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Abstract. We propose the first maliciously secure multi-party compu-
tation (MPC) protocol for general functionalities in two rounds, without
any trusted setup. Since polynomial-time simulation is impossible in two
rounds, we achieve the relaxed notion of superpolynomial-time simula-
tion security [Pass, EUROCRYPT 2003]. Prior to our work, no such
maliciously secure protocols were known even in the two-party setting
for functionalities where both parties receive outputs. Our protocol is
based on the sub-exponential security of standard assumptions plus a
special type of non-interactive non-malleable commitment.
At the heart of our approach is a two-round multi-party conditional
disclosure of secrets (MCDS) protocol in the plain model from bilinear
maps, which is constructed from techniques introduced in [Benhamouda
and Lin, TCC 2020].

1 Introduction

A multi-party computation (MPC) protocol [GMW87] allows a set of n mu-
tually distrustful parties to securely compute any function f on their inputs
(x1, . . . , xn), while revealing nothing beyond the function output f(x1, . . . , xn).
An MPC satisfies the notion of semi-honest security if the privacy of the inputs
is guaranteed against an adversary that faithfully follows the specification of
the protocols. On the other hand, if the MPC is secure against any adversary,
who can corrupt any subset of parties and let them deviate from the protocol
specifications arbitrarily, then we say that it satisfies the notion of malicious
security.

MPC is a central tool in modern cryptography and characterizing its exact
round complexity has been a major open problem. Recently, this question was
settled for the semi-honest setting [GS18,BL18a] where the authors showed a
“round-collapsing” compiler to turn any MPC protocol into a 2-round protocol,
under the (minimal) assumption of the existence of a 2-round oblivious transfer
(OT) protocol. Unfortunately, the compiled protocols achieve only semi-honest
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security (even if the input protocols were maliciously secure to begin with).
Achieving malicious security requires one to add additional rounds of interac-
tion [BHP17,ACJ17,HHPV18,BL18a,BGJ+18,CCG+19] or assume the presence
of a trusted setup [GS18]. Besides introducing an additional (reusable) round of
interaction where all participants need to receive the common reference string
(CRS), the presence of a trusted setup is at odds with the main objective of
MPC of reducing the trust in external parties. This motivates us to ask the
following question:

Can we construct maliciously secure 2-round MPC without trusted setup?

At first, it might appear that the answer to the above question is clearly neg-
ative: Even for the 2-party setting it is well known that four rounds are nec-
essary [KO04] (with respect to blackbox simulation) and that polynomial time
simulation in 2 rounds is strictly impossible [GO94]. However none of these bar-
riers hold if we consider the relaxed notion of superpolynomial-time simulation.

Super-Polynomial Simulation (SPS). SPS-based security [Pas03,PS04] has emerged
as the de-facto notion of security to bypass impossibility results of classical
polynomial-time simulation. In SPS security, the adversary is restricted to run
in (non-uniform) polynomial time but the simulator is allowed to run in super-
polynomial time. To see why this is a meaningful notion, note that the stan-
dard definition of input-indistinguishability (e.g. semantic security for the case
of encryption) is equivalent to SPS security with an unbounded simulator. Thus,
input-indistinguishability is a strict relaxation of SPS security.

In fact, the notion of (malicious) 2-round MPC with SPS security has been
recently considered for the restricted settings of 2 parties (2PC), out of which one
might be corrupted. Recent works [BGI+17,JKKR17,MPP20] achieve 2-round
2PC with SPS security from a variety of assumptions, where a single party
receives the output. Even constructing a 2-round 2PC with SPS security where
both parties receive the output at the end of second round is currently an open
problem,1 let alone extending such a result to the setting of more than 2 parties.

As discussed in [BGJ+17], who construct three round MPC with SPS se-
curity, it is helpful to view SPS security through the lens of the security loss
inherent in all security reductions. In polynomial-time simulation, the security
reduction has a polynomial security loss with respect to the ideal world. That
is, an adversary in the real world has as much power as another adversary that
runs in polynomially more time in the ideal world. In SPS security, the security
reduction has a fixed super-polynomial security loss, for example 2n

ε

for a small
constant ε > 0 and security parameter n, with respect to the ideal world. Just
as in other applications in cryptography using super-polynomial assumptions,
this situation still guarantees security as long as the ideal model is itself super-
polynomially secure. For instance, if the ideal model hides honest party inputs

1 Running two instances of the same protocol in parallel does not achieve any mean-
ingful security guarantee since nothing prevents one party from using two different
inputs in each session.
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information-theoretically, then security is maintained even with SPS. This is true
for applications like online auctions, where no information is leaked in the ideal
world about honest party inputs beyond what can be easily computed from the
output. But SPS also guarantees security for ideal worlds with cryptographic
outputs, like blind signatures, as long as the security of the cryptographic out-
put is guaranteed against super-polynomial adversaries. Indeed, SPS security
was explicitly considered for blind signatures in [GRS+11,GG14] with practi-
cally relevant security parameters computed in [GG14].

1.1 Our Results

We construct a 2-round MPC protocol for polynomially-many parties with SPS
security. All communications happen via a broadcast channel that immediately
relays the messages to all participants. We guarantee security in the dishonest
majority setting and against malicious adversaries, i.e. we allow the adversary
to behave arbitrarily and to corrupt all but one participant. We do not assume
a trusted setup or a common reference string (i.e. our protocol is in the plain
model). 2 More concretely, we obtain the following result.

Theorem 1 (Informal). Assuming the sub-exponential security of the follow-
ing building blocks:

– A non-interactive witness-indistinguishable (NIWI) proof.
– A special non-interactive non-malleable commitment scheme3.
– A 2-round semi-malicious4 MPC.
– A bilinear group in which the SXDH assumption holds.

Then there exists a 2-round MPC in the plain model with SPS security for all
functions.

Prior to our work, 2-round (malicious) MPC was known only for the 2-party
settings where only one party receives the output at the end of the interac-
tion [BGI+17,JKKR17,MPP20]. Protocols for more than 2 parties in the plain
model were not known under any assumption. Note that 3-round MPC with SPS
(and even concurrent) security is known (see [BGJ+17] and references therein)
and that 1-round MPC is impossible in the plain model (even with SPS-security).
Thus, our work fills the natural knowledge gap about the round complexity of
MPC with SPS security.

2 We note that our usage of bilinear group based NIWI does not require any setup
phase as the prover can self sample the group. Soundness of NIWI will hold as long
as the group is cyclic and of the right order[GOS06b]. Also, our usage of tag-based
non-malleable commitment scheme doesn’t require setup as the parties can locally
choose their identities.

3 Specifically, we assume (a strengthened form of) sub-exponentially secure non-
malleable commitments with respect to commitment.

4 Semi-malicious security is a strengthening of semi-honest security where the adver-
sary follows the specifications of the protocols but can choose the random coins of
the corrupted parties arbitrarily.
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Multi-Party Conditional Disclosure of Secrets. The central tool that we use to
achieve our main result is a new construction of multi-party conditional disclo-
sure of secrets (MCDS). Loosely speaking, in an MCDS protocol we want one
party (the sender) to reveal a message to a set of n parties (the receivers) if and
only if some statements (x1, . . . , xn) are all true. Each receiver holds a witness wi
and, at the end of the interaction, the message m can be publicly reconstructed
if all witnesses are valid, i.e. (wi, xi) ∈ R, where R is an NP relation. Security
requires that all witnesses remain hidden and that the message m is also hidden
if at least one statement xi is false. Building on the recent techniques of [BL20],
we obtain the following construction, which may be of independent interest.

Theorem 2 (Informal). If there exists a bilinear group where the SXDH and
the DLin problems are (subexponentially) hard, then there exists a (delayed state-
ment) 2-round (subexponentially-secure) MCDS protocol for NP in the plain
model.

On the Assumptions. We observe that all our building blocks except non-interactive
non-malleable commitment admit efficient instantiations from standard assump-
tions over bilinear maps. In the case of constant number of parties, we achieve the
required special non-malleable commitments by relying on the RSW time-lock
puzzle assumption in [LPS17] together with any sub-exponentially quantum-
hard non-interactive commitment (which follows, e.g., from quantum-hardness
of LWE). In the case of polynomially many parties, our special non-malleable
commitments can be instantiated based on a variant of a “hardness amplifia-
bility” assumption on non-interactive commitments (inspired by [BL18b]), to-
gether with other standard assumptions. A much simpler instantiation of the
required non-malleable commitments for polynomially many parties would also
follow from the factoring-based adaptive one-way functions of [PPV08] together
with any sub-exponentially quantum-hard non-interactive commitment (which
follows, e.g., from quantum sub-exponential hardness of LWE).

Conclusion and Open Questions. This work provides the first template to achieve
multi-party computation in two rounds against Byzantine adversaries without
trusted setup. Prior to our work, all existing two round multi-party (and even
two-party) computation protocols [GGHR14,GP15,GS18,BL18a,BJKL21] either
required trusted setup or achieved provable security only against variants of
honest-but-curious adversaries. On the other hand, our protocol achieves security
with super-polynomial simulation against arbitrary malicious corruptions.

We believe that future work will be able to build on this template to realize
secure two-round MPC protocols under a variety of different assumptions. For
instance, improved constructions of non-interactive non-malleable commitments
that rely on various new “axes of hardness” could improve the assumptions used
in our work. The problem of building multi-party CDS under other standard
assumptions could also be an interesting open question for future work.
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1.2 Technical Overview

We first describe our principal building block - a construction of multi-party
conditional disclosure of secrets (MCDS) in the plain model - and then describe
the techniques we develop to construct two-round MPC in the plain model.

Multi-Party Conditional Disclosure of Secrets As discussed in the pre-
vious section, our two-round maliciously secure MPC protocol relies on an un-
derlying semi-malicious MPC protocol. The first challenge that we encounter in
compiling this to a maliciously secure MPC is the following: there needs to be
a mechanism to make sure that the first message of each party is well-formed,
otherwise the semi-malicious MPC offers no security whatsoever. Now in the
absence of a trusted setup, we cannot simply attach a NIZK proof that certifies
well-formedness. This forces us to adopt an implicit approach instead.

Specifically, instead of relying on publicly-verifiable NIZKs, we aim to realize
the following (two-round) two-party functionality: Let C be an NP-verification
circuit that the parties wish to compute over some secret witness w. One party
- the receiver - has a witness w as input, the other party - the sender - has a
secret message m as input. The public output is m if C(w) = 1, and otherwise
the output is ⊥.

This functionality would allow us to achieve the desired goal, since we can
“condition” the transfer of the second round message to the fact that the first
round message of all parties was well-formed. In the multi-party settings, all
parties should simultaneously receive all second round messages, and therefore
we additionally need to ensure that the above functionality satisfies public re-
construction: If C(w) = 1, then the message m is publicly recoverable from the
conversation transcript. While this appears to be a plausible avenue to attack
the problem, building a protocol implementing this functionality in two rounds
and in the plain model requires some new ideas. We note that the notion of CDS
and its use as an alternative to zero-knowledge was first introduced in the work
of [GIKM98].

What Makes This a Difficult Problem? Since parties may behave maliciously,
there is no guarantee that a party A’s first round message is honestly generated.
Furthermore, A should be able to recover an output after obtaining party B’s
second round message, which is computed based on A’s potentially mal-formed
first message. Thus, it appears that B should have some guarantee that A’s first
message is well-formed before it computes and releases its second round message,
which will potentially reveal information about its secret input. Importantly, this
proof of well-formedness should preserve the confidentiality of A’s input.

In the CRS model, one could have each party prove the well-formedness of
its first round message with a NIZK. However, in the absence of any setup,
one cannot achieve such strong zero-knowledge properties with a non-interactive
proof. The best we can hope for is to have each party prove that its first message
is well-formed with a non-interactive witness indistinguishable proof (NIWI).
Now, in order to preserve confidentiality while using a NIWI, there must exist
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multiple valid explanations (i.e. witnesses) of the party’s first round message.
Thus, a natural approach is to have each party generate two separate first round
messages and prove with a NIWI that at least one of the two is well-formed.

While this appears promising, there are still serious issues that prevent one
from constructing general-purpose two-round two-party computation in the plain
model (with publicly reconstructable output). If party A is now computing two
separate first round messages, how does party B know which of them to use
when computing its second round message? If B simply computes a second
round message with respect to both, then since one may be mal-formed we are
back to the original problem. One could try to have B secret share its input and
compute a (first and) second round message with respect to each share. However,
this immediately runs into issues if the functionality is computing on B’s input in
any way. But we observe that this outline, with additional ideas, can be made to
work for a special type of functionality. Specifically, this motivates the relaxation
from general-purpose 2PC to conditional disclosure of secrets (CDS) protocol.

Conditional Disclosure of Secrets (CDS). In CDS, there is no computation per-
formed on sender’s input m at all, and can thus be secret shared across two
independent executions. However, the issue of preserving receiver privacy re-
mains, since secret sharing the witness will be problematic. We circumvent the
problem by simply requiring that the sender not have first round message at
all! Therefore, an honest receiver does not have to respond to any potentially
mal-formed sender message. In summary, then, we seek an instantiation of the
following primitive.

– The receiver, on input a witness w, publishes a first round message Com(w).
– The parties decide to compute a CDS for circuit C.
– The sender, on input a message m, outputs a second round message Enc(m)

that is computed with respect to Com(w).
– Simultaneously, the receiver outputs a second round message πC , also com-

puted with respect to Com(w).
– Given Com(w),Enc(m), and πC , anybody can recover m if C(w) = 1, and

otherwise m is completely hidden.

Recently, Benhamouda and Lin [BL20] gave a construction (which they call “wit-
ness encryption for NIZK of commitment”) that essentially satisfies the above
syntax, except that it requires a CRS to be secure against malicious parties.
While we seemingly have not made much progress, observe that we have signif-
icantly reduced the functionality, enough to make our initial idea work. In our
scheme, the sender and the receiver will run two parallel copies of the above
system, where CRSs are chosen by the receiver. Specifically, the receiver will
send

(crs0, crs1,Com0(w),Com1(w))

together with a NIWI proof that at least one of the two copies is correctly
computed. The sender will then respond with

(Enc(m0),Enc(m1)) such that m0 ⊕m1 = m

6



and the receiver will simultaneously respond with both copies of the second
round message πC,0 and πC,1. In terms of security, the NIWI guarantees that at
least one of the two copies is correctly computed, which in turn implies that one
of the shares of the message is hidden, if C(w) 6= 1.

Upgrading the Functionality. Now, the above gives a non-trivial two-party func-
tionality that may be computed in two rounds in the plain model. We further
observe that, due in part to the simplicity of the CDS functionality, the same
techniques naturally extend to the multi -party setting. Here, we consider multi-
ple receivers, each with a different input witness wi and each associated with a
different circuit Ci. A single sender can now additively secret share its message
across all receiver commitments, so that m may only be recovered if Ci(wi) = 1
for all i. In the next section, we show how this simple multi-party functionality
can be used as a crucial building block for computing all multi-party function-
alities in the plain model.

Before moving on we note that the initial construction given in [BL20] only
supports computation of NC1 circuits, and they later upgrade their construction
to support all polynomial-size circuits via the use of a randomized encoding with
encoding in NC1 and a garbled circuit. Our construction uses similar techniques,
starting with the same underlying building blocks as [BL20] and then tailoring
this NC1 to P upgrade to our (multi-party, plain model) setting. Details may be
found in Section 3.3.

Two Round Maliciously-Secure MPC To construct a two-round mali-
ciously secure MPC protocol, we start with any generic two-round MPC protocol
which is secure against semi-malicious adversaries. In short, semi-malicious ad-
versaries are those who follow the protocol specification (like semi-honest adver-
saries) but may choose arbitrary randomness. Two-round MPC protocols such as
[GS18,BL18a,AJJM20] provide security against such class of adversaries. How-
ever, an arbitrary malicious adversary might choose not to follow the protocol
specification (e.g. by generating messages that are outside the support of honest
distribution).

Challenge: Message Integrity. If we allow the adversary to behave arbitrarily, the
aforementioned protocols no longer guarantee any meaningful notion of security.
Well-studied techniques, such as requiring a zero-knowledge proof of “honest”
behavior from all parties, does not work because such ZK proofs require at least
2 rounds [Pas03]. Therefore, transferring the second MPC message only after
verifying the ZK proofs will end up requiring 3 rounds in the overall protocol. If,
somehow, we could achieve some kind of “delayed-verification” then this problem
would be solved. To realize this intuition, we will rely on our MCDS primitive.
A natural approach would be to encrypt the second MPC messages of parties
using MCDS so that they can be decrypted only if all parties behaved honestly
in their first round. However, this intuition does not directly translate into a
proof because of some key issues which we describe and address in the following.
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From WI to Simulation Security. First, note that the MCDS only guarantees
a witness-indistinguishability (WI) kind of security. In particular, it doesn’t en-
sure that the witness (i.e. input and randomness) of parties remains hidden.
All it ensures is that the choice, out of two possible witnesses (if they exist),
remains hidden. Therefore, in order to leverage such WI-style security to pro-
vide a full-fledged ZK style guarantee, we will use the well-known FLS paradigm
wherein we introduce a second “trapdoor” witness and require each party to
prove (through MCDS) that either it behaved honestly in the first round OR it
was successful in guessing the trapdoor. The trapdoor will be set up in a way
so that a polynomially bounded adversary, in the real world, will not be able to
guess the trapdoor and therefore will be forced to stick to the honest protocol.
However, a super-polynomial time simulator, in the ideal world, would be able to
guess the trapdoors and thereby generate the honest distribution without relying
on the honest party witnesses (i.e. input and randomness).

To implement the aforementioned trapdoor-based solution, we rely on a spe-
cial pair of commitment algorithms - com and Com. The idea is to have each
party Pi generate a commitment ci = com(0; ri) using a uniformly random value
ri. Now the collection of all such n random values {ri}i∈[n] will be used as a sin-
gle trapdoor for all n parties. Concretely, each party Pi will be required to prove
(through MCDS) that either there exists a valid witness wi (encoding the semi-
malicious MPC input and randomness) in its MCDS commitment (in Round 1)
which is consistent with its first round semi-malicious MPC message OR that
its MCDS commitment message contains the exact trapdoor values {ri}i∈[n].

Malleability Attacks. Unfortunately, the above idea is not yet sufficient for
achieving security due to the existence of different types of malleability attacks.
For example, consider a scenario where the adversary A, on receiving cHi from
some (set of) honest party, “mauls” it into his own MCDS commitment value. If
this happens, the second OR branch of the adversary’s MCDS statement will be
valid, and we won’t be able to invoke the sender-security of the MCDS scheme
to argue that the second round MPC message of honest parties is hidden. To
handle this, we add a requirement that each party Pi must generate a commit-
ment Ci = Com(0kn) in the first round and modify the second OR branch of
the MCDS statement to additionally verify whether Ci = Com({ri}i∈[n]). The
pair of commitment algorithms (com,Com) is designed so that any (implicit)
information from ci cannot be (efficiently) transferred to Ci. In other words,
com is non-malleable w.r.t. to Com. In the real world, this will ensure that a
polynomially-bounded adversary is unable to take the trapdoor branch of the
MCDS statement. However, in the ideal world, the super-polynomial simulator
will be able to do so by just guessing the trapdoor values.

A subtle issue that arises is the following: What happens if A just “copies”
the exact same messages as that of the honest party? If this happens, he would
be able to decrypt the second round MPC messages of honest parties just by
using the exact same MCDS proof messages as that of honest parties. This is
because the MCDS statement, along with the implicit witness in the copied first
round MCDS message, of the adversary would be exactly the same as that of the
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honest party. Such attacks might be devastating because they might enable A to
make his input “dependent” on the honest party’s input. For example, consider
a 2-party case where P1 holds input x, P2 holds input y, and they would like
to securely compute f(x, y). In such cases, a malleability attack might enable a
corrupt P2 to recover f(x, x) with probability one. Note that such an attack is
not allowed in the ideal world where each Pi sends its input to the functionality
independently (of other parties). To thwart such attacks, we require Com to be a
non-malleable commitment i.e. a commitment C1 generated by honest party P1

cannot be “mauled” into a related commitment C2 by corrupt party P2. From
the protocol perspective, this ensures that an adversary which tries to copy the
exact same messages as that of the honest party will be detected in the first
round (as the non-malleable design of Com enforces each Pi to use a unique
tag). From the perspective of security proof, this enables the simulator, in one of
the hybrids, to switch from using the real inputs of honest parties to using the
trapdoor witness in its Ci messages without letting the adversary also perform
the same kind of switch.

Integrity of the Second Round. Although MCDS helps us conditionally transfer
the second MPC message of honest parties, an adversary might still be able to
“cheat” in his second round after behaving honestly in the first round. For exam-
ple, an adversary generating “malformed” second round messages (i.e. messages
outside the support of honest distribution) might be able to force honest parties
into recovering an incorrect output without detection. Note that such attacks
are not allowed by the real/ideal definition – in fact, in such a scenario, it is
required that honest parties should be able to detect such an event and then
abort. To fix this, we will use a type of (two-message) ZK argument, which we
will again instantiate via a NIWI [GOS06a]. Essentially, each party will be re-
quired to prove, using NIWI, that either it is sending a well-formed second round
message OR it has successfully guessed the trapdoor value {ri}i∈[n] (which has
already been set up in the first round as we described above).

Some Additional Challenges. Finally, we mention some of the details specific to
the security proof of our protocol. Note that in a 2-round setting, rewinding is not
an option for the simulator, and therefore the only way out is to correctly guess
the adversary’s actions in advance. This means that our simulator will make
several (superpolynomially many) attempts to guess the adversary’s trapdoor,
and indistinguishability of hybrids will be conditioned on the event that the
simulator was successful in correctly guessing all the trapdoors {ri}i∈[n] (which
includes the ones generated by the adversary). We note that it appears to be
necessary to embed n trapdoors, one for each player, and allow the simulator
(or any other player) to deviate from honest strategy if and only if it guessed
the trapdoors of all other players. This, in turn, requires other primitives in the
protocol to have a higher level of security than the total computation needed to
guess all n trapdoors simultaneously. Concretely, assuming each ci was created
using γ bits of randomness in the com algorithm, then the simulator has a
probability of 2−nγ of being successful at the guess. Conditioned on this (very)
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low probability event, when we switch the value inside simulator’s CHi from 0nγ

to the actual trapdoors r1|| . . . ||rn, we would have to argue the independence
of values inside adversary’s CMi from the values inside CHi .5 To enable this, we
require that the non-malleable commitment scheme Com allows an advantage
no better than negl(2nγ). We refer the reader to Section 2.4 for some plausible
instantiations of such a primitive. Similarly, the other primitives in our protocol,
such as MCDS and the semi-malicious MPC must also allow for an advantage
no better than negl(2nγ).

At the same time, we would like to ensure that no adversary or set of colluding
adversaries can copy the trapdoors r1||... . . . ||rn, which include trapdoors used
by honest parties. This means that we must ensure that commitments to ri
created according to the commitment scheme com cannot be mauled to generate
commitments using the commitment scheme Com. Therefore, we interpret com
and Com together as a “special” non-malleable commitment with n + 1 tags,
where commitments w.r.t. a special tag (say, the 0 tag) use at most γ bits
of randomness and cannot be mauled to commitments via any other tag by
a polynomial-sized circuit; and commitments with all non-zero tags are non-
malleable w.r.t. each other with an advantage no better than negl(2nγ). We view
identifying the right notion of non-malleability to instantiate our compiler as an
important technical contribution of this work.

In Section 2.4, we provide instantiations for these special commitments in the
setting of constant n (i.e. constant number of parties) based on sub-exponential
time-lock puzzles and sub-exponential quantum hardness of the learning with
errors (LWE) assumption. The restriction to constant n is due to the need for
negl(2nγ) security, which is not satisfied by some existing constructions of non-
interactive non-malleable commitments [LPS17,BL18b,KK19] for n = poly(λ).
Nevertheless, we formulate an assumption on the hardness amplification of com-
mitments (which is a variant of hardness amplifiability assumptions introduced
in the context of non-malleable commitments by [BL18b]), and use this to in-
stantiate special commitments for polynomial-sized tag spaces (and therefore,
polynomially many parties) from sub-exponential falsifiable assumptions. We
also provide a much simpler proof-of-concept instantiation from factoring-based
adaptive one-way functions from [PPV08] and quantum hardness of the learning
with errors (LWE) assumption. Due to the challenges outlined above, we be-
lieve that removing the need for special non-malleable commitments is likely to
require new, possibly non-black-box, simulation techniques. However, we hope
that future work will be able to simplify the assumptions on which special non-
malleable commitments can be based by relying on other types of hardness.

5 This is needed, for example, to ensure that the hybrid before switching to trapdoor
is indistinguishable from the hybrid obtained after switching to trapdoor w.r.t an
adversary who was unable to retrieve the Round 2 semi-malicious MPC message in
the former hybrid (because of some dishonest behavior in the Round 1). We would
like to avoid a scenario where such an adversary is actively trying to maul the honest
party’s CHi into its own CMi and therefore distinguishes the latter hybrid from the
former one (by successfully retrieving the Round 2 MPC message in the latter but
not the former).
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Another interesting question is whether our protocols achieve a notion of
angel-based security [PS04]. Angel based security allows the simulator as well
as the adversary access to a super-polynomial resource called an “angel” which
can perform a pre-defined task such as inverting a one-way function. Our simu-
lation technique makes arguing angel-based security tricky: our simulator must
guess the randomness that the adversary uses in his commitment ci even before
receiving these commitments from the adversary. Our simulator repeatedly runs
the adversary until it guesses correctly, and it appears difficult to directly rely
on an angel to make this guessing step easier. We believe that constructing two-
round MPC satisfying angel-based or other forms of composable security is an
interesting direction for future work.

2 Preliminaries

We say that a primitive satisfies (T, δ) security if the security definition holds
for all poly(T ) time adversaries with advantage at-most negl(δ). Here T and δ
can be arbitrary functions in the security parameter λ and all the honest parties
should run in time poly(λ).

2.1 Non-Interactive Witness-Indistinguishable Proofs

We recall the notion of a non-interactive witness-indistinguishable (NIWI) proof
system [GOS06b]. In [GOS06b] the authors showed how to construct such a
NIWI based on standard hard problems over prime-order bilinear maps. A NIWI
proof system is defined with respect to an NP language L with relation R and
consists of the following efficient algorithms.

NIWIProve(x,w,R): On input a statement x, witness w, and relationR, returns
a proof π.

NIWIVerify(x, π,R): On input a statement x, proof π, and relation R, the ver-
ification algorithm returns a bit b ∈ {0, 1}.

For correctness, we require that true statements always lead to accepting proofs.

Definition 1 (Correctness). A NIWI proof system is correct if for all (w, x) ∈
R it holds that

NIWIVerify(x,NIWIProof(x,w,R),R) = 1.

We require that the NIWI proof satisfies perfect soundness.

Definition 2 (Soundness). A NIWI proof system is perfectly sound if for all
x /∈ L and for all proofs π it holds that

Pr [1 = NIWIVerify(x, π,R)] = 0.

Finally, we require that the NIWI proof system satisfies the notion of com-
putational witness-indistinguishability.

11



Definition 3 (Witness-Indistinguishability). A NIWI proof system is wit-
ness indistinguishable if there exists a negligible function negl such that for all
λ ∈ N and all (stateful) PPT adversaries ADV, it holds that

Pr

ADV(π) = b
∧(w0, x) ∈ R ∧ (w1, x) ∈ R

∣∣∣∣∣∣
(w0, w1, x)← ADV(1λ)
b←$ {0, 1}
π ← NIWIProve(x,wb,R)

 ≤ 1/2 + negl(λ).

Groth et al. [GOS06b] showed that such a NIWI exists assuming the hardness
of the DLin problem over bilinear maps.

Theorem 3 ([GOS06b]). Let (G1,G2,GT ) be a bilinear group where the DLin
problem is hard. Then there exists a NIWI for NP.

2.2 Garbled Circuit

We recall the definition of a garbling scheme for circuits [Yao86] (see Applebaum
et al. [AIK04], Lindell and Pinkas [LP09] and Bellare et al. [BHR12] for a detailed
proof and further discussion).

Definition 4 (Garbled Circuit). A garbling scheme for circuits is a tuple
of PPT algorithms (Garble,GEval). Garble is the circuit garbling procedure and
GEval is the corresponding evaluation procedure. More formally:

– (C̃, {labi,b}i∈[n],b∈{0,1}) ← Garble
(
1λ, C

)
: Garble takes as input a security

parameter 1λ, a circuit C, and outputs a garbled circuit C̃ along with labels
{labi,b}i∈[n],b∈{0,1}, where n is the length of the input to C.

– y ← GEval
(
C̃, {labi,xi}i∈[n]

)
: Given a garbled circuit C̃ and a sequence of

input labels {labi,xi}i∈[n], GEval outputs a string y.

Correctness. For correctness, we require that for any circuit C and input x ∈
{0, 1}n we have that:

Pr
[
C(x) = GEval

(
C̃, {labi,xi}i∈[n]

)]
= 1

where (C̃, {labi,b}i∈[n],b∈{0,1})← Garble
(
1λ, C

)
.

Security. For security, we require that there exists a PPT simulator GSim such
that for any circuit C and input x ∈ {0, 1}n, we have that(

C̃, {labi,xi}i∈[n]
)
≈c GSim

(
1λ, 1|C|, 1n, C(x)

)
where (C̃, {labi,b}i∈[n],b∈{0,1})← Garble

(
1λ, C

)
.
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2.3 Randomized Encoding

We provide a definition of randomized encoding that is perfectly correct, com-
putationally private, and has encoding in NC1. We follow the definition given
in [BL20] which follows from [AIK05].

Definition 5 (Randomized Encoding). Let G be a class of polynomial-size
circuits. A computational randomized encoding scheme for G is a tuple of PPT
algorithms (RE.Enc,RE.Dec,RE.Sim) with the following syntax.

– Ĝ := RE.Enc(1λ, G): On input a security parameter and a circuit G ∈ G,

where G : {0, 1}n → {0, 1}, output a circuit Ĝ : {0, 1}n × {0, 1}` → {0, 1}p.
This procedure is deterministic.

– y := RE.Dec(1λ, G, ŷ): On input the security parameter, a circuit C ∈ G, and

the output ŷ of Ĝ, output the output y of G. This procedure is deterministic.
– Ĝ ← RE.Sim(1λ, G, y): On input the security parameter, a circuit G ∈ G,

and an output y ∈ {0, 1}, output a simulated randomized encoding Ĝ.

Efficiency. We require that ` and p are polynomial in λ and in the size of G.
We also require that Ĝ is in NC1.

Perfect Correctness. For every λ ∈ N, every circuit G ∈ G, every input x ∈
{0, 1}n, and every string r ∈ {0, 1}`, we have that RE.Dec(1λ, G, Ĝ(x, r)) =

G(x), where Ĝ := RE.Enc(1λ, G).

Computational Privacy. For every circuit G ∈ G and every input x ∈ {0, 1}n,
we have that

{
Ĝ := RE.Enc(1λ, G), r ← {0, 1}` : Ĝ(v, r)

}
λ∈N
≈c
{
RE.Sim(1λ, G,G(v))

}
λ∈N .

2.4 Non-malleable Commitments

Non-malleability considers a man-in-the-middle MIM that receives a commit-
ment to a message m ∈ {0, 1}p and generates a new commitment c̃. We say that
MIM commits to ⊥ if there does not exist any (m̃, r̃) such that c̃ = com(m̃, r̃).
Intuitively, the definition of non-malleability with respect to commitment re-
quires that for any two messages m0,m1 ∈ {0, 1}p, the joint distributions of
(com(m0), m̃0) and (com(m1), m̃1) are indistinguishable, where m̃b is the mes-
sage committed to by the MIM given com(mb). We consider the case where the
MIM gets a single committed message and generates a single commitment.

Definition 6 (One-to-One Non-malleable Commitments w.r.t. Com-
mitment). A non-interactive non-malleable (one-to-one) string commitment
scheme with N tags consists of a probabilistic poly-time algorithm C, that takes

as input a message m ∈ {0, 1}p, randomness r ∈ {0, 1}poly(λ), and a tag ∈ [N ],
and outputs a commitment comtag(m; r). It is said to be non-malleable w.r.t.
commitment if the following two properties hold:

13



– Binding. There do not exist m0,m1 ∈ {0, 1}p, r0, r1 ∈ {0, 1}poly(λ) and
tag0, tag1 ∈ [N ] such that m0 6= m1 and comtag0(m0; r0) = comtag1(m1; r1)

– One-to-One Non-malleability. For every pair of messages v0, v1 ∈ {0, 1}p,
every pair of tags tag, t̃ag, every poly-size man-in-the-middle adversary A,
there exists a negligible function µ(·) such that for all large enough λ ∈ N
and all poly-size distinguishers D,∣∣∣Pr[D(V0) = 1]− Pr[D(V1) = 1]

∣∣∣ = negl(λ)

where for {b ∈ 0, 1}, the distribution Vb is defined as follows:

Sample r
$← {0, 1}poly(λ) and set c = comtag(mb; r). Let (c̃, z) = A(c). If

there exists t̃ag ∈ [N ] \ tag, M̃ ∈ {0, 1}p(λ) and r̃ ∈ {0, 1}poly(λ) such that

c̃ = comt̃ag(M̃ ; r̃) then m̃ = M̃ , otherwise set m̃ = ⊥. The distribution Vb
outputs (c, c̃, m̃).

We will use a strengthened version of one-to-one non-malleable commitments,
that we define next. Intuitively, we will require that there exist a special com-
mitment (with say tag = 0κ), that uses only a very “short” string of randomness
of size (say) λ. Looking ahead letting n = poly(λ) denote the number of parties
in our MPC protocol, we will require commitments w.r.t. all non-zero tags to be
negl(2nγ)-non-malleable w.r.t. each other (as opposed to negl(λ)), for a γ that is
described below. This property is formalized in Property 1 below. We will also
need the special commitment (with say tag = 0κ) to satisfy the regular definition
of (one-to-one) non-malleability w.r.t. all other tags, as formalized in Property
2 below.

Definition 7 (n-Special One-to-One Non-malleable Commitments w.r.t.
Commitment). A non-interactive non-malleable (one-to-one) string commit-
ment scheme with N tags consists of a probabilistic poly-time algorithm C, that

takes as input a message m ∈ {0, 1}p, randomness r ∈ {0, 1}poly(λ), and a
tag ∈ [0, N ], and outputs a commitment comtag(m; r). It is said to be a spe-
cial non-malleable commitment if the following three properties hold:

– Binding. There do not exist m0,m1 ∈ {0, 1}p, r0, r1 ∈ {0, 1}poly(λ) and
tag0, tag1 ∈ [0, N ] such that m0 6= m1 and comtag0(m0; r0) = comtag1(m1; r1)

– Property 1. For every pair of messages v0, v1 ∈ {0, 1}p, every pair of un-
equal tags tag ∈ [1, N ], t̃ag ∈ [1, N ], every poly-size man-in-the-middle adver-
sary A, there exists a negligible function µ(·) such that for all large enough
λ ∈ N and all poly-size distinguishers D,∣∣∣Pr[D(V0) = 1]− Pr[D(V1) = 1]

∣∣∣ = negl(2γ·n)

where γ denotes the size of randomness used to commit to λ-bit messages
with tag = 0, and for {b ∈ 0, 1}, the distribution Vb is defined as follows:

Sample r
$← {0, 1}poly(λ) and set c = comtag(mb; r). Let (c̃, z) = A(c). If

there exists t̃ag ∈ [N ] \ tag, M̃ ∈ {0, 1}p(λ) and r̃ ∈ {0, 1}poly(λ) such that
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c̃ = comt̃ag(M̃ ; r̃) then m̃ = M̃ , otherwise set m̃ = ⊥. The distribution Vb
outputs (c, c̃, m̃).

– Property 2. For every pair of messages v0, v1 ∈ {0, 1}p, every pair of tags
tag, t̃ag ∈ [0, N ] such that tag = 0, every poly-size man-in-the-middle adver-
sary A, there exists a negligible function µ(·) such that for all large enough
λ ∈ N and all poly-size distinguishers D,∣∣∣Pr[D(V0) = 1]− Pr[D(V1) = 1]

∣∣∣ = negl(λ)

where for {b ∈ 0, 1}, the distribution Vb is defined as follows:

Sample r
$← {0, 1}poly(λ) and set c = comtag(mb; r). Let (c̃, z) = A(c). If

there exists t̃ag ∈ [N ] \ tag, M̃ ∈ {0, 1}p(λ) and r̃ ∈ {0, 1}poly(λ) such that

c̃ = comt̃ag(M̃ ; r̃) then m̃ = M̃ , otherwise set m̃ = ⊥. The distribution Vb
outputs (c, c̃, m̃).

We now describe different possible instantiations of such special non-malleable
commitments. First, in the setting of constant tags, we obtain the following
lemma by combining non-malleable commitments based on time-lock puzzles [LPS17],
and quantum vs. classical hardness [KK19].

Lemma 1. [LPS17,KK19] Assuming non-malleable commitments for constant-
sized tag spaces based on the RSW time-lock puzzle family of assumptions [LPS17],
and assuming sub-exponential quantum hardness of LWE, for every constant c,
there exist c-special one-to-one non-malleable commitments w.r.t. commitment
for tags in [0, n] satisfying Definition 7.

Next, for the setting of polynomially many parties/tags, we develop a path-
way to building the desired special non-malleable commitments from falsifiable
assumptions. To this end, we first generalize the notion of hardness amplifiabil-
ity from [BL18b] to consider non-interactive commitments instead of one-way
functions, and require an exponentially low guessing advantage.

Definition 8. We will say that a family of perfectly binding bit commitments is
δ-hardness amplifiable if for every polynomial-sized probabilistic adversary A =
{Aλ}λ∈N, every sufficiently large polynomial ` and sufficiently large λ ∈ N

Pr
∀i∈[`],xi←{0,1}λ,ri←{0,1}∗,ci=com(xi;ri)

[Aλ(c1, . . . , c`) = x1⊕ . . .⊕x`)] ≤
1

2
+2−δ`(λ)

We have the following lemma, that follows by carefully instantiating param-
eters and combining prior work.

Lemma 2. [LPS17,BL18b,KK19] Assume that the following exist.

– Quantum polynomially-hard non-interactive commitments that satisfy Defi-
nition 8 with δ > 0.

– Classically polynomially-hard non-interactive commitments that satisfy Def-
inition 8 with δ > 0, and can be inverted in quantum polynomial time.

15



– Sub-exponentially secure non-interactive commitment.
– Sub-exponentially secure one-message weak zero-knowledge [BL18b].

Then for every polynomial n = n(λ), n-special one-to-one non-malleable com-
mitments w.r.t. commitment with tags in [0, n] satisfying Definition 7 exist.

The proofs of both these lemmas, together with a simpler instantiation from
adaptive one-way functions and QLWE, can be found in Appendix ?? in the full
version.

In addition, we will rely on standard notions of MPC with superpolynomial
simulation and MPC against semi-malicious adversaries. For completeness, for-
mal definitions can be found in Appendix ?? in the full version.

3 Multi-Party Conditional Disclosure of Secrets

In the following we define and construct a multi-party conditional disclosure of
secrets protocol in two rounds, from standard assumptions over bilinear maps.
Our protocol is (i) in the plain model and (ii) delayed-statement. Our construc-
tion is for general polynomial-size circuits, and satisfies computational sender
and computational receiver security. We additionally provide a construction for
NC1 circuits that satisfies perfect sender security in ?? in the full version.

3.1 Definition

A (delayed statement) multi-party conditional disclosure of secrets (MCDS) pro-
tocol is a 2-round protocol consisting of a single sender S and a set R of n receivers
- {R1, . . . ,Rn}. The sender holds a private message m whereas each receiver holds
a private witness wi. Additionally, the sender shares a (delayed) statement xi
with each Ri before the second round begins. If each of the n witnesses are valid
witnesses to the corresponding statements xi, then all the n receivers obtain m.
However, if there exists xi /∈ L, then m remains hidden from all the receivers.

More formally, an MCDS protocol is defined with respect to an NP language
L with relation R and consists of the following algorithms.

Com(1λ, wi, i): On input the security parameter 1λ and a witness wi, the com-
mitment algorithm returns the commitment ci and a trapdoor ti.

E((c1, . . . , cn), (x1, . . . , xn),m): On input n commitments (c1, . . . , cn), n state-
ments (x1, . . . , xn), and a message m, the encryption algorithm returns a
ciphertext d.

Prove(ti, xi): On input a trapdoor ti and a statement xi, the proving algorithm
returns a decryption share pi.

Rec(d, (p1, . . . , pn)): On input a ciphertext d and n decryption shares (p1, . . . , pn),
the reconstruction algorithm returns a message m.

For correctness, we require that the message is always transmitted if all of the
receivers commit to the correct witness.

16



Definition 9 (Correctness). An MCDS protocol is correct if for all λ ∈ N,
all n ∈ poly(λ), all (wi, xi) ∈ R, all m ∈ {0, 1}, and all (ci, ti) in the support of
Com(1λ, wi), it holds that

Rec(E((c1, . . . , cn), (x1, . . . , xn),m),Prove(t1, x1), . . . ,Prove(tn, xn)) = m.

Sender security requires that the message is computationally hidden if at
least one of the statements is false.

Definition 10 (Sender Security). An MCDS protocol satisfies sender se-
curity if there exists a negligible function negl such that for all λ ∈ N, all
n ∈ poly(λ), and all (stateful) PPT adversaries ADV, it holds that

Pr

ADV(d) = b
∧ ∃i : xi /∈ L

∣∣∣∣∣∣
(m0,m1, c1, . . . , cn, x1, . . . , xn)← ADV(1λ)
b←$ {0, 1}
d← E((c1, . . . , cn), (x1, . . . , xn),mb)

 ≤ 1/2+negl(λ).

Receiver security is analogous to witness indistinguishability and says that
any adversary cannot distinguish between the commitment of two valid wit-
nesses, even after seeing a proof for a statement of his choice. The following
property in particular implies security for any receiver, even if the adversary
corrupts every other party in the system.

Definition 11 (Receiver Security). An MCDS protocol satisfies receiver
security if there exists a negligible function negl such that for all λ ∈ N, all
n ∈ poly(λ), and all (stateful) PPT adversaries ADV, it holds that

Pr

ADV(π) = b
∧ (w0, x) ∈ R ∧ (w1, x) ∈ R

∣∣∣∣∣∣∣∣∣∣
(w0, w1)← ADV(1λ)
b←$ {0, 1}
(c, t)← Com(1λ, wb)
x← ADV(c)
π ← Prove(t, x)

 ≤ 1/2 + negl(λ).

We say that the MCDS satisfies reusable receiver security if the adversary is
additionally given access to a proving oracle Prove(t, ·) that can be queried on
any statement x such that (w0, x) ∈ R and (w1, x) ∈ R.

General Access Structures. It is worth mentioning that we define and consider
only the AND access structure across all statements, i.e. the message is revealed
if (and only if) all statements are true. This simple access structure will be
sufficient for our purposes, however one could image scenarios where more com-
plex access structures are needed. Although we do not elaborate on it, both our
definitions and our constructions naturally extend to the more general settings.

3.2 Witness Encryption for Dual Mode Commitments

We recall the notion of dual-mode commitment from [BL20]. We first define the
basic interfaces.
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DualSetupB(1λ): On input the security parameter, the setup algorithm (in bind-
ing mode) returns a common reference string crs.

DualSetupH(1λ): On input the security parameter, the setup algorithm (in hid-
ing mode) returns a common reference string crs and a trapdoor τ .

DualCom(crs,m; r): On input the common reference string crs, a message m,
and some random coins r, the commitment algorithm returns a commitment
com.

DualProof(crs, com, r, C, y): On input a common reference string crs, a commit-
ment com, random coins r, circuit C, and output y, the proof algorithm
returns a proof π.

DualVerify(crs, com, π, C, y): On input a common reference string crs, a commit-
ment com, a proof π, a circuit C, and an output y, the verification algorithm
returns a bit b ∈ {0, 1}.

The scheme satisfies perfect correctness in the following sense.

Definition 12 (Correctness). A dual-mode commitment scheme is perfectly
correct if for all λ ∈ N, all crs in the support of DualSetupB (or DualSetupH),
all messages m, all random coins r, all circuits C, it holds that

1 = DualVerify(crs, com,DualProof(crs, com, r, C, C(m)), C, C(m)).

where com = DualCom(crs,m; r).

We require that the scheme satisfies setup indistinguishability, i.e. it is hard
to distinguish between common reference strings sampled in binding or hiding
mode.

Definition 13 (Setup Indistinguishability). A dual-mode commitment scheme
satisfies setup indistinguishability if there exists a negligible function negl such
that for all λ ∈ N and all (stateful) PPT adversaries ADV, it holds that

Pr

ADV(crs) = b

∣∣∣∣∣∣
b←$ {0, 1}
crs← DualSetupB(1λ) if b = 0
(crs, τ)← DualSetupH(1λ) if b = 1

 ≤ 1/2 + negl(λ).

We require the strong notion of perfect soundness when the common reference
string is sampled in binding mode.

Definition 14 (Soundness). A dual-mode commitment scheme satisfies per-
fect soundness if for all λ ∈ N, all crs in the support of DualSetupB(1λ), all
messages m, all random coins r, all com in the support of DualCom(crs,m; r),
all circuits C, all y 6= C(m), and all proofs π it holds that

Pr [1 = DualVerify(crs, com, π, C, y)] = 0.

We further require that, if the common reference string is sampled in hiding
mode, then proofs can be perfectly simulated.
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Definition 15 (Zero-Knowledge). A dual-mode commitment satisfies zero-
knowledge if there exists a negligible function negl and a PPT simulator (Simcom,Simπ)
such that for all λ ∈ N and all (stateful) PPT adversaries ADV, it holds that

Pr

ADV(com)Prove(·) = b

∣∣∣∣∣∣∣∣∣∣
(crs, τ)← DualSetupH(1λ)
m← ADV(crs, τ)
b←$ {0, 1}
com← DualCom(crs,m; r) if b = 0
(com, α)← Simcom(crs, τ) if b = 1

 ≤ 1/2 + negl(λ)

where Prove(C) = DualProof(crs,m, r, C,C(m)) if b = 0 and Prove(C) = Simπ(τ, α, C,C(m))
if b = 1.

Bit Commitments. We remark that, unless differently specified, in this work we
always consider commitments to single bits. The construction of [BL20] is a bit
commitment, although not explicitly defined this way. Specifically we are going
to use the property that the hiding of any commitment to n bits can be broken
in time 2λ · n, where λ is the security parameter of the commitment scheme.

Witness Encryption. We augment the syntax of the dual-mode commitment
with a witness encryption algorithm. This allows anyone to encrypt a message
with respect to a circuit C, which can be decrypted publicly with a proof π that
certifies that the commitment message m satisfies C(m) = y. The formal syntax
is given below.

WEnc(crs, com, C, y,m′): On input a common reference string crs, a commit-
ment com, a circuit C, an output y, and a message m′, the encryption algo-
rithm returns a ciphertext c.

WDec(crs, com, π, c, y): On input a common reference string crs, a commitment
com, a proof π, a ciphertext c, and an output y, the decryption algorithm
returns a message m′.

We define correctness below.

Definition 16 (Correctness). A witness encryption for a dual-mode com-
mitment is correct if for all λ ∈ N, all crs in the support of DualSetupB (or
DualSetupH), all messages m,m′, all random coins r, and all circuits C it holds
that

WDec(crs, com,DualProof(crs, com, r, C, C(m)),WEnc(crs, com, C, C(m),m′)) = m′,

where com = DualCom(crs,m; r).

Furthermore, we define semantic security. We require a strong notion where
the message is perfectly hidden even to the eyes of an unbounded adversary.

Definition 17 (Semantic Security). A witness encryption for a dual-mode
commitment is semantically secure if for all (stateful) unbounded adversaries
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ADV it holds that

Pr


ADV(c) = b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← ADV(1λ)
crs← DualSetupB(1λ; ρ)
(m, r,C, y,m′0,m

′
1)← ADV(crs)

com← DualCom(crs,m; r)
b←$ {0, 1}
c←WEnc(crs, com, C, C(m),mb) if C(m) 6= y
c← ⊥ otherwise


= 1/2.

We recall the main theorem statement from [BL20], which says that a dual-
mode commitment with witness encryption for NC1 circuit exists assuming the
hardness of the SXDH problem over bilinear maps.

Theorem 4 ([BL20]). Let (G1,G2,GT ) be a bilinear group where the SXDH
problem is hard. Then there exists a dual-mode commitment scheme with witness
encryption for NC1 circuits.

3.3 Construction of MCDS

In the following we describe our construction of MCDS for polynomial-size cir-
cuits. As the underlying building blocks we assume the dual-mode commitment
with witness encryption from [BL20], NIWI proofs from [GOS06b], computa-
tional randomized encodings (Definition 5), and garbled circuits (Definition 4).

Let U = {Uλ : {0, 1}h(λ)×{0, 1}k(λ) → {0, 1}}λ∈N be the family of verification
circuits for an NP language L, where each Uλ takes as input an instance x ∈
{0, 1}h(λ) and a witness w ∈ {0, 1}k(λ), and outputs a bit indicating acceptance
or rejection. For any fixed instance x, we consider the circuit Uλ[x] : {0, 1}k(λ) →
{0, 1} that just takes as input a witness w. Let `(λ) and p(λ) be parameters for
computing a randomized encoding of Uλ[x]. That is, RE.Enc(1λ, Uλ[x]) outputs

Ûλ[x] =
(
Ûλ[x]1, . . . , Ûλ[x]p(λ)

)
, where each Ûλ[x]i : {0, 1}k(λ) × {0, 1}`(λ) →

{0, 1}. In the construction below, define ` := `(λ), p := p(λ), and U := Uλ. Let n
be the number of receivers.

– Com(1λ, wi):
• Sample two common reference strings

crsi,0 ← DualSetupB(1λ), crsi,1 ← DualSetupB(1λ)

in binding mode for the dual-mode commitment.
• Compute two commitments

comi,0 = DualCom(crsi,0, (wi, ri,0); si,0), comi,1 = DualCom(crsi,1, (wi, ri,1); si,1),

where ri,0, ri,1 ← {0, 1}p and si,0, si,1 ← {0, 1}λ.
• Compute the NIWI proof

π̃i ← NIWIProve

(
(zi, 0, wi, si,0),

{
∃(zi, bi, wi, si) :

crsi,b = DualSetupB(1λ; zi) ∧
comi,b = DualCom(crsi,b, wi; si)

})
.
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• Return ci = (crsi,0, crsi,1, comi,0, comi,1, π̃i) and ti = (wi, ri,0, ri,1, si,0, si,1).
– E((c1, . . . , cn), (x1, . . . , xn),m):
• Verify all of the NIWI proofs contained in the commitments, i.e. check

whether for all i = 1 . . . n it holds that

1 = NIWIVerify

(
π̃i,

{
∃(zi, bi, wi, si) :

crsi,b = DualSetupB(1λ; zi) ∧
comi,b = DualCom(crsi,b, wi; si)

})
and abort if this is not the case.
• Compute a 2n-out-of-2n secret sharing {mi,a}i∈[n],a∈{0,1} of m.
• Define the circuit f [i, a] : {0, 1}p → {mi,a,⊥} to take as input ŷi and

output mi,a if RE.Dec(1λ, U [xi], ŷi) = 1, and otherwise output ⊥.

• For each i ∈ [n], a ∈ {0, 1}, compute (f̃ [i, a], {lab[i, a]j,b}j∈[p],b∈{0,1}) ←
Garble(1λ, f [i, a]).

• For each i ∈ [n], let
(
Û [xi]1, . . . , Û [xi]p

)
:= RE.Enc(1λ, U [xi]).

• For each i ∈ [n], a ∈ {0, 1}, j ∈ [p], compute

di,a,j,0 = WEnc(crsi,a, comi,a, Û [xi]j , lab[i, a]j,0, 0),

di,a,j,1 = WEnc(crsi,a, comi,a, Û [xi]j , lab[i, a]j,1, 1)

• Output

d =

({
f̃ [i, a], {di,a,j,b}j,b

}
i,a

)
.

– Prove(ti, xi):
• Parse ti as (wi, ri,0, ri,1, si,0, si,1).

• Compute ŷi,0 := Û [xi](wi, ri,0) and for each j ∈ [p], compute

πi,j,0 ← DualProof(crsi,0, comi,0, si,0, Û [xi]j , (ŷi,0)j).

• Compute ŷi,1 := Û [xi](wi, ri,1) and for each j ∈ [p], compute

πi,j,1 ← DualProof(crsi,1, comi,1, si,1, Û [xi]j , (ŷi,1)j).

• Output
(
ŷi,0, ŷi,1, {πi,j,0}j∈[p], {πi,j,1}j∈[p]

)
.

– Rec(d, (p1, . . . , pn)):

• Parse d as

({
f̃ [i, a], {di,a,j,b}j,b

}
i,a

)
and each pi as

(
ŷi,0, ŷi,1, {πi,j,0}j∈[p], {πi,j,1}j∈[p]

)
.

• For each i ∈ [n], a ∈ {0, 1}, j ∈ [p], compute

lab[i, a]j ←WDec(crsi,a, comi,a, πi,j,a, di,a,j,0, (ŷi,a)j).

• For each i ∈ [n], a ∈ {0, 1}, compute mi,a = GEval(f̃ [i, a], {lab[i, a]j}j).
• Ouptut m =

⊕
i,ami,a.
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Sender Security. We show that our MCDS protocol satisfies computational
sender security.

Theorem 5 (Sender Security). Assuming a dual-mode commitment with
witness encryption (Section 3.2), NIWI proofs (Section 2.1), computational ran-
domized encodings (Definition 5), and garbled circuits (Definition 4), the MCDS
protocol (Com,E,Prove,Rec) as described above satisfies computational sender
security. These primitives follow from the existence of a bilinear group where
the SXDH problem is hard and the existence of a bilinear group where where the
DLIN problem is hard.

We will actually prove the following lemma, which immediatedly implies the
theorem due to the perfect soundness of NIWI. The particular property defined
by the lemma will be useful later in our MPC construction.

Lemma 3. For all (stateful) unbounded adversaries ADV, there exists a negli-
gible function negl(·) such that

Pr


ADV(d) = b
∧ ∃(i, a) : crsi,a ∈ DualSetupB(1λ)
∧ comi,a ∈ DualCom(crsi,a, (wi, ri))
∧ (wi, xi) /∈ R

∣∣∣∣∣∣∣∣
(m0,m1, c1, . . . , cn, x1, . . . , xn)← ADV(1λ)
b←$ {0, 1}
d← E((c1, . . . , cn), (x1, . . . , xn),mb)


≤ 1/2 + negl(λ).

Proof. We will show that an adversary ADV contradicting the lemma can be
used to break security of the garbled circuit.

Fix the message (m0,m1, c1, . . . , cn, x1, . . . , xn) output by ADV for which it
has the best advantage, and let (i, a) be the associated tuple guaranteed by the
lemma statement. Recall that the encryption of m ∈ {m0,m1} that ADV sees
consists of 2n garbled circuits along with witness encryptions of each of the
labels. Let Db be the distribution that samples an encryption of mb. It suffices
to show that for each b ∈ {0, 1}, Db is indistinguishable from a distribution
Eb that is identical to Db except that the circuit f [i, a] that is garbled has 0
hard-coded rather than the share mi,a. This follows because E0 is identically
distributed to E1, since the collection of shares other than mi,a are uniformly
random, regardless of the message.

Now, by the perfect soundness of the witness encryption (for NC1), we know
that for each j ∈ [p], at least one of

di,a,j,0 = WEnc(crsi,a, comi,a, Û [xi]j , lab[i, a]j,0, 0),

di,a,j,1 = WEnc(crsi,a, comi,a, Û [xi]j , lab[i, a]j,1, 1)

is a perfectly hiding encryption. In particular, the only labels that ADV will be
able to decrypt are those that correspond to the input ŷi = Û [xi](wi, xi). Since
(wi, xi) /∈ R, by the perfect correctness of the randomized encoding, we know
that RE.Dec(1λ, U [xi], ŷi) = 0, and thus that f [i, a](ŷi) = ⊥, regardless of which
value mi,a is hard-coded. Thus, for each b ∈ {0, 1} there exists a reduction Rb
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that takes as input either i) a garbling of f [i, a] with mi,a hard-coded along
with labels corresponding to ŷ, and perfectly simulates Db, or ii) a garbling of
f [i, a] with 0 hard-coded along with labels corresponding to ŷ, and perfectly
simulates Eb. But by the security of the garbled circuit, the distributions seen
by Rb are computationally indistinguishable, since they can both be simulated
by GSim(1λ, 1|f |, 1p·n,⊥).

Receiver Security. We show that our MCDS protocol satisfies computational
receiver security.

Theorem 6 (Receiver Security). Assuming a dual-mode commitment with
witness encryption (Section 3.2), NIWI proofs (Section 2.1), computational ran-
domized encodings (Definition 5), and garbled circuits (Definition 4), the MCDS
protocol (Com,E,Prove,Rec) as described above satisfies computational receiver
security. These primitives follow from the existence of a bilinear group where
the SXDH problem is hard and the existence of a bilinear group where where the
DLIN problem is hard.

Proof. We prove the theorem by defining a series of hybrids, then we argue that
each pair of hybrids is indistinguishable by any PPT adversary.

– Hyb0: This is the original experiment, with the bit of the challenger set to
0, i.e. the commitment c is always computed as Com(1λ, w0).

– Hyb1: This hybrid is identical to the previous one, except that in the com-
putation of the algorithm Com, the common reference string crsi,1 is com-
puted in hiding mode, i.e. (crsi,1, τ1) ← DualSetupH(1λ). Computational
indistinguishability follows from the setup indistinguishability of the dual-
mode commitment.

– Hyb2: In this hybrid we further modify the Com algorithm to compute a
simulated commitment (comi,1, α1) ← Simcom(crsi,1, τ1) and we switch to

simulated proofs πi,j,1 ← Simπ(τ1, α1, Û [xi]j , (ŷi,1)j). By the zero-knowledge
property of the dual mode commitment, this modification is computationally
indistinguishable to the eyes of the adversary.

– Hyb3: In this hybrid we switch ŷi,1 to be computed as RE.Sim(1λ, U [xi], U [xi](w0)).
This is indistinguishable due to the computational privacy of the randomized
encoding.

– Hyb4: In this hybrid we switch ŷi,1 to be computed as RE.Sim(1λ, U [xi], U [xi](w1)).
This is perfectly indistinguishable by the definition of receiver security, which
requires that U [xi](w0) = U [xi](w1).

– Hyb5: In this hybrid, we no longer simulate the commitment, computing
comi,1 ← DualCom(crsi,1, w1; si,1) and then computing the proofs πi,j,1 hon-
estly. Thus this modification is computationally indistinguishable by another
invocation of the zero-knowledge property of the dual-mode commitment.

– Hyb6: Here we compute crsi,1 back in binding mode, i.e. crsi,1 ← DualSetupB(1λ).
Indistinguishability follows from the setup indistinguishability of the dual-
mode commitment.
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– Hyb7: In this hybrid we switch the branch of the NIWI proof, i.e. we compute
the NIWI proof using the witness (zi,1, 1, w1, si,1), instead of (zi,0, 0, w0, si,0).
The rest of the algorithms are unchanged. Note that both witnesses are valid
for the given statement and therefore indistinguishability follows from the
witness-indistinguishability of the NIWI proof.

– Hyb8 . . .Hyb13: These hybrids are defined identically to Hyb1 . . .Hyb6 except
that we simulate crsi,0 and we switch the witness used in comi,0 to be w1, then
we revert the change in the sampling of the common reference string. The
arguments to show indistinguishability of each pair of hybrids are identical.

– Hyb14: In this hybrid we switch again th branch of the NIWI proof, i.e. we
compute the proof using the witness (zi,0, 0, w1, si,0) instead of (zi,1, 1, w1, si,1).
Indistinguishability follows from an invocation of the computational witness-
indistinguishability of the NIWI proof.

Observe that the distribution induced by Hyb14 is identical to that of Hyb1 except
that the committed message is fixed to w1, instead of w0. By the above analysis,
Hyb1 ≈c Hyb0 are computationally indistinguishable, which concludes our proof.

We note that MCDS with sub-exponential security follows by instantiating
the underlying hardness assumptions (SXDH and DLin over bilinear maps) with
their sub-exponentially secure versions. This is because all our security reduc-
tions in the MCDS construction can be observed to run in time p(λ, T ′) for a
fixed polynomial p(·), where λ is the security parameter and T ′ is the running
time of the MCDS adversary. This will lead to a contradiction against T -security
of the underlying hardness assumption for any subexponential T . We will require
MCDS with sub-exponential security in our construction of the two round ma-
liciously secure MPC.

Theorem 7 (Sub-exponential Sender Security). Assuming sub-exponentially
secure garbled circuits (i.e. one-way functions), the MCDS protocol (Com,E,Prove,Rec)
as described above satisfies sub-exponential sender security.

Theorem 8 (Sub-exponential Receiver Security). Assuming sub-exponential
SXDH and DLin, the MCDS protocol (Com,E,Prove,Rec) as described above sat-
isfies sub-exponential receiver security.

Reusable Receiver Security. Although we do not explicitly construct it, we note
that the above scheme can be easily lifted to the reusable settings, i.e. where
the committed can be reused for polynomially-many instances of the second
round (possibly with different messages and for different statments). The only
subtlety that we need to address is that the randomness used to compute the
randomized encoding cannot be hardwired in the commitment, instead it must
be sampled using a PRF where the key is included in the commitment and the
input is public. The only constraint that we impose on the PRF is that it must
be computable by an NC1 circuit, which can be instantiated from a variety of
assumptions (e.g. DDH [NR97] or LWE [BP14]).
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4 Two Round Malicious MPC

We assume the existence of:

– A non-interactive witness-indistinguishable proof satisfying Definition 3.
– A special non-interactive non-malleable commitment NMCom satisfying Def-

inition 7.
– A two-round semi-malicious MPC protocol satisfying Definition ??.
– A multi-party CDS mCDS discussed in Section 3, satisfying Definitions 10

and 11.

We will use mCDS(i), to indicate an mCDS session where Pi is the sender and

all other parties {Pj}j∈[n]\i are receivers. We will also use msg
(i)
Ψ , to indicate a

message for Protocol Ψ generated by Party Pi.
We now define three relations that will be used in the protocol, and we define

languages Lα = {x : ∃w such that Rα(x,w) = 1} for α ∈ {NIWI1,NIWI2,mCDS}.

– RNIWI1

(
(c1, c2), r)

)
= 1 ⇐⇒

(
c1 = NMComtag=0(0; r)

∨
c2 = NMComtag=0(0; r)

)
– RNIWI2

(
(m1,m2, {mk

3}k∈[n], {stmtkmCDS}k∈[n], com, x,M, c1, j, {cky , ckz}k∈[n]),

(st, wx, wr, r, {r̂k}k∈[n], {r̃k}k∈[n])
)

= 1 ⇐⇒(
(m1, st) = smMPC(wx;wr)

∧
m2 = mCDS.E(com, x, smMPC(M, st;wr))

∧
∀k ∈ [n],mk

3 = mCDS.Prove(s̃t, stmtkmCDS) where

(m̃, s̃t) = mCDS.Com(1κmCDS.R , (wx, wr, 0
nλ), j; r̃k)

)
∨(

c1 = NMComtag=j(r̂1|| . . . ||r̂n; r) ∧ ∀k ∈ [n],
(
cky = NMComtag=0(0; r̂k) ∨

ckz = NMComtag=0(0; r̂k)
))

– RmCDS

(
(m1, c1, j, {cky , ckz}k∈[n]), (w, r, {r̂k}k∈[n])

)
= 1 ⇐⇒ m1 = smMPC(w; r)

∨(
c1 = NMComtag=j(r̂1|| . . . ||r̂n; r)∧∀k ∈ [n],

(
cky = NMComtag=0(0; r̂k)∨ckz =

NMComtag=0(0; r̂k)
))

In words,RNIWI1 is stating that one of two non-malleable commitments is to 0.
RNIWI2 is stating that either i) first and second round of the semi-malicious MPC
are computed correctly, and the MCDS commitment and proofs are computed
correctly OR ii) the trapdoor is known. RmCDS is stating that either i) the first
round of the semi-malicious MPC is computed correctly OR ii) the trapdoor is
known. In Fig. 1, Fig. 2 and Fig. 3, we describe the construction of our two round
maliciously-secure MPC protocol fmMPC. We have the following theorem.

Theorem 9. Fix an arbitrary polynomial n = n(λ) for security parameter λ.
Assuming sub-exponentially secure NIWI proofs satisfying Definition 3, n-special
non-malleable commitments satisfying Definition 7, sub-exponentially secure MPC
against semi-malicious adversaries according to Definition ?? and subexponen-
tially secure multi-party CDS according to Definitions 10 and 11, two round
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Protocol fmMPC - Round 1

Common input: Security parameter 1λ and number of parties 1n

Pi input: xi ∈ {0, 1}p(λ)

Round 1: For i ∈ [n], Pi computes the following.

– (msg1
(i)
smMPC, st

(i)
smMPC) = smMPC(xi; ri), the first semi-malicious MPC proto-

col message with input xi, randomness ri.
– cmt

(i)
td = NMComtag=i(0

nλ; r0), a non-malleable commitment to 0nλ.

– cmt
(i)
y = NMComtag=0(0; ry), a non-malleable commitment to the bit 0 with

randomness ry.

– cmt
(i)
z = NMComtag=0(0; rz), a non-malleable commitment to the bit 0 with

randomness rz.
– π

(i)
NIWI1

← NIWIProve(xNIWI1 , wNIWI1 ,LNIWI1) where xNIWI1 = (cmt
(i)
y , cmt

(i)
z )

and wNIWI1 = ry.
– For all j ∈ [n] \ i, compute an mCDS commitment

(msg1
(i)

mCDS(j)
, st

(i)

mCDS(j)
) = mCDS.Com(1κmCDS.R , (xi, ri, 0

nλ), i; r
(i)

mCDS(j)
).

Here κmCDS.R indicates the receiver security parameter of the mCDS.

For i ∈ [n], Pi broadcasts(
msg1

(i)
smMPC, cmt

(i)
td , cmt(i)y , cmt(i)z , π

(i)
NIWI1

)
,

and sends msg1
(i)

mCDS(j)
to Pj for each j ∈ [n], j 6= i.

For i, j ∈ [n], j 6= i, Pi receives from Pj(
msg1

(j)
smMPC, cmt

(j)
td , cmt(j)y , cmt(j)z , π

(j)
NIWI1

,msg1
(j)

mCDS(i)

)
For i ∈ [n], Pi verifies each π

(j)
NIWI1

, and outputs Abort if verification fails.

Fig. 1: Round 1 of a two-round maliciously secure MPC protocol

maliciously-secure MPC for n-parties with super-polynomial simulation exists
which satisfies Definition ??.

Proof. In what follows, we let δ = 2−nγ where γ denotes the size of randomness
ry (and equivalently rz) in the protocol, and n denotes the number of parties
which is polynomial in λ.

– We will rely on any NMCom that is a n-special one-to-one non-malleable
commitment, according to Definition 7. We use T brk

NMCom to denote the time
needed to extract the committed bit from any commitment string via a
brute-force attack.
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Protocol fmMPC - Round 2

Round 2: For i ∈ [n], Pi computes the following.

– Compute the second semi-malicious MPC protocol message

(msg2
(i)
smMPC, st

(i)
smMPC

′) = smMPC({msg1
(k)
smMPC}k∈[n], st

(i)
smMPC; ri).

– Compute the mCDS encryption

msg2smCDS(i) ← mCDS.E({msg1
(j)

mCDS(i)
}j∈[n]\i, {x(j)mCDS}j∈[n]\i,msg2

(i)
smMPC),

where
x
(j)
mCDS = (msg1

(j)
smMPC, cmt

(j)
td , j, {cmt(k)y , cmt(k)z }k∈[n]).

– For j ∈ [n] \ i, compute the mCDS proof

msg2r
(i)

mCDS(j)
← mCDS.Prove(st

(i)

mCDS(j)
, x

(i)
mCDS),

where
x
(i)
mCDS = (msg1

(i)
smMPC, cmt

(i)
td , i, {cmt(k)y , cmt(k)z }k∈[n]).

– Compute NIWI proof

πNIWI
(i)
2 ← NIWIProve(xNIWI2 , wNIWI2 ,LNIWI2),

where

xNIWI2 =

msg1
(i)
smMPC,msg2smCDS(i) , {msg2r

(i)

mCDS(j)
}j∈[n], {x(k)mCDS}k∈[n],

{msg1
(j)

mCDS(i)
}j∈[n]\i, {x(j)mCDS}j∈[n]\i,

{msg1
(k)
smMPC}k∈[n], cmt

(i)
td , i, {cmt

(k)
y , cmt

(k)
z }k∈[n]


and wNIWI2 =

(
st

(i)
smMPC, xi, ri, 0, 0

∗, {r(i)
mCDS(j)

}j∈[n]
)

.

For i ∈ [n], Pi broadcasts(
msg2smCDS(i) ,

{
msg2r

(i)

mCDS(j)

}
j∈[n]\i

, π
(i)
NIWI2

)
.

For i ∈ [n], Pi receives(
{msg2smCDS(j)}j∈[n]\i ,

{
msg2r

(k)

mCDS(j)

}
k∈[n]\i,j∈[n]\i

,
{
π
(j)
NIWI2

}
j∈[n]\i

)
.

Fig. 2: Round 2 of a two-round maliciously secure MPC protocol

– We also rely on any NIWI1 that is (T brk
NMCom, λ)-secure, any MCDS that sat-

isfies (T brk
NMCom, 1/δ) receiver security and (λ, 1/δ) sender security.

– We will rely on any semi-malicious MPC that is (max(T brk
NMCom, T

brk
mCDS), 1/δ)

secure.
– Will rely on (standard) polynomial-size hardness of NIWI2.
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Protocol fmMPC - Output Reconstruction

Output Reconstruction: Pi computes the following.

– Verify each π
(j)
NIWI2

and output Abort if verification fails.
– For all j ∈ [n], reconstruct

msg2
(i)
smMPC ← mCDS.Rec(msg2smCDS(j) , {msg2

(k)

mCDS(j)
}k∈[n]\j).

– Use {msg2
(j)
smMPC}j∈[n] and st

(i)
smMPC

′ to compute the output of the smMPC.

Fig. 3: Output reconstruction for a two-round maliciously secure MPC protocol

Towards the end of the proof, we discuss how to set security parameters of these
primitives (assuming subexponential security of all primitives) to achieve all
relationships discussed above.

We will now describe the simulator for fmMPC protocol. Below, H is the set
of honest parties and M is the set of malicious parties (i.e. parties corrupted by
the adversary ADV):

SimfmMPC :

– Simulation of Round 1: For all i ∈ H:
• Guess the randomness used in cmt

(j)
y or cmt

(j)
z for all j ∈ [n]. Let the

guessed values be {v′1, . . . , v′n}. Use these guessed values to generate

cmt
(i)
td using randomness r′i sampled uniformly at random.

• Generate msg1
(i)
smMPC using SimsmMPC

• Generate cmt
(i)
y , cmt

(i)
z and π

(i)
NIWI as per the honest fmMPC protocol

• For all j ∈ [n], use the message and randomness for cmt
(i)
td to generate

msg1
(i)

mCDS(j) ← mCDS.Com(1κmCDS.R , (0, r′i, v
′
1, . . . , v

′
n), i).

• Send the generated items as prescribed in the honest fmMPC protocol,
receive items from all parties Pj where j ∈ M and Abort if any of the

π
(j)
NIWI is invalid.

– Checking the guess correctness: Perform the following ∅-Check: For

every j ∈M , if cmt
(j)
y = NMComtag=0(0; v′j) or cmt

(j)
z = NMComtag=0(0; v′j),

the check passes and the simulation proceeds to Round 2. Otherwise, the
check fails and the simulation goes back to Round 1

– Extracting the mCDS inputs: For all j ∈M , use brute-force to break their

MCDS receiver messages {msg1
(j)

mCDS(i)}i∈[n]\{j}. If input extraction succeeds,

i.e., if for every j ∈M , there exists i ∈ [n] \ {j}, (xj , rj), r
(j)

mCDS(i) such that

msg1
(j)

mCDS(i) = mCDS.Com(1κmCDS.R , (xj , rj , 0
nλ), j; r

(j)

mCDS(i)),

then send (xj , rj)j∈M to SimsmMPC and obtain msg2
(i)
smMPC for i ∈ H from

SimsmMPC. If input extraction fails, set msg2
(i)
smMPC for i ∈ H to 0s(λ), where

s(λ) denotes the length of round 2 semi-malicious MPC messages.
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– Simulation of Round 2: For all i ∈ H:

• Generate msg2smCDS(i) as per the honest fmMPC protocol.
• For all j ∈ [n] \ i, generate the mCDS proof as per the honest fmMPC

protocol.

• Generate NIWI proof π
(i)
NIWI2

using (0, 0, 0, r′i, {v′1, . . . , v′n}, 0∗) as the wit-
ness wNIWI2

• Send the generated items as prescribed in the honest fmMPC protocol.

– Output Reconstruction: Receive items from all parties Pj where j ∈M ,
and perform the first two steps of Output Reconstruction as prescribed in

the honest fmMPC protocol. Finally, send {msg2
(j)
smMPC}i∈M to SimsmMPC.

In Appendix ?? in the full version, we describe a sequence of hybrids, tran-
sitioning from the real world to the ideal world and prove, via a sequence of
lemmas, that these hybrids are indistinguishable from each other, thus proving
that our protocol fmMPC satisfies Theorem 9.

4.1 Compactness and Reusability

We sketch modification to our protocol to achieve communication complexity in-
dependent of the circuit size (compactness) and to allow parties to reuse the first
message to compute unbounded, but polynomially many, functions (reusability).

Compactness. Instantiating the semi-malicious MPC with a compact proto-
col [AJJM20] results in a compact malicious MPC, except for the NIWI used in
the second round that is used to prove a statement related to the semi-malicious
MPC, and therefore may be non-compact. However we note that we can gener-
ically transform any non-compact NIWI into a compact one using (perfectly
correct) fully-homomorphic encryption (FHE). The transformation is analogous
to [GGI+15] and we outline it here for completeness.

The NIWI prover samples two FHE key pair (sk0, pk0) and (sk1, pk1) and com-
pute two encryptions of the witness c0 = FHE.Enc(pk0, w) and c1 = FHE.Enc(pk1, w).
Then it homorphically computes the predicateR(·, x) to obtain two evaluated ci-
phertexts e0 and e1. Finally, it computes a NIWI proof that EITHER (sk0, pk0)
and c0 are well-formed and e0 is an encryption of 1 OR (sk1, pk1) and c1 are
well-formed and e1 is an encryption of 1. The verifier simply checks that the
NIWI correctly verifies and that e0 and e1 are the correct output of the evalu-
ation algorithm for the circuit R(·, x). One can show with a standard argument
that the proof is still witness indistinguishable. Furthermore, the communication
complexity does only depend polynomially on |w|, by compactness of the FHE.

Reusable First Message. Instantiating a semi-malicious MPC with one with
reusable first message [AJJM20,BGMM20,BL20] and the reusable variant of our
MCDS, we obtain 2-round malicious MPC where the first message can be reused
an unbounded amount of times (possibly to compute different functions).
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