Generalized Proofs of Knowledge with Fully
Dynamic Setup

Christian Badertscher!*[0000-0002—-1353-1922] '1yapje]
Jost2++[0000-0002-6562-9665] 51\ Ueli Maurer®

! IOHK, Zurich, Switzerland — christian.badertscher@iohk.io
2 New York University, USA — daniel. jost@cs.nyu.edu
3 ETH Zurich, Switzerland — maurer@inf .ethz.ch

Abstract. Proofs of knowledge (PoK) are one of the most fundamental
notions in cryptography. The appeal of this notion is that it provides a
general template that an application can suitably instantiate by choosing
a specific relation. Nonetheless, several important applications have been
brought to light, including proofs-of-ownership of files or two-factor au-
thentication, which do not fit the PoK template but naturally appear to
be special cases of a more general notion of proofs of knowledge or posses-
sion. One would thus expect that their security properties, in particular
privacy and soundness, are simply derived as concrete instantiation of a
common generalized PoK concept with well understood security seman-
tics. Unfortunately, such a notion does not exist, resulting in a variety of
tailor-made security definitions whose plausibility must be checked on a
case-by-case basis.

In this work, we close this gap by providing the theoretical foundations
of a generalized notion of PoK that encompasses dynamic and setup-
dependent relations as well as interactive statement derivations. This
novel combination enables an application to directly specify relations
that depend on an assumed setup, such as a random oracle, a database
or ledger, and to have statements be agreed upon interactively and dy-
namically between parties based on the state of the setup. Our new no-
tion is called agree-and-prove and provides clear semantics of correctness,
soundness, and zero-knowledge in the above generalized scenario.

As an application, we first consider proofs-of-ownership of files for client-
side file deduplication. We cast the problem and some of its prominent
schemes in our agree-and-prove framework and formally analyze their
security. Leveraging our generic zero-knowledge formalization, we then
devise a novel scheme that is provably the privacy-preserving analogue of
the well-known Merkle-Tree based protocol. As a second application, we
consider two-factor entity authentication to showcase how the agree-and-
prove notion encompasses proofs of ability, such as proving the correct
usage of an abstract hardware token.

* Work done in part while author was at the University of Edinburgh, Scotland, and
at ETH Zurich, Switzerland.

** Research supported by the Swiss National Science Foundation (SNF) via Fellowship
no. P2EZP2_195410. Work done in part while at ETH Zurich, Switzerland.

1 Introduction

The concept of an interactive proof in which a prover’s goal is to convince a
verifier of the validity of a given statement is a fundamental theoretical concept
in complexity theory and is established as a cornerstone in cryptography as well.
Especially the task of proving to a party that one knows a certain piece of in-
formation, without necessarily revealing it, is an essential task in cryptography
and in the design of cryptographic protocols. The formal concept capturing the
essence of this task is called proof of knowledge [10], 16 [8, [3] and has turned
out to be a building block with countless applications. In a nutshell, the task of
a prover is to convince the verifier that he knows a witness w for a statement
x satisfying a relation R(w,x). Part of the elegance of this definition, fostering
its wide applicability, is that it does not make any particular assumption about
the statements or witnesses, that is, the definition is independent of how state-
ments are generated. Furthermore it does not make many assumption about the
relation except that for cryptographic applications relations based on hardness
assumptions are typically considered.

The formalization as a rather low-level building block has however a major
downside when it comes to capturing the security of natural (higher-level) in-
teractive proofs occurring in practice for at least two reasons: First, statements
and witnesses are traditionally treated as rather rigid objects of the definition
in the sense that they are considered as static objects provided as inputs to
the respective parties. In real-world settings, however, a much more dynamic
interaction can be observed: typically, we have two parties, both with a certain
prior state, to approach each other and first (interactively) agree on a statement
(and potentially the prover generating a proper witness), and only then prove
the agreed statement. This was first identified as a problematic shortcoming by
Camenisch et al. [5] who put forth a formal treatment of an appropriate PoK
generalization that reflects such a two-stage process. Clearly, complex theoreti-
cal questions and definitional challenges arise from the interplay between these
two phases. For example, the first phase (which we call agreement phase) might
have in general impact on the obtained security guarantees: on the one hand, an
involved agreement phase might be followed by a more efficient proof [5] 2] while,
on the other hand, an agreement phase does pose additional challenges such as
to retaining the desired zero-knowledge guarantees. Hence, the agreement phase
plays a crucial role in practice that cannot be neglected.

Another shortcoming stems from the rigid treatment of the proof relation
(the above generalization falls into this category). First steps towards having
a more dynamic view on the relation were taken in the form of relation gen-
erators that outputs an explicit description of a relation to the parties [I8] [7]
(and afterwards, a statement can be adaptively chosen by the adversary). While
more dynamic in nature, this treatment leaves again a substantial gap: In many
real-world situations, a setup (such as a database, a ledger, a random oracle, or
quantum devices) takes a crucial role in defining the relation that a prover asserts
to a verifier. While certain setup functionalities can be partially represented as
an additional input to parties (such as a CRS), already for a random oracle an

adaptation of the theory is needed, as shown by Bernhard, Fischlin and Warin-
schi [4] in the adaptive PoK setting (without interactive agreement). Moreover,
their treatment still does not allow the relation to depend on the random oracle,
missing the opportunity to lay the foundation for zero-knowledge proofs about
relations involving random oracle queries. More generally, initially generating an
encoding of the relation prevents it from depending on the dynamic state of a
setup. Finally, the lack of support for more complex setups hinders the formal-
ization of applications where the relation must only be black-box checkable for
either the prover or verifier (e.g., for privacy reasons).

We hence face a situation that the current state of the art on generalizations
of PoK does not allow to adequately capture the security goal of a broad range
of applications which ought to be instantiations of some generalized proof-of-
knowledge notion. For instance, the basic security of password-based client au-
thentication schemes naturally appears to be captured as having to know the
password. But since the relation is characterized by a database whose descrip-
tion cannot be given explicitly to the prover and because the prover shall not
verify password guesses on his own, none of the above (more generalized) no-
tions apply; therefore, the security is typically described in a property based
manner assuming that the password is drawn according to some high-entropy
distribution, deviating from the established PoK paradigm [20]. Similarly, in the
realm of cloud file storage, the security of schemes where a client aims to con-
vince the server that he knows a specified file (e.g., client-side deduplication),
has been formalized using a min-entropy based security definition [I2], and it is
not clear how this maps to practice. While all these examples arguably follow
a generic and dynamic agree-and-prove paradigm with non-trivial setup, their
respective tailored security definitions miss this connection. An additional un-
desirable consequence of the lack of such a generalized formalism is that ad-hoc
privacy notions for these applications [19] [I1] must be invented instead of simply
relying on a well-understood zero-knowledge definition for a generalized PoK.

1.1 Our Contributions

Agree-and-prove. Based on the above considerations, we introduce a new notion
called Agree-and-Prove that does include all the above (missing) elements. Our
notion generalizes proofs (and arguments) of knowledge to dynamic settings
where the prover and verifier, based on a setup and their initial state, first have
to agree on a statement (agreement phase), of which the prover then convinces
the verifier in a second phase (proof phase). It provides clear interpretations
for the correctness, soundness, and zero-knowledge properties in the presence
of setups and interactive statement derivation, and is therefore suitable as a
unifying cryptographic concept behind the above mentioned scenarios. And in
addition to the above scenarios, in a recent work [I7] (Eurocrypt '21), Vidick and
Zhang applied the agree-and-prove notion to the quantum setting (switching the
underlying computational model to quantum algorithms) to prove the security
of quantum proofs of knowledge with classical verification and (quantum-)setup
dependent relations.

We stress that capturing such a general notion for PoK comes with a number
of new subtleties to overcome compared to [5, 4] (for a more detailed comparison,
we refer to the full version of this work [I]). It indeed seems to be an intricate
task to formally capture the relevant probabilistic experiments (for correctness,
soundness, and zero-knowledge) because they have to deal with (1) the om-
nipresent dependency—especially of the relation to be proven—on the state of
the setup, (2) the kind of access of the different entities to the setup (including
the simulator), (3) the question how the state of the setup has been generated
before a proof is executed, (4) that different entities might have different side
information regarding the state of the setup, and (5) the cryptographic exper-
iments should have a clear semantics when applied in a bigger context, and as
such it should be clear how they compose in larger systems.

Our framework can thus be seen as a unification of all the aforementioned
approaches. The agree-and-prove notion is parametrized by an arbitrary setup
functionality on which the agreed statement and the associated relations can
depend. We formulate both cases of programmable vs. non-programmable se-
tups. Moreover, we define the equivalent of zero-knowledge and consider both,
prover and verifier zero-knowledge which is needed in dynamic settings where
both parties potentially have information they do not want to reveal. Finally, for
the sake of generality, our definitions of zero-knowledge are parametrized using
explicit leakage functions, accommodating for protocols that leak limited infor-
mation (in case no leakage is impossible). Note that the criticality of particular
leakage function is application dependent. We conclude the definitional section
with a discussion on how the new, stand-alone notion can be understood in the
context of composability.

Application to proofs of ownership. We capture proofs of ownership of files, that
aim to achieve secure client-side deduplication in a cloud storage system, as
a natural instantiation of agree-and-prove. Recall that the connection between
client-side deduplication and proofs of ownership stems from the fact that it can
be much more efficient to convince (by means of a secure protocol) a server that
one has a file than just uploading the file again in full [I2], and only uploading
the entire file in case the server does not have it.

We point out that compared to previous definitions in this space, includ-
ing [12, 9], our formalism is not tailor-made for a particular application, but
inherited from a higher-level abstraction. Moreover, our formalization does not
impose a distribution on files (i.e., following an entropy-based approach to knowl-
edge). Nevertheless, if desired, such notions can be recovered within our frame-
work by assuming a stronger setup where files in the database have intrinsic
min-entropy. We point out, however, that assuming a stronger setup can signifi-
cantly affect the efficiency of admissible protocol (reducing the complexity of the
proof phase), up to the extent that extraction becomes trivial but soundness is
still satisfied. Such situations are encountered in and [of this work.

In addition, we demonstrate that our notion is flexible enough to instantiate
variations of proof of ownership with different levels of security. In particular, we
show that a naive hash-based scheme — whose apparent insecurity in practice

originally served as the driving motivation for the formalization and study of
proof of ownership [I2] — can be proven both to be either secure or insecure,
depending on whether the setup formalizes the hash function as (unrealistic)
local random oracle or a (more realistic) global random oracle, respectively.
We further show how to retain security in this global random oracle setting
by employing a stronger proof phase in which a Merkle-Tree based proposal as
in [I2] is executed. This serves as a good example to see how different agree
phases influence the complexity of the associated proof phase—yet the overall
agree-and-prove interface to an application, in this case providing the abstraction
of a secure proof of ownership, remains identical.

Privacy-preserving proofs of ownership. We extend proofs of ownership to a
privacy-aware setting in Consider a situation where a set of clients
(e.g. employees of the same company) share a secret key under which they apply
client-side encryption of the files before uploading them to a server. We present
a novel scheme that allows an employee to prove that he knows the plaintext
of a ciphertext without having to know the randomness that was used during
the encryption (and in particular, without knowing the ciphertext stored by
the server). We prove that our protocol does not reveal more information to
both client or server than what is generally necessary for the task of client-side
deduplication and is still communication efficient (in that the ciphertext stored
by the server does not have to be communicated to the client). Analogously to
above, in comparison with previous approaches to privacy in this context [19, [IT],
we formulate a cryptographic definition of privacy for proofs of ownership that is
justified by a generalized zero-knowledge definition for agree-and-prove schemes.
Overall, our construction is designed as the privacy-preserving analogue of
the above Merkle-Tree based solution (using collision-resistant hash functions).
The thereby added privacy layer enables a modular analysis with a clear separa-
tion into the two tasks of proving ownership and protecting the privacy, which we
believe is a desirable simplification compared to more “interleaved” approaches
such as [19, [I1]. Furthermore, our construction is secure under standard crypto-
graphic assumptions and compared to [II] does not use random oracles.

Application to client authentication. In[Section 4] a second application of agree-
and-prove is presented. First, it is shown how password-based authentication
naturally fits as an instantiation of the notion. Then, it is discussed how ad-
vanced security properties arising in the context of password-based authentica-
tion, such as protection from precomputed rainbow-tables, can be taken into
account. Finally, we present a direct instantiation of Agree-and-Prove that cap-
tures two-factor authentication. The fact that the knowledge-relation can depend
on the setup is thereby leveraged to demonstrate that the agree-and-prove notion
can not only (as expected) formalize proofs and arguments of knowledge, but is
in fact the cryptographic tool to capture in a similar spirit proofs of possession
or proofs of ability such as the possession and use of a hardware-token.

1.2 Extended Overview of Results

The focus of the first part of this work is defining the agree-and-prove (AaP)
framework. The model we present in in a nutshell, consists of three
main components: first, the scenario that formalizes the setup and the setup
dependent relations which describe the set of statements to be proven dependent
on the setup. Second, the interactive protocols for prover and verifier, and third,
the formal experiments for correctness, soundness, and zero-knowledge.

In we dive into the application of proofs-of-ownership of files that
aim to achieve secure client-side deduplication in a cloud storage system. In a
nutshell, these schemes consist of a client convincing a server that it has a file
F (already stored in the server’s database), but without uploading the entire
file. Roughly speaking, we model this as a scenario where the setup consists of a
(server-)database, the statements are file identifiers contained in the database,
and the proof relation simply consists of all pairs (z,w) in the database where w
is the file with identifier x. The main security concern is thereby that the client
cannot falsely convince the server, corresponding to soundness.

A secure, i.e. sound, protocol for this scenario can be derived on various
assumptions including the (local) random oracle model or based on collision
resistant hashing and Merkle-Trees. For the former, we observe that working with
idealized hash functions (i.e., random oracles) is already sufficient to conclude
knowledge, but the assumption of a local random oracle is unrealistic in this
setting. The latter approach improves on this: the file F' is divided into a sequence
of blocks, considered as leaves in a binary tree, and intermediate nodes are the
hashes of its two children. If the prover can repeatedly provide siblings paths
from a randomly selected leaf to the root (which is also known to the server), then
standard hardness-amplification results imply knowledge of F'. The only missing
piece is privacy, where our new protocol in comes into play. Briefly,
here we have the situation that the setup is actually a database containing user-
encrypted files. The privacy level is captured by explicitly specifying the leakage
that client and server must admit beyond the validity of the statement. For
our protocol, the incurred leakage can be summarized as follows: per protocol
run, a cheating client can at most learn whether for a (chosen) identifier id and
bitstring v, there is a file whose Merkle-Tree root equals v. On the other hand,
a cheating server can learn, beyond the validity of the statement, at most which
entry in its database is the subject of the interactive proof and, if such an entry
exists, the length of the plaintext.

Our scheme Sy specifies the protocols for the client and the server and
keeps the basic structure of a Merkle-Tree solution. However, instead of a basic
agreement on the file identifier and its Merkle-Tree root, a more complicated
plaintext-comparison on encrypted data must take place. In order to ensure that
the comparison does not leak more than needed, we employ standard NIZKs and
specific OR-proofs that allow an honest server to conceal certain information if
misbehavior is detected. Once agreement is reached, the proof phase performs
the random checks on encrypted data, verifying the validity again using specific
NIZK proofs. This is detailed in of the main body of this work.

Theorem (informal). The Agree-and-Prove scheme Spiv used between client
and server when performing a proof-of-ownership of files over an encrypted
database satisfies the following three security properties:

1. Soundness: Except with negligible error, the client cannot convince the server
that it possesses a file corresponding to an encrypted entry in the server’s
database unless he knows the file.

2. Server privacy: In one run of the protocol, the server does not reveal more
(than one bit of) information to the client than whether a chosen pair (id,v)
is a valid combination of identifier and Merkle-root of a file that is encrypted
in the server database.

3. Client privacy: in one run of the protocol, the client does not reveal more
information to the server than the file identifier and, if the file exists in the
database, at most the length of the file plus one additional bit of information,
namely whether the client holds the valid plaintext of the database entry.

The appealing property of this protocol is that it has a much simpler structure
than previous constructions, it admits a modular security proof, and has all
properties to qualify as a privacy-preserving proof of ownership without relying
on entropy assumption on the file distribution.

Finally, [Section 4]shows how password-based authentication can be cast as an
Agree-and-Prove scheme. While this is rather straightforward, shows
how to capture hardware tokens in our theoretical framework: a hardware token
can be modeled as a setup JFo.pa that internally stores a key pair for the user,
but only exports a decryption capability to the user, but not the private key.
Therefore, 2FA cannot be modeled as a proof of knowledge of the secret key.
Using the AaP we can directly formalize the idea: the proof relation is simply
based on a setup F,.pa and formalizes that the client to be authenticated has
the ability to perform decryption operations (w.r.t. to a secret key whose public
key is known). Of course, the functionality also contains a database relating
users to their passwords to precisely model 2FA. In we show that
standard 2FA protocols consisting of a password-based authentication protocol
and a challenge-response mechanism based on a hardware token can be captured
as an agree-and-prove scheme Sopa:

Theorem (informal). The Agree-and-Prove scheme Sapa that authenticates
a client to the server using a password and a hardware token (formalized as a
setup Foea as described above) satisfies the following security property:

— Soundness: Except with negligible probability, a successful run of the authen-
tication protocol implies that the client (associated with a known public key)
knows the correct password and has access to the correct decryption capabil-

ity.

This concludes the extended overview of our work and we begin with the main
body of the paper focusing first on the formal foundations of the general model.

2 Agree-and-Prove: Definition

In this section, we introduce our notion of an agree-and-prove scheme. Such a
scheme is intended to capture a setting where two parties, the prover and the
verifier, dynamically want to agree on a statement of whose validity the prover
then wants to convince the verifier. The statement is not fixed beforehand and
can in particular depend on the environment in which they execute the protocol
as well as the parties’ prior knowledge.

2.1 The Scenario

Analogous to a proof-of-knowledge scheme, an agree-and-prove scheme is only
well defined with respect to a goal it should achieve. While in proof of knowledge
such a goal is simply given by an NP-relation, it is now generalized for agree-
and-prove schemes.

First, we consider in our notion a setup that models some assumptions on
the world in which we execute the protocol. Such a setup can simply consist of
a CRS or a random oracle, but can also model further assumption such as a file
database assigning files to certain identifiers in the case of a proof of ownership.
Second, characterizing which statement the parties may agree on—in dependence
of the setup and the parties’ prior knowledge—is an integral part of specifying
the goal of an agree-and-prove scheme. This is characterized by an agreement
condition. Third, the proof relation characterizes what it means to satisfy the
statement they agreed on (for which we simply use the common term proof). This
relation generalizes the NP-relation of the proof-of-knowledge formalization, as
it can capture notions of knowledge as well as more general properties about the
relation between the statement and the setup.

We formally define this intuition below: An agree-and-prove scenario captures
what is the assumed setting in which the protocol is executed and specifies the
goal of the scheme.

Definition 1 (Agree-and-Prove Scenario). An agree-and-prove scenario ¥
is a triple W := (F,RO7() COFC)) | consisting of the following components:

— A setup functionality F, which is a PPT ITM that consists of an ini-
tialization procedure init and then provides an oracle Ox(i,q,arg), where
i € {I,P,V} denotes a role, q denotes a keyword, and arg denotes the ar-
gument for this query. For technical reasons, the setup functionality keeps
track of all queries (including the answer) by the prover, exposing them as
an oracle O (QUERIES).

— An agreement condition CO7() which is a PPT oracle machine taking
a unary encoding of the security parameter k, two auxiliary inputs and a
statement as inputs, and producing a decision bit as output.

— A proof relation RO7() which is a PPT oracle machine taking a unary
encoding of the security parameter k, a statement x, and a witness w as
inputs, and outputting a decision bit.

Generic Setup Functionality 7

— init: Setup-Functionality initialization procedure
— Ox(i,q,arg): Interaction of setup with the participants, where
e i€ {l,P,V} denotes a role.
e qis a keyword.
e arg is the argument for this query.
— Or(QUERIES): Recorded queries of role P. Upon invocation, the oracle returns
a list of (q, arg, reply) triples corresponding to all the queries made by role P
so far.

Fig. 1: A generic setup functionality F, which consists of an initialization proce-
dure init and then provides an oracle Oz(i,q,arg), where i € {I,P,V} denotes
a role, q denotes a keyword, and arg denotes the argument for this query. Fur-
thermore, F keeps track of all the prover’s queries.

Observe that the setup functionality, as depicted in contains three
oracles that operate on shared state and randomness. Both the prover and the
verifier have their own oracles Ox(P, -,) and Ox(V, -,), respectively. This allows
us, for instance, to express that if the setup contains a login database, then only
the verifier has access to the passwords. In addition, there is also the third oracle
Ox(l,-,-) capturing the information and prior influence that third parties can
have about the setup. For example, the setup can either be a shared private key,
or it can be a public CRS, where only in the latter case the oracle Ox(l,-,-) can
access it. Some leakage about the information obtained through this oracle might
also be passed to the parties as prior knowledge, capturing that for instance a
dishonest prover might obtain hashes from other parties without knowing the
respective queries.

2.2 The Protocols

For a given agree-and-prove scenario we can now define the notion of a corre-
sponding agree-and-prove scheme. Such a scheme consists of two pairs of pro-
tocols for the prover and verifier, (P, V;) and (Pe, V2), where the former pair
agrees on the statement for which the latter one then will execute the necessary
proof. More concretely, the prover and verifier P; and V7, respectively, output
the statement they agreed on at the end of the first phase, or chooses to abort
the protocol by outputting L in case they could not agree. If they do agree on
a statement, then at the end of the second phase the prover and verifier P, and
V5, respectively, output whether the proof has been successful or not.

Definition 2 (Agree-and-Prove Scheme). An agree-and-prove scheme is a
quadruple S == (Py, P2, V1, Va), consisting of the following four interactive PPT
oracle machines:

— A (honest) first-phase prover Plof(P"") taking a unary encoding of the se-

curity parameter £ and an auziliary input aux, as inputs. It produces a
statement x, or L as output, as well as a state st,.

— A (honest) first-phase verifier Vlof(v"") taking a unary encoding of the se-
curity parameter k and an auxiliary input auzx, as inputs. It produces a
statement x,, or L as output, as well as a state st,,.

— A (honest) second-phase prover PQOf(P"") taking a state st, as input, as well
as a unary encoding of the security parameter k, and producing as output a
bit that indicates whether the proof has been accepted.

— A (honest) second-phase verifier ‘/QOI(V"") taking a state st, as input, as well
as a unary encoding of the security parameter k, and producing as output a
bit that indicates whether it accepts or rejects.

Observe that both the prover and the verifier can keep state between the
two phases. Furthermore, note that both the prover and the verifier get an aux-
iliary input aux, and aux,, respectively, as input which models the parties’
prior knowledge about the world, and where aux, typically contains a witness
(amongst other inputs). Finally, note that in a slight abuse of notation, we treat
an empty output at the end of the agreement phase as z = L.

Remark 1 (On variations of the computational model). We formulate the above
algorithms as interactive and PPT for the sake of concreteness and since our
presented applications live in this world. However, as for the traditional notions,
various computational models and properties can be considered for agree-and-
prove such as allowing unbounded provers in or considering com-
putational instead of information-theoretic soundness in or different
runtime requirements for extractors. Also, intermediate computational classes
such as unbounded provers with limited calls to the setup (e.g., random oracle
calls) would be possible to consider. On another dimension, one can restrict the
number of messages exchanged or number of queries made in the proof phase.
An obvious example would be to restrict the prover to send only a single mes-
sage in the second phase which would overall establish (a generalized notion of)
non-interactive proofs.

We move on to define the execution of an agree-and-prove scheme:

Definition 3. Let aux, and aux, denote two bit-strings, let F denote a setup
functionality, and let § = (P1, P, V1,Va2) denote an agree-and-prove scheme.
Then,

Ox(P,,) 1,07V,
((zp, stp); (@, sty); T) <P1 #(),V1 #()>((1”,au:cp); (ln,au:cv))
denotes the execution of the agreement phase between the honest first phase
prover Py and the honest first phase verifier V1. Note that we use the notation

(a;0;T) < (A, B)(z,y) to denote the interactive protocol execution of interactive
algorithms A and B invoked on the inputs x and y, respectively, and where a

10

and b are the resulting outputs of A and B, respectively, and where T denotes
the communication transcript. Moreover,

(v; V' Y <P20F(P"")’ V2(9.r(V,-,')>((1n, sty): (17, Stv))

denotes the execution of the proof phase between the honest second phase prover
P, and verifier Vo, with v and v’ being the decision bit of the prover and verifier,
respectively.

2.3 The Basic Security Notion

In this section, we define the agree-and-prove security notion that generalizes
the traditional security requirements expected from proofs of knowledge.

Prior knowledge and context. Recall from the previous section that both
parties take an auxiliary input. While the setup models the world which we as-
sume the protocol to be executed in, those auxiliary inputs model the parties’
prior knowledge (a similar concept was used in [9 Section 4.7.5] on identifica-
tion schemes). In the security experiment, those inputs will be generated by a
respective algorithm.

Definition 4 (Input Generation Algorithm). An input generation algo-
rithm I9F(0) for an agree-and-prove scenario W = (F, Rof(""'),C’of(""'))
is a PPT oracle machine taking a unary encoding of the security parameter K as
input and producing a pair of bit-strings (aux,, aux,), specifying the auziliary
inputs for the prover and verifier respectively, as output.

Note that this algorithm gets oracle access to the setup functionality via its
own oracle Ox(l,-,-). This allows us to capture the prior knowledge and con-
text in which the protocol is executed as part of the setup functionality itself
and therefore as part of the agree-and-prove scenario. The input generation al-
gorithm is then universally quantified over in the security definition, making a
clean separation between the part we do make assumptions about (the function-
ality) and the part which we do not make assumption about, such as the prior
knowledge or context as derived from the functionality (cf. also [Section 2.5).

Programmability and non-programmability. There are many cases in
which one would like to formalize that an extractor can program the setup
(e.g., a backdoor in a CRS model). He should, however, be only allowed to do
so in a “correct”; i.e., undetectable, manner, as otherwise he might for instance
force the prover and verifier to disagree on the statement and abort, thereby
making the extraction game trivial. To this aim, we introduce the notion of a
setup generation algorithm to formally capture (valid) programmability.

Definition 5 (Setup Generation Algorithm). A setup generation algorithm
SGen is a PPT taking a unary encoding of the security parameter k as input. It
outputs (the description of) a setup functionality F' and a trapdoor td as output.

11

We say that the setup generation algorithm SGen is admissible with respect
to time T(-) for an agree-and-prove scenario W = (F,ROF() COF()) if
for every oracle machine A with running time bounded by T(-) the following
advantage is negligible in k:

Advysgeny = Pr7 D[40 (1) = 1]
_ Pr(]—",td)eSGen(l“);]-".init(l"’)[AO}-/(»,-,-)(IR) _ 1]

We formulate the security games that potentially require programmability in
proofs using this generated setup instead of the real one. The extractor then gets
a trapdoor td (e.g. for the generated CRS) that he can use for the extraction
during the prove phase (or in the zero-knowledge case to simulate proofs). Other
than that, the generated setup is directly used in the security game.

On the other hand a non-programmable setup corresponds to restricting
setup generation algorithms that do not produce any leakage, which is, in accor-
dance with the above definition, essentially equivalent to just taking the real
setup functionality F. Finally, one can also easily model a mixture of pro-
grammable and non-programmable setups by considering F = (Fq,...,Fk)
as one setup functionality with SGen(1%) := (SGen(1%),...,SGeng(1%)) being
the corresponding setup-generation, where for each non-programmable setup F;,
SGen; is required to produce no leakage.

The Security Definition. Based on the notion of an input generation algo-
rithm I and a setup generation algorithm SGen, we now define the security game.
Before giving the definition, we explain and motivate the security conditions ap-

pearing in in the following paragraphs.

Correctness. First, the parties must agree on a common statement and on the
outcome of the proof at the end of the agreement and proof phases, respectively.
Second, they need to agree on a legitimate statement, with respect to the parties’
prior knowledge aux, and aux,, respectively, as well as the setup functionality
F. The legitimacy is indicated by evaluating the validity condition C©*(:) of
the agree-and-prove scenario (see , with three possible outcomes:
The output 0 indicates a violation of correctness (e.g., to exclude trivializing the
problem by always agreeing on a trivial statement). The output 1 indicates a
valid statement for which the prover must be able to convince the verifier. Finally,
the output * indicates a statement on which the parties may agree, for which the
proof phase may however either accept or reject. Therefore, the ternary output
captures in a fine-grained manner under which circumstances the agreement on
a statement must imply the success of the following prove-phase and when this
is not necessarily guaranteed, which happens for example in situations where
the client cannot verify the relation and we still want to keep the agree-phase
simple. Furthermore, note that we do not require the honest prover to explicitly
output a witness for the proof relation—the fact that he in principle knows such
a witness is covered by the soundness condition.

12

Require: 1%, where k € IN

Experiment Expgpjcm’w

ﬂagCott «—1
Execute F.init(1%)
(auy, auz,) + 19710 (1%)
((zp, stp); (Tw, Sty);) < <Plof(P""), Vlof(v"")>((1”,auxp); (1%, auw,))
c Cof(""'>(1“, AUTp, QUL , Toy)
if z, # z, or ¢=0 then
flagcorr < 0; return
else if =, # 1 then
(v;0'5) = (P70 VTN (17, sty); (17, st))
flagee, < (V' =) A (c = % Vo' = accept)

AP-Ext, ¥

Experiment EXpS,SGenJ.E,P

Require: (17,p), where k € IN and p: N — [0, 1]
(F',td) < SGen(1%)
Execute F.init(1%)
(auy, aux,) + 197 1) (1%)
((stp); (st) T) = (PO 00 022 00 (17, auay); (17, aua)
if z = 1 then

flagg, < 1; return
Define succ :=

Pr [= accept (30/5) ¢ (B0 O, VORI (1%, st,); (1%, s1,))|

if succ < p(k) then

flagg,, ¢ 1; return
w < EOF (1%, z, auzy, stp, T, td)

flagg,, < (ROF’(""')(l",x,w) =1)

where:

Op = Oz/(P,-,-), O (QUERIES), RO () (1%, - .), Ogsr (P 7 T (st,))

Fig. 2: Security experiments for an Agree-and-Prove scheme. Top: The correct-
ness experiment. Bottom: The extraction experiment to formalize soundness
(:che case where an honest verifier V' = (V1, V,) interacts with a dishonest prover
P= (P, PR)).

13

. . AP-Ext, W .
Soundness. The extraction experiment Exp Ss GZ; 1 BD formalizes that every (po-

tentially dishonest) prover that can convince the verifier with probability at least
p(k) of a statement x must know a witness w that satisfies the proof relation
ROF() (1%, 2, w). Analogous to a proof of knowledge, we phrase this via the
existence of an extractor. More precisely, this extraction property refers to the
proof phase of the protocol, formalizing that the above guarantee holds for ev-
ery valid statement x which the prover manages to agree on with the verifier.
To reflect this in the security game, the agreement phase is executed exactly
once, and cannot be rewound, thereby fixing the statement x, the prover’s and
verifier’s state st, and st, respectively, and the state of the setup functionality.
(See the two final remarks on the experiment below for a more formal notion of
“state”). It is important to note that our definition simultaneously captures what
is typically referred to as validity and soundnessﬂ as we let the extractor run
w.r.t. any derived statement. That is, if V] accepts an invalid statement (without
witness), there exists trivially no extractor that provokes flagg, ., = 1.

Back to extraction, with respect to this overall state after phase one, the
extractor has to provide a witness w (within a reasonable time bound along the
lines of Goldreich [9] Definition 4.7.1]). To achieve extraction, the extractor gets
the statement x, the prover’s state st,, and the communication transcript T'
of the agreement phase. Furthermore, he gets black-box rewinding access to the
dishonest prover (communication) strategy Py, access to the prover’s oracle of the
setup functionality Ox(P, -, -), and access to the list of setup queries made by the
prover, which is provided by the oracle O=(QUERIES). In contrast to a traditional
proof of knowledge where the relation is deterministic and publicly known, we
also provide an oracle to the extractor with black-box access to the predicate
defining the proof relation (which in general could depend on the randomness of
the setup functionality). We refer the reader to the discussion after
for the rationale behind these choices in comparison with traditional proof-of-
knowledge systems. Two formal considerations about the extraction experiment

Exp/P-Bxt¥ are in order:
ps,scen,I,E,ﬁ :

— For sake of concreteness, we understand the black-box rewinding oracle
OBBR(PQOI(P"")(%I,)) as a stateful message-specification function along the
lines of Goldreich [9, Definition 4.7.1]: more formally, when invoked with a
random tape 7, the oracle creates the machine Pg(stp) in its initial config-
uration with random tape r. It then provides black-box access to the com-
munication behavior by accepting incoming messages, performing the state
transitions of P until it outputs the next message to be sent. Note that
during this computation, oracle calls to Ox(P,-,) might be made (which
can neither be intercepted nor undone unless the setup functionality would
allow this form of resetting).

4 In traditional proof-of-knowledge games, the extraction game is called validity and
only valid statements x € L for some language L, are considered, whereas soundness
requires an extra condition to capture security for the case that = & L.

14

— The formal expression’|

succ:=Pr {v' = accept : (+;0';) = <P2(9F(P""),‘/'QOF(V"")>((1K, stp); (17, Stv))}

is associated to the following probability space: first, the start configuration
of both machines of prover and verifier is the initial configuration with the
specified input tape. The start configuration of machine F is the configura-
tion at the end of the first phase (i.e., a snapshot). The probability space is
then formed over the random coins of prover and verifier, and over the coins,
i.e., positions on the random tape, of F, that have not been read up to and
until the above start configuration of machine F.

We state the definition of the security requirements of an agree-and-prove
scheme.

Definition 6 (Agree-and-Prove Security). Letp: N — [0,1]. An agree-and-
prove scheme S, for an agree-and-prove scenario W, is secure up to soundness
error p, if the following conditions hold, where the experiments are defined in[Fig]

— Correctness: The experiment Expéi’corr’q/ returns with flage,,, = 1 with prob-

ability 1 for all input-generation algorithms I and all k.

— Soundness: There exists an extractor algorithm E and an admissible setup
generation algorithm SGen (with respect to time T(-) which is at least the
running time of F), such that for all dishonest provers P = (Pl,pg) and
imput generation algorithms I, the experiment Expgps'gz:f np On input (1%, p)
returns with flagg,, = 1 except with negligible pro?)abijify., Furthermore, for
somAePcE>t 8, the expected number of steps of extractor E within the experiment

“Ext,

EXP&SGen,I,Ef' on input (1%, p) is required to be upper bounded by k°/(succ —

p(K)) (where the experiment ensures that succ > p(-)).

‘We next discuss some of the motivation and rationale behind the definition.

Discussion of selected elements. We first observe that providing the prover with
the transcript of the agreement phase implies that in the proof phase we do not
necessarily have a full-fledged proof or argument of knowledge of a witness as
it, or parts of it, could already be contained in the agreement phase, thereby
allowing for a more efficient proof phase.

Moreover, providing the extractor with the prover’s input, state, and the
setup queries from the first round also entails a couple of implications: we for-
malize naturally that it is sufficient for the prover to know a witness in order to
pass the test—in contrast to more traditional definitions of proofs of knowledge
requiring that the communication needs to prove that he knows one.

5 We would like to stress that the formal evaluation of the expression has no side-effects
on the state of any of the involved entities.

15

For instance, consider a shared URF U(-) between the prover and the veri-
fier as a setup. If the statement is that the prover knows the pre-image = of y
under some one-way permutation f, i.e, x such that f(x) = y for z,y known
to a verifier, then we would consider sending the correct evaluation under U(z)
as convincing, as a prover cannot guess U(z) without querying it except with
negligible probability. On the other hand, x cannot be extracted from the com-
munication transcript U(x). We consciously opted for this relaxed definition of
knowledge to allow for broader applicability of the concept and because we be-
lieve it to capture the essence of a more general understanding of knowledge.
For example, in the case of proof-of-ownership of files it is crucial that the com-
munication complexity can be significantly smaller than the file.

2.4 Zero Knowledge

Analogous to a proof of knowledge, we can also require the agree-and-prove
scheme to be zero knowledge. That is, whatever a (potentially dishonest) verifier
can compute after interacting with the honest prover can also be computed
by an appropriate simulator. Since we consider an interactive agreement phase
where both parties get private information and a different view on the setup
functionality, it however also makes sense to consider prover zero-knowledge.
That is, we can phrase that both a verifier, as well as a prover should not learn
anything about the other party’s input nor about the other party’s view on the
setup functionality.

While a zero knowledge agree-and-prove protocol certainly represents the op-
timal case it is often already desirable to limit and explicitly quantify the leakage.
To this end, we introduce the notion of a leakage oracle that the simulator is
allowed to invoke. Furthermore, in the classical ZK definition, it is assumed that
the verifier is always allowed to learn the statement and whether the prover has
a valid witness. Since in our agree-and-prove notion the statement and the wit-
ness are not a priori fixed, this also has to be modeled as an explicit leakage.
The classical zero-knowledge definition is then obtained by considering a leakage
oracle that only reveals this information.

Definition 7. A leakage oracle L for a setup functionality F is an oracle PPT
ITM that consists of an initialization procedure init and an oracle denoted by
EOF(P"*')’OF(V"")(l’{,aux, query), allowing the simulator to ask certain queries
query which are evaluated on the other party’s input aux and view on the setup.

We now proceed to define the classical property that the scheme is zero-
knowledge, up to some explicit leakage, with respect to the dishonest verifier. Our
definition follows the spirit of the standard (standalone) simulation paradigm
where two different settings are compared and should be indistinguishable: one
is the real protocol execution, and the other one is the execution where the
actions of the dishonest party are simulated by a simulator (having access to
the leakage oracle). The distinguishing metric is formalized by a distinguisher
D that is given the output of the dishonest verifier, the protocol outputs of

16

Experiment Expe‘P'ZK'V’W’S‘LP

V,I,5,SGen,D

Require: 17, where k € IN
b« {0,1}
if b =0 then
F «— F
Execute F'.init(1")
(auy, aut,) + 197) (17
((E’Stﬁ);OUtl;) — <P10]:/(P,4’-)’ Vlo;/(v,.,<)>((1n,auxp); (1N,CL’U,CEU))
(v; outa;) <P2OJ-‘/(P,.,.)7 V2O]_-/(V,.,.)>((1,i7 Stp); (1:@, outl))
else
(F',td) + SGen(1")
Execute F'.init(1%) and Lp.init(1")
(auzy, auz,) « 197 &) (1%)

O 2/ (P).0 2/ (Vor,)
.clF F " .
(x,v; outy, outy) + SOF Vo)L (% auzy,)(l“, AUTy, td)

v« DO) (1% qua,, aut,, z, v, outy, outs)
— N
ﬂagGuessed =b=5b

AP-ZK-P,¥,S,Lv

Experiment ExpP’I’S’SGen.D

Require: 1%, where Kk € IN
b« {0,1}
if b =0 then
F'«F
Execute F’.init(1%)
(auxy, auz,) « 197 &) (1%)
(outy; (z, sty);) <13’f)f'(P""), \/lcjf'(\/"")>((1'€7 auzy); (17, auxy))
if z # 1 then
(outz;v;-) <152(9f'(P""), Vo (V"")>((1",out1); (17, stv))
else
outz,v < L
else
(F',td) + SGen(1")
Execute F.init(1%) and Ly .init(1")
(auzy, aus,) + 197 1) (1%)

N fOF (P Oz (Vo) .
(outy, outy; x,v) < SO V) Ly (A%auzo) (1% g, , td)

b« DO) (1% qua,, aut,, x, v, outy , outs)
— I N
ﬂagGuessed =b=10

Fig. 3: The zero-knowledge security experiments for an AaP scheme. The first ex-
periment phrases verifier zero-knowledge, whereas the second one phrases prover
zero-knowledge. The distinguisher is given the auxiliary input, both parties’ out-
puts of the interaction.

17

the honest party, and access to the context information, i.e., it is given the
auxiliary input and access to interface | of the setupﬁ Note that the outputs of
the dishonest verifier in this case (denoted outy, outy in the security game) can
contain anything the malicious strategy decides to outpmﬂ (in particular, the
entire transcript and information about the setup).

In summary, the definition captures that if the AaP scheme is run as a
sub-system in a context specified by the input-generation algorithm, then the
resulting trace it leaves by means of transcript and output of the honest party
does not leak more than what is specified by the ideal leakage oracle and therefore
is in line with the stand-alone simulation paradigm used in traditional zero-
knowledge.

Definition 8. Let Lp denote a leakage oracle. An agree-and-prove scheme S,
for an agree-and-prove scenario ¥, is verifier zero-knowledge up to leakage Lp
if for all dishonest verifiers V= (Vl, Vg) and all input generation algorithms I,
there exists an efficient simulator S and an admissible setup generation algorithm
SGen such that for all efficient distinguishers D it holds that the experiment

Expép}zll; S\éfnsj’jﬁp on input 1% returns with flaggyessea = 1 with probability at

most negligibly larger than % The experiment is defined in .

Note that in the experiment depicted in[Figure 3|we assumed that a dishonest
verifier V; is not restricted to output something of the form (z, st,) at the end
of the agreement phase, but can produce an arbitrary output instead. Moreover,
observe that a dishonest verifier is not forced to abort, but in principle can
always try to execute the proof phase with the honest prover.

We also define the symmetrical property that the scheme is zero-knowledge
with respect to the prover. When defining this notion, care has to be taken that
observing the honest verifier aborting after the agreement phase does not leak
information either. Our definition reflects this in the sense that the honest verifier
refuses to execute V5 in case V7 ended with an abort, i.e., at most signaling the
abort to anyone. Again, an AaP protocol run must be indistinguishable from a
simulated run where the simulator has access to a specific leakage oracle, and
must simulate the protocol interaction with the malicious prover.

Definition 9. The scheme is_said to be prover zero-knowledge up to leakage

L, if the same property as in Deém’tion 8 holds for all dishonest irm}ers P =

(Py, Py) in the experiment Expﬁ,}’s’éc’en’)D’ 'V, which is defined in ,

5 The motivation what information to give to the distinguisher will become apparent
in when we discuss compositional aspects of the notion. We point out
that the interface of the honest party to the setup, in this case P, is never exposed
to any attacker or the distinguisher because the honest party is running the protocol
and only the actual protocol outputs are visible to an “environment”.

" We point out that both outputs are needed: for example if the protocol aborts after
the first phase, we require the agree-phase not leak anything beyond what is specified
by the leakage oracle.

18

2.5 On the Composability of the Notion

It is important that a notion has a clear interpretation in a larger context when
used as a submodule of a system. We show how the standalone security defi-
nition for agree-and-prove can be embedded in a larger context, how the setup
functionality of the standalone should be understood, and when it can be shared
among different agree-and-prove instances. More formally, we show under which
circumstances an agree-and-prove scheme can be securely used as a subroutine
of a larger protocol when either the setup functionality is assumed to be per
instance or shared among different protocol instances. While the full treatment
is deferred to the full version [I] to give more room to concrete examples, the
basic intuition is to show how the input-generation algorithm can encode a more
general MPC-style model of protocol execution to reflect the context in which
an AaP scheme is executed.

3 Application to Proof-of-Ownership of Files

File deduplication is a cornerstone of every cloud storage provider. Client-side,
rather than server-side, deduplication furthermore provides the additional ben-
efit of reducing the bandwidth requirements and improving the speed. In such
a scheme, the client—instead of just uploading the file—first tries to figure out
whether the server already possesses a copy of the file, and if so simply requests
the server to also grant him access to the file. Several commercial providers im-
plemented client-side deduplication using a naive scheme of identifying the file
using hash values. This allowed users to covertly abuse the storage as a con-
tent distribution network, prompting the storage providers to disable client-side
deduplication [I4].

As a response, Halevi, Harnik, Pinkas, and Shulman-Peleg [12] introduced
the first rigorous security treatment of client-side deduplication, formalizing the
primitive of a proof of ownership. While intuitively their notion formalizes that
a client can only claim a file he knows, Halevi et al. formalized the proof-of-
ownership concept as an entropy-based notion, rather than a proof-of-knowledge
based notion.

In this section, we show that our agree-and-prove notion is the natural can-
didate for formalizing the security of client-side deduplication. Besides the basic
requirements, we also present a privacy preserving scheme that is applicable if
users additionally employ client-side encryption.

3.1 Proof-of-Ownership with a Local RO

We first abstract this application as an agree-and-prove scenario which includes
the setup and the relation we want to prove. We finally give a description of the
scheme.

19

Setup. We describe the setup in very simple terms. We want to deal with an
array of pairs L = (id;, Fiq,)ie[n], Where id;, Fiq, € {0,1}* and for all 4, id; is
unique in L. The setup of the Proof-of-Ownership scenario is thus a functionality
Fpe,ro that first expects such a list from the input-generation algorithm (recall
that the input-generation algorithm also defines the state of the prover). The
setup gives the verifier access to the list L. The setup further provides a (non-
programmable) random oracle to the prover and the verifier (but not to the
input generation algorithm). The description can be found in

Agreement and Proof Relations. Our goal is to show that a very simple File-
Ownership protocol is indeed a valid agree-and-prove scheme with the above
setup. The statement that prover and verifier agree on is a file identity and the
relation to be proven is that the prover knows the file with the corresponding
identity. More formally, the agreement condition is as

1 fe=1Vv3Ii:LGE) = (),
0 otherwise,

COFDB,RO(""')(l",auxp,auxv,x) = { (1)

which can be efficiently implemented by C' by calling Oz oo (V, getFile, z) and
verifying that the answer is some F' # 1.
Accordingly, the proof relation is defined via the condition

’ROFDB,RO(""")(l”’x,w) =1 & (x,w) eL (2)

which can be efficiently implemented by R by calling Oz, ., (V, getFile, z) and
verifying that the returned value F' equals w.

The scheme. The simple scheme is formally in [I] and we give here a brief
overview. The agreement phase consists of the prover stating the identity of the
file, of which ownership is to be proven, and providing a hash of it. The verifier
checks the hash of the claimed file and upon success, informs the prover. The
agreed statement is z = id such that there is an index i with L(¢) = (id,-). As
we will see in the analysis, after this agreement phase no further proof phase
is needed. Hence, the prover P, halts and V5 outputs 1 if and only if V7 did
successfully derive the statement.

Analysis. In order for the verifier to accept, in the agreement phase the prover
has to send (id,h) such that H(Fig) = h. Since the auxiliary input from I
does not depend on H, there are two possibilities: either the prover queried the
random oracle at position Fiq, in which case he has the file, or he guessed the
hash. The latter can, however, only happen with negligible probability. Hence
we get the following statement formally proven in [I].

Theorem 1. The agree-and-prove scheme defined above, for the scenario for-
malizing proof-of-ownership with a local RO, is secure with soundness error

p(k) = 0.

20

File-Ownership setup Fpg ro

— init: H < [] and L is the empty array.

— OFpppo(l,defineDB, L'): If L is the empty array, then do the following: If L’
is an array of pairs (ids, Fiq,)ic[n), Where ids, Fiq, € {0,1}" and for all , id;
is unique in L', then set L <~ L’. Output L in any case.

— OFpppo (4, getFile,id): If i € {I,V} and id € L then return Fiq. In any other
case, return L.

— OFpp.po (4, R0eval, x): If i € {P,V} do the following: if H|[x] is not yet defined,
first choose y « {0,1}" and set Hz] := y; finally, return Hlz]. If ¢ = 1,
return L.

Fig. 4: The description of the concrete setup functionality.

3.2 Proof-of-Ownership with a Global RO

While the above approach is sound if prover and verifier share a random function
among each other (which is only used locally in the agree-and-prove context), it
is not considered secure in practice, since one does usually have to assume that
access to such a random function is not exclusive to the prover. In this section,
we discuss the alternative, where the random oracle is accessible by all three
roles and in particular by the input generation algorithm.

The new scenario. We modify the setup slightly to allow all roles access to the
random oracle, i.e., even an input generation algorithm could obtain the RO
outputs and hence hashes might be part of the prior knowledge. The resulting
setup functionality Fpg cro is defined analogous to the one from [Figure 4] except
that also ROeval queries are also admitted for the role I. The relations remain
the same as in and except that they are with respect to the
setup Fpg,cro- The proofs says essentially this: the resulting scheme is only an
AaP scheme, if the extraction problem is trivial (as otherwise, someone with
a precomputed hash could just convince the server, and would hence win the
soundness experiment).

Insecurity of the Simple Scheme. It is easy to see that with a global RO,
the scheme in loses its guarantees. To be more concrete, the scheme
has the following property in a GRO setting, that basically says that the scheme
can only be secure if the file identifier and the hash are sufficient to efficiently
recover the file corresponding to the identifier. This results in a trivial scheme,
as anyone can efficiently obtain knowledge about any file in L.

Lemma 1. Consider the scheme of[Section 3.1|in the GRO setting. There exists
an input generation algorithm I and a dishonest prover strategy (Pi, P2) for
which the extraction problem of [Figure 3 is at least as hard as the extraction

21

problem that must recover the file F' only given its identifier id and its hash h
and with access to the setup.

Note that the above stated provable insecurity reflects practice. For instance,
consider the case where a cloud storage provider uses a proof-of-ownership pro-
tocol to perform client side deduplication based on the above protocol with a
standard hash function. In this setting, malicious parties can covertly abuse it
as a file sharing platform by only having to exchange small hash values, with
which they can then download the entire file from the cloud storage prover, as
for instance pointed out by Mulazzani et al. [I4].

A Secure Alternative. The natural way to obtain a secure protocol in this
setting, is to let the prover prove his knowledge in the second phase. While one
way to do so would be to simply send the entire file, we consider here a more
efficient protocol proposed in [12]. We also extend the structure of the protocol
to be privacy preserving in the next section.

The scheme. In the agreement phase, the prover still sends the identity to the
verifier. In the verification phase both prover and verifier first encode F' using
an erasure code to obtain X = F(F) and then split X into blocks of size b.
The verifier then chooses uniformly at random a subset (of size n) of the blocks
for which the prover has to demonstrate knowledge. We assume here an erasure
code (E, D) which can restore the original data item, as long as at most an «
fraction of the symbols of the encoding X are missing, for some fixed a € (0, 1).

Instead of simply sending those blocks, the protocol makes use of a Merkle-
Tree. That is, both the prover and verifier already compute X = E(F) in the
agreement phase, and then calculate the Merkle-Tree using GenMT" (X,b) (where
we assume here h be a random oracle for sake of simplicity). The prover then
additionally sends the root value and the number of leaves ¢ of a Merkle-Tree
along with the file identifier, and the verifier only accepts the statement if they
match. During the second phase, the verifier can then check the correctness of
the blocks by only using the control information consisting of the root and the
number of leaves of the tree (instead of the entire file), thereby keeping its state
small at the expense of some communication overhead. A formal description of
the corresponding prover and verifier protocols is given in [1].

Analysis. Assume there is a prover who knows less than a 1 — « fraction of the
blocks, and thus cannot recover it with the erasure code. If we ask this prover to
send us block b;, for an 7 chosen uniformly at random by the verifier, then we will
catch him with probability at least a. So if we ask him for a uniformly drawn
subset of n blocks, we catch him with probability 1 — (1 — a)™. We make this
intuition precise, building on results from [12] in the following security statement
and its proof that we give in [I].

Theorem 2. The above described agree-and-prove scheme for the scenario cap-
turing proof-of-ownership with a global RO is secure up to soundness error

p(k) = (1 —a)".

22

3.3 On Including Privacy and Zero-Knowledge

Consider a company that wants to use an external cloud provider for file stor-
age. To protect the confidentiality of their trade secrets they most likely want
to opt for client side encryption of all the files. As naturally each file might be
distributed among many employees, and the provider charges for the overall stor-
age requirement, file deduplication is highly desirable. While all employees (or
at least certain subgroups) might share the same key, coordinating on the ran-
domness used to encrypt each file is not practical and deterministic encryption
does often not provide the required level of security. Thus, neither server-side
nor the naive client-side deduplication on the ciphertext are feasible.

In this section, we provide a private version of the proof-of-ownership scheme
that enables client-side deduplication in this setting. The goal is that the storage
provider should not be required to be trusted, and thus essentially learn nothing
during the protocol run. At the same time, the storage provider should only
provide access to the files to those users that already possess it, thereby pre-
venting a rogue employee from just downloading all of the company’s files. The
basic idea of the protocol is that we keep the overall structure of the previous
protocol, but patch it using encryption and NIZKs.

Setup. The setup corresponds to a snapshot of the system at the moment where
a user wants to run the protocol. That is, it contains a list of encrypted files
indexed by their respective identifiers (where the files can again be chosen by the
input-generation algorithm), which have already been uploaded, together with
the corresponding control information needed to run the protocol. The control
information consists of an ElGamal encrypted Merkle root of the plaintext (an
unencrypted root would allow the server to test whether a file is equal to a given
bit-string), the number of leaves in the tree, as well as a signature binding the
control information to the file identifier.

The verifier can access the encrypted files, the control information, as well
as the public ElGamal key and the signature verification key. The setup either
provides the prover access to the public keys only (modeling an outsider), or
additionally to the symmetric key, the ElGamal decryption key, and the signing
key (modeling an insider). Finally, the setup also provides the necessary CRS
for the NIZK proofs to all parties. See Looking ahead, we will assume
that the setup be programmable (to program the CRS).

Agreement and proof relations. The statement that prover and verifier agree on
is simply the analogous statements from the previous section, i.e.,

C’Ofwiv(""')(l”,auxp,auxv,x) =1 x=1V3Ii:LG) = (z,-), (3)
Accordingly, the proof relation is defined via the condition
RO%i () (1% 2 w) = 1 143 (z,w) € L A KeysAssigned, (4)

where it is additionally checked that the prover not only knows the file but it also
has the necessary keys. As before, both predicates can be efficiently evaluated
using the available oracles.

23

File-Ownership setup F,

— The setup is (implicitly) parametrized by a cryptographic hash-function
familiy H, an erasure code (E, D), the leaf-size b for the Merkle-Tree, a sym-
metric encryption scheme SE, a signature scheme Sig, the ElIGamal encryption
scheme ElGamal, and four associated NIZK proof systems.

— init:

1: KeysAssigned < false
2: Choose h «— H
3: kS < SE.Gen(1%), (ek®'®™m3 dkFemaly < ElGamal.Gen(1%), (vk™'8, sk°'€) <
Sig.Gen(1")
4: (crsPt, crseon crs™th
+ (NIZKP!.Gen(1%), NIZK®*™.Gen(1%), NIZK™"" Gen(1%))

— OF,,,(l,defineDB, L'): If L is the empty array then do the following: if L' is
an array of pairs (idi, Fid,)ie[n], Where id;, Fiq, € {0,1}" and for all 4, id; is
unique in L', then set L <— L'. In any case, output L.

Once L is defined, for (id, Fiq) € L do:

Xia +— SE.Enc(k7 Ed)

(T, lia) — GenMT"(E(F4),b). Let Uroot,ia be the root of Tiq.

Croot.id < ElGamal.Enc(ek®'%™ 400 ia).

oia + Sig.Sgn(sk>€, (id, croot.ia, fid))

DJid] < (Xid, Croot,id, bid, Tid)-

— Or,, (l,assignKeys, —): Set KeysAssigned < true.

— O, (V,getFile,id): If id € L then return D[id]. Otherwise, return L.

— Or,, (P, getKey, —): Return (k°%, dk™*™' sk>€) if KeyAssigned. Otherwise,
return L.

— Or,, (i,getPub, —): Return a description of h, (crsPt, ers®d, crs™bh | crs™hh)
and (ekEIGamaI’ DkSig)

)

Fig. 5: The setup for the privacy-preserving file-ownership setting.

The achieved level of privacy. Assume a prover and verifier execute a privacy-
preserving proof-of-ownership scheme. Clearly at the end of a successful protocol
run, the verifier will have learned whether the prover had a file which was already
present in his database. More specifically, he will learn which identifier this file
had, which appears to be inevitable if we were to use the protocol to handle
client-side deduplication for cloud storage. Analogously, the prover will learn
whether for his input (id, F') it held that F' = Fiq, which also seems necessary
in a setting where he needs to upload the entire file otherwise.

In the remainder of the section we design a privacy preserving version of
the previous Merkle-Tree based scheme. Let us briefly discuss the implication
of sticking to this overall structure on privacy. In the agreement phase of the
previous protocol, the prover sent the identity together with the root of the
Merkle-Tree. The verifier would accept if and only if he has a file with the
corresponding identity that has the same root, and only in the proof phase the

24

Prover Leakage Lp

— init: —

OF iy (Por5:),0 7,1, (Vi)
P

(1%, auzxp, query):

1: Parse auz, as (id,F) and obtain (k%% dkE'%m skS€) by calling
Or,., (P,getKey, —). Return aborted if either one is not possible. Continue
otherwise.

2: Compute (T, £) + GenMT"(E(F),b) and let v;00r denote the root of T'.

3: Obtain (Xiq,C", ¥, 0) from OF,, (V, getFile,id)

o If this fails or £ # ¢, return (id, ¢,0)
e Else, /oo « ElGamal.Dec(dkF®™ C") and let a = (vroot = Voot)-
Return (id, 4, a).

priv

Fig.6: The description of leakage a dishonest verifier can obtain about the
prover’s view in a single run of the protocol.

prover had to show that he knows the entire file. In our scheme, a dishonest
prover that has the decryption key dk will be able to learn whether for an
identifier id and a Merkle-Tree root v, Of his choice, there exists a file Fig with
ro0t Upoot, leaking slightly more than an optimal protocol. This leakage can be
turned into a formal description of a leakage oracle Ly, in a straightforward way.
We defer the description to

On the other side, in our protocol a dishonest verifier will learn the file
identifier the prover has and also the length of the prover’s file (the number of
Merkle leaves). Furthermore, if a file with this identifier exists in his database,
then he will also learn whether it is the same one. A formal definition of the

leakage machine £p is given in [Figure 6

The scheme. The scheme basically follows the approach of the previous scheme of
using a Merkle tree (in this section, we assume a collision-resistant hash function
h and not a random oracle), however encrypts all the nodes of the tree using
ElGamal encryption and then proves the consistency using NIZK proofs. We
give here an overview and refer to [I] for the pseudo-code of the scheme. In the
following, let G = (g) be a cyclic group of prime order ¢ with a generator g,
in which the decisional Diffie-Hellman assumption is assumed to hold, and let
h: G? = G be a collision resistant function.

We first describe the agreement phase. While in the original protocol the
prover sends the identity id to the server together with the root of the Merkle
tree, in the privacy preserving scheme he sends the identity alongside a fresh
ElGamal encryption (cg,c1) == (9", 9% - v00t) of the root. If the verifier has a
file with that identity, then they proceed to check whether it encrypts the same
root as the corresponding one from the verifier’s control information (cf, c}) ==

(9%, 9™ V] o01), 1€, whether 0], = Vroot- To this end, the verifier chooses ¢ € Z;

uniformly at random and sends back (do, d1) == (g**="), gt @*G=m) (o] 0t))

25

Verifier Leakage Ly

— init: queried < false
- gfp'i“(P’ O (Vo)(1“, auz,, query):
1: If queried, return L, else set queried < true and continue.
2: Parse query as (id, v, dk). Return L if not possible.
3: Obtain (k°F, k™™ sk>8) via a call to O, (P, getKey, —). Return L if
not possible.
4: Call D + OF,, (V, getFile,id).
e If D=1, return 0.
e Else, parse D as (Xid, Croot,id, fid, Tid)-
Let Vroot,ia < ElGamal.Dec(dk, croot,ia) and return 1 if v = vroot,id-
Return O otherwise.

Fig.7: The leakage a dishonest prover can obtain about the verifier’s view in a
single run of the protocol.

obtained from dividing the two encryptions. Note that ¢ is used to blind the
verifier’s Merkle tree root, which would otherwise leak to the prover knowing
dk. The prover can then check whether (v/,,, - voo.) = 1 by raising the first
element by the decryption key dk, and inform the verifier accordingly. Observe
that since G is of prime order, we have that z! = 1, for ¢t € Zy, if and only if
x = 1, and thus the prover’s check succeeds if and only if v/, = Vroot. If the
verifier does not have a file with identifier id, then he chooses dy € G and t € Zj
uniformly at random and sends (do, (dp)?) instead, to conceal this fact. With
overwhelming probability ¢ # dk and, thus, the prover will abort assuming that
the Merkle roots don’t match.

To protect against dishonest behaviors, during the agreement phase, both
parties additionally prove with each message that it has been computed correctly
using a NIZK proof for the languages introduced below, which are parametrized
in (a description of) the group G, the generator g, the group order ¢, the file
identifier space ZD, and the signature scheme Sig including the verification-key
space VIC and the signature space X.

— For the first message from the prover to the verifier, let NIZK® be a NIZK
proof system for the language L% = {z | 3w (z,w) € R¥*}, where R is
defined as follows: for x = ek € G and a witness w = dk € Z,, R¥*(z,w) =1
if and only if ek = g% . Hence, the prover shows that he knows the decryption
key, and thus also the corresponding plaintext v.oot of his first message.

— For the message from the verifier to the prover, let NIZK“"™ be a NIZK proof
system for the language L™ = {z | Jw (z,w) € R“"}, where R" is
defined as follows: for z = (co, c1,do, dq,id, £, vk) € G* xID x N x VK and
a witness (cj, ¢}, t,0) € G* x Zy x X, R"(z,w) = 1 if and only if

((dosdr) = ((ch-cg™)" (€h-er)") ASigVrf(uh, o, (id. ., 0)) V (do)" = .

26

— For the second message from the prover to the verifier, let NIZK®? be a NIZK
proof system for the language L¢? = {x | Jw (z,w) € R}, where R is
defined as follows: for x = (ek, dy, d1) € Z,x G? and a witness w = dk € Z,,
R (z,w) =1 if and only if

(€k, dl) - (gdka dgk)

Finally, in the prove-phase, the server selects again a number of leaf indexes
and the prover replies with the encrypted siblings path together with NIZK’s to
prove that the path is correctly built, defined as follows.

— Let the language L™ = {z | 3w (z,w) € R™"} be defined via the
following relation R™": for x = (ek, no, "1, lo, 11,70, 7"1) € G7 and a witness
w = dk € Zy, R™"(z,w) = 1 if and only if

ek = g% A ElGamal.Dec(dk, (ng,n1)) =
h(ElGamal.Dec(dk, (lo, 1)), EIGamal.Dec(dk, (ro,71))).

The verifier furthermore checks that in each path, the ciphertext of the root is
the one the prover sent in the agreement phase.

Analysis. The described agree-and-prove protocol achieves the same level of
security as the plain Merkle-Tree based protocol, analyzed in the last section,
but additionally provides the described level of privacy. This is summarized in
the following theorem which is proven in [I].

Theorem 3. The above described agree-and-prove scheme, for the agree-and-
prove scenario consisting of the setup functionality from and the re-
lations from and is secure up to knowledge error p(k) =
(1— a)"(“). Furthermore, it is verifier zero-knowledge up to Lp and prover zero-
knowledge up to Ly, where Lp and Ly are defined as above and specified as

pseudo-code in and[7, respectively.

4 Application to Client Authentication

Client authentication has gained a lot of attention from the security community
and plenty of client authentication protocols have been proposed and studied
over the years, such as [6] 21, [22] [13]. Those works however phrase security in a
property based manner with rather particular attack models making them not
directly applicable in an overall cryptographic analysis based on explicit hardness
assumptions and reduction proofs. Multi-factor authentication has gotten some
attention in the cryptographic community by Shoup and Rubin on session-key
distribution with smart cards [I5], which however does not reflect the usual
password plus second-factor based setting we observe in practice for which no
formal model exists. In the following, we show how the agree-and-prove notion
can be used to formalize the above mentioned properties in a sound and thorough
manner. We focus here just on the 2-FA case and refer to [I] for the full treatment.

27

Two-Factor Setup F>_pa

— The setup is parameterized a user-administration mechanism UAdmin and a
PKE scheme (Gen, Enc, Dec).

— init: db < UAdmin.Init(1%); initialize PW, and Keys to empty maps, and
Assigned to a map pre-initialized to false.

— Oz, (l,SetPassword, un, pw):

1: If Keys[un]| is not defined yet, sample (pk,sk) < Gen(1™) and store
Keys[un] < (pk, sk).
2: Set db < UAdmin.Set(db, un, pw) and PW[un] < pw.

— OF,na(l, Assign, un): Set Assigned[un] < true.

— Oz, (l, GetUsers, —): Return PW.

— Ox,p(i,GetDB, —): If i € {I,V}, return db. Otherwise, return L.

— OF,. (i, TokenEval, un, x): If ¢ = | and Keys[un] is defined, or ¢ = P and
Assigned[un], then let (pk, sk) + Keys[un] and return Dec(sk, z). In any other
case, return L.

— OF, (P, IsAssigned, un): If Assigned[un] then return 1, otherwise 0.

— Ox, . (i,GetPublicKey, un): If i € {I,V} and Keys[un| is defined, then let
(pk, sk) < Keys[un] and return pk. Otherwise, return L.

Fig.8: The description of the concrete setup functionality for 2-FA.

Two-Factor Authentication. The scheme we consider in this section combines
both factors password and token. We consider the following type of hardware
token, analogous to [I5]: upon producing the token a public/secret key pair of a
PKE scheme is chosen. The secret key is then securely embedded into the token—
that provides a decryption oracle—and the public key is stored for verification.
The setup is parametrized by what we call a user-administration mechanism
UAdmin that allows a user to register to the service with a given password or
update its password (algorithm Set) whose definition we defer to [1] due to
space constraints. The input-generation algorithm can assign a username to the
user, thereby granting him access to the token. In addition, the input generation
algorithm gets query access to all the tokens—modeling that the prover might
have had temporary access to those tokens in the past. The verifier can access
the password database, as well as all public keys corresponding to the secret keys
embedded in the tokens. The description can be found in

The agreement condition requires that the parties either have to agree on a
valid username x or abort. For correctness, we require that the honest parties
only agree on a username if the prover possesses the corresponding token.

CO}_Z—FA(""')(lﬁ’ AUTp, QUL 33‘)
1 ifz =1V (PW[z] =pw A auz, = (z,pw) A Assigned|z])
=< ifz=_1V(PW[z] =pwA auz, # (z,pw) A Assigned(z]) (5)
0 otherwise,

28

which can be efficiently implemented using oracle access to Fo.pa. The proof
relation for two-factor authentication checks two conditions: it checks knowledge
of the password and access to the token. Knowledge of the password is as usually
phrased as the witness w which the knowledge extractor has to extract. Access,
or possession, of the token on the other hand cannot be phrased as a witness
extraction problem—in the end we do not want to require the extractor to extract
the internal state of a secure hardware token. Rather, it is simply a property of
the setup that is checked by the relation. We thus can define the relation via the
condition RO%2-m () (1% 2, w) = 1 :¢3 PW[z] = w A Assigned|z].

An agree-and-prove scheme for the above relation can be built in a black-box
way from a secure password-based authentication scheme that has to check that
the prover has access to the token by requesting to decrypt the encryption of a
random challenge. The details are deferred to the full version [I].

References

[1] Christian Badertscher, Daniel Jost, and Ueli Maurer. Generalized proofs of knowl-
edge with fully dynamic setup. Cryptology ePrint Archive, Report 2019/662, 2019.
https://ia.cr/2019/662.

[2] Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge arguments for
arithmetic circuits and their application to lattice-based cryptography. In Aggelos
Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, Public-
Key Cryptography - PKC 2020 - 23rd IACR International Conference on Practice
and Theory of Public-Key Cryptography, Edinburgh, UK, May 4-7, 2020, Proceed-
ings, Part I, volume 12110 of Lecture Notes in Computer Science, pages 495—526.
Springer, 2020.

[3] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Ernest F.
Brickell, editor, Advances in Cryptology — CRYPTO’ 92, pages 390-420, Berlin,
Heidelberg, 1993. Springer Berlin Heidelberg.

[4] David Bernhard, Marc Fischlin, and Bogdan Warinschi. Adaptive proofs of knowl-
edge in the random oracle model. In Jonathan Katz, editor, Public-Key Cryp-
tography — PKC 2015, pages 629—649, Berlin, Heidelberg, 2015. Springer Berlin
Heidelberg.

[5] Jan Camenisch, Aggelos Kiayias, and Moti Yung. On the portability of general-
ized schnorr proofs. In Advances in Cryptology - EUROCRYPT 2009, 28th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Cologne, Germany, April 26-30, 2009. Proceedings, pages 425—442, 2009.

[6] Hung-Yu Chien, Jinn-Ke Jan, and Yuh-Min Tseng. An efficient and practical
solution to remote authentication: Smart card. Computers € Security, 21(4):372
— 375, 2002.

[7] Ivan Damgard and Eiichiro Fujisaki. A statistically-hiding integer commitment
scheme based on groups with hidden order. In Yuliang Zheng, editor, Advances in
Cryptology - ASIACRYPT 2002, 8th International Conference on the Theory and
Application of Cryptology and Information Security, Queenstown, New Zealand,
December 1-5, 2002, Proceedings, volume 2501 of Lecture Notes in Computer Sci-
ence, pages 125-142. Springer, 2002.

[8] Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity. Jour-
nal of Cryptology, 1(2):77-94, Jun 1988.

29

https://ia.cr/2019/662

9
(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

22]

Oded Goldreich. Foundations of Cryptography: Volume 1. Cambridge University
Press, New York, NY, USA, 2006.

S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of interactive
proof-systems. In Proceedings of the Seventeenth Annual ACM Symposium on
Theory of Computing, STOC ’85, pages 291-304, New York, NY, USA, 1985.
ACM.

Lorena Gonzéalez-Manzano and Agustin Orfila. An efficient confidentiality-
preserving proof of ownership for deduplication. J. Netw. Comput. Appl.,
50(C):49-59, April 2015.

Shai Halevi, Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. Proofs
of ownership in remote storage systems. In Proceedings of the 18th ACM Confer-
ence on Computer and Communications Security, CCS ’11, pages 491-500, New
York, NY, USA, 2011. ACM.

I-En Liao, Cheng-Chi Lee, and Min-Shiang Hwang. A password authentica-
tion scheme over insecure networks. Journal of Computer and System Sciences,
72(4):727 — 740, 2006.

Martin Mulazzani, Sebastian Schrittwieser, Manuel Leithner, Markus Huber, and
Edgar Weippl. Dark clouds on the horizon: Using cloud storage as attack vector
and online slack space. In Proceedings of the 20th USENIX Conference on Security,
SEC’11, pages 5-5, Berkeley, CA, USA, 2011. USENIX Association.

Victor Shoup and Avi Rubin. Session key distribution using smart cards. In Ueli
Maurer, editor, Advances in Cryptology — EUROCRYPT ’96, pages 321-331,
Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

Martin Tompa and Heather Woll. Random self-reducibility and zero knowledge
interactive proofs of possession of information. In Proceedings of the 28th An-
nual Symposium on Foundations of Computer Science, SFCS ’87, pages 472—-482,
Washington, DC, USA, 1987. IEEE Computer Society.

Thomas Vidick and Tina Zhang. Classical proofs of quantum knowledge. In
Anne Canteaut and Frangois-Xavier Standaert, editors, Advances in Cryptology -
EUROCRYPT 2021 - 40th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021,
Proceedings, Part II, volume 12697 of Lecture Notes in Computer Science, pages
630—-660. Springer, 2021.

Douglas Wikstrom. On the security of miz-nets and hierarchical group signatures.
PhD thesis, Royal Institute of Technology, Stockholm, Sweden, 2005.

Jia Xu and Jianying Zhou. Leakage resilient proofs of ownership in cloud storage,
revisited. In Ioana Boureanu, Philippe Owesarski, and Serge Vaudenay, editors,
Applied Cryptography and Network Security, pages 97-115, Cham, 2014. Springer
International Publishing.

Guomin Yang, Duncan S. Wong, Huaxiong Wang, and Xiaotie Deng. Formal
analysis and systematic construction of two-factor authentication scheme (short
paper). In Peng Ning, Sihan Qing, and Ninghui Li, editors, Information and
Communications Security, pages 82-91, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

Eun-Jun Yoon, Eun-Kyung Ryu, and Kee-Young Yoo. Efficient remote user au-
thentication scheme based on generalized elgamal signature scheme. IEEE Trans-
actions on Consumer Electronics, 50(2):568-570, May 2004.

FEun-Jun Yoon and Kee-Young Yoo. New authentication scheme based on a one-
way hash function and diffie-hellman key exchange. In Yvo G. Desmedt, Huaxiong
Wang, Yi Mu, and Yongqing Li, editors, Cryptology and Network Security, pages
147-160, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

30

	Generalized Proofs of Knowledge with Fully Dynamic Setup

