
Tight Security Bounds for Micali’s SNARGs

Alessandro Chiesa1 and Eylon Yogev2

1 UC Berkeley
2 Boston University and Tel Aviv University

Abstract. Succinct non-interactive arguments (SNARGs) in the random
oracle model (ROM) have several attractive features: they are plausibly
post-quantum; they can be heuristically instantiated via lightweight
cryptography; and they have a transparent (public-coin) parameter setup.
The canonical construction of a SNARG in the ROM is due to Micali
(FOCS 1994), who showed how to use a random oracle to compile any
probabilistically checkable proof (PCP) with sufficiently-small soundness
error into a corresponding SNARG. Yet, while Micali’s construction is a
seminal result, it has received little attention in terms of analysis in the
past 25 years.
In this paper, we observe that prior analyses of the Micali construction
are not tight and then present a new analysis that achieves tight security
bounds. Our result enables reducing the random oracle’s output size, and
obtain corresponding savings in concrete argument size.
Departing from prior work, our approach relies on precisely quantifying
the cost for an attacker to find several collisions and inversions in the
random oracle, and proving that any PCP with small soundness error
withstands attackers that succeed in finding a small number of collisions
and inversions in a certain tree-based information-theoretic game.

Keywords: succinct arguments; random oracle; probabilistically check-
able proofs

1 Introduction

Succinct non-interactive arguments (SNARG) are cryptographic proofs for non-
deterministic languages whose size is sublinear in the witness size. In the last
decade, SNARGs have become a fundamental cryptographic primitive with
various applications in the real world. In this paper, we study the classical
SNARG construction of Micali [Mic00], which achieves unconditional security in
the random oracle model (ROM).
The Micali construction. Micali [Mic00] combined ideas from Fiat and Shamir
[FS86] and Kilian [Kil92] in order to compile any probabilistically checkable proof
(PCP) into a corresponding SNARG. Informally, the argument prover uses the
random oracle to Merkle hash the PCP to a short root that acts as a short
commitment to the PCP string; then, the prover uses the random oracle to
derive randomness for the PCP verifier’s queries; finally, the prover outputs an
argument that includes the Merkle root, answers to the PCP verifier’s queries,
and authentication paths for each of those answers (which act as local openings
to the commitment). The argument verifier re-derives the PCP verifier’s queries

from the Merkle root, and then runs the PCP verifier with the provided answers,
ensuring that those answers are indeed authenticated.
Security of the Micali construction. A SNARG in the ROM is (t, ε)-secure
if every all-powerful malicious prover that makes at most t queries to the random
oracle can convince a verifier of a false statement with probability at most ε.
The probability is taken over the choice of random oracle, whose output size λ is
implicitly a function of the chosen query bound t and soundness error ε.

Prior work ([Mic00; Val08; BCS16], see Section 1.3) shows that, if the underly-
ing PCP has soundness error εPCP, then the Micali construction has a soundness
error that can be bounded by

t · εPCP︸ ︷︷ ︸
attacking the

PCP

+ 4 · t
2

2λ︸ ︷︷ ︸
attacking the
random oracle

.

This expression can be intuitively explained (up to constants): the term t · εPCP

bounds the probability of a cheating prover fooling the PCP after t trials, and
the term 4 · t

2

2λ
bounds the probability that prover cheats in the commitment

part by either inverting the oracle on given values or finding collisions in the
random oracle (the squared term comes from the birthday paradox).

This tells us how to set parameters for security: the Micali construction is
(t, ε)-secure, e.g., if each term is bounded by ε

2 . This yields two requirements: (i)
εPCP ≤ 1

2
ε
t (the PCP has small-enough soundness error); and (ii) λ ≥ log(8 t

2

ε)
(the random oracle has large-enough output size).
Our question. While it is not so hard to see that the expression t · εPCP is
necessary in the soundness error, it is not clear if the expression 4 · t

2

2λ
is necessary

as well. (E.g., can one attack the Micali construction given any collision in the
random oracle?) This leads us to ask:

Is the soundness expression for Micali’s construction optimal?

A negative answer would be excellent news because improving the soundness
expression for the Micali construction immediately yields improvements in the
argument size (the main efficiency measure for a SNARG), and in the time
complexity of the argument prover and argument verifier. In turn, a better
understanding of the Micali construction is likely to lead to improved efficiency for
SNARGs in the ROM of practical interest. Indeed, while the Micali construction
itself is not used in practice since PCPs with good concrete efficiency are not
known, a generalization of it is. Namely, the BCS construction [BCS16] transforms
public-coin interactive oracle proofs (IOPs), a multi-round extension of PCPs
with much better efficiency, into SNARGs.

The Micali and BCS constructions, being SNARGs in the ROM, have attrac-
tive features: by heuristically instantiating the random oracle with a cryptographic
hash function, one obtains an implementation that is lightweight (no public-key
cryptography is used) and easy to deploy (users only need to agree on which

2

hash function to use without having to rely on a trusted party to sample a
structured reference string). Moreover, they both are plausibly post-quantum
secure [CMS19].
Asking the right question. The answer to our question depends, perhaps
surprisingly, on fine details of the Micali construction that are generally overlooked
in the literature.

For example, consider a PCP with a binary alphabet and suppose that we
build the Merkle tree for this PCP by placing each bit of the PCP string in
a different leaf of the Merkle tree, padding to the random oracle’s input size.3
In this case a cheating prover could conduct the following attack: find a single
collision in a leaf between the symbols 0 and 1, and re-use this collision in all
leaves of the tree; then answer each PCP query with 0 or 1 as needed to make
the PCP verifier accept. This attack will always fool the argument verifier, and
tells us that the prior analysis is tight for this flavor of the Micali construction
(t2/2λ is roughly the probability of finding one collision).

Nevertheless, the foregoing attack can be trivially avoided by adding an
index to each leaf, preventing the re-use of one leaf collision across different
leaves. This is a form of domain separation, whereby one derives multiple random
oracles from a single random oracle by adding pre-defined prefixes to queries.
Domain separation was used, e.g., by Micali in [Mic00] to separate queries for
constructing the Merkle tree and queries for deriving the PCP randomness (i.e.,
the randomness used by the PCP verifier to select queries to the PCP string).
More generally, as we wish to exclude easily preventable attacks, in this paper we
consider what we call the domain-separated flavor of the Micali construction (see
Section 3.3): (i) tree queries are domain-separated from PCP randomness queries
as in [Mic00]; and, moreover, (ii) each tree query (not only for the leaf layer) is
further domain-separated via a prefix specifying its location in the Merkle tree.
At this point, it is not clear if the prior analysis is tight for the domain-separated
flavor of the Micali construction.

The goal of this paper is to study this question.

1.1 Our contributions

In this paper, we give a negative answer to our question, by improving the
soundness expression of the (domain-separated) Micali construction. In fact, we
settle the security bounds for the Micali construction, up to low-order terms by
giving nearly matching lower bounds. We prove the following:

Theorem 1 (informal). The Micali construction (with domain separation), when
instantiated with a PCP with proof length l over alphabet Σ and soundness error
εPCP and with a random oracle with output size λ, has soundness error

t · εPCP + C · t
2λ

with C ≤ 12 · l · log |Σ|

3 Placing each symbol in a different leaf, padded with a freshly-sampled salt, leads to
a zero-knowledge SNARG if the underlying PCP is honest-verifier zero-knowledge
[IMSX15; BCS16].

3

against t-query adversaries, provided that λ ≥ 2 log t+ 6.

The expression above is smaller than the previously known bound (t · εPCP +

4 · t
2

2λ
): using the same notation, previously we knew that C ≤ 4 · t, and our result

reduces this bound to C ≤ 12 · l · log |Σ|, which is significantly better for any
reasonable parameter regime. This directly leads to improved security parameters:
for a given query bound t and soundness error ε, to achieve (t, ε)-security we
can set λ (the output size of the random oracle) to be smaller than what was
previously required (i.e., λ ≥ log(8 t

2

ε)), while leaving the PCP soundness error
as before (i.e., εPCP ≤ 1

2
ε
t).

Corollary 2. The Micali construction is (t, ε)-secure when instantiated with:

– a PCP with soundness error εPCP ≤ 1
2
ε
t , and

– a random oracle with output size λ ≥ max{2 log t+6 , log(t/ε)+log(l · log |Σ|)+
5}.

Matching lower bound. The security bound in Theorem 1 depends on the
PCP’s length l and alphabet Σ, in addition to the PCP’s soundness error εPCP. We
show that, perhaps surprisingly, the dependency on these parameters is inherent
by proving a nearly matching lower bound on the soundness error of the Micali
construction. In the full version we exhibit attacks showing that there exists a
PCP with q queries for which the soundness error of the Micali construction is

Ω

(
t · εPCP + C · t

2λ

)
with C ≥ l · log |Σ|

q2
.

Tighter upper bound. To ease the presentation, the expressions given in
our upper bounds are simplifications of counterparts given in Theorem 5 and
Corollary 1. These latter are closer to the lower bounds, and provide additional
savings when setting concrete values in practice for a given security level (the
desired query bound t and desired soundness error ε).

1.2 Concrete improvements in argument size

We have obtained a tight analysis of the Micali construction, leading to a smaller
output size λ for the random oracle. This, in turn, yields corresponding savings
in argument size for the Micali construction. We demonstrate this in Table 1 via
argument sizes computed for an illustrative choice of PCP for different targets of
security (for all (t, ε) ∈ {296, 2128, 2160} × {2−96, 2−128, 2−160}).

Specifically, we consider the Micali construction applied to the amplification
of an assumed “base” PCP with soundness error 1/2, query complexity 3, and
proof length 230 over a binary alphabet (the Merkle tree thus has 30 levels).
By repeating the PCP verifier log(1/εPCP) ≥ log 1

2
t
ε times, the amplified PCP

has soundness error εPCP and 3 log 1
2
t
ε queries. We then compute the argument

size obtained by applying the Micali construction to this PCP while setting the
output size of the random oracle to the value in Corollary 2 (more precisely,

4

to its refinement in Corollary 1). See Section 3.3 for an overview of the Micali
construction and how its argument size is computed.
Concrete improvements for IOP-based SNARGs. One might ask whether
our fine-grained analysis of the Micali construction, which is based on PCPs,
could be carried out for [BCS16], a SNARG construction based on IOPs, which
are more efficient, that is used in practice. The answer is yes (this requires
extending our techniques from PCPs to IOPs) but we leave this for future work.
We deliberately limited the scope of our paper to Micali’s construction because
we wanted to illustrate our new ideas in a straightforward way. Looking beyond
[Mic00; BCS16] (i.e., SNARGs), we believe that the ideas in our paper will
help establish tight security bounds for other primitives in the ROM, such as
hash-based signatures (where again Merkle trees often play a significant role).

log t

− log ε 96 128 160

96
389KB

297KB
≈ 1.31× 498KB

389KB
≈ 1.28× 618KB

496KB
≈ 1.25×

128
547KB

405KB
≈ 1.35× 675KB

496KB
≈ 1.36× 812KB

615KB
≈ 1.32×

160
730KB

569KB
≈ 1.28× 875KB

635KB
≈ 1.38× 1033KB

746KB
≈ 1.38×

Table 1. Argument sizes for the Micali construction applied to an illustrative PCP for
different settings of (t, ε)-security, comparing the size achieved by the prior analysis (in
red) and our analysis (in blue).

1.3 Related work

While the Micali construction is a seminal result (it is the first SNARG construc-
tion and arguably the simplest one to intuitively understand), it has received
little attention in terms of analysis.

The analysis given by Micali [Mic00] considers the special case of PCPs over
a binary alphabet with soundness error εPCP ≤ 2−λ, and establishes (t, ε)-security
with t ≤ 2λ/8 and ε ≤ 2−λ/16.

Subsequently, Valiant [Val08] again considers the special case of a PCP with
soundness error εPCP ≤ 2−λ, but contributes a new approach based on straightline
extraction that establishes soundness (and, in fact, also proof of knowledge if
the underlying PCP is a proof of knowledge) for PCPs over any alphabet. The
analysis establishes (t, ε)-security with t ≤ 2λ/4 and ε ≤ 2−λ/8.

Finally, the expression t · εPCP + 4 · t
2

2λ
stated above, which holds for any PCP

and yields relatively good security settings, is due to Ben-Sasson, Chiesa, and

5

Spooner [BCS16], who build on the straightline extraction approach of Valiant
to obtain results beyond the Micali construction. Specifically, they prove that
any IOP with state-restoration soundness error εsr(·) can be compiled into a
SNARG with soundness error εsr(t) + 4 · t

2

2λ
against t-query adversaries. This

BCS construction, when restricted to a PCP, recovers the Micali construction,
and yields the previous expression because the state-restoration soundness error
of a PCP is at most εsr(t) ≤ t · εPCP.

Subsequent work. Chiesa and Yogev [CY21] gave a new SNARG construction
in the random oracle model that achieves a smaller argument size than (any
analysis of) the Micali construction. For (t, ε)-security, the CY construction has
argument size Õ(log(t/ε) · log t), while the Micali construction has argument size
Ω(log2(t/ε)). The CY construction is achieved by identifying the limitations of
the Micali construction thanks to the tight security analysis in this work, and
then modifying the construction to overcome these limitations. Furthermore, the
analysis in [CY21] is based on a framework inspired by the one developed in this
work and adapted to the CY construction.

2 Techniques

We summarize the main ideas behind our main result (Theorem 1). In Section 2.1
we review the prior analysis of the Micali construction and in Section 2.2 explain
why that analysis is not tight. Then in Sections 2.3 to 2.6 we describe our analysis,
whose differences are displayed in Figure 1.

PCP soundnessSecurity of
Micali’s
SNARG

Reverse soundness game

Tree soundness game

PCP soundness

Pr
io

r a
na

ly
si

s
O

ur
 a

na
ly

si
s

Security of
Micali’s
SNARG

scoring
collisions and

inversions

no
collisions or
inversions

Fig. 1. The prior analysis of the Micali construction conditions on the event that no
collisions or inversions are found, and directly reduces soundness of the SNARG to
soundness of the PCP. In contrast, we carefully assign scores to collisions and inversions,
which enables us to reduce soundness of the SNARG to soundness in an information-
theoretic tree game. Then we prove that soundness in this game reduces to soundness
of the PCP, by relying on another information-theoretic game.

6

2.1 Prior analysis of the Micali construction

We begin by reviewing the prior security analysis of the SNARG construction of
Micali. Let εPCP be the soundness error of the PCP used in the construction, and
let λ be the output size of the random oracle. We wish to bound the probability
that a t-query cheating prover makes the SNARG verifier accept. Intuitively, the
cheating prover may try to attack the PCP or the random oracle.

First, consider a cheating prover that tries to attack the random oracle, that
is, tries to find collisions or inversions. Recall that a collision consists of two
or more distinct inputs that map to the same output, and an inversion is an
input that maps to a target value or list of values (that were not answers to
prior queries). So let E be the event that the cheating prover finds at least one
collision or inversion. By the birthday bound, one can show that

Pr[E] = O

(
t2

2λ

)
.

Next condition on the event E not occurring, i.e., attacking the random
oracle does not succeed. In this case, one can show that the cheating prover’s
only strategy is to attack the PCP as follows: commit to a PCP string, derive
randomness for the PCP verifier from the resulting Merkle root, and check if
the PCP verifier accepts; if not, then try again with new randomness.4 One can
model this via a simple t-round game: in each round i ∈ [t] the attacker outputs a
PCP string Πi and the game replies with fresh PCP randomness ρi; the attacker
wins if there is i ∈ [t] such that Πi convinces the PCP verifier on randomness
ρi. A union bound shows that the winning probability in this game is at most
t · εPCP. Thus, this bound is (relatively) tight (assuming εPCP is a tight bound on
the soundness of the PCP).

Combining the above cases, we can bound the probability that the cheating
prover makes the verifier in the Micali construction accept:

Pr

[
verifier
accepts

]
≤ Pr

[
verifier
accepts

∣∣∣∣E]+ Pr[E] ≤ t · εPCP +O

(
t2

2λ

)
.

2.2 The prior analysis is not tight

The starting point of our work is the observation that the prior security analysis
is not tight for the domain-separated flavor of the Micali construction (discussed
in Sections 1 and 3.3). While the term t · εPCP in the expression is essentially
tight, the term t2/2λ is not. In other words, while ruling out the event E (the
cheating prover finds a collision or inversion) is sufficient to show security, it is
not a necessary condition for security. We illustrate this via a simple example
about collisions.
4 The new randomness could be derived by changing a salt if present in the construction,
or by changing just one location of the PCP string and then re-deriving a different
Merkle root, leading to new PCP randomness.

7

Collisions are not too harmful. Suppose that a cheating prover finds a
collision in the random oracle, for a specific location. This enables the cheating
prover to commit to two PCP strings instead of one, derive PCP randomness from
their common Merkle root, and choose which PCP string to use for answering
the PCP verifier’s queries. While this increases the winning probability in (a
modification of) the simple t-round game described above, a union bound shows
that the probability increases at most by a factor of 2. At the same time, the
probability of finding a collision is much smaller than 1/2, so overall this is not a
beneficial strategy for a cheating prover.

We could alternatively consider a cheating prover that finds many collisions.
For instance, suppose that the PCP is over a binary alphabet and the cheating
prover has found a collision between 0 and 1 for every leaf of the Merkle tree. This
enables the cheating prover to compute a Merkle root and derive corresponding
PCP randomness without actually committing to any PCP string, because every
leaf can be opened to a 0 or a 1. Thus the cheating prover can always provide
satisfying answers to the PCP verifier. But, again, this strategy is also not
problematic because the probability of finding so many collisions is very small
(e.g., much smaller Pr[E]).

The above considerations give intuition about why collisions are not that
harmful.

What about inversions? Unlike collisions, even a single inversion lets a
cheating prover win with probability one. Here is the attack: derive the PCP
randomness for some arbitrary choice of Merkle root; find a satisfying PCP string
for this PCP randomness; and then hope that the Merkle tree for this PCP string
hashes to the chosen Merkle root. This would be considered a single “inversion”.

The probability of this happening in any of the t queries by the cheating
prover is at most t · 2−λ, which is small enough for us to afford to simply rule
out and pay this term as an additive loss in the soundness error bound. Hence, it
is tempting to do this, and then focus only on collisions.

That, however, would be incorrect because, perhaps surprisingly, the afore-
mentioned attack is not the only way to exploit inversions, as we now discuss.
That attack relies on a “strong inversion”: the cheating prover wanted to invert a
specific single Merkle root (given y, find x such that the random oracle maps x
to y). However, a cheating prover could instead seek a “weak inversion”: invert
any one element out of a long list. For example, the cheating prover could gather
a t/2-size list of Merkle roots (for which PCP randomness has already been
derived via 1 query each), and use the remaining t/2 queries to try to invert
any one of them. The probability that one query inverts any value in the list is
roughly t · 2−λ, so the probability of inverting via any of the queries is roughly
t2 ·2−λ. This is again a term that we cannot afford to simply rule out, so we must
somehow deal with weak inversions if we are to improve the security analysis of
the Micali construction.

Weak inversions are not too harmful. The aforementioned considerations
lead to the following non-trivial attack, which exemplifies the limits of possible
strategies via inversions. The cheating prover randomly samples many Merkle

8

roots and, for each Merkle root, derives the corresponding PCP randomness;
finds a PCP string that is accepting for as many of the PCP randomness strings
as possible; computes the Merkle tree for this PCP string; and tries to connect
this Merkle tree to one of the Merkle roots via a weak inversion. If the cheating
prover succeeds, and the PCP randomness was one of the convincing ones for
this PCP string, then the cheating prover has won. If it fails, the cheating prover
can try again with another PCP string (and so on).

At this point it is not clear if the success probability of this attack is something
we can afford. Showing that this attack cannot succeed with high probability will
require introducing new tools.

Mixing strategies. Once we do not to rule out the event E then we must
consider the impact on security of strategies that may go well beyond exploiting a
single collision or a single weak inversion. An adversary might be able to find many
pairs of collisions or even multi-collisions of more than two elements. The cheating
prover could adopt a strategy that mixes between finding collisions, finding (weak)
inversions, and attacking the PCP. For example, finding some collisions leads
to improving the success probability in the above inversion attack, as now the
cheating prover is not committed to a single string in every trial. Moreover, the
adversary may choose its strategy adaptively, based on each response from the
random oracle.

In sum, the main challenge in not ruling out E is to analyze how any combi-
nation of these strategies will impact the security of the construction. To handle
this, we define a more involved PCP soundness game, where the attacker has a
budget for collisions and a budget for (weak) inversions and can perform arbitrary
strategies with collisions and inversions up to those budgets. We show that any
cheating prover that succeeds in fooling the argument verifier will also succeed
(with similar probability) in this PCP soundness game. We describe the game
next.

2.3 A tree soundness game

In order to obtain a tight security analysis of the Micali construction, we introduce
an intermediate information-theoretic game, which we call tree soundness game,
that enables us to model the effects of attacks against the Micali construction. In
order to motivate the description of the game, first we describe a simplified game
with no collisions or inversions (Section 2.3.1), then describe how the simplified
game leads to the prior analysis of the Micali construction (Section 2.3.2), and
finally describe how to augment the game with features that model collisions and
inversions (Section 2.3.3). The formal description of the tree soundness game can
be found in Section 5.

The intermediate game then leaves us with two tasks. First, reduce the security
of the Micali construction to winning the tree soundness game (without paying
for the birthday bound term). Second, reduce winning the tree soundness game to
breaking the standard soundness of a PCP (which is not clear anymore). We will
discuss the second step in Section 2.4, and the first step in Sections 2.5 and 2.6.

9

2.3.1 The game with no collisions or inversions

The tree soundness game has several inputs: a PCP verifier V; an instance x; an
integer λ (modeling the random oracle’s output size); a malicious prover P̃ to play
the game; and a query budget t ∈ N. We denote this game by Gtree(V,x, λ, P̃, t).

The graph G. The game is played on a graph G = (V,E) that represents the
Merkle trees constructed by the malicious prover so far. The graph G contains
all possible vertices, and actions by the malicious prover add edges to the graph.

Letting d be the height of the Merkle tree, vertices in G are the union
V := V0 ∪ V1 ∪ · · · ∪ Vd where Vi are the vertices of level i of the tree: for
every i ∈ {0, 1, . . . , d − 1}, Vi := {(i, j, h) : j ∈ [2i], h ∈ {0, 1}λ} is level i; and
Vd := {(d, j, h) : j ∈ [2d], h ∈ Σ} is the leaf level. The indices i and j represent
the location in the tree (vertex j in level i) and the string h represents either a
symbol of the PCP (if in the leaf level) or an output of the random oracle (if in
any other level). Edges in G are hyperedges that keep track of which inputs are
“hashed” together to create a given output. That is, elements in the edge set E
of G are chosen from the collection E below, which represents an edge between
two vertices in level i+ 1 and their common parent in level i:

E =

(u, v0, v1) :
u = (i, j, h) ∈ Vi
v0 = (i+ 1, 2j − 1, h0) ∈ Vi+1

v1 = (i+ 1, 2j, h1) ∈ Vi+1

 .

Playing the game. The game starts with the graph G empty (E = ∅), and
proceeds in rounds. In each round, provided there is enough query budget left,
the malicious prover chooses between two actions: (i) add an edge to E from the
set E , provided the edge is allowed; (ii) obtain the PCP randomness for a given
Merkle root. We discuss each in more detail.

– Adding edges. When the prover adds to E an edge (u, v0, v1) ∈ E the query
budget is updated t← t−1. However, the prover is not allowed to add any edge
he wants. In particular, at least for now, he cannot add edges that correspond
to collisions or inversions. Namely, if E already contains an edge of the form
(u, v′0, v

′
1), then (u, v0, v1) would form a collision with that edge, and so in this

case (u, v0, v1) is not added to E. Moreover, if E already contains an edge
of the form (u′, v′0, v

′
1) with v′0 = u or v′1 = u, then (u, v0, v1) would form an

inversion with that edge, and so in this case (u, v0, v1) is not added to E.
(Note that the game would have allowed adding these two edges in reverse
order, though, as that would not have been an inversion.)

– Deriving randomness. A root is a vertex vrt ∈ V0, which has the form (0, 0, h)
for some h ∈ {0, 1}λ. (The root level is 0 and has a single vertex, at position
0.) When the prover submits vrt, the game samples new PCP randomness ρ,
and the pair (vrt, ρ) is added to a mapping Roots. (The prover is not allowed
to submit a root vrt that already appears in the mapping Roots.) This costs a
unit of the query budget, so when this happens the game updates t← t− 1.

10

Winning the game. When it decides to stop playing the game, the prover
outputs a root vertex vrt ∈ V0 and a PCP string Π ∈ Σ l. The prover wins the
game if the following two conditions hold.

– The PCP verifier accepts the proof string Π when using the randomness
associated to vrt. That is, VΠ(x; ρ) = 1 for ρ := Roots[vrt]. (If Roots has no
randomness for vrt then the prover loses.)

– The PCP string Π is consistent with vrt in the graph G. That is, if the PCP
verifier queries location j of Π, then the leaf u = (d, j,Π[j]) ∈ Vd is connected
to the root vrt ∈ V0 in G.

We denote by εtree(t) the maximum winning probability in the tree soundness
game by any malicious prover with query budget t. See Figure 2 for an example
of such a tree.

Level 0

Level 1

Level 2

Level 3

Fig. 2. An example of a possible state of the graph in the tree soundness game. Level
0 happens to contain two root vertices, level 1 contains three vertices, and so on. A
hyper-edge containing three vertices is drawn using the green lines that are attached to
three vertices.

2.3.2 Recovering the prior analysis
The game described so far, which excludes collisions and inversions, enables us to
recover the prior analysis of the Micali construction. Conditioned on not finding
a collision or an inversion in the random oracle, any winning strategy of a t-query
cheating argument prover can be translated into a winning strategy for a prover
in the tree soundness game with query budget t. This tells us that the soundness
error of the Micali construction can be bounded from above as follows:

ε(λ, t) ≤ εtree(t) +O(t2/2λ) .

In turn, if the PCP has soundness error εPCP, then the winning probability in
the tree soundness game is at most t · εPCP. This is the expression of the prior
analysis of the Micali construction.

11

We wish, however, to analyze the Micali construction in a more fine-grained
way, by studying the impact of a few collisions and inversions. That requires
extending the tree soundness game.
2.3.3 Adding collisions and inversions
We describe how to extend the tree soundness game by adding collision edges
and inversion edges, up to respective collision and inversion budgets. We first
discuss collisions and then inversions.
Easy: supporting collision. We introduce a collision budget tcol. Whenever
the prover adds to the graph G an edge that collides with an existing edge (a new
edge (u, v0, v1) for which an edge (u, v′0, v

′
1) is already in G), the game charges

the prover a unit of collision budget by setting tcol ← tcol − 1. Note that the
game charges a single unit for each collision edge, and multi-collisions are allowed.
Thus, a k-wise collision costs k − 1 units of tcol. This makes the budget versatile
in that, for example, a budget of 2 can be used to create two 2-wise collisions or
one 3-wise collision.

If the collision budget is large enough (as large as the proof length), then
for some PCPs the prover can win with probability 1 (see the collision attack
in Section 2.2). However, our analysis will say that, for this case, obtaining
such a large collision budget happens with very small probability. Unlike the
query budget, the collision (and inversion) budget is scarce. See Figure 3 for an
illustration.

𝑢

𝑣! 𝑣"

𝑣!# 𝑣"#

Fig. 3. An example of a possible state of the graph in the tree soundness game, with a
collision: the edge (u, v0, v1) collides with the edge (u, v′0, v

′
1).

Hard(er): supporting inversions. We introduce, similarly to the case of
collisions, an inversion budget tinv. Supporting inversions, though, is significantly
more challenging. The cheating prover can win with one strong inversion (see
Section 2.2), which happens with small probability. So we cannot simply let the
adversary in the tree soundness game add arbitrary inversion edges to the graph,
as that would enable trivially winning even with tinv = 1. Instead, we designate
tinv for weak inversions (inversions for any value within a large set rather than
for a specific value).

12

In the game described so far the prover adds edges to the graph by specifying
the desired edge (u, v0, v1). In contrast, when the prover wishes to perform a
weak inversion, the prover cannot fully specify the vertex u = (i, j, h) of the edge:
the prover provides the location i and j for u, but the game samples the string
h ∈ {0, 1}λ instead. Specifically, the game samples h at random from the set H
of “possible targets for inversion” (all h such that (i′, j′, h) is a vertex in an edge
in the graph).

How much should a weak inversion cost? Note that H might contain a single
vertex, which would make this a strong inversion, and thus should be very costly
for the prover. So one option would be to charge the prover according to the
size of H (the smaller H is, the higher the cost). Yet we do not see how to set
this cost, as a function of H, that would suffice for the proof. Hence, instead, we
charge the prover differently. The cost for any (weak) inversion is always a single
unit of tinv, regardless of the size of H. But the game adds the edge to the graph
only with probability |H|2t . (The constant “2” appears since each edge added to
the graph contributes two vertices that could be inverted, and so after t edges
the maximal size of H is 2t.) If H is small, then there is a small probability for
the edge to be added, making the expected cost to get an inversion high. The
maximal size of H is 2t, and in this case the edge is added with probability one.

2.4 PCPs are secure against collisions and inversions

We prove that any PCP with sufficiently small soundness error is secure against
collisions and inversions, i.e., has small tree soundness error. The loss in soundness
depends on the various budgets provided to the tree soundness game (t, tcol, tinv),
as stated in the following theorem.

Theorem 1. Let (P,V) be a PCP for a relation R with soundness error εPCP

and proof length l over an alphabet Σ. Then (P,V) has tree soundness error

εtree(t, tcol, tinv) = O

(
2tcol · t · εPCP + 2tcol · tinv ·

l · log |Σ|
t

)
.

The above formulation is a simplification of our actual theorem (Theorem 4),
which gives a more precise bound that is useful for concrete efficiency.

The tree soundness game is relatively complicated, as an adversary may
employ many different strategies that demand for different analyses. Our proof of
Theorem 1 relies on a simpler game, which we call reverse soundness game, that
focuses almost solely on weak inversion, and omits tree structure and collisions.
(See Figure 1.) In light of this, the rest of this section is organized as follows:
(i) We summarize a simplification of the reverse soundness game and discuss how
reverse soundness reduces to regular PCP soundness (Lemma 1); technical details
are in Section 4. (ii) We discuss how tree soundness reduces to reverse soundness
(Lemma 2); technical details are in Section 5. These two steps directly lead to
Theorem 1 above. We then conclude this section with a brief discussion of which
additional features we rely on in the non-simplified reverse soundness game.

13

Reverse soundness. The reverse soundness game has several inputs: a PCP
verifier V; an instance x; a parameter K ∈ N; and a malicious prover P̃ to play
the game. For simplicity, here we describe a simplified version of the reverse
soundness game that captures its main idea. Later on we describe how to go to
from this simplification to the game that we use in the technical sections.

The simplified game works as follows: (1) the game draws K samples of PCP
randomness ρ1, . . . , ρK and gives them to P̃; (2) P̃ outputs a single PCP string
Π; (3) the game samples a random index i ∈ [K] and P̃ wins if and only if
VΠ(x; ρi) = 1 (Π convinces the PCP verifier with randomness ρi). Intuitively,
the K samples are modeling randomness derived from K Merkle roots, and the
subsequent choice of a PCP string to be tested with a random choice among the
samples is modeling a weak inversion.

This game becomes “harder” as K increases. At one extreme where K = 1, the
game is easy to win: the cheating prover can pick any PCP string Π that makes
the single PCP randomness ρ1 accept. At the other extreme where K equals the
number of possible random strings, the (simplified) game approximately equals
the regular PCP soundness game. We are interested in a regime where K is in
between, which we think of as “reverse soundness”: the cheating prover chooses
the PCP string after seeing samples of PCP randomness (and is then tested via
one of the samples at random).
Standard soundness implies reverse soundness. We prove that reverse
soundness reduces to standard soundness of a PCP, as stated in the following
lemma:

Lemma 1. Let (P,V) be a PCP for a relation R with soundness error εPCP and
proof length l over an alphabet Σ. If K · εPCP ≤ 1/20 then (P,V) has reverse
soundness error

εrev(K) = O

(
l · log |Σ|

K

)
.

The precise statement and its proof (for the non-simplified game) are given
in Lemma 4. Next we provide a summary of the proof for the simplified reverse
soundness game described above.

There is a simple optimal strategy for the reverse soundness game: given the
K samples of PCP randomness, enumerate over all possible PCP strings, and
choose the one that maximizes the probability of winning (over a random choice
of sample from within the list of samples). This strategy is not efficient, but that
is fine as we are not bounding the running time of adversaries.

Hence, to bound the reverse soundness error, we consider an infinite sum
over an intermediate parameter c ∈ N. For each c we bound the probability, over
ρ1, . . . , ρK , that there exists a PCP string that wins against any c of the samples.
The resulting geometric series converges to the claimed upper bound.

In more detail, winning against c specific samples happens with probability
εcPCP, so a union bound over all subsets of size c yields the following:

Pr
ρ1,...,ρK

[
∃Π : Pr

i∈[K]
[VΠ(x; ρi) = 1] ≥ c

K

]
≤ |Σ|l·

(
K

c

)
·εcPCP ≤ 2l·log |Σ|+c·log(K·εPCP) .

14

Next, fixing any cheating prover P̃ and letting Grev(V,x,K, P̃) = 1 be the output
of the game for an instance x and parameter K, we conclude that:

Pr
[
Grev(V,x,K, P̃) = 1

]
≤
∞∑
c=1

Pr
ρ1,...,ρK

[
∃Π : Pr

i∈[K]
[VΠ(x; ρi) = 1] =

c

K

]
· c
K

≤ O
(
l · log |Σ|

K

)
.

Reverse soundness implies tree soundness. We are left to prove that tree
soundness reduces to reverse soundness, as stated in the following lemma:

Lemma 2. If (P,V) is a PCP for a relation R with soundness error εPCP(x)
and reverse soundness error εrev(x,K), then it has tree soundness error

εtree(t, tcol, tinv) = O
(
2tcol · t · εPCP + 2tcol · tinv · εrev(t)

)
.

The precise statement and its proof (for the non-simplified game) are given
in Lemma 5.

The expression above can be interpreted in a meaningful way.

– The first term corresponds to a cheating prover that tries to win the standard
PCP soundness game over and over, aided by collisions. Given a budget of tcol
collisions, he can commit to 2tcol PCP strings before submitting a Merkle root
and getting PCP randomness. Each trial’s winning probability is 2tcol · εPCP,
and across t trials the winning probability becomes O(2tcol · t · εPCP).

– The second term corresponds to a cheating prover that tries to win using
an inversion. He creates t Merkle roots, commits to 2tcol strings, and tries
to invert. He does this tinv times overall and wins with probability roughly
O(2tcol · tinv · εrev(t)).

On the non-simplified game. We show that we can reduce any prover that
plays the tree soundness game to one that plays the reverse soundness game (with
small losses in the success probability). However, the reverse soundness game
described above is too simple to capture the wide range of strategies possible in
the tree soundness game, and some modifications are required.

Consider a cheating prover that performs a weak inversion on an intermediate
vertex in the tree. Instead of creating a long list of isolated vertices, he can create
the same list where each vertex is already connected to a partial tree, representing
a partial proof string Πi. Then, when he submits the final PCP string Π, the two
strings will be merged in a way that depends on the vertex’s location in the tree.
The inversion creates a collision at the inversion vertex, which lets the prover
use a combination of Π and Πi, depending on which pre-image he chooses for
the collision vertex.

15

To capture these strategies, we rely on a merging function that takes as input
two partial PCP strings Π0, Π1 ∈ (Σ ∪ {⊥})l and outputs another partial PCP
string. The function is defined as follows:

merge(Π0, Π1, b)[j] :=


Π0[j] if Π1[j] = ⊥
Π1[j] if Π0[j] = ⊥
Πb[j] otherwise

.

The reverse soundness game is then extended as follows: the prover first outputsK
PCP strings Π1, . . . ,ΠK ; then the prover receives K samples of PCP randomness;
then the prover outputs a new string Π and a bit b; the game samples i ∈ [K]
and tests the merged string Π∗ := merge(Π,Πi, b) against the i-th sample. The
game that we use is generous in that it allows a larger class of strategies than
what is possible in the tree soundness game. This lets us use a clean a simple
definition (via the merge function) whereas a tight definition capturing the set of
strategies in the tree soundness game would be significantly more involved and
cumbersome.

There are other modifications needed for the game to capture all possible
strategies. For example, the prover can choose the K PCP strings adaptively
instead of committing to them in advance, as above. These extensions create
additional technical challenges in the full proof.

2.5 Scoring oracle queries

The tree soundness game lets us bound the success probability of a malicious
prover given specific budgets in that game. But what budgets should we use when
analyzing a cheating argument prover (attacking the soundness of the SNARG)?
For this, we introduce a new tool: a scoring function for the query trace of an
algorithm in the random oracle model.

Intuitively, the score of a query trace “counts” the number of collisions and
inversions in a way that reflects the probability of that event occurring. The
lower the probability, the higher the score. This enables us to translate our claims
about cheating argument provers into claims about cheating tree soundness
provers, where a high score is translated to a high budget. A strategy that uses a
large budget has a higher chance of winning the tree soundness game, but the
probability of achieving a corresponding high score is low, and our goal is to
balance these two.

We separately define scoring functions for collisions and for inversions, as
motivated below.

– Scoring collisions. A natural idea would be to set the collision score to equal
the number of pairwise collisions in a query trace. However, this choice is not
useful if a query trace contains multi-collisions. For example, a k-wise collision
(k inputs that all map to the same output) would have a score of

(
k
2

)
because

there are this many pairwise collisions in the k-wise collision. This does not

16

reflect well the probability of finding
(
k
2

)
pairwise collisions, which is much

smaller than finding one k-wise collision.
Instead, we set the score of a k-wise collision to be k−1 (assuming k is maximal
within the query trace); in particular, a 2-wise collision gets a score of 1. Note
that two pairwise collisions and one 3-wise collision both get the same score of
2, even though it is much more likely to see two pairwise collisions than one
3-wise collision. In this case, it is fine since two pairwise collisions yield four
possible proof strings, while a 3-wise collision yields only three possible proof
strings.

– Scoring inversions. To score inversions we simply count the number of inversions
in the query trace. We now elaborate on what we consider an inversion in the
query trace. Recall that, in the (domain-separated) Micali construction, queries
to the random oracle designated for the Merkle tree are compressing: a query
is of the form x = (x1, x2) ∈ {0, 1}λ × {0, 1}λ and an answer is y ∈ {0, 1}λ.
Instead, queries to the random oracle designated for deriving PCP randomness
are of the form x ∈ {0, 1}λ and an answer is ρ ∈ {0, 1}r. For inversions we only
consider tree queries, and note that a given tree query may invert one of the
two components in a previous tree query or may invert (the one component of)
a previous randomness query. Hence, a tree query performed at time j with
answer y is an inversion if there exist a previous tree query (at time j′ < j) of
the form x = (x1, x2) with x1 = y or x2 = y, or a previous randomness query
x with x = y.

Informally, we show the following lemma:

Lemma 3. For any t-query algorithm that queries the random oracle and every
k ∈ N:

1. Pr [collision score > k] ≤
(

t2

2·2λ

)k
;

2. Pr [inversion score > k] ≤ 1
k! ·
(
2t
2λ

)k
.

Further details, including precise definitions of scores and the proof of the
lemma, are provided in the full version. There the lemma statement is more
involved as it considers queries to the tree oracle and to the randomness oracle
separately, to get tighter bounds.

Subsequent to this work, a simple variant of Lemma 3 has been used to
analyze a SNARG construction whose argument size improves on the argument
size of the Micali construction [anon citation].

2.6 Concluding the proof of Theorem 1

As reviewed in Section 2.1, the prior analysis of the Micali construction separately
bounds the probability that the cheating argument prover finds any collision or
(weak) inversion and then conditions the cheating argument prover on the event
it finds no collisions or (weak) inversions. This means that the query trace’s score
is 0, which in turn translates to collision and inversion budgets that equal 0 in
the tree soundness game (tcol = 0 and tinv = 0).

17

In contrast, in our analysis, we consider every possible query trace score and
also the probability that the cheating argument prover could have achieved that
score (see Section 2.5). For any integer k ∈ N we consider the event of the
cheating argument prover producing a query trace that has either collision score
or inversion score exactly k. We show that conditioned on the cheating argument
prover producing a query trace of score k, there is another cheating prover that
wins the tree soundness game with the same probability and budget k (the precise
statement is given in Claim 6). Namely,

Pr

[
verifier
accepts

∣∣∣∣ score k] ≤ εtree(t, k, k) .
We consider an infinite sum over k, and for each value of k we bound the

probability of the cheating argument prover getting a score of k multiplied by the
maximum winning probability in the tree soundness error given budget tcol = k
and tinv = k. This infinite sum then converges to the soundness expression stated
in our main theorem, provided that λ ≥ 2 log t+ 6.

This approach could be over-simplified via the following equations (for simplic-
ity here we are not careful with constants). First, using Lemma 3 we can conclude
that the probability that either score (collisions or inversions) is bounded by the
sum of the two probabilities, namely:

Pr[score of k] ≤ 2 ·
(
2t2

2λ

)k
.

This lets us express the success probability of the cheating prover as an infinite
sum conditioned on getting a score of k, for any k ∈ N:

Pr

[
verifier
accepts

]
≤
∞∑
k=0

Pr

[
verifier
accepts

∣∣∣∣ score of k
]
· Pr[score of k]

≤
∞∑
k=0

εtree(t, k, k) · Pr[score of k]

≤
∞∑
k=0

O

((
2k · t · εPCP + 2k · k · εrev(t)

)
·
(
2t2

2λ

)k)

≤
∞∑
k=0

O

((
2k · t · εPCP + 2k · k ·

(
l · log |Σ|

t

))
·
(
2t2

2λ

)k)

= O(t · εPCP) ·
∞∑
k=0

(
4t2

2λ

)k
+O(l · log |Σ|) ·

∞∑
k=0

2k · k
t
·
(
2t2

2λ

)k
.

Then, separately, we show that (assuming λ ≥ 2 log t+ 6) the two infinite sums
converge:

∞∑
k=0

(
4t2

2λ

)k
= O(1) and

∞∑
k=0

2k · k
t
·
(
2t2

2λ

)k
= O

(
t

2λ

)
.

18

Finally, we conclude that:

Pr

[
verifier
accepts

]
≤ O

(
t · εPCP + C · t

2λ

)
,

where C = 12 · l · log |Σ|.
Moreover, in order to achieve concrete efficiency (e.g., the numbers reported in

Section 1.2), our security analysis improves on the above expression in two ways:
(1) it replaces the hidden constant (in the big-O notation) with the constant 1;
and (2) it lowers the upper bound on C to 12 · l·log |Σ|

log 1
t·εPCP

.

To achieve this, we count separately the queries performed to the tree and to
derive PCP randomness. Thus, in the full proof, we introduce two new parameters
ttree and trnd such that it always holds that t = ttree + trnd. Hence the full proof
contains similar expressions as above, where in some cases, t is replaced with
either ttree, trnd, or their sum. See Section 6 for further details.

Adaptive soundness. The soundness notion provided by Theorem 1 is non-
adaptive: an instance x /∈ L is fixed, and then the random oracle is sampled. All
prior works in Section 1.3 also focus on non-adaptive soundness. However, one
could also consider a stronger, adaptive, soundness notion: the random oracle is
sampled and then the cheating prover chooses an instance x /∈ L. While there is
a general (black-box) method to achieve adaptive soundness from non-adaptive
soundness in any SNARG, the method incurs a multiplicative factor of t in the
soundness error, which is undesirable, especially so in the context of our work
(aimed at a tight security analysis). Fortunately, our security analysis can be
naturally extended to directly show adaptive soundness with the same soundness
error. This mostly relies on using an adaptive soundness definition of the tree
soundness game and the reverse soundness game. We leave working out the
details for this adaptive case to future work.

3 Definitions

Relations. A relation R is a set of tuples (x,w) where x is the instance and
w the witness. The corresponding language L = L(R) is the set of x for which
there exists w such that (x,w) ∈ R.
Random oracles. We denote by U(λ) the uniform distribution over functions
ζ : {0, 1}∗ → {0, 1}λ (implicitly defined by the probabilistic algorithm that assigns,
uniformly and independently at random, a λ-bit string to each new input). If ζ
is sampled from U(λ), we call ζ a random oracle.

Oracle algorithms. We restrict our attention to oracle algorithms that are
deterministic since, in the random oracle model, an oracle algorithm can obtain
randomness from the random oracle. Given an oracle algorithm A and an oracle
ζ ∈ U(λ), queries(A, ζ) is the set of oracle queries that Aζ makes. We say that A
is t-query if |queries(A, ζ)| ≤ t for every ζ ∈ U(λ).

19

3.1 Probabilistically checkable proofs

We provide standard notations and definitions for probabilistically checkable proofs
(PCPs) [BFLS91; FGL+91; AS98; ALM+98]. Let PCP = (P,V) be a pair where
P, known as the prover, is an algorithm, and V, known as the verifier, is an
oracle algorithm. We say that PCP is a PCP for a relation R with soundness
error εPCP if the following holds.

– Completeness. For every (x,w) ∈ R, letting Π := P(x,w) ∈ Σ l,
Prρ∈{0,1}r [V

Π(x; ρ) = 1] = 1.
– Soundness. For every x /∈ L(R) and malicious proof Π̃ ∈ Σ l,

Prρ∈{0,1}r [V
Π̃(x; ρ) = 1] ≤ εPCP(x).

Above, Σ is a finite set that denotes the proof’s alphabet, and l is an integer that
denotes the proof’s length. We additionally denote by q the number of queries to
the proof made by the verifier. All of these complexity measures are implicitly
functions of the instance x.

3.2 Non-interactive arguments in the random oracle model

We consider non-interactive arguments in the random oracle model (ROM), where
security holds against query-bounded, yet possibly computationally-unbounded,
adversaries. Recall that a non-interactive argument typically consists of a prover
algorithm and a verifier algorithm that prove and validate statements for a binary
relation, which represents the valid instance-witness pairs.

Let ARG = (P, V) be a tuple of (oracle) algorithms. We say that ARG is a
non-interactive argument in the ROM for a relation R with (t, ε)-security if, for
a function λ : N× (0, 1) → N, the following holds for every query bound t ∈ N
and soundness error ε ∈ (0, 1).

– Completeness. For every (x,w) ∈ R,

Pr

[
V ζ(x, π) = 1

∣∣∣∣ ζ ← U(λ(t, ε))π ← P ζ(x,w)

]
= 1 .

– Soundness. For every x /∈ L(R) with |x| ≤ t and t-query P̃ ,

Pr

[
V ζ(x, π) = 1

∣∣∣∣ ζ ← U(λ(t, ε))π ← P̃ ζ

]
≤ ε .

The argument size s := |π| is a function of the desired query bound t and
soundness error ε. So are the running time pt of the prover P and the running
time vt of the verifier V .

20

3.3 Micali’s construction

We describe Micali’s construction of a (succinct) non-interactive argument from
a PCP [Mic00], with the domain-separated flavor (Remark 1). Let (P,V) be
a PCP system for the desired relation, with proof length l over an alphabet Σ
and query complexity q; for notational convenience, we set d := dlog le. The
algorithms below are granted access to a random oracle ζ : {0, 1}∗ → {0, 1}λ,
which is domain separated into two random oracles: (i) a PCP randomness oracle
ζrnd : {0, 1}∗ → {0, 1}r, where r is the randomness complexity of the PCP verifier
V; (ii) a tree oracle ζtree : {0, 1}∗ → {0, 1}λ.

We describe the argument prover P and then the argument verifier V of the
tuple ARG = (P, V).
Argument prover. The argument prover P takes as input an instance x and
witness w, and computes an argument π as follows. First P runs the PCP prover
P on (x,w) to obtain the PCP proof Π ∈ Σ l. Next P uses the random oracle
ζtree to Merkle commit to Π, as follows:

– For every j ∈ [l], set the j-th leaf hd,j := Πj ∈ Σ.
– For i = d− 1, d− 2, . . . , 0: for j ∈ [2i],

compute hi,j := ζtree(i‖j‖hi+1,2j−1‖hi+1,2j) ∈ {0, 1}λ.
– Set the root rt := h0,1 ∈ {0, 1}λ.

Then P derives randomness ρ := ζrnd(rt) ∈ {0, 1}r and simulates the PCP verifier
V on input (x; ρ) and PCP string Π; this execution induces q query-answer pairs
(j1, a1), . . . , (jq, aq) ∈ [l]×Σ. Finally, P outputs

π :=
(
rt, (j1, a1, p1), . . . , (jd, ad, pd)

)
(1)

where p1, . . . , pd are the authentication paths for the query-answer pairs
(j1, a1), . . . , (jq, aq).
Argument verifier. The argument verifier V takes as input an instance x and
a proof π (of the form as in Equation (1)), and computes a decision bit as follows:
– derive randomness ρ := ζrnd(rt) for the PCP verifier;
– check that the PCP verifier V, on input (x; ρ) and by answering a query to jr

with ar, accepts;
– check that p1, . . . , pd are authentication paths of (j1, a1), . . . , (jd, ad) that hash

into the root rt.
Argument size. The argument π contains the root rt ∈ {0, 1}λ, a (log |Σ|)-
bit answer for each of q queries, and q authentication paths. This totals to an
argument size that is

λ+ q · log |Σ|+ q · λ · log l . (2)

Each of the q queries in [l] comes with an authentication path containing the
log l siblings of vertices on the path from the query to the root, which amounts
to λ · log l bits. (More precisely, log |Σ|+ λ · (log l− 1) bits since the first sibling
is a symbol in Σ rather than an output of the random oracle.)

21

As noted in earlier works (e.g., [BBHR19; BCR+19]) parts of the information
across the q authentication paths is redundant, and the argument size can be
reduced by pruning : the prover includes in π the minimal set of siblings to
authenticate the q queries as a set. All concrete argument sizes that we report in
Section 1.2 already account for this straightforward optimization.

Remark 1 (domain separation). The reader may notice that the above description
differs slightly from [Mic00]. While the random oracle ζ is split into the two
oracles ζrnd and ζtree as in [Mic00], each time we use ζtree to hash two children
we additionally hash the location in the tree (the level i and the vertex number
j). This has no effect on argument size and only a negligible effect on the
running times of the argument prover and argument verifier. However, these
minor differences force an attacker to specify in its query which part of the
scheme it is attacking, which we leverage.

Remark 2 (salts for zero knowledge and more). The security analysis that
we present in this paper (see Section 6) works even if all the vertices in the
tree are “salted”, which means that an attacker may include an arbitrary string
σi,j ∈ {0, 1}λ in the query that obtains the digest hi,j , for any i ∈ {0, 1, . . . , d−1}
and j ∈ [2i]. This is useful for capturing the zero knowledge extension of the
Micali construction (explained below), and more generally shows that our results
hold against strong attacks (the attacker can obtain multiple random digests hi,j
for any given indices i and j). Note that, when adding salts, the definition of an
authentication path needs to be extended to account for salts wherever they are
used, and in particular the size of π increases accordingly.

Recall that the Micali construction is (statistical) zero knowledge if the
underlying PCP is honest-verifier zero knowledge and all the leaves in the
Merkle tree are salted (the honest prover sets the j-th leaf hd,j of the tree to
be ζtree(Πj‖σd,j) for a random σd,j ∈ {0, 1}λ rather than just Πj). We refer
the reader to [BCS16] for an analysis of this (the cited work discusses zero
knowledge for the BCS construction, which extends the Micali construction to
work for public-coin IOPs). Salts in the leaves behave as hiding commitments,
which indeed were similarly used in [IMSX15] to improve Kilian’s zero knowledge
succinct arguments to only make a black-box use of cryptography.

For simplicity, in this paper we do not explicitly add an additional layer
below the tree for salting each leaf individually. Instead, we remark that the
above construction is implicitly captured by having the honest prover place the
honest-verifier PCP in every even leaf and setting odd leaves to a default value.
The salts in the first layer of the tree then produce the same effect as salting
each leaf.

4 Reverse soundness for a PCP

We define the reverse soundness game, and prove that reverse soundness for a
PCP reduces to the PCP’s standard soundness (Lemma 4).

22

Definition 1. The function merge : (Σ∪{⊥})l×(Σ∪{⊥})l×{0, 1} → (Σ∪{⊥})l
maps two partial proof strings Π0, Π1 ∈ (Σ ∪ {⊥})l and a bit b ∈ {0, 1} to a new
partial proof string whose j-th entry, for j ∈ [l], is defined as follows:

merge(Π0, Π1, b)[j] :=


Π0[j] if Π1[j] = ⊥
Π1[j] if Π0[j] = ⊥
Πb[j] otherwise

.

Game 2. The reverse soundness game is parametrized by a PCP verifier V,
an instance x, and a positive integer K. We denote by Grev(V,x,K, P̃) the
boolean random variable denoting whether a malicious prover P̃ wins in this
game, according to the description below.

1. For i = 1, . . . ,K do:
(a) P̃ outputs a partial proof string Πi ∈ (Σ ∪ {⊥})l.
(b) P̃ receives a random string ρi ∈ {0, 1}r, which represents randomness for the

PCP verifier.
2. P̃ outputs a partial proof string Π ∈ (Σ ∪ {⊥})l and a bit b ∈ {0, 1}.
3. The game samples i ∈ [K], and sets Π? := merge(Πi, Π, b).
4. The game outputs 1 if VΠ?(x; ρi) = 1, and 0 otherwise.

Definition 2. A PCP (P,V) for a relation R has reverse soundness error
εrev(x,K) if for every instance x /∈ L(R), positive integer K, and malicious
prover P̃,

Pr
[
Grev(V,x,K, P̃) = 1

]
≤ εrev(x,K) .

Lemma 4. Let (P,V) be a PCP for a relation R with soundness error εPCP and
proof length l over an alphabet Σ. If K · εPCP(x) ≤ 1/20 then (P,V) has reverse
soundness error

εrev(x,K) ≤ 1.06 · l · log |Σ|
K · log 1

K·εPCP(x)

.

Proof. For each i ∈ [K], define Π?
i := merge(Πi, Π, b) where Πi, Π, b are the

corresponding outputs of P̃ in the game. Let X̃i be the boolean random variable
for the event that VΠ?i (x; ρi) = 1. Set X̃ :=

∑
i∈[K] X̃i, and observe that

E[X̃] ≤ εPCP. Define X :=
∑
i∈[K]Xi where each Xi is defined based on X̃i as

follows

Xi :=


1 if X̃ = 1

1 w.p. εPCP − E[X̃i]

0 otherwise
.

Note that it always holds that Xi ≥ X̃i and thus X ≥ X̃. Moreover, we have that
E[Xi] = εPCP, E[X] = εPCP ·K, and that X1, . . . , XK are independent random
variables.

Let I ⊆ [K] be any subset of size c ∈ N. Then, we get that

Pr
ρ1,...,ρ|I|

[
∀i ∈ [I] : VΠ?i (x; ρi) = 1

]
≤ ε|I|PCP = εcPCP .

23

Taking a union bound over all (complete) proofs Π in Σ l, and over all subset I
of size c ∈ N we obtain that

Pr
ρ1,...,ρK

[
∃Π : Pr

i∈[K]
[Vmerge(Πi,Π,b)(x; ρi) = 1] ≥ c

K

]
≤ |Σ|l ·

(
K

c

)
· εcPCP ≤ 2l·log |Σ|+c log(K·εPCP) .

Let c∗ = l·log |Σ|
log 1

K·εPCP

. Then, we bound the success probability of the prover by:

Pr
[
Grev(V,x,K, P̃) = 1

]
≤ Pr
ρ1,...,ρK

[
∃Π : Pr

i∈[K]
[Vmerge(Πi,Π,b)(x; ρi) = 1] ≤ c∗

K

]
· c
∗

K

+

∞∑
c=c∗+1

Pr
ρ1,...,ρK

[
∃Π : Pr

i∈[K]
[Vmerge(Πi,Π,b)(x; ρi) = 1] =

c

K

]
· c
K

≤ c∗

K
+

∞∑
c=c∗+1

2l·log |Σ|+c log(K·εPCP) · c
K

≤ c∗

K
+

∞∑
i=1

2l·log |Σ|+(c∗+i) log(K·εPCP) · c
∗ + i

K

≤ c∗

K
+

∞∑
i=1

(K · εPCP)
i · c

∗ + i

K

≤ c∗

K
+
c∗

K

(
K · εPCP

(1−K · εPCP)2
+

K · εPCP

1−K · εPCP

)
≤ c∗

K
+
c∗

K

(
20

361
+

1

20

)
≤ 1.06 · l · log |Σ|

K · log 1
K·εPCP

.

5 Tree soundness for a PCP

We define the tree soundness game after introducing some notation and auxiliary
definitions. Then we prove that tree soundness reduces to reverse soundness
(Lemma 5) and conclude, by further invoking our lemma from Section 4, that
tree soundness reduces to standard soundness (Theorem 4).

Definition 3. Let d and λ be positive integers, and Σ a finite alphabet. The
vertex set V is the union V0∪V1∪· · ·∪Vd where Vd := {(d, j, h) : j ∈ [2d], h ∈ Σ}
and, for every i ∈ {0, 1, . . . , d − 1}, Vi := {(i, j, h) : j ∈ [2i], h ∈ {0, 1}λ}. We

24

consider graphs of the form G = (V,E) where E is a set of (hyper)edges chosen
from the following collection:

E =

(u, v0, v1) :
u = (i, j, h) ∈ Vi
v0 = (i+ 1, 2j − 1, h0) ∈ Vi+1

v1 = (i+ 1, 2j, h1) ∈ Vi+1

 .

For an edge e = (u, v0, v1), we call u its base vertex and v0, v1 its children vertices.
We also define:
– the edges of a base vertex u = (i, j, h) are edges(u) := {(u, v0, v1) ∈ E :
v0, v1 ∈ Vi+1};

– the interval of a base vertex u = (i, j, h) is [a, b] where a = 2d−i · j and
b = 2d−i · (j + 1)− 1;

– the level of an edge e, denoted level(e), is i if its base vertex has the form
u = (i, j, h).

Each leaf of the graph, namely, a vertex u = (d, j, h) at level d is associated
to a symbol, h. A collection of leaves thus determine a string whose location j is
the symbol of the j-th leaf.

Definition 4. Let G = (V,E) be a graph over the vertex set V as in Definition 3.
– A vertex ud ∈ Vd is connected in G to a vertex u` ∈ V` if there exist vertices
ud−1, . . . , u`+1 such that, for all i ∈ {d, d− 1, . . . , `+ 1}, ui ∈ Vi and there is
an edge e ∈ E such that {ui, ui−1} ∈ e.

– A vertex v ∈ Vi is free in G if for every u ∈ Vi−1 and v′ ∈ Vi it holds that
(u, v, v′) /∈ E.

Notice that the connectivity concerns only paths that begin at any leaf (i.e.,
a vertex at level d) and move directly towards the vertex u`. That is, at each
step on the path, the level decreases by 1. Moreover, a vertex at level i is free if
there is no edge that connects it to a vertex at level i− 1.

Definition 5. Let G = (V,E) be a graph over the vertex set V as in Definition 3.
Let u be a vertex and let [a, b] be its associated interval. A string s ∈ (Σ∪{⊥})b−a
is consistent in G with u if for every j ∈ [a, b] such that s[a + j] 6= ⊥ there
exists a vertex vj = (d, j, h) ∈ Vd such that h = s[j − a] and vj is connected to u
in G. In such a case we write Consistent(G, s, u) = 1.

Game 3. The tree soundness game is parametrized by a PCP verifier V, an in-
stance x, and an integer λ. The game receives as input a malicious prover P̃, a ran-
domness budget trnd ∈ N, a tree budget ttree ∈ N, a collision budget tcol ∈ N, and
an inversion budget tinv ∈ N, which we denote Gtree(V,x, λ, P̃, trnd, ttree, tcol, tinv).
The game works as follows:

– Initialization:
1. Set E := ∅ to be an empty edge set for the graph G = (V,E).
2. Set Roots to be an empty mapping from V to verifier randomness.

– Round: P̃ chooses one of the following options until it decides to exit.

25

• Option ADD: P̃ submits a vertex u = (i, j, h) ∈ V with i ∈ {0, 1, . . . , d− 1} and
strings h0, h1.
1. Set the (hyper)edge e := (u, v0, v1) where v0 := (i+ 1, 2j − 1, h0) ∈ Vi+1 and

v1 := (i+ 1, 2j, h1) ∈ Vi+1.
2. If u is free and |e(u)| = 0 then add e = (u, v0, v1) to E.
3. ttree ← ttree − 1.

• Option COL: P̃ submits a vertex u = (i, j, h) ∈ V with i ∈ {0, 1, . . . , d− 1} and
strings h0, h1.
1. Set the (hyper)edge e := (u, v0, v1) where v0 := (i+ 1, 2j − 1, h0) ∈ Vi+1 and

v1 := (i+ 1, 2j, h1) ∈ Vi+1.
2. If u is free and |e(u)| ≥ 1 then add e = (u, v0, v1) to E.
3. tcol ← tcol − 1.

• Option INV: P̃ submits indices i, j with i ∈ {0, 1, . . . , d − 1} and j ∈ [2i] and
strings h0, h1.
1. Define Hi,j = {h ∈ {0, 1}λ : ∃ e ∈ E, (i, j, h) ∈ e}.
2. Sample a biased coin b such that Pr[b = 1] =

|Hi,j |
2(ttree+trnd)

.
3. If b = 1 then choose h← Hi,j at random.
4. If b = 0 then choose h← {0, 1}λ \Hi,j at random.
5. Add the (hyper)edge e := (u, v0, v1) to E where u := (i, j, h) ∈ Vi, v0 :=

(i+ 1, 2j − 1, h0) ∈ Vi+1, and v1 := (i+ 1, 2j, h1) ∈ Vi+1.
6. tinv ← tinv − 1.
7. Give h to P̃.

• Option RND: P̃ submits a root vertex vrt ∈ V0.
1. If Roots already contains an entry for vrt then set ρ← Roots[vrt].
2. If Roots does not contain an entry for vrt then sample ρ ∈ {0, 1}r at random

and set Roots[vrt]← ρ.
3. trnd ← trnd − 1.
4. ρ is given to P̃.

– Output: P̃ outputs a root vertex vrt ∈ V0 and leaf vertices v1, . . . , vq ∈ Vd.
– Decision: P̃ wins if all checks below pass.

1. Construct a PCP string Π ∈ (Σ ∪ {⊥})l: for every r ∈ [q], parse the r-th leaf
vertex as vr = (d, j, h) and set Π[j] := h ∈ Σ; set Π[j] := ⊥ for all other locations.

2. Retrieve PCP randomness for this root vertex: ρ∗ ← Roots[vrt].
3. Check that the PCP verifier accepts: VΠ(x; ρ∗) = 1.
4. Check that Π is consistent in G with the root: Consistent(G,Π, vrt) = 1.
5. Check that P̃ is within budget: tcol ≥ 0, tinv ≥ 0, trnd ≥ 0, and ttree ≥ 0.

Definition 6. A PCP (P,V) for a relation R has tree soundness error εtree(x,
λ, trnd, ttree, tcol, tinv) if for every x /∈ L(R), output size λ ∈ N, malicious prover
P̃, and budgets trnd, tcol, tinv ∈ N,

Pr
[
Gtree(V,x, λ, P̃, trnd, ttree, tcol, tinv) = 1

]
≤ εtree(x, λ, trnd, ttree, tcol, tinv) .

Lemma 5. If (P,V) is a PCP for a relation R with soundness error εPCP(x)
and reverse soundness error εrev(x,K), then it has tree soundness error

εtree(x, λ, trnd, ttree, tcol, tinv) ≤ 2tcol ·max {trnd · εPCP(x), 2tinv · εrev(x, trnd + ttree)} .

Proof. Let P̃tree be a malicious prover that wins the tree soundness game with
probability greater than εtree. For any root vertex vrt we set Consistent(G, vrt) to

26

be all proof strings that are consistent with vrt in the graph G and are also full
proof strings (no entry equals ⊥):

Consistent(G, vrt) := {Π ∈ Σ l : Consistent(G,Π, vrt)} .

We define an event E that, intuitively, indicates that the prover P̃tree wins the
game using Option RND without using inversions. If E does not hold then the
prover wins using an inversion submitted via Option INV. Formally, let the root
vertex vrt ∈ V0 and leaf vertices v1, . . . , vq ∈ Vd be the final output of the prover.
If the prover wins in the tree soundness game, then it must be that these leaves
are connected to the root: Consistent(G,Π, vrt) = 1 where Π is the partial proof
that identifies with v1, . . . , vq. The event E holds whenever there exist paths that
connect every leaf v1, . . . , vq to the root vrt and all the edges in these paths where
added using Option ADD.

We split the analysis in two cases according to the event E , and then derive
the lemma.
Case 1: E occurs. Conditioned on the event E we know that all edges connecting
v1, . . . , vq to vrt were added without Option INV, which, in particular, means
that they existed in the graph before the prover used Option RND on vrt.

There are at most trnd invocations of Option RND, and in each a root is
chosen. For each iteration, we wish to bound the number of consistent proof
strings Π that identify with the leaves v1, . . . , vq. Every such proof string must
be in the set Consistent(G, vrt) and thus it suffices to bound the size of this set.
We obtain such a bound by bounding the number of collisions (and the size of
each collision): using the budget on collision tcol we get that

|Consistent(G, vrt)| ≤
∏
u∈V
|edges(u)| ≤ 2tcol .

From the (standard) soundness of the PCP, we know that the probability that
the verifier accepts any fixed proof string is at most εPCP. Thus, taking a union
bound over all trnd roots vrt and over all (full) proof strings in Consistent(G, vrt)
we get that

Pr
[
Gtree(V,x, λ, P̃, trnd, ttree, tcol, tinv) = 1

∣∣∣ E]
≤ trnd · |Consistent(G, vrt)| · εPCP ≤ trnd · 2tcol · εPCP .

Case 2: E does not occur. We reduce to the reverse soundness game: we
describe how to obtain a malicious prover P̃rev that wins the reverse soundness
game with probability greater than a certain loss times εrev(x, trnd) where we set
K := trnd + ttree.

The cheating prover P̃rev plays in the reverse soundness game Grev by simulat-
ing a play of P̃tree and an instance of the tree soundness game Gtree. In particular,
P̃rev maintains the internal data structures of Gtree (the edge set E and roots
map Roots) as they would be maintained in Gtree. These maintenance details are
omitted from the description below. During its simulation, P̃tree may repeatedly

27

choose one of four options available in Gtree. In the case of either Option INV
or Option RND, P̃rev does the following for each of these cases. The prover can
perform at most tinv inversions (via Option INV). Thus, we guess ` ∈ [tinv] at
random.

– Option INV in Gtree: P̃tree submits indices i, j and strings h0, h1.
1. `← `− 1.
2. If ` > 0 skip the steps below and continue with the simulation.
3. Let v0 = (i+ 1, 2j − 1, h0), v1 = (i+ 1, 2j, h1), and u = (i, j, 0), and add

the edge (u, v0, v1) to the graph.
4. Submit K − |Roots| empty proofs in the Grev.
5. Sample Π∗ ∈ Consistent(G, u) and b ∈ {0, 1} at random and submit it as

the final proof in Grev.
– Option RND in Gtree: P̃tree submits a root vertex vrt ∈ V0.

1. Sample a random Π ∈ Consistent(G, vrt).
2. Submit Π in 1.a in Grev and get ρ.
3. Set Roots[vrt]← ρ.

We now bound the success probability of P̃rev. The final output of the
cheating prover includes leaves v1, . . . , vq and a root vrt. Let Π ′ be a proof
that identifies with these leaves. Then, there must exist Π ∈ Consistent(G, vrt),
Π∗ ∈ Consistent(G, u), and b ∈ {0, 1} such that Π ′ = merge(Π,Π∗, b). This is
since the accepting proof Π ′ must be consistent with vrt after we added the edge
(u, v0, v1). Thus, it must be a combination of proofs that were already consistent
with vrt and a (partial) proof that was consistent with u.

Let `∗ be the invocation of Option INV at which after this invocation there
exists a proof Π ∈ Consistent(G, vrt) that convinces the verifier. We guess this
invocation of Option INV (i.e., ` = `∗) with probability 1/tinv. If all our guess
are correct, then the probability that we win in the reverse soundness game is at
least

1

tinv
· 1

2tcol
· 1
2
· εrev(x,K) .

This yields us the bound:

Pr
[
Gtree(V,x, λ, P̃, trnd, ttree, tcol, tinv) = 1 | ¬E

]
≤ 2tinv · 2tcol · εrev(x,K) .

Combining the cases. Combining the two cases above, we obtain the claimed
bound:

εtree(x, λ, trnd, ttree, tcol, tinv)

= Pr[Gtree(V,x, λ, P̃, trnd, ttree, tcol, tinv) = 1 | E] · Pr[E]+
Pr[Gtree(V,x, λ, P̃, trnd, ttree, tcol, tinv) = 1 | ¬E] · Pr[¬E]

≤ 2tcol · trnd · εPCP(x) · Pr[E] + 2tinv · 2tcol · εrev(x, trnd + ttree) · Pr[¬E]
≤ 2tcol ·max {trnd · εPCP(x), 2tinv · εrev(x, trnd + ttree)} .

28

Theorem 4. Let (P,V) be a PCP for a relation R with soundness error εPCP

and proof length l over an alphabet Σ. Then (P,V) has tree soundness error

εtree(x, λ, trnd, ttree, tcol, tinv)

≤ 2tcol ·max

{
trnd · εPCP(x), 2.12 · tinv ·

l · log |Σ|
K · log 1

K·εPCP(x)

}
,

where K = trnd + ttree.

Proof. We apply Lemma 4 to our PCP and get that it has soundness

εrev(x,K) ≤ 1.06 · l · log |Σ|
K · log 1

K·εPCP(x)

.

Then, we apply Lemma 5 and get that the PCP has tree soundness:

εtree(x, λ, trnd, ttree, tcol, tinv) ≤ 2tcol ·max {trnd · εPCP(x), 2 · tinv · εrev(x,K)}

≤ 2tcol ·max

{
trnd · εPCP(x), 2.12 · tinv ·

l · log |Σ|
K · log 1

K·εPCP(x)

}
.

6 Upper bound on the soundness error of Micali

Theorem 5 (Theorem 1). Suppose that the Micali construction (described
in Section 3.3) is instantiated with: (i) a PCP with soundness error εPCP, proof
length l over alphabet Σ, and query complexity q; and (ii) a random oracle with
output size λ. Then, provided that λ ≥ 2 log t+ 6, the Micali construction has a
soundness error ε(t) against t-query adversaries that is bounded as follows:

ε(t) ≤ t · εPCP + C · t
2λ

with C := 12 · l · log |Σ|
log 1

t·εPCP

.

Corollary 1 (Corollary 2). The Micali construction is (t, ε)-secure when
instantiated with:

– a PCP with soundness error εPCP ≤ 1
2
ε
t ; and

– a random oracle with output size λ ≥ max
{
2 log t+6 , log(t/ε)+log l·log |Σ|

log 1
t·εPCP

+

5
}
.

We prove the theorem in Section 6.1 and a technical claim in full version.

29

6.1 Proof of Theorem 5

Fix t ∈ N. Let P̃ be a t-query cheating argument prover. Note that P̃ can make
queries to the randomness oracle ζrnd and tree oracle ζtree. For any choice of
positive integers trnd and ttree such that trnd + ttree = t, below we condition on
the event that P̃ makes trnd queries to ζrnd and ttree queries to ζtree. For any such
choice, we obtain the same upper bound (independent of the choice of trnd and
ttree), and hence conclude that the bound holds for the distribution of trnd and
ttree implied by P̃ .

We rely on the claim below, which states that a cheating argument prover
can be transformed into a cheating PCP prover for the tree soundness game with
a small loss, when the budgets for collisions and inversions correspond to the
corresponding scores of the trace of the argument prover.

Claim 6. There is an efficient transformation T such that, for every cheating
argument prover P̃ , the cheating PCP prover P̃ := T(P̃) satisfies the following
condition for every k ∈ N:

Pr


V ζ(x, π) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ζ ← U(λ)
π ← P̃ ζ

trrnd ← queriesrnd(P̃ , ζ)

trtree ← queriestree(P̃ , ζ)
|trrnd| = trnd, |trtree| = ttree

scorecol(trtree) ≤ k
scoreinv(trtree, trrnd) ≤ k


≤ Pr

[
Gtree(V,x, λ, P̃, trnd, ttree, k, k) = 1

]
.

(3)

Above queriesrnd(P̃ , ζ) and queriestree(P̃ , ζ) respectively denote the queries by P̃
to the oracles ζrnd and ζtree obtained from ζ via domain separation.

The proof of Claim 6 is given in the full version.
We use the scoring lemma to obtain two bounds that will be useful in the

analysis further below; we also use the assumption that λ ≥ 2 log t+ 6 and the
fact that t ≥ ttree. Both bounds hold for any choice of a parameter k ∈ N. The
first bound is:

∞∑
k=0

k · 2k

t
· Pr[scoreinv(trtree, trrnd) = k ∨ scorecol(trtree) = k]

≤
∞∑
k=0

k · 2k

t
·

(
1

k!
·
(
2t · ttree

2λ

)k
+

(
t2tree
2 · 2λ

)k)

=

∞∑
k=0

k · 2k

t
· 1
k!
·
(
2t · ttree

2λ

)k
+

∞∑
k=0

k · 2k

t
·
(
t2tree
2 · 2λ

)k

≤ ttree
2λ
·
∞∑
k=0

2k · 2k

k!
·
(
2t · ttree

2λ

)k−1
+
ttree
2λ
·
∞∑
k=0

k · 2k

2
·
(
t2tree
2 · 2λ

)k−1
(since t ≥ ttree)

30

≤ ttree
2λ
·
∞∑
k=0

k · 22k

k! · 26(k−1)
+
ttree
2λ
·
∞∑
k=0

k · 2k

2 · 26(k−1)
(since λ ≥ 2 log t+ 6)

≤ ttree
2λ
· 4.26 + ttree

2λ
· 1.07 = 5.33 · ttree

2λ
.

The second bound is:
∞∑
k=0

2k · Pr[scoreinv(trtree, trrnd) = k ∨ scorecol(trtree) = k]

≤ 1 +

∞∑
k=1

2k ·

(
1

k!
·
(
2t · ttree

2λ

)k
+

(
t2tree
2 · 2λ

)k)

= 1 +

∞∑
k=1

1

k!
·
(
4t · ttree

2λ

)k
+

∞∑
k=1

(
t2tree
2λ

)k
≤ 1 +

∞∑
k=1

1

k!
·
(
4ttree
26 · t

)k
+

∞∑
k=1

(
ttree
26 · t

)k
(since λ ≥ 2 log t+ 6)

≤ 1 +
8ttree
26t

+
2ttree
26t

≤ 1 +
ttree
t

.

Using the above bounds, we conclude by establishing an upper bound on the
soundness error:

Pr

[
V ζ(x, π) = 1

∣∣∣∣ ζ ← U(λ)π ← P̃ ζ

]
≤
∞∑
k=0

Pr
[
Gtree(V,x, λ, P̃, trnd, ttree, k, k) = 1

]
·

Pr[scoreinv(trtree, trrnd) = k ∨ scorecol(trtree) = k]

≤
∞∑
k=0

εtree(x, λ, trnd, ttree, k, k) · Pr[scoreinv(trtree, trrnd) = k ∨ scorecol(trtree) = k]

≤
∞∑
k=0

(
trnd · 2k · εPCP + 2.12k · l · log |Σ|

log 1
t·εPCP

· 2
k

t

)
·

Pr[scoreinv(trtree, trrnd) = k ∨ scorecol(trtree) = k]

≤ trnd · εPCP ·
∞∑
k=0

2k · Pr[scoreinv(trtree, trrnd) = k ∨ scorecol(trtree) = k]

+
2.12C

12
·
∞∑
k=0

k · 2k

t
· Pr[scoreinv(trtree, trrnd) = k ∨ scorecol(trtree) = k]

≤ trnd · εPCP ·
(
1 +

ttree
t

)
+

2.12C

12
·
(
5.33 · ttree

2λ

)

31

≤ (trnd + ttree) · εPCP + C · ttree
2λ
≤ t · εPCP + C · t

2λ
.

Acknowledgments

We thank Adi Neuman for designing the figures in this paper. Alessandro Chiesa
is funded by the Ethereum Foundation and Eylon Yogev is funded by the ISF
grants 484/18, 1789/19, Len Blavatnik and the Blavatnik Foundation, The
Blavatnik Interdisciplinary Cyber Research Center at Tel Aviv University, and
The Raymond and Beverly Sackler Post-Doctoral Scholarship. This work was
done (in part) while the second author was visiting the Simons Institute for the
Theory of Computing.

References

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. “Proof verifi-
cation and the hardness of approximation problems”. In: Journal of the
ACM (1998). Preliminary version in FOCS ’92.

[AS98] S. Arora and S. Safra. “Probabilistic checking of proofs: a new character-
ization of NP”. In: Journal of the ACM (1998). Preliminary version in
FOCS ’92.

[BBHR19] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. “Scalable Zero
Knowledge with No Trusted Setup”. In: CRYPTO ’19.

[BCR+19] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P.
Ward. “Aurora: Transparent Succinct Arguments for R1CS”. In: EURO-
CRYPT ’19.

[BCS16] E. Ben-Sasson, A. Chiesa, and N. Spooner. “Interactive Oracle Proofs”. In:
TCC ’16-B.

[BFLS91] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. “Checking computations
in polylogarithmic time”. In: STOC ’91.

[CMS19] A. Chiesa, P. Manohar, and N. Spooner. “Succinct Arguments in the
Quantum Random Oracle Model”. In: TCC ’19.

[CY21] A. Chiesa and E. Yogev. “Subquadratic SNARGs in the Random Oracle
Model”. In: CRYPTO ’21.

[FGL+91] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. “Approxi-
mating clique is almost NP-complete (preliminary version)”. In: SFCS ’91.

[FS86] A. Fiat and A. Shamir. “How to prove yourself: practical solutions to
identification and signature problems”. In: CRYPTO ’86.

[IMSX15] Y. Ishai, M. Mahmoody, A. Sahai, and D. Xiao. “On Zero-Knowledge
PCPs: Limitations, Simplifications, and Applications”. Available at http:
//www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf.

[Kil92] J. Kilian. “A note on efficient zero-knowledge proofs and arguments”. In:
STOC ’92.

[Mic00] S. Micali. “Computationally Sound Proofs”. In: SIAM Journal on Comput-
ing (2000). Preliminary version appeared in FOCS ’94.

[Val08] P. Valiant. “Incrementally Verifiable Computation or Proofs of Knowledge
Imply Time/Space Efficiency”. In: TCC ’08.

32

http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf

	Abstract
	1 Introduction
	1.1 Our contributions
	1.2 Concrete improvements in argument size
	1.3 Related work

	2 Techniques
	2.1 Prior analysis of the Micali construction
	2.2 The prior analysis is not tight
	2.3 A tree soundness game
	2.3.1 The game with no collisions or inversions
	2.3.2 Recovering the prior analysis
	2.3.3 Adding collisions and inversions

	2.4 PCPs are secure against collisions and inversions
	2.5 Scoring oracle queries
	2.6 Concluding the proof of theorem:intro:main

	3 Definitions
	3.1 Probabilistically checkable proofs
	3.2 Non-interactive arguments in the random oracle model
	3.3 Micali's construction

	4 Reverse soundness for a PCP
	5 Tree soundness for a PCP
	6 Upper bound on the soundness error of Micali
	6.1 Proof of theorem:tight-micali

	Acknowledgments
	References

