
ment Z obtains by running the real protocol is indistinguishable from its view
when the honest participants run the ideal protocol FROES with our simulator S.

Proof idea: An onion encryption scheme SUC-realizes FROES if the environ-
ment cannot distinguish whether an honest onion’s evolution (the sequence of
onion layers) comes from a single call to FormOnion (the real setting), or if it
is produced by FROES. Recall that, to form an honest onion’s evolution, FROES

calls SampleOnion (which, for our simulator, is the same algorithm as FormOnion)
multiple times, each call corresponding to a segment of the onion’s routing path.

Our game-based definition of repliable-onion security has a very similar re-
quirement: the adversary cannot distinguish whether the evolution of an honestly
formed onion comes from a single FormOnion call or from two computationally
unrelated FormOnion calls. More precisely, if the game picks b = 0, then no
switch occurs, and the onion layers are formed “honestly,” i.e., via a single call
to FormOnion. If the game picks b = 1, then the onion layers are formed using a
“switch:” the path is broken up into two segments, and for each segment of the
path, the onion layers are formed using separate calls to FormOnion.

At the heart of our proof is a hybrid argument that shows that onion layers
formed using i calls to FormOnion (so they have i − 1 such “switches”) are in-
distinguishable from those formed by i+ 1 such calls. Thus, we show that onion
layers of the real protocol (produced by a single call to FormOnion) are indistin-
guishable from those in the ideal world (produced by FROES that calls FormOnion
separately for each segment of the routing path). Therefore, we conclude that
if an onion encryption scheme is repliable-onion secure, then it SUC-realizes
FROES. See the full version of this paper for the formal proof [1].

Is repliable-onion security necessary to SUC-realize FROES? Let us now address
the converse of the theorem. Given an onion encryption scheme Σ that SUC-
realizes FROES, does it follow that it is correct and repliable-onion secure?

In order to prove that it does, we would have to give a reduction B that acts
as the environment towards honest participants I and S; B’s goal is to determine
whether I and S are running Σ or, instead, using FROES with some simulator S.
B would obtain I’s and S’s public keys from the setup step of the system, and
would pass them on to A. Whenever A issues ProcOnion queries for I and S, B
acts as the environment that sends these onions to I and S.

Next comes the challenge step, and this is where this proof would run into
difficulty. In our repliable-onion security game, it is at this point that A spec-
ifies the names and public keys of the rest of the participants in the system.
But our functionality assumed that this setup was done ahead of time; model-
ing it this way made the functionality more manageable and interacted well
with the SUC model. However, we can show that a modified, non-adaptive
version of repliable-onion security is, in fact, necessary to SUC-realize FROES.
Let NAROSecurityGame(1λ, Σ,CompleteOnion,A) be the ROSecurityGame secu-
rity game modified as follows: instead of waiting until the challenge step to
specify the names and public keys on the routing path of the challenge onion, A
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specifies them at the very beginning. Other than that, we define non-adaptive
repliable-onion security completely analogously to repliable-onion security:

Definition 10 (Non-adaptive repliable-onion security). A repliable
onion encryption scheme Σ is non-adaptive repliable-onion secure if there
exist a p.p.t. algorithm CompleteOnion and a negligible function ν :
N 7→ R such that every p.p.t. adversary A wins the security game
NAROSecurityGame(1λ, Σ,CompleteOnion,A) with negligible advantage, i.e.,∣∣Pr

[
A wins NAROSecurityGame(1λ, Σ,CompleteOnion,A)

]
− 1

2

∣∣ ≤ ν(λ).

Theorem 11 is the closest we can show to the converse of Theorem 9:

Theorem 11. If an onion encryption scheme Σ SUC-realizes the ideal function-
ality FROES (Definition 3) then it is non-adaptive repliable-onion secure (Defi-
nition 10).

Proof. The proof is by a hybrid argument. Let Experiment0(1λ,A) be the adver-
sary’s view in the non-adaptive repliable-onion security game when b = 0. Let I
and S denote the names of the honest parties chosen by A.

Let Hybridreal0(1λ,A) be the same as Experiment0 except in organization.
Here, we split up the NAROSecurityGame challenger into components: one com-
ponent is responsible for executing Σ on behalf of participant S (i.e., generate
S’s keys, process and where possible, reply to onions routed to S, and form the
challenge onion on behalf of S), another is responsible for executing Σ on behalf
of I (i.e. i.e., generate I’s keys and deal with onions routed to I), and the third
component, B carries out everything else, including interacting with A. When
organized this way, it is easy to see that B and A jointly act as the environment
(from the SUC model) for the real-world execution of Σ by the honest partici-
pants S and I. The environment here directs only one of the participants (S) to
ever form an onion: just the one challenge onion. The output of Hybridreal0(1λ,A)
is the adversary’s view.

Let Hybridideal0(1λ,A) be the same as Hybridreal0(1λ,A) except that the real
execution of Σ is replaced with executing FROES. Hybridreal0 and Hybridideal0 are
indistinguishable by the hypothesis. By construction of FROES, the layers of the
sole onion that’s ever created in Hybridideal0(1λ,A) are computed by splitting
the routing path into two segments: one ends in I and the other one in S.

Let us consider another game Hybridideal1(1λ,A). This game is identical to
Hybridideal0(1λ,A) except in how it is internally organized. Here, acting as the
environment responsible for supplying inputs to S, B will cause two onions to
be formed. In case (a), both onions are formed by S: one with I as the recipient,
and the second onion is formed using the rest of the routing path; in case (b), S
sends a non-repliable onion to I who then replies to S by forming a fresh onion;
in case (c), I forms an onion using the first segment of the path, and then a fresh
onion with S as the recipient. The parts that are visible to A are just the onions
themselves, and therefore Hybridideal1(1λ,A) is identical to Hybridideal0(1λ,A).

Next, define Hybridreal1(1λ,A): here, the environment (B acting jointly with
A) interacts with S and I exactly as in Hybridideal1(1λ,A), but S and I are
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running Σ instead of FROES with S. By the hypothesis, Hybridreal1(1λ,A) is in-
distinguishable from Hybridideal1(1λ,A). It is easy to see that Hybridreal1(1λ,A)
and Hybridideal1(1λ,A) are identical when I appears only once in the routing
path. When I appears more than once in the routing path, the views are indis-
tinguishable due to the realizability of FROES.

Finally, let Experiment1(1λ,A) be the adversary’s view in the non-adaptive
repliable-onion security game when b = 1. Hybridreal1(1λ,A) and Experiment1 are
identical by construction. Therefore, we have shown that Experiment1(1λ,A) ≈
Experiment1(1λ,A), and therefore, Σ is non-adaptive repliable-onion secure.

6 Shallot Encryption

In this section, we provide our construction of a repliable onion encryption
scheme dubbed “Shallot Encryption Scheme.” Inspired by the Camenisch and
Lysyanskaya (CL) approach [5], our construction forms each onion layer for a
party P by encrypting the previous layer under a key k which, in turn, is en-
crypted under the public key of P and a tag t. Our construction differs from the
CL construction in that the tag t is not a function of the layer’s content. Instead,
authentication of the message happens separately, using a message authentica-
tion code. The resulting object is more like a shallot than an onion; it consists
of two separate layered encryption objects: the header and the content (which
may contain a “bud,” i.e., another layered encryption object, namely the header
for the return onion). We still call these objects “onions” to be consistent with
prior work, but the scheme overall merits the name “shallot encryption.”

Let λ denote the security parameter. Let F(·)(·, ·) be a pseudorandom function

family such that, whenever seed ∈ {0, 1}k, Fseed takes as input two k-bit strings
and outputs a k-bit string. Such a function can be constructed from a regular
one-input PRF in a straightforward fashion.

Let {fk(·)}k∈{0,1}∗ and {gk(·)}k∈{0,1}∗ be block ciphers, i.e., pseudorandom
permutations (PRPs). We use the same key to key both block ciphers: one
({fk(·)}k∈{0,1}∗) with a “short” blocklength L1(λ) is used for forming head-
ers, and the other ({gk(·)}k∈{0,1}∗) with a “long” blocklength L2(λ) is used
for forming contents. This is standard and can be constructed from regular
block ciphers. Following the notational convention introduced by Camenisch and
Lysyanskaya [5], let {X}k denote fk(X) if |X| = L1(λ), or gk(X) if |X| = L2(λ),
and let }X{k correspondingly denote f−1k (X) or g−1k (X).

Let E = (GenE ,Enc,Dec) be a CCA2-secure encryption scheme with tags [12],
let MAC = (GenMAC,Tag,Ver) be a message authentication code (MAC), and let
h be a collision-resistant hash function.

Setting up: Each party Pi forms a public key pair (pk(Pi), sk(Pi)) us-
ing the public key encryption scheme’s key generation algorithm GenE , i.e.,
(pk(Pi), sk(Pi))← GenE(1

λ, pp, Pi).
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Forming a repliable onion. Each onion consists of (1) the header (i.e., the
encrypted routing path and associated keys) and (2) the content (i.e., the en-
crypted message).

Forming the header: In our example, let Alice (denoted Ps) be the sender,
and let Bob (denoted Pd, d for destination) be the recipient. To form a repli-
able onion, Alice receives as input a label `, a message m, a forward path to
Bob: P→ = P1, . . . , Pd−1, Pd, |P→| = d ≤ N , and a return path to herself:
P← = Pd+1, . . . , Ps−1, Ps, |P←| = s − d + 1 ≤ N . All other participants Pi are
intermediaries.

Let “seed” be a seed stored in sk(Ps). Alice computes (i) an encryption key
ki = Fseed(`, i) for every party Pi on the routing path (P→, P←), (ii) an authenti-
cation key Kd for Bob using GenMAC(1λ) with Fseed(d, `) sourcing the randomness
for running the key generation algorithm, and (iii) an authentication key Ks for
herself using GenMAC(1λ) with Fseed(s, `) sourcing the randomness for running
the key generation algorithm.

Remark: We can avoid using a PRF in exchange for requiring state; an alter-
native to using a PRF is to store keys computed from true randomness locally.

The goal of FormOnion is to produce an onion O1 for the first party P1 on
the routing path such that P1 processing O1 produces the onion O2 for the next
destination P2 on the routing path, and so on.

Suppose for the time being that both the forward path and the return path
are of the maximum length N , i.e., d = s− d+ 1 = N .

Let O be an onion that we want party P to “peel.” The header of O is a
sequence H = (E,B1, . . . , BN−1). E is an encryption under P ’s public key and
the tag t = h(B1, . . . , BN−1) of the following pieces of information that P needs
to correctly process the onion: (i) P ’s role, i.e., is P an intermediary, or the
onion’s recipient, or the original sender of the onion whose reply P just received;
(ii) in case P is an intermediary or recipient, the encryption key k necessary for
making sense of the rest of the onion; (iii) in case P is the original sender, the
label ` necessary for making sense of the rest of the onion; and (iv) in case P is
the recipient, the authentication key K.

If P is an intermediary, it will next process (B1, . . . , BN−1) by inverting
each of them, in turn, using the block cipher’s key k, to obtain the values
}B1{k, . . . , }BN−1{k. The value }B1{k reveals the destination P ′ and the ci-
phertext E′ of the peeled onion. For each 1 < j < N , the value }Bj{k is block
(B′)j−1 of the peeled onion, so the header of the peeled onion will begin with
(E′, (B′)1, . . . , (B′)N−2). The final block (B′)N−1 of the header is formed by
computing the inverse of the PRP keyed by k of the all-zero string of length
L1(λ), i.e., (B′)N−1 =}0 . . . 0{k.

Therefore, sender Alice needs to form her onion so that each intermedi-
ary applying the procedure described above will peel it correctly. Using the
keys k1, . . . , kd and Kd, Alice first forms the header Hd = (Ed, B

1
d, . . . , B

N−1
d )

for the last onion Od on the forward path (the one to be processed by Bob):
For every i ∈ {1, . . . , N − 1}, let Bid = } . . . }0 . . . 0{ki . . . {kd−1

. The tag td
for integrity protection is the hash of these blocks concatenated together, i.e.,
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td = h(B1
d, . . . , B

N−1
d ). The ciphertext Ed is the encryption of (R, kd,Kd) under

the public key pk(Pd) and the tag td, i.e., Ed ← Enc(pk(Pd), td, (R, kd,Kd)). The
headers of the remaining onions in the evolution are formed recursively. Let

B1
d−1 = {Pd, Ed}kd−1

,

Bid−1 = {Bi−1d }kd−1
, ∀i ∈ {2, . . . , N − 1},

td−1 = h(B1
d−1, . . . , B

N−1
d−1 ),

Ed−1 ← Enc(pk(Pd−1), td−1, (I, kd−1));

and so on. (WLOG, we assume that (Pd, Ed) “fits” into a block; i.e., |Pd, Ed| ≤
L1(λ). A block cipher with the correct blocklength can be built from a standard
one [4, 20].)

Forming the encrypted content: Alice then forms the encrypted content for Bob.
First, if the return path P← is non-empty, Alice forms the header Hd+1 for the
return onion using the same procedure that she used to form the header H1

for the forward onion, but using the return path P← instead of the forward
path P→ and encrypting (S, `) instead of (R, ks,Ks). That is, the ciphertext Es
of the “innermost” header Hs is the encryption Enc(pk(Ps), ts, (S, `)) rather than
Enc(pk(Ps), ts, (R, ks,Ks)). If the return path is empty, then Hd+1, ks and Ks

are the empty string.
When Bob processes the onion, Alice wants him to receive (i) the message

m, (ii) the header Hd+1 for the return onion, (iii) the keys ks and Ks for forming
a reply to the anonymous sender (Alice), and (iv) the first party Pd+1 on the
return path. So, Alice sets the “meta-message” M to be the concatenation of
m, Hd+1, ks, Ks, and Pd+1: M = (m,Hd+1, ks,Ks, Pd+1).

Alice wants Bob to be able to verify that M is the meta-message, so she
also computes the tag σd = Tag(Kd,M). (WLOG, (M,σd) “fits” exactly into a
block; i.e., |M | ≤ L2(λ).)

The encrypted content Ci for each onion Oi on the forward path is given by:
Ci = {. . . {M,σd}kd . . . }ki . See Figure 4 for a pictorial description of the how
the repliable onion is formed.

We now explain what happens when d 6= N , or s− d+ 1 6= N : If either d or
s − d + 1 exceed the upper bound N , then FormOnion returns an error. If d is
strictly less than N , the header is still “padded” to N − 1 blocks by sampling
N encryption keys as before. Likewise if s − d + 1 < N , the header is padded
to N − 1 blocks in similar fashion. (Note that the size of each repliable onion is
twice the size of a CL non-repliable onion [5] with maximum path length N .)

Processing a repliable onion. Let Carol be an intermediary node on the
forward path from Alice to Bob. When Carol receives the onion Oi = (Hi, Ci)
consisting of the header Hi = (Ei, B

1
i , . . . B

N−1
i ) and the content Ci, she pro-

cesses it as follows:
Carol first computes the tag ti = h(B1

i , . . . B
N−1
i ) for integrity protection

and then attempts to decrypt the ciphertext Ei of the header using her se-
cret key sk(Pi) and the tag ti to obtain her role and key(s), i.e., (I, ki) =
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Step (a). form headers H6, H5, H4 for the return path:

}0 . . . 0{k5
}}0 . . . 0{k4

{k5Enc(pk(P6), (t6 = h(B6,1, B6,2)), (S, `))

H6 = ( E6 , B6,1 , B6,2 )

{P6, E6}k5Enc(pk(P5), (t5 = h(B5,1, B5,2)), (I, k5))

H5 = ( E5 , B5,1 , B5,2 )

{·}k5

{P5, E5}k4Enc(pk(P4), (t4 = h(B4,1, B4,2)), (I, k4))

H4 = ( E4 , B4,1 , B4,2 )

{·}k4

Step (b). form headers H3, H2, H1 for the forward path:

}0 . . . 0{k2
}}0 . . . 0{k1

{k2Enc(pk(P3), t3, (R, k3,K3))

H3 = ( E3 , B3,1 , B3,2 )

{P3, E3}k2Enc(pk(P2), t2, (I, k2))

H2 = ( E2 , B2,1 , B2,2 )

{·}k2

{P2, E2}k2Enc(pk(P1), t1, (I, k1))

H1= ( E1 , B1,1 , B1,2 )

{·}k1
Step (c). form content C1:

M = (m, (k6,K6), P4, H4)

C1= {{{M,Tag(K3,M)}k3
}k2
}k1

Fig. 4: Steps for forming the first shallot onion O1 = (H1, C1) when the forward path
is P→ = (P1, P2, P3), and the return path is P← = (P4, P5, P6): (a) steps for forming
the headers H6, H5, H4 for the return path, (b) steps for forming the headers H3, H2, H1

for the forward path, and (c) steps for forming the content C1.

Dec(sk(Pi), ti, Ei). Carol succeeds in decrypting Ei only if the header has not
been tampered with. In this case, she gets her role “I” and the key ki and pro-
ceeds with processing the header and content:

Carol first decrypts the first block B1
i of the current header to retrieve the

next destination Pi+1 and ciphertext Ei+1 of the processed header (header of the
next onion), i.e., (Pi+1, Ei+1) = }B1

i {ki . To obtain the first N − 2 blocks of the

processed header, Carol decrypts the last N−2 blocks of H: Bji+1 = }Bj+1
i {ki for

all j ∈ [N−2]. To obtain the last block of the processed header, Carol “decrypts”
the all-zero string “0 . . . 0:” BN−1i+1 = }0 . . . 0{ki . To process the content, Carol
simply decrypts the current content Ci: Ci+1 = }Ci{ki .
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Let David be an intermediary party on the return path. When David receives
the onion Oj , he processes it exactly in the same way that Carol processed the
onion Oi in the forward direction. (Critically, David does not know that he is
on the return path as opposed to the forward path.) See Figure 5 for a pictorial
description of the how the onion is processed.

Case (a). processing party Pi is an intermediary:

Oi = (( Ei , Bi,1 , Bi,2 ), Ci )

(I, ki)

(Pi+1, Ei+1)

0 . . . 0

Bi+1,1 Bi+1,2 Ci+1

Oi+1 = (Hi+1, Ci+i)

Decsk(Pi),h(Bi,1,Bi,2)
(·)

}·{ki
}·{ki

}·{ki

}·{ki

Case (b). Pi is the original sender:

Oi = (( Ei , Bi,1 , Bi,2 ), Ci )

(S, `)

m′

Decsk(Pi),h(Bi,1,Bi,2)
(·)

Decrypt using `.

Case (c). Pi is the recipient:

Oi = (( Ei , Bi,1 , Bi,2 ), Ci )

(R, ki,Ki)

m, (ks,Ks), Pi+1, Hi+1)

To reply: let m′, σ = TagKs
(m′) .

Ci+1

Decsk(Pi),h(Bi,1,Bi,2)
(·)

}·{ki

{·}ks

Fig. 5: Steps for processing a shallot onion Oi = ((Hi, Bi,1, Bi,2), Ci) when N = 3 and
when (a) the processing party Pi is an intermediary, (b) Pi is the original sender, and
(c) Pi is the recipient. For (c), steps for forming the reply onion Oi+1 = (Hi+1, Ci+1)
for the next destination Pi+1.
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Replying to the anonymous sender. When Bob receives the onion Od =
(Hd, Cd), he processes it in the same way that the intermediary party Carol
does, by running ProcOnion: Bob first decrypts the ciphertext Ed of the header
to retrieve his role “R” and the keys kd and Kd. If Od hasn’t been tampered
with, Bob retrieves the meta-message M = (m,Hd+1, ks,Ks, Pd+1) and the tag
σd that Alice embedded into the onion by decrypting the content Cd using the
key kd: ((m,Hd+1, ks,Ks, Pd+1), σd) = }Cd{kd . Bob can verify that the message
is untampered by running the MAC’s verification algorithm Ver(Kd,M, σd).

To respond to the anonymous sender (Alice) with the message m′,
Bob creates a new encrypted content using the keys ks and Ks: Cd+1 =
{m′,Tag(Ks,m

′)}ks . Bob sends the reply onion Od+1 = (Hd+1, Cd+1) to the
next destination Pd+1.

Reading the reply. When Alice receives the onion Os, she retrieves the reply
from Bob by first processing the onion, by running ProcOnion:

Alice first decrypts the ciphertext Es of the header to retrieve her role “S”
and the label `. She reconstructs the each encryption key ki = Fseed(`, i) and the
authentication key Ks using the pseudo-randomness Fseed(s, `). (Alternatively,
if she stored the keys locally, she looks up the keys associated with label ` in
a local data structure). If Os hasn’t been tampered with, Alice retrieves the
reply m′ that Bob embedded into the onion by decrypting the content Cs using
the keys (kd+1, . . . , ks): (m′, σs) =}{. . . {Cs}ks−1

. . . }kd+1
{ks . Alice can verify

that the message is untampered by running Ver(Ks,m
′, σs).

7 Shallot Encryption Scheme is secure

Theorem 12. Shallot Encryption Scheme (in Section 6) SUC-realizes the ideal
functionality FROES (Definition 3).

By Theorem 9, it suffices to prove that Shallot Encryption Scheme is correct
and repliable-onion secure under the assumption that (i) {fk}k∈{0,1}∗ is a PRP,
(ii) E is a CCA2-secure encryption scheme with tags, (iii) MAC is a message
authentication code, and (iv) h is a collision-resistant hash function.

Proof idea: In cases (a) and (c) (in these cases, Pj is an intermediary, not the
recipient), we can prove that A’s view when b = 0 is indistinguishable from A’s
view when b = 1 using a hybrid argument. The gist of the argument is as follows:
First, Pj ’s encryption key kj is protected by CCA2-secure encryption, so it can
be swapped out for the all-zero key “0 . . . 0.” Next, blocks (N − j−1) to (N −1)
of the onion for Pj+1 look random as they are all “decryptions” under kj , so they
can be swapped out for truly random blocks. Next, blocks 1 to (N − j − 1) and
the content of the onion for Pj look random as they are encryptions under kj ,
so they can be swapped out for truly random blocks. At this point, the keys for
forming Oj+1 can be independent of the keys for forming Oj , and these onions
may be formed via separate FormOnion calls; see Figure 6.
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Experiment0—game with b = 0, same as Hybrid1

Hybrid1—make Oj+1, then O1

Hybrid2—same as Hybrid1 except swap ` for random label

Hybrid3—same as Hybrid2 except swap kj for fake key “0 . . . 0”

Hybrid4—same as Hybrid3 except swap (BN−j−1
j+1 , . . . , BN−1

j+1 ) for truly random blocks

Hybrid5—same as Hybrid4 except swap (B1
j , . . . , B

N−j−1
j ) and Cj for truly random blocks

Hybrid6—same as Hybrid5 except swap onion for intermediary Pj for onion for recipient Pj

Hybrid7—same as Hybrid6 except swap truly random blocks and content in Oj for

pseudo-random blocks (B1
j , . . . , B

N−j−1
j , Cj)

Hybrid8—same as Hybrid7 except swap truly random blocks in Hj+1 for pseudo-random

blocks (BN−j−1
j+1 , . . . , BN−1

j+1 )

Hybrid9—same as Hybrid8 except swap key “0 . . . 0” for real key kj
Experiment1—game with b = 1, same as Hybrid9

Fig. 6: Road map of proof of Theorem 12

For case (b) (Pj is the recipient), we can use a simpler hybrid argument since
only the content of a forward onion can be computationally related to the keys
for the return path. Thus, we can swap out just the content for a truly random
string. See the full paper for the full proof [1].
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A Security game for variants (b) and (c)

Variant (b) Below, we provide a description of steps 4 and 5 of the repliable-
onion security game, ROSecurityGame, in Section 4 for case (b).
4. A chooses a label ` ∈ L(1λ) and a message m ∈ M(1λ). A also chooses a

forward path P→ = (P1, . . . , Pd) and a return path P← = (Pd+1, . . . , Ps)
such that (i) if P← is non-empty, then it ends with S, (ii) I appears in the
routing path, and (iii) the first time it appears in the path is at the recipient
Pd. A sends to C the parameters for the challenge onion: `, m, P→, the
public keys pk(P→) of the parties in P→, P←, and the public keys pk(P←)
of the parties in P←.

5. C samples a bit b←$ {0, 1}.
If b = 0, C runs FormOnion on the parameters specified by A, i.e.,

((O0
1, . . . , O

0
d), H

←, κ)← FormOnion(`,m, P→, pk(P→), P←, pk(P←)).
In this case, the oracles—O.POI(·), O.FRI(·, ·), O.POS(·), and O.FRS(·, ·)—
remain unmodified.

Otherwise, if b = 1, C performs the “switch” at honest recipient Pd.
C runs FormOnion on input a random label x←$L(1λ), a random mes-
sage y←$M(1λ), the forward path P→, and the empty return path “()”,
i.e., ((O1

1, . . . , O
1
d), (), κ)← FormOnion(x, y, P→, pk(P→), (), ()).

We modify the oracles as follows. O.FRI does the following to “form a
reply” using message m′ and onion O = O1

d: O.FRI runs FormOnion on a
random label x′, a random message y′, the return path P← as the forward
path, and the empty return path “()”, i.e., ((Om

′

j+1, . . . , O
m′

s ), (), κm
′
) ←

FormOnion(x′, y′, P←, pk(P←), (), ()), stores the pair (Om
′

s ,m′) (such that
the pair is accessible by O.POS), and returns (Om

′

j+1, Pj+1). O.POS does the
following to “process” an onion O:

i. If O = O′ for some stored pair (O′,m′) and ProcOnion(O,Ps, sk(Ps)) =
(R,m′), then return (S, (`,m′)).

ii. If O = O′ for some stored pair (O′,m′) and ProcOnion(O,Ps, sk(Ps)) 6=
(R,m′), then fail.

iii. If O 6= O′ for any stored pair (O′,m′) but O = (H ′, C) for some stored
pair ((H ′, C ′),m′) and ProcOnion(O,Ps, sk(Ps)) = (R,⊥), then return
(S,⊥).

iv. If O 6= O′ for any stored pair (O′,m′) but O = (H ′, C) for some stored
pair ((H ′, C ′),m′) and ProcOnion(O,Ps, sk(Ps)) 6= (R,⊥), then fail.

All other queries are processed as before.

Variant (c) Below, we provide a description of steps 4 and 5 of the repliable-
onion security game, ROSecurityGame, in Section 4 for case (c).
4. A chooses a label ` ∈ L(1λ) and a message m ∈ M(1λ). A also chooses

a forward path P→ = (P1, . . . , Pd) and a return path P← = (Pd+1, . . . , Ps)
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such that (i) if P← is non-empty, then it ends with S, (ii) I doesn’t appear on
the P→, and (iii) I appears somewhere on P←. A sends to C the parameters
for the challenge onion: `, m, P→, the public keys pk(P→) of the parties in
P→, P←, and the public keys pk(P←) of the parties in P←.

5. C samples a bit b←$ {0, 1}.
If b = 0, C runs FormOnion on the parameters specified by A, i.e.,

((O0
1, . . . , O

0
d), H

←, κ)← FormOnion(`,m, P→, pk(P→), P←, pk(P←)).
In this case, the oracles—O.POI(·), O.FRI(·, ·), O.POS(·), and O.FRS(·, ·)—
remain unmodified.

Otherwise, if b = 1, C performs the “switch” at honest party Pj on the
return path P←, where Pj is the first appearance of I on the routing path.
C runs FormOnion on input a random label x←$L(1λ), the message m (that
had been chosen by A in step 4), the forward path P→, and the “trun-
cated” return path p← = (Pd+1, . . . , Pj), i.e., (O→, (H1

d+1, . . . ,H
1
j ), κ) ←

FormOnion(x,m, P→, pk(P→), p←, pk(p←)).
We modify the oracles as follows. O.POI does the following to “process”

an onion O:
i. If O = (H1

j , C) for some content C and ProcOnion(O,Pj , sk(Pj)) =
(R,m′) for some message m′ (possibly equal to “⊥”), then runs
FormOnion on a random label x′, a random message y′, the re-
mainder the return path q← = (Pj+1, . . . , Ps) as the forward path,

and the empty return path “()”, i.e., ((Om
′

j+1, . . . , O
m′

s ), (), κm
′
) ←

FormOnion(x′, y′, q←, pk(q←), (), ()), stores the pair (Om
′

s ,m′) (such that
the pair is accessible by O.POS), and returns (Om

′

j+1, Pj+1).

ii. If O = (H1
j , C) for some content C and ProcOnion(O,Pj , sk(Pj)) 6=

(R,m′) for some message m′, then fails.
O.POS does the following to “process” an onion O:
iii. If O = O′ for some stored pair (O′,m′) and ProcOnion(O,Ps, sk(Ps)) =

(R,m′), then return (S, (`,m′)).
iv. If O = O′ for some stored pair (O′,m′) and ProcOnion(O,Ps, sk(Ps)) 6=

(R,m′), then fail.
v. If O 6= O′ for any stored pair (O′,m′) but O = (H ′, C) for some stored

pair ((H ′, C ′),m′) and ProcOnion(O,Ps, sk(Ps)) = (R,⊥), then return
(S,⊥).

vi. If O 6= O′ for any stored pair (O′,m′) but O = (H ′, C) for some stored
pair ((H ′, C ′),m′) and ProcOnion(O,Ps, sk(Ps)) 6= (R,⊥), then fail.

All other queries are processed as before.

34


	 Cryptographic Shallots: A Formal Treatment of Repliable Onion Encryption 

