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Abstract. The study of secure multi-party computation (MPC) has
thus far been limited to the following two settings: every party is fully
classical, or every party has quantum capabilities. This paper studies a
notion of MPC that allows some classical and some quantum parties to
securely compute a quantum functionality over their joint private inputs.
In particular, we construct constant-round composable protocols for blind
and verifiable classical delegation of quantum computation, and give ap-
plications to secure quantum computation with classical communication.
Assuming QLWE (the quantum hardness of learning with errors), we ob-
tain the following (maliciously-secure) protocols for computing any BQP
(bounded-error quantum polynomial-time) functionality.
– A six-round protocol between one quantum server and multiple clas-

sical clients in the CRS (common random string) model.
– A three-round protocol between one quantum server and multiple

classical clients in the PKI (public-key infrastructure) + QRO (quan-
tum random oracle) model.

– A two-message protocol between quantum sender and classical re-
ceiver (a quantum non-interactive secure computation protocol), in
the QRO model.

To enable composability of classical verification of quantum computa-
tion, we require the notion of malicious blindness, which stipulates that
the prover does not learn anything about the verifier’s delegated compu-
tation, even if it is able to observe whether or not the verifier accepted the
proof. To construct a protocol with malicious blindness, we use a classi-
cal verification protocol for sampBQP computation (Chung et al., Arxiv
2020), which in general has inverse polynomial soundness error, to prove
honest evaluation of QFHE (quantum fully-homomorphic encryption)
ciphertexts with negligible soundness error. Obtaining a constant-round
protocol requires a strong parallel repetition theorem for classical veri-
fication of quantum computation, which we show following the “nearly
orthogonal projector” proof strategy (Alagic et al., TCC 2020).

1 Introduction

Secure multi-party computation (MPC) is a fundamental cryptographic task
that allows for multiple parties to securely evaluate a function on their joint
private inputs. The study of MPC is foundational to the field of modern cryp-
tography [48,32,12,19] and has since only increased in depth and scope.



Naturally, the vast majority of MPC literature considers the task of securely
evaluating a classical functionality over classical inputs. However, the emergence
of quantum computing technology raises several interesting and increasingly rele-
vant questions for the field of secure computation. Indeed, secure computation of
quantum functionalities over potentially quantum inputs also has a rich history
of study, including many recent works [23,11,47,27,38,25,4,34,8,9,37].

One drawback of each of the above multi-party quantum computation (MPQC)
protocols is that they require each party to operate a quantum computer, or at
least be able to manipulate some quantum information. Indeed, personal quan-
tum computers remain far from a reality, and it appears as if quantum computa-
tion will be concentrated in the hands of a few technologically-advanced entities
for the foreseeable future. Thus, recent years have seen a major research effort
towards the goal of classical delegation of quantum computation, which allows
a classical client to enlist the resources of a quantum server, ideally without
comprising the privacy of the client’s data or the integrity of the computation
[40,41,14,30,3,20,21].

These works consider a single classical client with (potentially private) input,
interacting with an input-less quantum server. Thus, they do not address the
possibility of multi-party quantum computation with classical communication,
and do not attempt to realize fully simulation-secure protocols, which is the gold
standard notion of security for distributed computation. In this work, we address
the following feasibility question for the first time, where “securely compute”
refers to simulation security against arbitrarily malicious parties.

Can multiple parties, some of which do not have any quantum
capabilities, securely compute a quantum functionality over their joint

private inputs?

1.1 Results

We study the notion of MPQC with classical communication secure against a
dishonest majority of arbitrarily malicious parties. We focus on MPQC for BQP
(bounded-error quantum polynomial-time) computation.1 We capture BQP by
considering “pseudo-deterministic” quantum functionalities 𝐷(·) that on classi-
cal input 𝑥, produce a fixed classical output 𝑧 except with negligible probability.

Composable blind CVQC. We begin by considering a simple two-party func-
tionality between classical client and quantum server, defined by a pseudo-
deterministic circuit 𝐷(·). It takes an input 𝑥 from the client and a bit 𝑏 from the
server (indicating honest or dishonest behavior) and delivers the output 𝐷(𝑥)

1 This is as opposed to a more general class of quantum functionalities that may
output an arbitrary distribution over classical strings (see discussion in Section 1.3).
Note that this distinction generally does not arise in the classical setting, since one
can make any randomized functionality deterministic by fixing the random coins. In
the quantum setting, this strategy will not always work since randomness can come
from measurement.
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to the client if 𝑏 = 0 and the output ⊥ if 𝑏 = 1. We say that a protocol with
classical communication that securely implements this ideal functionality is a
composable blind CVQC protocol. Our first result is described in the following
informal theorem.

Theorem 1. (Informal) Assuming the quantum hardness of learning with er-
rors (QLWE), there exists a four-round composable blind CVQC protocol. The
protocol can be made two rounds in the quantum random oracle model.

Next, we give applications of composable blind CVQC to secure quantum
computation.

Multi-party results. In the multi-party setting, we construct two protocols, both
of which only require a single party (called the server) to have quantum capa-
bilities. This setting of one quantum server and several classical clients can be
viewed as a quantum analogue of “cloud-assisted” MPC, introduced by [6]. In
their setting, several clients wish to securely outsource the bulk of some compu-
tation to a single powerful server, and they require that the client computation
is much smaller than the functionality to be computed. In our setting, we con-
sider several classical clients that wish to outsource a quantum computation to
a single quantum server, and we require that the client computation is entirely
classical (though it may grow with the size of the functionality to be computed).

The features of our first protocol are described in the following theorem.

Theorem 2. (Informal) Assuming the quantum hardness of learning with er-
rors (QLWE), there exists a six-round protocol (in the common random string
model2) between multiple classical clients and one quantum server for computing
any pseudo-deterministic quantum functionality over the private inputs of the
clients. The protocol tolerates any coalition (including client-server collusion) of
malicious quantum polynomial-time adversaries.

We next study cloud-assisted MPQC with the following interaction pattern.

– Round 1: each classical client 𝑃𝑖 computes and broadcasts an encryption ct𝑖
of their input 𝑥𝑖.

– Round 2: the quantum server computes and broadcasts an encryption ̃︀ct of
the output.

– Round 3: the clients participate in a one-round decryption procedure that
delivers output 𝑦𝑖 to each client 𝑃𝑖.

The feasibility of this interaction pattern in the classical setting was estab-
lished by [6] in the PKI (public-key infrastructure) model, where each client can
publish a succinct and reusable public key before the protocol begins.3 Here, we

2 A constant-round protocol in the plain model can also be obtained by using constant-
round post-quantum MPC [2] to set up the CRS. However, this introduces more
rounds and assumptions (in particular, a circular-security assumption).

3 It was later shown how to remove the PKI via multi-key fully homomorphic encryp-
tion [44].
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show how to achieve three-round cloud-assisted MPQC in the QROM (quantum
random oracle model),4 also assuming a PKI setup, as described in the following
theorem.

Theorem 3. (Informal) Assuming QLWE, there exists a three-round protocol
(in the QRO + PKI model) between multiple classical clients and one quantum
server for computing any psuedo-deterministic quantum functionality over the
private inputs of the clients. The protocol tolerates any coalition (including client-
server collusion) of malicious quantum polynomial-time adversaries.

Two-party results. In the two-party setting, we show how to construct a round-
optimal (two-message) protocol where one party receives output. That is, we
consider a quantum sender 𝒮 with classical input 𝑥𝒮 and a classical receiver ℛ
with classical input 𝑥ℛ, and we construct a maliciously-secure two-message pro-
tocol that delivers𝐷(𝑥ℛ, 𝑥𝒮) to the receiver. This can be seen as a (non-reusable)
NISC (non-interactive secure computation) protocol for BQP. Both non-reusable
and reusable NISC protocols have a long history of study in the classical setting
[48,36,35,1,7,18,42], and we give the first construction that supports quantum
functionalities while maintaining classical communication.

Theorem 4. (Informal) Assuming QLWE, there exists a NISC for BQP with
classical receiver in the quantum random oracle model.

1.2 Technical overview

Background. Our starting point is two works of Mahadev [40,41] on classical
delegation of quantum computation. Taken together, they show that a classical
client can delegate a BQP computation to a quantum server while maintaining
both privacy of the client’s input and integrity of the computation performed.
Indeed, [41] shows how to obtain soundness via a construction of classical ver-
ification of quantum computation (CVQC), meaning that a (computationally
bounded) cheating server won’t be able to convince the classical client of a false
outcome. Furthermore, [40] shows how to obtain privacy of the client’s input via
a construction of quantum fully-homomorphic encryption (QFHE) with classical
keys. Executing CVQC under the hood of QFHE then provides both privacy and
soundness, which was recently formalized by [21].

Our goal is to extend these results to the setting of fully-simulatable maliciously-
secure computation, while also enabling multiple classical clients to outsource a
quantum computation on their private inputs to a single quantum server. A nat-
ural idea would be to make use of post-quantum classical MPC to simulate the
classical client in the above two-party client-server protocol. That is, 𝑛 parties
engage in classical MPC to set up a joint encryption QFHE.Enc(𝑥1, . . . , 𝑥𝑛) of
their inputs, and then they proceed to interact with the quantum server as a
single entity.

4 We also require a common random string (CRS) setup, but this is subsumed by the
random oracle model.
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Unfortunately, the resulting protocol suffers from an input-dependent abort
issue, rendering it insecure. Consider a malicious server that colludes with any
one of the classical clients 𝑃1. Under QFHE, the server can decide whether to
honestly complete the CVQC or force an abort as a function of the clients’
private inputs. Then, 𝑃1’s output will signal which was the case, allowing the
server (and 𝑃1) to learn any arbitrary predicate of the honest clients’ inputs. In
fact, the possibility of causing an input-dependent abort also prevents the origi-
nal protocol between single client and single server from satisfying the standard
notion of simulatable two-party computation. In other words, executing CVQC
under QFHE does not result in a composable blind CVQC protocol.

CVQC with malicious blindness. In order to prevent such input-dependent abort
attacks, what we need is a CVQC protocol where the prover cannot learn any-
thing about the verifier’s input, even if is able to learn whether or not the verifier
aborted (rejected its proof). We will refer to this property as malicious blindness.

As explained above, executing CVQC under QFHE does not result in mali-
cious blindness. But what if we switch the nesting of CVQC and QFHE, using
CVQC to prove that a QHFE evaluation QFHE.Enc(𝑥) → QFHE.Enc(𝑦) is per-
formed honestly? It is not immediately clear how to do this, since [41]’s CVQC
protocol only works for BQP computation, and QFHE evaluation is a sampBQP
computation. Indeed, the “encrypted CNOT” operation at the heart of [40]’s
QFHE involves obliviously sampling a classical FHE ciphertext by measuring
a superposition over encryption random coins. Thus, performing QFHE evalua-
tion of a pseudo-deterministic quantum functionality 𝑦 := 𝐷(𝑥) will produce a
distribution over ciphertexts QFHE.Enc(𝑦; 𝑟) with the same outcome 𝑦 but with
varying random coins 𝑟.

However, Chung et al. [21] recently showed how to extend the protocols
of [28,41] to prove the correctness of sampBQP computations. The caveat is
that the soundness error of their protocol is non-negligible, due to the following
issue. Roughly, the prover prepares multiple copies of the history state of the
computation, and the verifier chooses all but one of them to test and one of them
to sample from. A malicious prover can always guess which state the verifier
will sample from with inverse polynomial probability and cheat only in that
copy of the history state, convincing the verifier to accept a completely invalid
result. For general sampBQP problems, this issue appears somewhat inherent to
their approach, since there is no meaningful way to combine multiple potentially
invalid samples into a single valid sample.

We observe that for the special case of proving honest QFHE evaluation
of some BQP computation, one can meaningfully combine multiple potentially
invalid samples. Consider a verifier that requests multiple output ciphertexts,
decrypts them all, and then outputs the most frequently occurring plaintext. If
the prover can only cheat with some small (say 1/4) probability on each sample,
then one should be able to drive the probability of accepting an invalid result
down to negligible, with enough samples.

More abstractly, we consider any pseudo-deterministic circuit 𝐷(·) that can
be written as 𝐶(𝑄(·)), where 𝑄 is a quantum circuit and 𝐶 is a classical cir-
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cuit. On any classical input 𝑥, 𝐶(𝑄(𝑥)) produces a well-defined output 𝑧 (with
overwhelming probability), while 𝑄(𝑥) may produce any distribution over inter-
mediate classical values 𝑦. The goal will be to obtain a protocol for delegating
the computation of 𝐶(𝑄(·)) where the prover’s computation and the verifier’s
decision to accept or reject is independent of 𝐶.

We first use the one-round sampBQP verification protocol of [21] (with a
quantum verifier that performs single-qubit computational and Hadamard basis
measurements) to show how to verify such pseudo-deterministic computations
with negligible soundness error (details in Section 4.2). The resulting protocol
consists of a quantum proof and requires a quantum verifier to perform single-
qubit meausurements. The next step is then to incorporate Mahadev’s measure-
ment protocol [41] in order to make the proof and the verifier fully classical.

The measurement protocol as described in [41] proceeds in a number of
rounds, where in each round, the verifier issues a single bit challenge indicat-
ing either a “test” round or a “Hadamard” round. The test round is meant to
check that the prover is behaving honestly (i.e. it is honestly “committing” to
some particular quantum state), while the Hadamard round is meant to produce
a sequence of classical measurement results that the verifier can use to produce
its verdict. A single round consists of four classical messages between prover and
verifier, and [41] shows that it satisfies the following property: Any prover that
passes the test round with overwhelming probability will only be able to “cheat”
in a Hadamard round with negligible probability, assuming QLWE.

In Section 4.3, we use this protocol to obtain a four message protocol for ver-
ifying circuits 𝐷(·) = 𝐶(𝑄(·)) that satisfies the following property. The verifier
will either choose a test round, in which case they simply accept or reject, or
they will choose a Hadamard round, in which case they either reject or obtain
a purported sample 𝑦 ← 𝑄(𝑥). In the latter case, they compute and output
𝑧 := 𝐶(𝑦). Any prover that passes the test round with overwhelming probabil-
ity will only be able to force an incorrect output in a Hadamard round with
negligible probability.

Parallel repetition. Now, we would like to obtain negligible soundness error,
ideally while maintaining the four-message interaction. Recent works [3,20] have
shown how to do this in the setting where the cheating prover is attempting
to convince the verifier to accept some false BQP statement. They show that
if the four-message protocol is run sufficiently many times 𝑛 in parallel, then
the probability that the verifier accepts on all repetitions is negligible. Phrased
differently, they show that, conditioned on the verifier accepting each of the
(roughly) 𝑛/2 test rounds, the prover will not be able to successfully “cheat” on
all the Hadamard rounds, except with negligible probability.

However, this is not quite enough for our setting. Recall that in the 𝑖’th
Hadamard round, the verifier receives a purported sample 𝑦𝑖 ← 𝑄(𝑥) and com-
putes 𝑧𝑖 := 𝐶(𝑦𝑖). Crucially, we want the verifier to have already decided to
accept by the time they invoke 𝐶 to compute the outputs 𝑧𝑖. Thus, to combine
these {𝑧𝑖}𝑖 into a final output 𝑧, we will simply have the verifier output the most
frequently occurring string 𝑧 in the set (in particular, this final output compu-
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tation cannot decide to accept/reject based on any properties of the set {𝑧𝑖}𝑖).
Now, a prover that successfully cheats in only half of the Hadamard rounds may
be able to force an invalid output. Our goal is thus to show that this can only
happen with negligible probability.

To do so, we take a closer look at the proof of the parallel repetition theorem
from [3]. The following exposition will be simplified and not technically accurate,
and is just meant to convey intuition. They consider any cheating prover state
|𝜓⟩ right before the verifier’s challenge 𝑐← {0, 1}𝑛 is chosen (𝑛 is the number of
repetitions, and 𝑐𝑖 = 0 corresponds to a test round while 𝑐𝑖 = 1 corresponds to
a Hadamard round). Then, for each possible 𝑐 ∈ {0, 1}𝑛, they consider a binary-
valued projector 𝛱𝑐 that corresponds to running the prover’s remaining strategy
and then applying the verifier’s verdict function on the resulting proof. Since 𝑐
is chosen uniformly at random, it suffices to show that 1

2𝑛 ⟨𝜓|
∑︀

𝑐∈{0,1}𝑛 𝛱𝑐 |𝜓⟩
is negligible. To do so, they square the quantity ⟨𝜓|

∑︀
𝑐𝛱𝑐 |𝜓⟩ and then show

that each cross term ⟨𝜓|𝛱𝑐𝛱𝑐′ |𝜓⟩ for 𝑐 ̸= 𝑐′ is negligible.
This is possible in their setting because the verifier only accepts if every test

and Hadamard round accepts. This means that if 𝛱𝑐 and 𝛱𝑐′ are both accepting
for 𝑐 ̸= 𝑐′, there must be some index 𝑖 where the prover is being accepted on
both a test round and a Hadamard round (any 𝑖 such that 𝑐𝑖 ̸= 𝑐′𝑖). This can be
used to contradict the key property of the single repetition protocol described
above, that any prover accepted on a test round with overwhelming probability
can only cheat on a Hadamard round with negligible probability.

In our setting, we say that the verifier accepts if every test round accepts
and at least half of the Hadamard rounds accept. Thus, it is no longer true that
any noticeably large cross term ⟨𝜓|𝛱𝑐𝛱𝑐′ |𝜓⟩ will imply a contradiction to the
single repetition protocol. Indeed, if 𝑐 and 𝑐′ are somewhat close in Hamming
distance, a prover could be rejected in a Hadamard round on all indices 𝑖 such
that 𝑐𝑖 ̸= 𝑐′𝑖 without causing the overall verifier to reject.

However, we observe that (i) it suffices to bound an overwhelming fraction
of the cross terms (rather than all), and (ii) for any 𝑐, 𝑐′ that have sufficiently
large Hamming distance, if ⟨𝜓|𝛱𝑐𝛱𝑐′ |𝜓⟩ is large, then there must be some index
where the prover is simultaneously passing both the test and Hadamard rounds.
Thus, we will need an overwhelming fraction of cross terms to correspond to
pairs of challenge strings 𝑐, 𝑐′ with Hamming distance at least as large as the
number of Hadamard rounds. To facilitate this, we alter the protocol, setting
the number of Hadamard rounds to some fixed 𝜆, the total number of rounds
to 𝑛 = 𝜆1+𝜖, and having the verifier sample a challenge string 𝑐 ∈ {0, 1}𝑛
with Hamming weight exactly 𝜆. The full details and proof of this strengthened
parallel repetition theorem can be found in Section 3.

Secure quantum computation. The above shows how to obtain negligible sound-
ness for classical verification of quantum-classical circuits 𝐶(𝑄(·)), where the
verifier decides to accept or reject independently of 𝐶. In the remainder of the
paper, we show how to use this primitive to construct composable blind CVQC,
and then present applications to secure quantum computation with classical
communication.
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In Section 4.4 we show that four-message composable blind CVQC follows by
letting 𝑄 correspond to QFHE evaluation, and 𝐶 correspond to QFHE decryp-
tion. Crucially, the QFHE decryption key is not needed to determine whether
the verifier accepts or rejects, which results in the malicious blindness needed
to ensure composability. Then, in Section 5.1, we use post-quantum MPC for
classical (reactive) functionalities to allow multiple parties to simulate a sin-
gle verifier participating in the CVQC protocol with the server. This results in
a constant-round MPQC protocol in the common random string model from
QLWE.

Next, we consider the three-round interaction pattern described in Section 1.1.
To implement this, we will need a CVQC protocol with (i) two total messages,
and (ii) distributed setup, where multiple parties can encrypt their respective
inputs without any interaction. We construct this primitive in the full version via
the following observations. Property (i) can be obtained in the quantum random
oracle model (QROM) by appealing to Fiat-Shamir in the QROM [24,39]. Prop-
erty (ii) can be obtained via the use of quantum multi-key fully homomorphic
encryption, which was recently constructed in [2]. In fact, we will also require
the CVQC protocol to satisfy various perfect correctness properties to obtain
security against verifiers that make a malicious choice of random coins, and we
defer discussion of this to the body.

Now, in the full version, we show how to combine the two-message CVQC
with distributed setup with a classical multi-party reusable non-interactive secure
computation protocol (mrNISC) to obtain three-round MPQC in the public-key
infrastructure (PKI) model. Maliciously-secure post-quantum mrNISC protocols
have recently been constructed from QLWE [5,13]. The reason we need a PKI
is the following. In the two-message CVQC protocol, the various inputs can be
encrypted in a distributed fashion. However, the verifier also needs to set up
some (input-independent) public parameters pp along with secret parameters sp
kept private from the prover. This part cannot be fully distributed, so before
the protocol begins, we will have each party publish a public key consisting of a
mrNISC first-round message committing to a PRF key. This message is succinct
(does not depend on the size of the functionality to be computed) and reusable
across any varying subsets of parties (due to the reusability of the mrNISC
protocol), and so it satisfies the requirements of the PKI model. These PRF
keys can then be used to compute public parameters in the first round of the
MPQC protocol, which are sent to the server along with the encryptions of each
party’s input.

Finally, in the full version, we show that the two-message CVQC with dis-
tributed setup primitive can also be used to construct a two-message protocol
between two parties: a quantum sender 𝒮 and a classical receiver ℛ. Both parties
have classical inputs, but can compute a (pseudo-deterministic) quantum func-
tionality over these inputs. This follows by letting each of the sender and receiver
independently encrypt their input, having the sender evaluate the CVQC prover,
and then executing the CVQC verifier under a classical NISC (non-interactive
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secure computation) protocol. This results in a quantum NISC protocol with
classical communication.

1.3 Discussion and open problems

Quantum sampling circuits. The above describes how to achieve standard ma-
licious security for secure multi-party computation of pseudo-deterministic cir-
cuits. That is, any adversary will only have negligible advantage in distinguishing
the real and simulated worlds. A natural next question is whether this is achiev-
able for the more general class of polynomial-time quantum sampling problems,
i.e. functionalities that output an arbitrary distribution over classical strings.

It is straightforward to see that the sampBQP protocol of [21] can be com-
bined with QFHE and post-quantum classical MPC to give MPQC for quantum
sampling problems with classical communication, but with some inverse poly-
nomial security. That is, the adversary will be able to distinguish the real and
simulated worlds with at most some inverse polynomial probability (but where
the communication complexity of the protocol grows with this polynomial). This
follows by using their sampBQP protocol to prove the correct computation of
QFHE.Enc(𝑦) ← QFHE.Eval(𝑄,QFHE.Enc(𝑥)), where 𝑄 is some quantum sam-
pling circuit, and 𝑥 is the joint private inputs of the clients.

Another potential approach to secure computation of sampling circuits would
be to follow [30], which uses ideas from [15] and [41] to construct a blind CVQC
protocol in the measurement-based quantum computing framework (avoiding the
reduction to local Hamiltonian). This framework appears to naturally support
quantum sampling circuits, though its soundness for sampling circuits has not
been analyzed. However, the inverse soundness error of their protocol also grows
with the communication complexity. Thus, we leave MPQC for sampling cir-
cuits with classical communication and standard negligible security as an open
question. Indeed, the more basic question that remains open is whether it is
possible to construct a CVQC protocol for sampling circuits where the verifier
only accepts samples that are distributed negligibly close to the real distribution
induced by the quantum circuit.

Obfuscation of quantum circuits. As also discussed in [10], one approach to ob-
taining (heuristic) obfuscation of quantum circuits involves the notion of blind
CVQC. Given a two-message composable blind CVQC with delayed functionality
(meaning that the circuit 𝐷 can be chosen by the prover after the verifier’s mes-
sage has been sampled) one could imagine obfuscating the (psuedo-deterministic)
quantum circuit 𝑈 as follows. Sample the verifier’s first message on input 𝑈 and
output this message along with a classical obfuscation of the verification circuit
(with the verification secret key hard-coded). Then, the evaluator with input 𝑥
can attempt to produce a proof 𝜋 for the circuit 𝐷𝑥(·) that takes 𝑈 as input
and outputs 𝑈(𝑥). It can then query the obfuscated verifier on 𝜋 to learn 𝑈(𝑥).
Note that malicious blindness is crucial for making this approach work, as the
evaluator can clearly see whether or not the verifier accepts or rejects its proof.
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Unfortunately, this is not the only property that is required. It is also cru-
cial that the blind CVQC protocol is reusably sound, meaning that it securely
implements an ideal functionality that allows the prover to repeatedly query the
verifier on different circuits of its choice, learning the verifier’s output each time.
The composable blind CVQC constructed in this paper does not satisfy this
reusable ideal functionality, and more discussion about the difficulties in obtain-
ing reusable security can be found in [10]. Thus, the (one-time) composable blind
CVQC protocol constructed in this paper can be seen a step towards heuristic
obfuscation of quantum circuits, though the possibility of obtaining the crucial
property of reusability remains open.

Quantum vs. classical simulation. Our definition of secure multi-party quantum
computation (Definition 6) by default allows for a quantum simulator. However,
in some settings it would be desirable to require a classical simulator in the
case where the adversary is only corrupting classical parties, in order to argue
that the malicious classical parties cannot obtain arbitrary quantum-computable
information by interacting in the protocol. In fact, it is easy to see that our
construction of constant-round MPQC from QLWE (Protocol 2) does satisfy this
stricter requirement. On the other hand, our other results (three-round MPQC
protocol and NISC protocol) require a quantum simulator, even for corrupted
classical parties. It would be interesting to explore this question further, to see
if such protocols can be constructed with a classical simulator.

1.4 Other related work

Composable security. The notion of composable blind and verifiable quantum
computation has been studied previously both in the setting of a quantum veri-
fier and a classical verifier. In particular, [26] showed that the blind and verifiable
protocols of [29] and [43] with quantum verifier are composable. Next, [30] gave
a construction of composable blind and verifiable delegation of quantum com-
putation with a classical verifier, and noted that such a protocol should have
implications to multi-party quantum computation (though they left this formal-
ization to future work). However, their protocol only achieves inverse polynomial
security and requires polynomially many rounds,5 while ours achieves standard
negligible security and has constant rounds.

We also remark that the works of [26] and [30] achieve composable security by
combining the properties of standard blindness and “independent” verifiability,
which are very similar to the two properties of malicious blindness and standard
soundness that we use to enable composable security.

Two-party quantum computation. There are a couple of recent works that study
a relaxed variant of two-party secure computation, called secure function evalua-

5 This appears to be somewhat inherent to their approach, as they follow the
measurement-based computing paradigm, which requires the prover and verifier to
interact for each sequential gate being computed.
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tion (SFE), in the quantum setting. This notion relaxes security from simulation-
based to indistinguishability-based, and in particular does not require correctness
against malicious senders, meaning that constructions of quantum SFE do not
require (classical) verification of quantum computation.

First, the work of [22] constructs SFE for quantum functionalities with clas-
sical communication, and even achieves one-sided simulation security (against
malicious receiver). In fact, they show that if the sender has a quantum input,
then full simulation-security is impossible to achieve if only classical communi-
cation is allowed. We evade this barrier by constructing protocols where all par-
ties have classical input, showing that full simulation-based security is indeed
possible in this setting. Next, the work of [17] constructs SFE for quantum func-
tionalities (where receiver may have a quantum input, and thus communication
is quantum) from QLWE, and even show how to achieve rate-1 communication
complexity.

Multi-party delegated quantum computation. Multi-party delegated quantum
computation was first studied by [38], in the setting where multiple computa-
tionally weak but quantum clients would like to outsource some quantum com-
putation to a powerful quantum server. This work only provides blindness (no
correctness against a malicious server) and does not handle client-server collu-
sions. Very recently, [37] showed how to achieve standard malicious security in
this setting, though still with the requirement that the clients have quantum
resources. The work of [33] studies the notion of multi-party delegated quantum
computation in three rounds, though security is only semi-honest, and again the
clients require quantum resources. In summary, our work is the first to construct
multi-party delegated quantum computation with entirely classical clients.

2 Preliminaries

Let 𝜆 denote the security parameter. A function 𝑓 : N→ [0, 1] is negligible if for
every constant 𝑐 ∈ N there exists 𝑁 ∈ N such that for all 𝑛 > 𝑁 , 𝑓(𝑛) < 𝑛−𝑐,
and we write negl(·) to denote such a function. Let ℋ𝒲𝑛,𝑚 denote the set of bi-
nary strings of length 𝑛 with Hamming weight 𝑚. We will refer to pure quantum
states with ket notation |𝜓⟩ and mixed quantum states with lowercase Greek let-
ters such as 𝜌. Throughout, we will consider non-uniform quantum polynomial-
time (QPT) adversaries, which are families of polynomial-size quantum circuits
{Adv𝜆}𝜆∈N along with some polynomial-size quantum advice {|𝜓𝜆⟩}𝜆∈N, though
we will often drop the indexing by 𝜆 when clear from context. We will also of-
ten refer to families of “psuedo-deterministic” quantum circuits, defined below.
Again, we usually drop the indexing by 𝜆 when clear from context.

Definition 1 (Pseudo-Deterministic Quantum Circuit). A family of psuedo-
deterministic quantum circuits {𝐷𝜆}𝜆∈N is defined as follows. The circuit 𝐷𝜆

takes as input a classical bit string 𝑥 ∈ {0, 1}𝑛(𝜆) and outputs a single classical
string 𝑧 ← 𝐷(𝑥). The circuit is pseudo-deterministic if there exists a negligible
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function 𝜈 such that for every sequence of classical inputs {𝑥𝜆}𝜆∈N, there exists
a sequence of outputs {𝑧𝜆}𝜆∈N such that

Pr[𝐷𝜆(𝑥𝜆) = 𝑧𝜆] = 1− 𝜈(𝜆).

The following notation will also be useful.

Definition 2 (𝑀𝑋𝑍(𝜌, ℎ)). For a string ℎ ∈ {0, 1}𝑛 and an 𝑛-qubit quantum
state 𝜌, consider the following procedure. For each 𝑖 ∈ [𝑛], measure the 𝑖’th qubit
of 𝜌 in the standard basis if ℎ𝑖 = 0 and in the Hadamard basis if ℎ𝑖 = 1. Let the
resulting random variable (over classical 𝑛-bit strings) be denoted by 𝑀𝑋𝑍(𝜌, ℎ).

2.1 Delegation of quantum computation

We will consider protocols 𝛱 = (𝒫,𝒱) for delegating the computation of psuedo-
deterministic quantum circuits 𝐷. In such a protocol, 𝒫 and 𝒱 interact on input
the security parameter 1𝜆, and 𝒱 has additional (possibly private) inputs 𝐷,𝑥.
After the interaction, 𝒱 outputs (𝑣, 𝑧), where 𝑣 ∈ {acc, rej} and 𝑧 ∈ {0, 1}*. We
denote this by (𝑣, 𝑧)← (𝒫,𝒱(𝐷,𝑥))(1𝜆). In general, 𝒱 will satisfy some efficiency
properties (e.g. it has limited or no quantum capabilities), making the protocol
non-trivial.

Definition 3. A protocol 𝛱 = (𝒱,𝒫) for delegating the computation of a pseudo-
deterministic quantum circuit 𝐷 should satisfy the following properties.

– Completeness: For any circuit 𝐷, input 𝑥, and output 𝑧 such that Pr[𝐷(𝑥) =
𝑧] = 1− negl(𝜆), it holds that

Pr[(acc, 𝑧)← (𝒫,𝒱(𝐷,𝑥))(1𝜆)] = 1− negl(𝜆).

– Soundness: For any circuit 𝐷, input 𝑥, output 𝑧 such that Pr[𝐷(𝑥) = 𝑧] =
1− negl(𝜆), and cheating prover 𝒫* with advice |𝜓⟩, it holds that

Pr[𝑣 = acc ∧ 𝑧′ ̸= 𝑧 : (𝑣, 𝑧′)← (𝒫*(|𝜓⟩),𝒱(𝐷,𝑥))(1𝜆)] = negl(𝜆).

We say that soundness is statistical if 𝒫* is unbounded, and that soundness
is computational if 𝒫* is a QPT machine with polynomial-size advice.

2.2 Quantum fully-homomorphic encryption

We define quantum fully-homomorphic encryption (QFHE) with classical keys
and classical encryption of classical messages. One could also define encryption
for quantum states and decryption for quantum ciphertexts, but we will not need
that in this work.

Definition 4 (Quantum Homomorphic Encryption). A quantum fully-
homomorphic encryption scheme (QFHE.Gen,QFHE.Enc,QFHE.Eval,QFHE.Dec)
consists of the following efficient algorithms.
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– QFHE.Gen(1𝜆) → (pk, sk): On input the security parameter, the PPT key
generation algorithm returns public/secret key pair (pk, sk).

– QFHE.Enc(pk, 𝑥) → ct: On input the public key pk and a classical plaintext
𝑥, the PPT encryption algorithm returns a classical ciphertext ct.

– QFHE.Eval(𝑄, ct)→ ̃︀ct: On input a quantum circuit 𝑄, and a ciphertext ct,
the QPT evaluation algorithm returns an evaluated ciphertext ̃︀ct.

– QFHE.Dec(sk, ct)→ 𝑥: On input the secret key sk and a classical ciphertext
ct, the decryption algorithm returns a message 𝑥.

The scheme should satisfy the standard notion of semantic security. We will
require the following notion of correctness for evaluation of pseudo-deterministic
quantum circuits. Note that this evaluation correctness holds over all key gen-
eration and encryption random coins.

Definition 5 (Evaluation Correctness). A QFHE scheme (QFHE.Gen,QFHE.Enc,
QFHE.Eval,QFHE.Dec) is correct if for every 𝜆 ∈ N, every (pk, sk) ∈ QFHE.Gen(1𝜆),
every input 𝑥, every ct ∈ QFHE.Enc(pk, 𝑥), and every polynomial-size pseudo-
deterministic quantum circuit 𝑄 and output 𝑦 such that Pr[𝑄(𝑥) = 𝑦] = 1 −
negl(𝜆), it holds that

Pr[QFHE.Dec(sk,QFHE.Eval(𝑄, ct)) = 𝑦] = 1− negl(𝜆).

The works of Mahadev [40] and Brakerski [14] show that such a QFHE scheme
can be constructed from QLWE (we will not consider unlevelled QFHE in this
work, which requires circular-security assumptions).

Multi-key. We will also make use of a quantum multi-key fully-homomorphic en-
cryption scheme (QMFHE.Gen,QMFHE.KeyGen,QMFHE.Enc,QMFHE.Eval,QMFHE.Dec),
which was constructed in [2]. In such a scheme, the evaluation algorithm QMFHE.Eval
now may take as input some 𝑛-input circuit𝑄 along with 𝑛 ciphertexts (ct1, . . . , ct𝑛),
each encrypted under independently sampled public keys (assume that each ct𝑖
contains a description of the public key pk𝑖 it is encrypted under). Likewise,
QMFHE.Dec can decrypt a ciphertext ct that is the result of evaluating cipher-
texts encrypted under public keys pk1, . . . , pk𝑛, given the corresponding secret
keys sk1, . . . , sk𝑛. We require the same evaluation correctness (Definition 5) to
hold, except over 𝑛-input pseudo-deterministic functionalities 𝑄. We have also
added a QMFHE.Gen algorithm which samples a common random string crs, to
be used by each KeyGen algorithm.

2.3 Multi-party quantum computation

Below we give a definition of maliciously-secure multi-party quantum compu-
tation for pseudo-deterministic quantum functionalities, following the standard
real/ideal world paradigm for defining secure computation [31]. We assume that
parties have access to a (classical) broadcast channel, and we aim for security
with unanimous abort.
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Consider an 𝑛-party quantum functionality specified by a family of pseudo-
deterministic quantum circuits 𝒬 = {𝑄𝜆}𝜆∈N where 𝑄𝜆 has classical input of
size 𝑚1(𝜆) + · · ·+𝑚𝑛(𝜆) and classical output of size ℓ1(𝜆) + · · ·+ ℓ𝑛(𝜆). We will
consider a QPT adversary Adv = {Adv𝜆}𝜆∈N that corrupts any subset 𝑀 ⊂ [𝑛]
of parties. Let 𝐻 := [𝑛] ∖𝑀 .

Let 𝛱 be an 𝑛-party protocol for computing 𝒬. Consider any collection
(𝑥1, . . . , 𝑥𝑛, |𝜓⟩Adv,𝒟), where 𝑥1, . . . , 𝑥𝑛 are classical bitstrings and |𝜓⟩Adv,𝒟 is
a polynomial-size quantum state on two registers Adv and 𝒟. Abusing nota-
tion, we let |𝜓⟩Adv be the part of the state on register Adv and likewise for
|𝜓⟩𝒟. Now define quantum random variable REAL𝛱,Q(Adv𝜆, {𝑥𝑖}𝑖∈[𝑛], |𝜓⟩Adv)
as follows. Adv𝜆({𝑥𝑖}𝑖∈𝑀 , |𝜓⟩Adv) interacts with honest party algorithms on in-
puts {𝑥𝑖}𝑖∈𝐻 participating in protocol 𝛱, after which the honest parties output
{𝑦𝑖}𝑖∈𝐻 and Adv outputs a final state |𝜓out⟩ (an arbitrary function computed on
an arbitrary subset of the registers that comprise its view). The random variable
REAL𝛱,Q(Adv𝜆, {𝑥𝑖}𝑖∈[𝑛], |𝜓⟩Adv) then consists of {𝑦𝑖}𝑖∈𝐻 along with |𝜓out⟩.

For any Adv, we require the existence of a simulator Sim = {Sim𝜆}𝜆∈N that
takes as input ({𝑥𝑖}𝑖∈𝑀 , |𝜓⟩Adv), has access to an ideal functionality ℐ[{𝑥𝑖}𝑖∈𝐻 ](·),
and outputs a state |𝜓out⟩. The ideal functionality accepts an input {𝑥𝑖}𝑖∈𝑀 ,
applies 𝑄𝜆 to (𝑥1, . . . , 𝑥𝑛) to recover (𝑦1, . . . , 𝑦𝑛), and returns {𝑦𝑖}𝑖∈𝑀 to Sim𝜆.
Then, it waits for either an abort or ok message from Sim𝜆. In the case of ok it in-
cludes {𝑦𝑖}𝑖∈𝐻 in its output and in the case of abort it includes {⊥}𝑖∈𝐻 . Now, we
define the quantum random variable IDEAL𝛱,Q(Sim𝜆, {𝑥𝑖}𝑖∈[𝑛], |𝜓⟩Adv) to consist

of the output of ℐ[{𝑥𝑖}𝑖∈𝐻 ](·) and the final state |𝜓out⟩ of Sim
ℐ[{𝑥𝑖}𝑖∈𝐻 ](·)
𝜆 ({𝑥𝑖}𝑖∈𝑀 , |𝜓⟩Adv).

Definition 6 (Secure Multi-Party Quantum Computation). A proto-
col 𝛱 securely computes 𝑄 if for all QPT Adv = {Adv𝜆}𝜆∈N corrupting subset
of parties 𝑀 ⊂ [𝑛], there exists a QPT Sim = {Sim𝜆}𝜆∈N such that for all
{𝑥1,𝜆, . . . , 𝑥𝑛,𝜆, |𝜓𝜆⟩Adv,𝒟}𝜆∈N and all QPT 𝒟 = {𝒟𝜆}𝜆∈N, there exists a negligi-
ble function 𝜈(·) such that

⃒⃒⃒⃒
Pr

[︀
𝒟𝜆

(︀
|𝜓𝜆⟩𝒟 ,REAL𝛱,Q(Adv𝜆, {𝑥𝑖,𝜆}𝑖∈[𝑛], |𝜓𝜆⟩Adv)

)︀
= 1

]︀
− Pr

[︀
𝒟𝜆

(︀
|𝜓𝜆⟩𝒟 , IDEAL𝛱,Q(Sim𝜆, {𝑥𝑖,𝜆}𝑖∈[𝑛], |𝜓𝜆⟩Adv)

)︀
= 1

]︀ ⃒⃒⃒⃒
≤ 𝜈(𝜆).

2.4 Classical non-interactive secure computation

In the full version, we will make use of a particular type of classical two-
party computation protocol, called non-interactive secure computation (NISC).
A NISC protocol is a two-message protocol between sender 𝒮 with input 𝑥𝒮 and
receiver ℛ with input 𝑥ℛ. The protocol consists of two total messages, and is
defined by four algorithms (NISCGen,NISC1,NISC2,NISCout). We require that the
receiver’s message can be computed independently of the functionality 𝐶 to be
computed. The syntax of these algorithms is as follows.

– crs← NISCGen(1
𝜆). The gen algorithm generates the crs.
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– (𝑚ℛ, st) ← NISC1(crs, 𝑥ℛ). The first message algorithm takes as input crs
and the receiver’s input 𝑥ℛ, and outputs the receiver’s message 𝑚ℛ and
private state st.

– 𝑚𝒮 ← NISC2(crs, 𝐶,𝑚ℛ, 𝑥𝒮). The second message algorithm takes as input
crs, a circuit 𝐶, the receiver’s message 𝑚ℛ, and the sender’s input 𝑥𝒮 , and
outputs the sender’s message 𝑚𝒮 .

– 𝑦 ← NISCout(st, 𝐶,𝑚𝒮). The output algorithm takes as input the receiver’s
private state st, the circuit 𝐶, and the sender’s message 𝑚𝒮 , and outputs
the receiver’s output 𝑦.

A NISC protocol should satisfy standard simulation-based security against
arbitrarily malicious adversaries. We note that post-quantum NISC protocols
are known assuming simulation-secure two-message oblivious transfer [36]. Post-
quantum two-message oblivious transfer (with a reusable common random string)
can be obtained from QLWE by combining a semi-malicious oblivious transfer
(such as [16]) with non-interactive zero-knowledge [45]. Alternatively, such an
oblivious transfer can be obtained directly from QLWE with subexponential
modulus-to-noise ratio [46].

3 Generalizing the Alagic et al. Parallel Repetition
Theorem

Consider the following outline for a four-message protocol between a classical
verifier 𝒱 and a quantum prover 𝒫. For concreteness, one can think of the public
key pk as encoding some computation that the verifier would like the prover to
perform. However, for the purposes of this section, we will only need to consider
a few generic properties of such a protocol.

– 𝒱(1𝜆)→ (pk, sk) : the verifier, on input the security parameter, generates a
public/secret key pair (pk, sk) and sends pk to 𝒫.

– 𝒫(pk) → (𝑦, |st⟩) : the prover, on input the public key, generates a classical
string 𝑦 and a quantum private state |st⟩, and sends 𝑦 to 𝒱.

– 𝒱 samples a random challenge bit 𝑐← {0, 1} and sends 𝑐 to 𝒫.
– 𝒫(|st⟩ , 𝑐) → 𝜋 : the prover, on input its quantum state and the verifier’s

challenge bit, generates a classical proof 𝜋 and sends 𝜋 to 𝒱.
– 𝒱(pk, sk, 𝑦, 𝑐, 𝜋)→ 𝑏 : the verifier, on input the transcript and its secret key,

outputs a bit 𝑏 where 𝑏 = 1 indicates that it accepts and 𝑏 = 0 indicates that
it rejects.

If the verifier sampled 𝑐 = 0, we refer to the execution as a “test round”, and
if the verifier sampled 𝑐 = 1, we refer to the execution as a “Hadamard round”.
Now consider a generic prover strategy (|𝜓init⟩ , 𝑈, 𝑉0, 𝑉1), where

– |𝜓init⟩ is some initial state on three registers X,Y,Z,
– 𝑈 is a unitary on registers X,Y,Z,K, classically controlled on K,

15



– and 𝑉0, 𝑉1 are unitaries on registers X,Y,Z,K, classically controlled on Y
and K.

Given this generic strategy, the protocol proceeds as follows. The pair (pk, sk)
is sampled by the verifier, and then 𝑈 is applied to |𝜓init⟩ |pk⟩ to produce private
state |𝜓pk⟩. Then, 𝑐 is sampled and sent to the prover, who applies 𝑉𝑐 to |𝜓pk⟩,
and then measures Y,X to produce 𝑦, 𝜋.6 For any choice of (pk, sk, 𝑐), let 𝛱pk,sk,𝑐

be the binary-valued projector that, when applied to 𝑉𝑐 |𝜓pk⟩, corresponds to
measuring 𝑦, 𝜋 and then applying the verifier’s verdict function on (pk, sk, 𝑦, 𝑐, 𝜋).

Now suppose that the following two conditions hold. Whenever we take an
expectation over (pk, sk), we mean over (pk, sk)← 𝒱(1𝜆).

1. 𝛱pk,sk,0 does not depend on sk (in the protocols we are interested in, it simply
checks whether 𝜋 is in some set of classical strings determined by pk and 𝑦).

2. For any efficient prover strategy (|𝜓init⟩ , 𝑈, 𝑉0, 𝑉1)7 such that

E
pk,sk

[⟨𝜓pk|𝑉 †
0𝛱pk,sk,0𝑉0 |𝜓pk⟩] = 1− negl(𝜆),

it holds that Epk,sk[⟨𝜓pk|𝑉 †
1𝛱pk,sk,1𝑉1 |𝜓pk⟩] = negl(𝜆).

Consider now an (𝑛, 𝜆)-parallel repeated version of the protocol, with a chal-
lenge string 𝑑 that is chosen uniformly at random from the set ℋ𝒲𝑛,𝜆 of 𝑛-bit
strings with Hamming weight exactly 𝜆. That is, the protocol is repeated 𝑛 times
in parallel, except that a Hadamard round is performed in exactly 𝜆 of the 𝑛
protocols. The following theorem shows that any efficient cheating prover in this
multi-copy protocol cannot make the verifier accept all test rounds and more
than half of the Hadamard rounds.

Theorem 5. Let 𝑛(𝜆) ≥ 𝜆1+𝜖 for some constant 𝜖 > 0. Then in the (𝑛, 𝜆)-
parallel repeated protocol, the probability that the verifier accepts every test round
(𝑖 such that 𝑑𝑖 = 0) and ≥ 𝜆/2 of the Hadamard rounds (𝑖 such that 𝑑𝑖 = 1) is
negl(𝜆).8

The proof of this is given is the full version.

4 Composable Blind CVQC

In this section, we show how to construct (constant-round) composable blind
classical verification of quantum computation. The main property we need to

6 Note that, since 𝑉𝑐 must be classically controlled on Y, we can indeed consider Y to
measured after applying 𝑉𝑐 rather than before.

7 By efficient, we mean that 𝑈, 𝑉0, 𝑉1 are unitaries that can be implemented in quan-
tum polynomial-time, while |𝜓init⟩ is any (potentially inefficiently preparable) state
on a polynomial number of registers.

8 In fact, it is straightforward to adjust the proof to show that for any constant 𝑐,
the verifier will only accept all test rounds and at least 𝜆/𝑐 Hadamard rounds with
negl(𝜆) probability.
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achieve composability (other than standard blindness and soundness) is that
the prover cannot obtain information about the verifier’s input even if it gets to
observe whether or not the verifier accepted its proof.

In fact, we will first construct a more general notion that we call CVQC for
quantum-classical circuits, which allows for delegation of pseudo-deterministic
quantum-classical circuits 𝐶(𝑄(·)), where the verifier’s decision to accept or
reject does not depend on the description of 𝐶. We will eventually make use
of such a protocol in multiple ways, using the classical circuit 𝐶 to compute
various functionalities, such as QFHE decryption or the NISC receiver’s output
algorithm.

In Section 4.1, we give a formal definition of this primitive. In Section 4.2, we
use [21]’s sampBQP protocol to show how to delegate quantum-classical circuits
with a quantum verifier that only performs single qubit measurements. In Sec-
tion 4.3, we compile the protocol with [41]’s measurement protocol to make the
verifier classical, and then apply the parallel repetition theorem from last section
to obtain negligible soundness error, satisfying our definition in Section 4.1. In
Section 4.4, we formally define the notion of composable blind CVQC, and show
how to construct it from CVQC for quantum-classical circuits plus quantum
fully-homomorphic encryption. If the full version, we also give an alternative
CVQC protocol that satisfies various extra properties and will be useful for ob-
taining round-optimized secure computation protocols.

4.1 CVQC for quantum-classical circuits

Below we define CVQC for quantum-classical circuits. We crucially split the final
verification into two parts, requiring that the classical part of the circuit is not
needed to determine whether or not the verifier will accept the prover’s proof.

We require the protocol to satisfy the standard completeness and soundness
properties, along with semi-malicious correctness, which will be useful when
building secure computation from this primitive. This property guarantees that
even if the verifier’s initial keys are computed honestly, but with a malicious
choice of random coins, the output of the honest verification procedure applied
to an honest proof must still be correct (if it doesn’t abort). Below we present
the two-message syntax, but such a definition easily extends to more general
interactive protocols.

Definition 7 (CVQC for Quantum-Classical Circuits). A two-message
CVQC protocol for a quantum-classical pseudo-deterministic circuit 𝐷(·) = 𝐶(𝑄(·))
has the following syntax.

– 𝒱setup
QC (1𝜆, 𝑄, 𝑥) → (pk, sk): the verifier takes the security parameter 1𝜆, a

quantum circuit 𝑄, and a classical input 𝑥, and outputs a public key secret
key pair (pk, sk).

– 𝒫QC(pk, 𝑄, 𝑥)→ 𝜋: the prover takes the public key pk, a quantum circuit 𝑄,
and classical input 𝑥, and outputs a classical proof 𝜋.

– 𝒱QC(𝑄,𝐶, 𝑥, pk, sk, 𝜋) → (𝑣, 𝑧): the final verification circuit is split up into
the following two parts.
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∙ 𝒱vrfy
QC (𝑄, 𝑥, pk, sk, 𝜋) → (𝑣, ̃︀𝑧): the first part of the final verification cir-

cuit takes the quantum circuit 𝑄, the input 𝑥, public key secret key
pair (pk, sk), and proof 𝜋, and outputs (𝑣, ̃︀𝑧), where 𝑣 ∈ {acc, rej}, and̃︀𝑧 ∈ {0, 1}*. If 𝑣 = acc, then the second part of the verification is invoked
on ̃︀𝑧 to produce 𝑧, and the final output is (acc, 𝑧). Otherwise, the final
output is (rej,⊥).

∙ 𝒱out
QC (𝐶, ̃︀𝑧)→ 𝑧: the second part of the verification takes as input a clas-

sical circuit 𝐶 and a string ̃︀𝑧, and outputs a string 𝑧.

Crucially, both the prover and the first part of the final verification circuit do
not depend on the classical circuit 𝐶. This protocol should satisfy the following
standard completeness and soundness properties.

– Completeness: For any quantum-classical circuit 𝐷(·) = 𝐶(𝑄(·)), input 𝑥,
and output 𝑧 such that Pr[𝐷(𝑥) = 𝑧] = 1− negl(𝜆), it holds that

Pr

⎡⎣𝑣 = acc ∧ 𝑧′ = 𝑧 :
(pk, sk)← 𝒱setup

QC (1𝜆, 𝑄, 𝑥)
𝜋 ← 𝒫QC(pk, 𝑄, 𝑥)

(𝑣, 𝑧′)← 𝒱QC(𝑄,𝐶, 𝑥, pk, sk, 𝜋)

⎤⎦ = 1− negl(𝜆).

– Soundness: For any quantum-classical circuit 𝐷(·) = 𝐶(𝑄(·)), input 𝑥,
output 𝑧 such that Pr[𝐷(𝑥) = 𝑧] = 1 − negl(𝜆), and cheating prover 𝒫*

QC

with advice |𝜓⟩, it holds that

Pr

⎡⎣𝑣 = acc ∧ 𝑧′ ̸= 𝑧 :
(pk, sk)← 𝒱setup

QC (1𝜆, 𝑄, 𝑥)
𝜋 ← 𝒫*

QC(|𝜓⟩ , pk)
(𝑣, 𝑧′)← 𝒱QC(𝑄,𝐶, 𝑥, pk, sk, 𝜋)

⎤⎦ = negl(𝜆).

In addition, we may want the protocol to satisfy the following property.

– Semi-malicious correctness: For any quantum-classical circuit 𝐷(·) =
𝐶(𝑄(·)), input 𝑥, output 𝑧 such that Pr[𝐷(𝑥) = 𝑧] = 1 − negl(𝜆), and
(pk, sk) ∈ 𝒱setup

QC (1𝜆, 𝑄, 𝑥), it holds that

Pr

[︂
𝑣 = acc ∧ 𝑧′ ̸= 𝑧 :

𝜋 ← 𝒫QC(pk, 𝑄, 𝑥)
(𝑣, 𝑧′)← 𝒱QC(𝑄,𝐶, 𝑥, pk, sk, 𝜋)

]︂
= negl(𝜆).

4.2 Delegation of quantum-classical circuits with quantum verifier

Quantum sampling protocol. Recently, [21] constructed a one-message protocol
𝛱Samp = (𝒫Samp,𝒱Samp) for delegating the computation of a quantum circuit 𝑄
on classical input 𝑥. The soundness of their protocol stipulates that if the verifier
accepts an output 𝑧, then 𝑧 is 𝜖-close to a sample from the classical distribution
induced by running 𝑄 on 𝑥 and then measuring the output.

– 𝒫Samp(1
𝜆, 11/𝜖, 𝑄, 𝑥) → |𝜓⟩: the prover takes the security parameter 1𝜆, the

accuracy parameter 11/𝜖, a quantum circuit 𝑄, and a classical input 𝑥, and
samples a quantum proof |𝜓⟩.
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– 𝒱Samp(1
𝜆, 11/𝜖, 𝑄, 𝑥, |𝜓⟩) → (𝑣, 𝑧): the verifier samples a binary string ℎ in-

dependently of |𝜓⟩ (where each position indicates a computational basis or
Hadamard basis measurement), samples 𝑒←𝑀𝑋𝑍(|𝜓⟩ , ℎ) (see Definition 2),
and applies a classical circuit 𝒱out(𝑄, 𝑥, ℎ, 𝑒) to obtain output (𝑣, 𝑧) where
𝑣 ∈ {acc, rej} and 𝑧 ∈ {0, 1}*.

[21] show that the protocol satisfies the following.

– Completeness: For any 𝜖(𝜆) = 1/poly(𝜆) and quantum circuit 𝑄 with
input 𝑥,

Pr[(rej,⊥)← 𝒱Samp(1
𝜆, 11/𝜖, 𝑄, 𝑥, |𝜓⟩) : |𝜓⟩ ← 𝒫Samp(1

𝜆, 11/𝜖, 𝑄, 𝑥)] = negl(𝜆).

– Soundness: For any circuit 𝑄, input 𝑥, cheating prover 𝒫*
Samp, 𝜖(𝜆) =

1/poly(𝜆), and sufficiently large 𝜆 ∈ N,

∙ let (𝑣, 𝑧)← 𝒱Samp(1
𝜆, 11/𝜖, 𝑄, 𝑥,𝒫*

Samp(1
𝜆, 11/𝜖, 𝑄, 𝑥)),

∙ and define 𝑧ideal = ⊥ if 𝑣 = rej and 𝑧ideal ← 𝑄(𝑥) if 𝑣 = acc.

Then it holds that ‖(𝑣, 𝑧)− (𝑣, 𝑧ideal)‖1 ≤ 𝜖(𝜆).

Quantum-classical circuits. Now consider any pseudo-deterministic quantum cir-
cuit 𝐷 that can be split into two parts 𝑄,𝐶, where 𝑄 is quantum and 𝐶 is classi-
cal. That is, 𝐷(𝑥) = 𝐶(𝑄(𝑥)), where 𝑄(𝑥) outputs a classical string ̂︀𝑧, and then
𝐶(̂︀𝑧) outputs 𝑧. Since 𝐷 is pseudo-deterministic, each input 𝑥 results in some
fixed 𝑧 with overwhelming probability. However, 𝑥 still may induce an arbitrary
distribution over intermediate values ̂︀𝑧.

We now show that parallel repetition of 𝛱Samp gives a one-message protocol
for delegating computation of 𝐷(𝑥) with negligible soundness, and where the
prover’s algorithm depends only on 𝑄. In particular, consider the following pro-
tocol 𝛱QVer = (𝒫QVer,𝒱QVer) for delegating the computation of 𝐷(·) = 𝐶(𝑄(·)).

– 𝒫QVer(1
𝜆, 𝑄, 𝑥) → |𝜓⟩ : the prover obtains a description of 𝑄 and an input

x, sets 𝜖 = 1/4, and runs 𝜆 copies of 𝒫Samp(1
𝜆, 11/𝜖, 𝑄, 𝑥) to produce a proof

|𝜓⟩ := (|𝜓1⟩ , . . . , |𝜓𝜆⟩).
– 𝒱QVer(𝑄,𝐶, 𝑥, |𝜓⟩)→ (𝑣, 𝑧) : we split this verifier into three parts (𝒱meas

QC ,𝒱 test
QC ,𝒱out

QC ).

∙ 𝒱meas
QVer(𝑄, 𝑥, |𝜓⟩) samples ℎ𝑖 according to the distribution defined by 𝒱Samp

and obtains 𝑒𝑖 ← 𝑀𝑋,𝑍(|𝜓𝑖⟩ , ℎ𝑖) for each 𝑖 ∈ [𝜆]. Set ℎ := (ℎ1, . . . , ℎ𝜆)
and 𝑒 := (𝑒1, . . . , 𝑒𝜆).

∙ 𝒱 test
QVer(𝑄, 𝑥, ℎ, 𝑒) applies 𝒱out(𝑄, 𝑥, ℎ𝑖, 𝑒𝑖) for each 𝑖 ∈ 𝜆 to obtain (𝑣𝑖, ̂︀𝑧𝑖).

If any 𝑣𝑖 = rej, then output (rej,⊥) (and do not proceed to 𝒱out
QVer), and

otherwise set ̂︀𝑧 := (̂︀𝑧1, . . . , ̂︀𝑧𝜆) and continue.
∙ 𝒱out

QVer(𝐶, ̂︀𝑧) computes 𝑧𝑖 := 𝐶(̂︀𝑧𝑖) for each 𝑖 ∈ [𝜆], determines the most
frequently occuring 𝑧 in {𝑧𝑖}𝑖∈[𝜆], and outputs (acc, 𝑧).

Lemma 1. 𝛱QVer satisfies completeness and statistical soundness as defined in
Definition 3 for delegating the computation of a pseudo-deterministic circuit
𝐷(·) = 𝐶(𝑄(·)).
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Proof. Fix an 𝑥 and let 𝑧 be such that 𝐶(𝑄(𝑥)) = 𝑧 with probability 1−negl(𝜆).
Consider the projector 𝑃 that corresponds to running the single-copy verifier
𝒱Samp on some part |𝜓𝑖⟩ of the prover’s proof and accepting if the output is
(acc, 𝑧′) for some 𝑧′ ̸= 𝑧. By the soundness of 𝛱Samp, this projector will accept
with probability at most 1/4 + negl(𝜆) on any prover state |𝜓𝑖⟩.

Note that soundness of 𝛱QVer is violated only if the following procedure
accepts. Partition the prover’s proof |𝜓⟩ into 𝜆 registers |𝜓1⟩ , . . . , |𝜓𝜆⟩, apply
𝑃 to each, and accept if at least 𝜆/2 of the projectors accept. Even though
|𝜓1⟩ , . . . , |𝜓𝜆⟩may be entangled, it still holds that 𝑃 accepts on each |𝜓𝑖⟩ individ-
ually with probability at most 1/4+negl(𝜆), since the registers are disjoint. That
is, conditioned on any sequence of previous results of measuring |𝜓1⟩ , . . . , |𝜓𝑖⟩,
applying 𝑃 to |𝜓𝑖+1⟩ will accept with probability at most 1/4 + negl(𝜆). Thus,
the distribution on number of acceptances is stochastically dominated by the
distribution arising from independent Bernoulli trials that each output 1 with
probability 1/4 + negl(𝜆). Applying Chernoff to this distribution, we see that
the probability that at least 𝜆/2 projectors accept is negl(𝜆).

To show completeness, we know from the completeness of 𝛱Samp and a union
bound that 𝒱QVer will accept all parts |𝜓𝑖⟩ of the honest prover’s proof, except
with negligible probability. Conditioned on this, soundness of 𝛱Samp implies that
for each 𝑖, the verifier will obtain 𝑧′ ̸= 𝑧 with probability at most 1/4 + negl(𝜆),
and so again by Chernoff, the verifier will output (acc, 𝑧) except with negligible
probability.

4.3 Making the verifier classical

Measurement protocol. [41] constructed a four-message protocol𝛱meas = (𝒫meas,𝒱meas)
between a quantum prover and a classical verifier, with the following syntax.

– 𝒱meas(1
𝜆, ℎ) → (pk, sk) : the verifier, on input a string of basis choices ℎ,

samples a public key pk and a secret key sk, and sends pk to the prover.
– 𝒫meas(pk, |𝜓⟩) → (𝑦, |st⟩) : the prover generates a classical commitment 𝑦,

which it sends to the verifier, and a quantum internal state |st⟩.
– The verifier samples 𝑐 ← {0, 1} and sends 𝑐 to the prover, where 𝑐 = 0

indicates a test round, and 𝑐 = 1 indicates a Hadamard round.
– 𝒫meas(|st⟩ , 𝑐)→ 𝜋 : The prover generates a classical proof 𝜋 and sends it to

the verifier.
– 𝒱meas(pk, sk, 𝑦, 𝑐, 𝜋) → out : If 𝑐 = 0, the verifier computes some classical

circuit 𝒱meas,𝑇 (pk, 𝑦, 𝜋) → out, where out ∈ {acc, rej}, and if 𝑐 = 1, the
verifier computes some classical circuit 𝒱meas,𝐻(sk, 𝑦, 𝜋)→ out, where out ∈
{0, 1}*.

This protocol satisfies the following property.

Lemma 2 ([41]). Let (𝒫*
meas, |𝜓init⟩) be any polynomial-size cheating prover for

𝛱meas, and suppose that there exists an ℎ such that the probability that the verifier
accepts if their basis choice was ℎ and 𝑐 = 0 is 1 − negl(𝜆). Then there exists
a state 𝜌 such that for all ℎ, the verifier’s output if 𝑐 = 1 is computationally
indistinguishable from 𝑀𝑋𝑍(𝜌, ℎ).
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As observed in [3], a similar lemma follows by combining the claims [41,
Claim 5.7] and [41, Claim 7.3]. The lemma stated above is potentially stronger
in that (i) it considers non-uniform cheating provers with advice |𝜓init⟩, and (ii)
in the premise, it is only required that 𝒫*

meas is accepted in the test round with
probability 1− negl(𝜆) for a single basis choice ℎ rather than all. However, it is
easy to see that (i) follows from the (standard) assumption that LWE is hard
against non-uniform QPT adversaries. Next, (ii) follows due to properties of the
extended trapdoor claw-free function used in [41]’s protocol. Indeed, [41] shows
that for any two basis choices ℎ0, ℎ1, no QPT prover will be able to distinguish
between pk sampled by 𝒱(1𝜆, ℎ0) and pk sampled by 𝒱(1𝜆, ℎ1), assuming QLWE.
Then since the circuit 𝒱meas,𝑇 does not depend on sk, it follows that the proba-
bility that 𝒫*

meas is accepted in a test round is negligibly close for all values of
ℎ. Thus, if 𝒫*

meas passes the test round with 1− negl(𝜆) probability for any ℎ, it
will pass with 1− negl(𝜆) for all ℎ.

A single repetition. We now combine the measurement protocol with 𝛱QVer to
obtain 𝛱single, which is a delegation protocol for 𝐷(·) = 𝐶(𝑄(·)) with a classical
verifier and a non-trivial soundness property (though not negligibly sound).

– 𝒱single(1𝜆, 𝑄, 𝑥)→ (pk, sk) : the verifier samples ℎ according to the distribu-
tion defined by 𝒱QVer, samples (pk, sk) ← 𝒱meas(1

𝜆, ℎ), and sends (pk, 𝑄, 𝑥)
to the prover.

– 𝒫single(pk, 𝑄, 𝑥) → (𝑦, |st⟩) : the prover samples |𝜓⟩ ← 𝒫QVer(1
𝜆, 𝑄, 𝑥), com-

putes (𝑦, |st⟩)← 𝒫meas(pk, |𝜓⟩), and sends 𝑦 to the verifier.
– The verifer samples 𝑐← {0, 1} and sends 𝑐 to the prover.
– 𝒫single(|st⟩ , 𝑐) → 𝜋 : the prover samples 𝜋 ← 𝒫meas(|st⟩ , 𝑐) and sends 𝜋 to

the verifier.
– 𝒱single(𝑄,𝐶, 𝑥, pk, sk, 𝑦, 𝑐, 𝜋) → (𝑣, 𝑧) : we split the verifier into two parts

𝒱vrfy
single and 𝒱out

single.

∙ 𝒱vrfy
single(𝑄, 𝑥, pk, sk, 𝑦, 𝑐, 𝜋) does the following. If 𝑐 = 0, compute out ←
𝒱meas,𝑇 (pk, 𝑦, 𝜋), where out ∈ {acc, rej}, and output (out,⊥). If 𝑐 = 1,
compute 𝑒 ← 𝒱meas,𝐻(sk, 𝑦, 𝜋) and run 𝒱 test

QVer(𝑄, 𝑥, ℎ, 𝑒) to obtain either
rej or ̂︀𝑧. In the first case, output (rej,⊥), and in the second case, continue.

∙ 𝒱out
single(𝐶, ̂︀𝑧) computes and outputs (acc, 𝑧) := 𝒱out

QVer(𝐶, ̂︀𝑧).
We show that this protocol satisfies the following.

Lemma 3. Let (𝒫*
single, |𝜓init⟩) be any polynomial-size cheating prover for 𝛱single,

and let 𝑄,𝐶, 𝑥, 𝑧 be such that 𝐶(𝑄(𝑥)) = 𝑧 with probability 1− negl(𝜆). Suppose
that the verifier outputs (acc,⊥) when 𝑐 = 0 with probability 1 − negl(𝜆). Then
assuming QLWE, the probability that the verifier outputs (acc, 𝑧′) for 𝑧′ ̸= 𝑧
when 𝑐 = 1 is negl(𝜆).

Proof. Fix 𝑄,𝐶, 𝑥, 𝑧. Consider the predicate 𝐹 that has 𝑄,𝐶, 𝑥, 𝑧 hard-coded,
and on input basis choice ℎ and measurement results 𝑒, checks whether 𝒱single
outputs (acc, 𝑧′) for 𝑧′ ̸= 𝑧. That is, 𝐹 first runs 𝒱 test

QVer(𝑄, 𝑥, ℎ, 𝑒). If this procedure
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accepted and output ̂︀𝑧, 𝐹 computes (acc, 𝑧′) := 𝒱out
QVer(𝐶, ̂︀𝑧) and outputs 1 if

𝑧′ ̸= 𝑧. Let 𝑝(ℎ) be the probability that basis choice ℎ is sampled by 𝒱single.
Then we want to show that∑︁

ℎ

𝑝(ℎ)𝐹 (ℎ, 𝑒) = negl(𝜆),

where 𝑒 is obtained by running the protocol with basis choice ℎ and 𝑐 = 1.
Now since 𝒫*

single is accepted with overwhelming probability in the test round,
it satisfies the premise in Lemma 2. So by Lemma 2, the above expression is
negligibly close to ∑︁

ℎ

𝑝(ℎ)𝐹 (ℎ,𝑀𝑋,𝑍(𝜌, ℎ)),

since 𝐹 is an efficient function outputting a single bit. Finally, this expression is
negligible due to the soundness of the underlying information-theoretic protocol
given by Lemma 1.

Parallel repetition. Now we repeat the above protocol in parallel to obtain a
CVQC protocol 𝛱QC that satisfies Definition 7.

– 𝒱setup
QC (1𝜆, 𝑄, 𝑥) → (pk, sk) : set 𝑛 ≥ 𝜆1+𝜖 and for each 𝑖 ∈ [𝑛], sample

(pk𝑖, sk𝑖)← 𝒱single(1𝜆, 𝑄, 𝑥). Set pk := (pk1, . . . , pk𝑛) and sk := (sk1, . . . , sk𝑛),
and send (pk, 𝑄, 𝑥) to the prover.

– 𝒫QC(pk, 𝑄, 𝑥) → (𝑦, |st⟩) : for each 𝑖 ∈ [𝑛], the prover samples (𝑦𝑖, |st𝑖⟩) ←
𝒫single(pk𝑖, 𝑄, 𝑥), sets 𝑦 := (𝑦1, . . . , 𝑦𝑛) and |st⟩ := (|st1⟩ , . . . , |st𝑛⟩), and sends
𝑦 to the verifier.

– The verifier samples 𝑑← ℋ𝒲𝑛,𝜆 and sends 𝑑 to the prover.
– 𝒫QC(|st⟩ , 𝑑) → 𝜋 : for each 𝑖 ∈ [𝑛], the prover samples 𝜋𝑖 ← 𝒫single(|st𝑖⟩ , 𝑑𝑖)

and sends 𝜋 := (𝜋1, . . . , 𝜋𝑛) to the verifier.

– 𝒱QC(𝑄,𝐶, 𝑥, pk, sk, 𝑦, 𝑑, 𝜋) → out : we split the verifier into two parts 𝒱vrfy
QC

and 𝒱out
QC .

∙ 𝒱vrfy
QC (𝑄, 𝑥, pk, sk, 𝑦, 𝑑, 𝜋) runs 𝒱vrfy

single(𝑄, 𝑥, pk𝑖, sk𝑖, 𝑦𝑖, 𝑑𝑖, 𝜋𝑖) for each 𝑖 ∈
[𝑛]. If any outputs (rej,⊥) then output (rej,⊥). Otherwise, obtain strings
{̂︀𝑧𝑖}𝑖:𝑑𝑖=1.

∙ 𝒱out
QC (𝐶, {̂︀𝑧𝑖}𝑖:𝑑𝑖=1) computes the 𝜆 outputs (acc, 𝑧𝑖) := 𝒱out

single(𝐶, ̂︀𝑧𝑖). Then
determine the most frequently occurring 𝑧 in the resulting set and output
(acc, 𝑧).

Lemma 4. Assuming QLWE, 𝛱QC satisfies Definition 7

Proof. First, we show soundness. Fix 𝐶,𝑄, 𝑥, 𝑧 such that 𝐶(𝑄(𝑥)) = 𝑧 with
probability 1−negl(𝜆). Define a Hadamard-round verification projector for𝛱single

that checks whether 𝒱single outputs (acc, 𝑧′) for 𝑧′ ̸= 𝑧. Lemma 3 and Theorem 5
imply that, conditioned on all test rounds (𝑖 such that 𝑑𝑖 = 0) accepting in 𝛱QC,
this verifier only accepts at most ⌈𝜆/2⌉ − 1 of the indices for which 𝑑𝑖 = 1,

except with negligible probability. Thus, conditioned on 𝒱vrfy
QC accepting, a strict
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majority of the Hadamard rounds will result in the outcome 𝑧, except with
negligible probability.

It remains to argue semi-malicious correctness. We observe that the strings
{̂︀𝑧𝑖}𝑖:𝑑𝑖=1 are obtained via computational basis measurements (which follows
from the description of [21]’s sampBQP protocol). Since we are considering an
honest prover, it suffices to argue that computational basis measurements are
always performed correctly under (pk, sk). The parts of (pk, sk) that are used for
computational basis measurements are injective trapdoor keys, and the measure-
ments will be correct if the keys are indeed injective. The sampling procedure
for injective keys given in [41, Section 9.2] can be made to produce an injective
key with probability 1 over its random coins, by outputting a fixed injective key
in the case that the initial sampling failed to produce an injective key.

4.4 Four-message CVQC

In this section, we use CVQC for quantum-classical circuits in combination
with quantum fully-homomorphic encryption to construct a four-message blind
CVQC protocol that enjoys composability. That is, the protocol that we con-
struct satisfies an ideal functionality that either delivers the correct output 𝐷(𝑥)
or a ⊥ symbol to the verifier, depending on a bit 𝑏 input by the prover. Security
is argued in the simulation sense according to Definition 6, which in particular
implies that the prover’s bit 𝑏 cannot depend on the verifier’s input 𝑥. We first
give our definition of composable blind CVQC, which is essentially the same as
the notion of blind and verifiable delegated quantum computation studied by [26],
but adapted to the classical verifier setting.

Definition 8 (Composable Blind CVQC). Consider the two-party func-
tionality ℱ𝐷 between classical verifier and quantum prover defined by a psuedo-
determistic circuit 𝐷(·). It takes an input string 𝑥 from the verifier and an input
bit 𝑏 from the prover (which is always 0 if the prover is honest). If 𝑏 = 0, it
delivers 𝐷(𝑥) to the verifier (and no output to the prover), and if 𝑏 = 1, it deliv-
ers ⊥ to the verifier (and no output to the prover). Protocol 𝛱 is a composable
blind CVQC protocol if for any pseudo-deterministic 𝐷, it satisfies Definition 6
for functionality ℱ𝐷.

To construct such a protocol, we use the following ingredients.

– A four-message CVQC protocol for quantum-classical circuits 𝛱QC (Defini-
tion 7).

– Quantum fully-homomorphic encryption with classical keys (QFHE.Gen,QFHE.Enc
QFHE.Eval,QFHE.Dec) (Definition 4).

The construction is given in Protocol 1.

Theorem 6. Assuming QLWE, Protocol 1 is a composable blind CVQC protocol
satisfying definition Definition 8.
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Protocol 1: Composable Blind CVQC

– 𝒱 setup
blind (1

𝜆, 𝐷, 𝑥) : the verifier samples

(pkQFHE, skQFHE)← QFHE.Gen(1𝜆), ct← QFHE.Enc(pkQFHE, 𝑥),

then it samples (pkeval, skeval)← 𝒱
setup
QC (1𝜆,QFHE.Eval(𝐷, ·), ct), sets

pk := (pkeval,QFHE.Eval(𝐷, ·), ct), sk := (skeval, skQFHE),

and sends pk to the prover.
– 𝒫blind(pk) : the prover samples (𝑦, |st⟩)← 𝒫QC(pkeval,QFHE.Eval(𝐷, ·), ct), and

sends 𝑦 to the verifier.
– The verifier samples 𝑑 according to 𝛱QC.
– 𝒫blind(|st⟩ , 𝑑): the prover samples 𝜋 ← 𝒫QC(|st⟩ , 𝑑), and sends 𝜋 to the verifier.
– 𝒱blind(pk, sk, 𝑦, 𝑑, 𝜋) : the verifier first runs

𝒱vrfy
QC (QFHE.Eval(𝐷, ·), ct, pkeval, skeval, 𝑦, 𝑑, 𝜋)

to obtain either rej or ̃︀𝑧. In the first case, it outputs ⊥. In the second case, it
computes

𝑧 := 𝒱out
QC (QFHE.Dec(skQFHE, ·), ̃︀𝑧),

and outputs 𝑧.

Fig. 1. A four-message composable blind CVQC from QLWE.

Proof. First, we argue that in case neither party is corrupted, the verifier’s out-
put is correct with overwhelming probability. This follows from the completeness
of 𝛱QC, since for any psuedo-deterministic circuit 𝐷, input 𝑥, (pkQFHE, skQFHE) ∈
QFHE.Gen(1𝜆), and ct ∈ QFHE.Enc(pkQFHE, 𝑥), it holds that QFHE.Dec(skQFHE,
QFHE.Eval(pkQFHE, 𝐷, ·)) applied to ct outputs 𝐷(𝑥) with overwhelming proba-
bility, so the computation performed by 𝛱QC is pseudo-deterministic. Next, note
that simulation in case the verifier is corrupted is trivial, since the honest prover
has no input or output.

It remains to argue security when the prover is corrupted, for which we
define the following simulator. The simulator samples a QFHE encryption of 0,
and then interacts with the prover as the honest verifier delegating the circuit
QFHE.Eval(𝐷, ·). At the end of the protocol, the simulator first runs 𝒱vrfy

QC . If this
results in rej, send 𝑏 = 1 to the ideal functionality, and otherwise send 𝑏 = 0 to
the ideal functionality. Now consider the following sequence of hybrids.

– ℋ0 : This is the real interaction between honest verifier and malicious prover,
resulting in a verifier output in {0, 1}* ∪ {⊥} and a final prover state.

– ℋ1 : In this hybrid, we change how the final verifier output is computed.
In particular, in the case that 𝒱vrfy

QC does not reject, compute the output
𝑧 = 𝐷(𝑥). This is computationally indistinguishable from ℋ0 due to the
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soundness of 𝛱QC, which guarantees that, conditioned on the verifier ac-
cepting, the output will be equal to 𝐷(𝑥) except with negligble probability.

– ℋ2 : In this hybrid, we change how the verifier’s first message is computed.
In particular, set ct to be a QFHE encryption of 0 rather than 𝑥. This is
computationally indistinguishable from ℋ1 due to the semantic security of
QFHE, since the QFHE secret key is no longer needed to compute the output
of the experiment.

– ℋ3 : In this hybrid, if 𝒱vrfy
QC rejects, then send 𝑏 = 1 to the ideal functionality,

and otherwise send 𝑏 = 0. This is identical to ℋ2, since we have just moved
the computation of 𝑧 = 𝐷(𝑥) to the ideal functionality. This is the simulator,
completing the proof.

5 Secure Quantum Computation

In this section, we show applications of the CVQC protocols constructed in
Section 4 to secure quantum computation with classical communication (where
only a single party requires quantum capabilities).

In Section 5.1, we give a generic compiler from composable blind CVQC to
multi-party quantum computation with classical computation, assuming the ex-
istence of post-quantum oblivious transfer. In fact, assuming two-message post-
quantum oblivious transfer, the compiler only adds two rounds of interaction to
the composable blind CVQC protocol.

In the full version, we show how to optimize the round complexity of multi-
party quantum computation, achieving a three-round protocol. This protocol
requires a (succinct and reusable) PKI setup and security follows from QLWE
in the quantum random oracle model. In addition, we show how to construct a
two-message two-party protocol between quantum sender and classical receiver
(a quantum NISC protocol). Security of this protocol follows from QLWE in the
quantum random oracle model.

5.1 A generic construction of multi-party quantum computation

In this section, we show that, assuming post-quantum two-message oblivious
transfer, 𝑘-message composable blind CVQC implies 𝑘 + 2-round multi-party
quantum computation between any 𝑛 classical clients and a single quantum
server. The protocol (in fact, all protocols in this section) is described for func-
tionalities with a single public output, but this is easy to generalize to multiple
private outputs using secret-key encryption.

Ingredients.

– A post-quantum round-optimal MPC protocol for classical reactive func-
tionalities in the CRS model, to be treated as an oracle called MPC. Such a
protocol is known from post-quantum two-message oblivious transfer, which
is known from QLWE.
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– A 𝑘-message composable blind CVQC protocol (Definition 8). We assume
without loss of generality that 𝑘 is even and the verifier sends the first
message. The transcript of messages between verifier and prover are denoted

msg
(𝑉 )
1 ,msg

(𝑃 )
2 , . . . ,msg

(𝑉 )
𝑘−1,msg

(𝑃 )
𝑘 .

Protocol 2: Multi-Party Quantum Computation with Classical
Communication

Public Information: An 𝑛-party pseudo-deterministic quantum functionality
𝐷(·, . . . , ·), security parameter 𝜆, 𝑛 classical client parties 𝑃1, . . . , 𝑃𝑛, and a desig-
nated server 𝑆 with quantum capabilities.

– Round 1: Each party 𝑃𝑖 sends their input 𝑥𝑖 to MPC.
– Round 2: MPC computes msg

(𝑉 )
1 and sends it to 𝑆.

– Round 3: 𝑆 computes and broadcasts msg
(𝑃 )
2 .

...

– Round 𝑘: MPC computes msg
(𝑉 )
𝑘−1 and sends it to 𝑆.

– Round 𝑘 + 1: 𝑆 computes and broadcasts msg
(𝑃 )
𝑘 .

– Round 𝑘 + 2: MPC computes the output 𝑧 ∈ {0, 1}* ∪ {⊥} of the CVQC
protocol and delivers 𝑧 to each 𝑃𝑖.

Fig. 2. An MPQC protocol with classical communication.

Theorem 7. Protocol 2 satisfies Definition 6.

Proof. First consider any adversary {Adv𝜆}𝜆∈N that corrupts a set of parties 𝑀
such that 𝑆 ∈ 𝑀 , and let 𝐻 := [𝑛] ∖𝑀 . The simulator is defined below. We
allow Sim to maintain the MPC oracle, intercepting the adversary’s inputs and
computing the outputs.

Sim({𝑥𝑖}𝑖∈𝑀 , |𝜓⟩Adv):

– Obtain {𝑥𝑖}𝑖∈𝑀 from Adv’s initial query to MPC.
– Invoke the malicious prover simulator for the composable blind CVQC pro-

tocol, which computes messages on behalf of MPC, and interacts with Adv
(controlling the server) until after Round 𝑘+ 1. The simulator outputs a bit
𝑏.

– If 𝑏 = 0, query the ideal functionality with {𝑥𝑖}𝑖∈𝑀 to obtain 𝑧 and deliver 𝑧
to Adv. Otherwise, if 𝑏 = 1, send abort to the ideal functionality and deliver
⊥ to Adv.

Now consider the following hybrids.
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– ℋ0 : This is the real distribution REAL𝛱,Q(Adv𝜆, {𝑥𝑖}𝑖∈[𝑛], |𝜓⟩Adv), where
MPC is implemented honestly as the CVQC verifier with input 𝑥1, . . . , 𝑥𝑛.

– ℋ1 : Invoke the malicious prover simulator for the composable blind CVQC
protocol to simulate the interaction between Adv and MPC through Round
𝑘 + 1. Also, change how the final message from MPC is computed. That is,
if the CVQC simulator output 𝑏 = 0, compute 𝑧 = 𝐷(𝑥1, . . . , 𝑥𝑛) (where
{𝑥𝑖}𝑖∈𝑀 were obtained from Adv’s first query to MPC, and {𝑥𝑖}𝑖∈𝐻 are the
honest party inputs) and deliver 𝑧 to Adv, and otherwise, deliver ⊥ to Adv.
This is indistinguishable from ℋ0 due to the security of the CVQC protocol.

– ℋ2 : Obtain the output 𝑧 by querying the ideal functionality with {𝑥𝑖}𝑖∈𝑀 ,
which is perfectly indistinguishable from ℋ1. This is the simulator.

Now consider any adversary {Adv𝜆}𝜆∈N that corrupts a set of parties 𝑀 ⊂
{𝑃1, . . . , 𝑃𝑛}. Security in this case is almost immediate. Indeed, the simulator will
obtain {𝑥𝑖}𝑖∈𝑀 from Adv’s query to MPC in Round 1, query the ideal functional-
ity to obtain 𝑧 and then deliver 𝑧 to Adv in Round 𝑘+2. This is indistinguishable
from the real distribution due to the correctness of the CVQC protocol, that is,
the requirement that the correct output is generated when neither of the parties
in corrupted.

Combining with our four-message composable blind CVQC protocol from
Section 4.4, we obtain the following corollary.

Corollary 1. Assuming QLWE, there exists a six-round multi-party quantum
computation protocol in the CRS model between 𝑛 classical clients and one
quantum server for computing any 𝑛-party pseudo-deterministic functionality
𝐷(·, . . . , ·).
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