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Abstract. We initiate the study of multi-party functional encryption
(MPFE) which unifies and abstracts out various notions of functional
encryption which support distributed ciphertexts or secret keys, such
as multi-input FE, multi-client FE, decentralized multi-client FE, multi-
authority FE, dynamic decentralized FE, adhoc multi-input FE and such
others. Using our framework, we identify several gaps in the literature
and provide some constructions to fill these:

1. Multi-Authority ABE with Inner Product Computation. The
recent work of Abdalla et al. (ASIACRYPT’20) constructed a novel
“composition” of Attribute Based Encryption (ABE) and Inner Product
Functional Encryption (IPFE), namely functional encryption schemes
that combine the access control functionality of attribute based
encryption with the possibility of performing linear operations on the
encrypted data. In this work, we extend the access control component
to support the much more challenging multi-authority setting, i.e.
“lift” the primitive of ABE in their construction to multi-authority
ABE for the same class of access control policies (LSSS structures).
This yields the first construction of a nontrivial multi-authority FE
beyond ABE from simple assumptions on pairings to the best of our
knowledge.

Our techniques can also be used to generalize the decen-
tralized attribute based encryption scheme of Michalevsky and
Joye (ESORICS’18) to support inner product computation on the
message. While this scheme only supports inner product predicates
which is less general than those supported by the Lewko-Waters
(EUROCRYPT’11) construction, it supports policy hiding which the
latter does not. Our extension inherits these features and is secure
based on the k-linear assumption, in the random oracle model.
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2. Function Hiding DDFE. The novel primitive of dynamic decen-
tralized functional encryption (DDFE) was recently introduced by
Chotard et al. (CRYPTO’20), where they also provided the first
construction for inner products. However, the primitive of DDFE
does not support function hiding, which is a significant limitation
for several applications. In this work, we provide a new construction
for inner product DDFE which supports function hiding. To achieve
our final result, we define and construct the first function hiding
multi-client functional encryption (MCFE) scheme for inner products,
which may be of independent interest.

3. Distributed Ciphertext-Policy ABE. We provide a distributed
variant of the recent ciphertext-policy attribute based encryption
scheme, constructed by Agrawal and Yamada (EUROCRYPT’20).
Our construction supports NC1 access policies, and is secure based
on “Learning With Errors” and relies on the generic bilinear group
model as well as the random oracle model.

Our new MPFE abstraction predicts meaningful new variants of functional
encryption as useful targets for future work.

1 Introduction

Functional encryption (FE) [32,14] is a powerful generalization of public key
encryption which enables a user to learn a function of the encrypted data.
Concretely, in FE, a secret key SKf is associated with a function f and the
ciphertext CTx is associated with a message x (in the domain of f). And, by
combining SKf with CTx, the decryptor learns f(x) and nothing else.

The original motivation behind the concept of functional encryption, as
discussed in [14], was to put forth a new broad vision of encryption systems.
Since its introduction, the concept of FE has been massively impactful in
several aspects: (i) it helped unify the existing literature on encryption systems
(such as identity-based encryption [33,12], attribute-based encryption [32,26],
predicate encryption [15,27] and more) and place them under a single umbrella
which enabled clear comparisons, (ii) it helped in predicting new natural
encryption primitives that had not been studied before, such as partially hiding
predicate/functional encryption [25], and (iii) it served as the right abstraction
to understand the relationship of this broad concept with other notions in
cryptography, such as to indistinguishability obfuscation [9,11].

Supporting Multiple Users. Subsequently, many new primitives arose to
generalize FE to the multi-user setting – multi-input functional encryption [24],
multi-client functional encryption [20], decentralized multi-client functional
encryption, adhoc multi-input functional encryption [5], multi-authority attribute
based encryption [17], dynamic decentralized functional encryption [22] and such
others. Similar to the many special cases of functional encryption, these notions
are related yet different and it is often difficult to understand how they compare
to one-another, whether they use related techniques, and what is known in terms
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of feasibility. Moreover, each new variant that springs up acquires a different
name, leading to a plethora of acronyms which clutter the landscape, often adding
to confusion rather than clarity.

In this work, we initiate the study of “Multi-Party Functional Encryption”
(MPFE) which unifies and abstracts out various notions of multi-user functional
encryption, such as those described above. Our starting point is the observation
that all above notions of FE support some form of distributed ciphertexts or
distributed keys or both. In more detail, we summarize the state of affairs as:

1. Distributed Ciphertexts. The primitives of multi-input functional en-
cryption (MIFE) [24] and multi-client functional encryption (MCFE) [20]
generalize FE to support distributed inputs. Both notions permit different
parties P1, . . . ,Pn each with inputs x1, . . . ,xn to compute joint functions on
their data, namely f(x1, . . . ,xn). Each party encrypts its input xi to obtain
CTi, a key authority holding a master secret MSK generates a functional key
SKf and these enable the decryptor to compute f(x1, . . . ,xn).

The main difference between these definitions lies in the way the inputs
can be combined. In multi-client functional encryption (MCFE), inputs xi
are additionally associated with public “labels” labi and inputs can only be
combined with other inputs that share the same label. On the other hand,
multi-input functional encryption does not restrict the way that inputs are
combined and permits all possible combinations of inputs. Both primitives are
defined as key policy systems – namely, the access control policy or function
is embedded in the secret key rather than the ciphertext.

2. Distributed Keys. Distribution or decentralization of keys in the context
of FE has also been considered in various works, to achieve two primary
objectives (not necessarily simultaneously) – a) handling the key escrow
problem, so that there is no single entity in the system that holds a powerful
master secret against which no security can hold, and b) better fitting real
world scenarios where different authorities may be responsible for issuing keys
corresponding to different attributes of a user, such as offices for passport,
drivers license and such others. We summarize some relevant primitives next.
(a) Decentralized Attribute Based Encryption with Policy Hiding (DABE): A

decentralized policy-hiding ABE, denoted by DABE [31] was proposed
by Michalevsky and Joye to handle the key escrow problem. In a DABE
scheme, there are n key authorities, each of which run a local setup to
generate their private and public keys. An encryptor encrypts a message m
along with a general access structure C, while secret keys corresponding to
(the same) attribute x are issued by independent authorities. Decryption
recovers m if C(x) = 1. The access policy in the ciphertext is hidden.

(b) Multi-Authority Functional Encryption (MAFE): The notion of Multi-
Authority FE/ABE [17,29,16] emerged to address the second objective, i.e.
handling the case where different authorities are responsible for different
sets of attributes. Since ABE is a special case of FE, we focus on MAFE.
A MAFE scheme is defined as a ciphertext-policy scheme, namely the
policy/function is embedded in the ciphertext as against the function keys.

2



In MAFE, n key authorities may independently generate their private and
public keys, without any interaction. An encryptor computes a ciphertext
for a message m along with a policy f over the various authorities. Any
authority i, can generate a token for a user P for attributes labi. A
decryptor with tokens for labi from authority i ∈ [n], can decrypt the
ciphertext to recover f(lab1, . . . , labn,m).

3. Distributed Ciphertexts and Keys. Some primitives allow to distribute
both ciphertexts and keys. Some examples below.
(a) Decentralized Multi-Client Functional Encryption (D-MCFE): The notion

of decentralized multi-client FE was defined by Chotard et al. [20,2,30]
in order to handle the key escrow problem in an MCFE scheme. D-MCFE
is defined as a key policy primitive, and adapts MCFE as described above
to ensure that there is no single master secret held by any entity – the
parties participate in an interactive setup protocol to establish their
individual (correlated) master secret keys. In more detail, there are n
parties, each holding MSKi for i ∈ [n], that compute ciphertexts for their
inputs (labi,xi) as well as generate partial decryption keys SKi,f for a
given function f . The decryptor can combine the partial secret keys and
individual ciphertexts to compute f(x1, . . . ,xn) if and only if all the
labels are equal.

(b) Ad Hoc MIFE (aMIFE): Similar to D-MCFE, this notion was introduced
in [5] to handle the key escrow problem in MIFE. This notion is key policy,
and offers some additional features as compared to D-MCFE — non-
interactive setup and dynamic choice of function arity as well as parties
that participate in a computation. This notion does not differentiate
between key authorities and users, and lets users generate their own
partial decryption keys along with ciphertexts. Thus, for i ∈ [n], party i
computes a ciphertext for xi and partial key SKf,i which can be combined
by the decryptor to obtain f(x1, . . . ,xn).

(c) Dynamic Decentralized FE (DDFE): This primitive was introduced very
recently in [22] to further generalize aMIFE – it requires non-interactive,
local setup and allows dynamic choice of function arity as in aMIFE,
but additionally allows partial decryption keys provided by users to be
combined in more general ways than in aMIFE. Also, unlike aMIFE, it
supports the public key setting.

1.1 Unifying the View: Multi-Party Functional Encryption

While the above notions enable controlled manipulation of encrypted data
in increasingly expressive ways, they are too related to warrant independent
identities. To unify and extend the above primitives, we propose the notion of
multi-party functional encryption (MPFE). All the above examples (and more) can
be cast as examples of MPFE with a suitable choice of parameters: this clarifies
the connections between these primitives. MPFE allows for both distributed
ciphertexts and distributed keys, and specifies how these may be combined
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for function evaluation. To avoid bifurcating key-policy and ciphertext-policy
schemes, we allow either ciphertext or key inputs to encode functions. To better
capture attribute and function hiding, we allow every message or function being
encoded to have a public and private part. To support schemes with interactive,
independent or centralized setup, we allow the setup algorithm of MPFE to
function in any of these modes.

A bit more formally, let nx be the number of ciphertext inputs and ny be the
number of key inputs. Let X = Xpub×Xpri be the space of ciphertext inputs and
Y = Ypub ×Ypri be the space of key inputs. We define two aggregation functions
as Aggx : Xnx → X , and Aggy : Yny → Y, which specify how these inputs may
be combined to capture a given primitive. The definitions of the algorithms that
constitute an MPFE scheme are the same as in all prior work:

– a Setup algorithm outputs the encryption keys for nx encryptors and
master keys for ny key authorities. This algorithm4 may now run in one of
three modes (Central, Local,Decentralized), which captures centralized setup,
local/independent setup or decentralized/interactive setup.

– an Encrypt algorithm which is run independently by nx users, each encoding
their own message xi = (xpub,i, xpri,i) with their own encryption key EKi.

– a key-generation algorithm KeyGen which is run independently by all ny key
authorities, each generating its own partial key for an input yj = (ypub,j , ypri,j)
of its choice using its own master secret key MSKj .

– a decryption algorithm Decrypt, which given input the partial keys {SKi}i≤ny
and partial ciphertexts {CTj}j≤nx can combine them to compute U

(
Aggx({xi}),Aggy({yj})

)
,

where U is the universal circuit.

Note that either xi or yj can be descriptions of functions, capturing both key
and ciphertext policy schemes. By suitably choosing nx, ny, Aggx, Aggy and
the mode of setup, namely (mode ∈ {Central, Local,Decentralized}), the above
abstraction lets us specify all the aforementioned primitives in a unified manner,
and also allows us to instantiate these parameters in different ways to yield new,
meaningful primitives. Please see Section 2 for the formal definition and the full
version [6] for details on how the above primitives can be expressed as instances
of MPFE.

Dynamic MPFE. In the above description, we assume that the number of parties
as well as the aggregation functions are input to the setup algorithm. A more
powerful definition could support full dynamism, where the parties generate their
own keys, join the protocol dynamically without prior agreement, and choose the
functionality (in our case Aggx and Aggy) dynamically so that it can change for
every instance of the protocol.

4 If the setup mode is decentralized/interactive, then the description of setup could
correspond to an interactive multi-round protocol instead of an algorithm. However,
for ease of exposition we abuse the notation and use setup algorithm to refer to the
corresponding protocol description.
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While dynamism is obviously desirable, it is significantly harder to instantiate
since it necessitates a local setup algorithm without any co-ordination between
the parties. While there do exist some constructions for dynamic FE supporting
multiple users, such as adhoc MIFE [5] and DDFE [22], most constructions
in the literature are “static” and rely on centralized or interactive setup
[24,4,19,2,30,1,20,21]. Thus, a definition which is inherently dynamic would
preclude representation of most constructions in the literature.

For simplicity of notation and ease of workability, we define MPFE with and
without dynamism separately. We provide the definition of the static variant in
Section 2 and the dynamic variant in the full version. We note that these two
variants may be condensed to a single one using additional notation but this
makes the definitions harder to work with.

Feasibility. In the full version, we provide a general feasibility of MPFE for circuits
from the minimal assumption of MIFE for circuits.

1.2 Comparison with Prior Work

The notions of D-MCFE, aMIFE and DDFE are most closely related to our work,
since they allow combining both ciphertexts and keys simulataneously. However,
our notion differs from these in important ways. To begin, the setup algorithms
of the above primitives have a fixed format – in D-MCFE, this is interactive,
while for aMIFE and DDFE, it is decentralized and non-interactive. Thus, aMIFE
and DDFE cannot capture D-MCFE and vice versa. Moreover, neither of these
can capture most existing constructions in the literature which have trusted,
centralized setup as discussed above. In contrast, we allow setup to have either of
these, as well as other formats, allowing us to capture all the above primitives and
more. Next, D-MCFE, aMIFE require partial keys to represent the same function.
While DDFE does allow partial keys to be combined in expressive ways, it does
not support any function hiding. Even the support for partial input hiding in
these primitives is less than complete: for instance, aMIFE does not support
public input in the ciphertext, and while DDFE allows for some part of the input
to be public, this is via a separate empty key ε. In contrast, MPFE captures
public and private input in both the ciphertext and the function key directly,
making it feasible (in the case of function inputs) and simpler (in the case of
ciphertext inputs) to capture partial hiding.

The most important feature of MPFE is that is captures existing constructions
using a uniform, simple notation, allowing to place all prior work on the same
map, making these constructions easier to compare and allowing to identify gaps
between these. Using our MPFE framework, we interpolate the space in prior
work to predict several new, natural and useful primitives. Then, we provide
multiple new constructions from simple, standard assumptions to address these
limitations (described next), as well as identify novel new primitives (described
in Section 1.5) to be constructed in future work.
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1.3 New Constructions
We next describe the new constructions we provide in this work.
Multi-Authority ABE ◦ IPFE. The recent work of Abdalla et al. [4] (ACGU20)
constructed a novel “composition” of ABE and IPFE, namely functional encryption
schemes that combine the access control functionality of attribute based
encryption with the possibility of performing linear operations on the encrypted
data. In more detail, the message space contains a policy predicate φ ∈ NC1
and a message vector v ∈ Z`q, while decryption keys are jointly associated with
an attribute vector x ∈ {0, 1}n and a key vector u ∈ Z`q. The functionality
provided by such a system is that a decryptor recovers the inner product value
〈u,v〉 if φ(x) = 1. Thus, it provides a fine-grained access control on top of inner
product functional encryption (IPFE) capability. For ease of exposition, we denote
this primitive, which is called “IPFE with fine-grained access control” in [4] by
ABE ◦ IPFE in our work5. Abdalla et al. [4] provide a construction leveraging
state of the art ABE from pairings to support predicates represented by Linear
Secret Sharing Schemes (LSSS) in the above functional encryption scheme.

Seen from the lens of MPFE, the ACGU20 construction has nx = ny = 1,
with (xpub, xpri) = (φ,v), (ypub, ypri) = ((fx,u),⊥) where fx is a function that
takes as input three arguments (φ,v,u) and outputs 〈u,v〉 if φ(x) = 1. The
aggregation functions are trivial as there is only a single encryptor and key
generator. In this work, we extend the ACGU20 construction to the multiparty
setting. In more detail, we support ny = n for some fixed, polynomial n and
Local mode of setup algorithm, so that each key generator generates its key
components locally and independently. The number of encryptors nx as well as
the (xpub, xpri) remain unchanged. However, each of the n key generators now has
input (ypub, ypri) = ((GIDi, xi,ui),⊥) where GIDi ∈ {0, 1}∗ is a global identifier,
xi ∈ {0, 1} is an attribute bit, and ui ∈ Z`q is the key vector for i ∈ [n]. The Aggx
function remains trivial as before but the Aggy function checks if all the global
identifiers match GID1 = . . . = GIDn, key vectors are consistent u1 = . . . = un,
and sets (ypub, ypri) = ((fx,u),⊥) if so, where x = (x1, . . . , xn) and fx is as
above.

The above generalization has been studied in the literature in the context
of ABE under the name multi-authority ABE, or MA-ABE – here, we extend the
access control component of ACGU20 to support the multi-authority setting,
i.e. “lift” the primitive of ABE ◦ IPFE to MA-ABE ◦ IPFE. Our construction
departs significantly from ACGU20 in details – our starting point is the MA-ABE
construction of Lewko and Waters [29] which we extend to support inner product
computation. This yields the first construction of a nontrivial multi-authority FE
beyond ABE from simple assumptions on pairings to the best of our knowledge.

Using our techniques, we also extend the decentralized attribute based
encryption (DABE) scheme of Michalevsky and Joye [31] to support inner product
computations. While [31] only supports inner product predicates unlike [29], it
supports policy hiding unlike the latter – our extension inherits these features.
5 We caution the reader that the notation ABE ◦ IPFE is for readability and does not

denote a formal composition.
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Function Hiding DDFE. The novel primitive of dynamic decentralized inner
product functional encryption (IP-DDFE) was recently introduced by Chotard
et al. [22], where they also provided the first construction. As discussed above,
DDFE is an instance of dynamic MPFE. Using the notation of MPFE, we have
the setup algorithm in the Local mode, so that each party i can dynamically
join the system by generating a public key PKi and a master secret key MSKi.
For encryption, party i sets (xpub, xpri) =

(
(UM , labM ),xi

)
where UM is the set

of parties whose inputs will be combined and labM is a label which imposes a
constraint on which values can be aggregated together. For key generation, party
i sets (ypub, ypri) =

(
(yi,UK ,y),⊥

)
where UK is a set of public keys that defines

the support of the inner product, and y is an agreed upon vector y = {yi}i∈UK .
The function Aggx checks if the public inputs (UM , labM ) match for all parties
and that all the ciphertexts are provided for the set UM . If so, outputs (UM ,x)
where x = (x1‖ . . . ‖xnx). The function Aggy checks that all values UK and y
are the same for all parties, and that value yi matches with its corresponding
component in the agreed vector. If so, it outputs the function fUK ,y which takes
as input (UM ,x), checks that UM = UK and if so, outputs 〈x,y〉.

However, as discussed before, the primitive of DDFE does not support function
hiding. We see this as a significant limitation of this notion. Function hiding is a
well studied and very useful property with many applications – for instance, it
allows parties to securely delegate computation to an untrusted server without
the server being able to learn the functionality. In some cases, knowing the
functionality and the output (which the server computes in the clear) may leak
information about the underlying data. In other cases, the functionality itself
may be private and protected by copyright laws. In our work, we provide a new
construction for IP-DDFE which supports function hiding. In more detail, the key
generator, similar to the encryptor associates a label labK with its vector yi and
combining partial keys is only possible when their labels match. Importantly, the
key vector yi may now be hidden analogously to the vector xi in the ciphertext.

In more detail, for key generation, party i sets (ypub, ypri) =
(
(UK , labK),yi

)
where UK , labK have the same roles as UM , labM , respectively. The function Aggy,
analogously to Aggx checks that all values UK and labK are the same for all
parties. If so, it outputs the function fUK ,y=(y1‖...‖yny ) which takes as input
(UM ,x), checks that UM = UK and if so, outputs 〈x,y〉.

To achieve our final result, we define and construct the first function hiding
MCFE scheme for inner products, which may be of independent interest.

Ciphertext-Policy ABE with Distributed Key Generation. We provide
a multiparty variant of the recent ciphertext-policy attribute based encryption
scheme, constructed by Agrawal and Yamada [8]. In our scheme, the setup
algorithm is run in the Local mode and key generation is distributed amongst
ny = n parties for any polynomial n. As in single-party ABE, we have nx = 1
(hence Aggx is trivial) where (xpub, xpri) = (C,m) where C is a circuit in NC1
and m is a hidden bit. For key generation, the ith party produces a key for
(ypub, ypri) = ((y,GID, yi),⊥) where GID is a global identifier, and y is an agreed
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upon vector y = (y1, . . . , yn). The aggregation function Aggy checks if all the
values GID and y are the same, and that value yi matches with its corresponding
component in the agreed vector y. It then outputs a function fy which takes as
input a circuit C and message m and outputs m if C(y) = 1. Our construction is
secure based on “Learning With Errors” and relies on the generic bilinear group
model as well as the random oracle model. We show that as long as at least one
authority is honest, the scheme remains secure.

1.4 Technical Overview

In this section, we provide an overview of the techniques used for our constructions.
We begin with our two constructions that extend multi-authority schemes [29,31]
to support inner products.

Multi-Authority ABE◦IPFE for LSSS Access Structures. We described the
functionality of MA-ABE ◦ IPFE in Section 1.3. Security is defined in a multifold
setting where: (1) adversary is allowed to corrupt the key authorities, (2) make
key queries that do not satisfy the challenge policy predicate φ∗, and (3) also
make key queries that satisfy the challenge policy predicate φ∗ but decrypt to
the same value for both challenge vectors (that is, 〈u,v∗0〉 = 〈u,v∗1〉).

A natural first line of attack is to consider whether such a scheme can
generically be built from combining these two primitives. As it turns out, any
such generic construction suffers from the common problem of mix and match
attacks, that is, we must prevent an authorized MA-ABE portion of the key from
being used along with an IPFE portion of an unauthorized key. Another idea
is to extend the ABE ◦ IPFE construction of [4] to support multiple authorities.
However, this work relies on the predicate encoding framework which is not
suitable as-is for our application. Instead, our approach is to start with the
multi-authority ABE construction by Lewko and Waters [29] for LSSS access
structures, and show how to leverage it’s intrinsic algebraic structure to add an
inner product functionality “on top” of the multi-authority ABE construction.

To begin, we provide an informal sketch of a simplified version of our
construction. Recall that an access policy corresponding to a linear secret sharing
scheme access structure contains a share generating matrix A and a row index
to party index mapping function ρ.

LSetup : The i-th authority samples a length ` masking vector αi as its secret
key, and publishes its encoding

[
αi

]
T

in the target group as the public key.
KeyGen : To generate a secret key for key vector u, the i-th authority projects

αi on the vector space defined by key vector u. That is, if the attribute bit
xi is 16, then the partial decryption key is simply

[
〈αi,u〉

]
.

Enc : For encrypting a message vector v under an access policy (A, ρ), the
encryptor first secret shares the message vector v using the access policy A
into a share matrix Sv. That is, Sv is a random matrix with the property
that for each accepting attribute x there exists a reconstruction vector zx

6 As in prior ABE schemes based on bilinear maps, the key is empty when xi = 0.
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such that z>x · Sv = v>. It next arranges the authority public keys
[
αi

]
T

row-wise in a matrix ∆ as per the function ρ, that is i-th row on ∆ is ρ(i)-th
public key

[
αρ(i)

]
T

. Finally, it output the ciphertext as the following matrix

CT0 =
[
Sv + ∆� (r⊗ 1>)

]
T
, CT1 =

[
r
]
,

where r is a random vector of appropriate dimension and � denotes the
component-wise multiplications between two matrices of same dimensions.

Dec : A decryptor then simply left-multiplies CT0 with the reconstruction vector
zx and right-multiplies with the key vector u to compute the following:

z>x · CT0 · u = z>x ·
[
Sv + ∆� (r⊗ 1>)

]
T
· u

=
[
v> · u + z>x · (∆� (r⊗ 1>)) · u

]
T

=
[
v> · u + z>x · (∆� (r⊗ u>))

]
T

It next arranges the partial decryption keys
[
〈αi,u〉

]
row-wise in a vector

K as per the function ρ, that is i-th element of K is ρ(i)-th decryption key[
〈αρ(i),u〉

]
. It performs the component pairing between K and CT1, and

then takes the linear combination as specified by zx which can be simplified
as follows:

z>x · e (K,CT1) =
[
z>x · (∆� (r⊗ u>))

]
T

Finally, it can recover
[
v> · u

]
T

from the above two terms, and learn the
exponent value by brute force search.

Now in the above sketch we ignored the global identifier GID that is necessary
for tying together the partial decryption keys provided by each authority, and
we also ignore the modifications necessary for proving security under standard
bilinear assumptions. At a very high level, for proving security we rely on ideas
from the dual system paradigm [34] as in the multi-authority ABE scheme of [29].
However, we must deal with several new challenges to adapt this paradigm to
our setting, as we describe next.

In the dual system paradigm, the intuition is that the reduction algorithm
first switches all the secret keys to semi-functional keys, and thereafter it also
switches the challenge ciphertext to a semi-functional ciphertext, and after both
these changes security follows directly from the property that semi-functional
secret keys and ciphertexts are not compatible for decryption. In IPFE, we cannot
hope to execute the same strategy directly since now we cannot switch all secret
keys to semi-functional keys since some secret keys might allow decrypting
the challenge ciphertext (but they still would not help in distinguishing by
admissibility constraints on the attacker). At this point, we define the concept of
partial semi-functional ciphertexts such that (at a high level) we first switch all
the rejecting secret keys to semi-functional while leaving the accepting keys as is,
and thereafter we switch the challenge ciphertext to be a “partial” semi-functional
ciphertext such that this hides the non-trivial information about the encrypted
message vectors.
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Although this intuition seems to work at a high level, it is still insufficient since
it is unclear how to switch the entire ciphertext to semi-functional in the standard
model. To that end, our idea is to switch all the accepting secret keys (including
the ones for satisfying predicates) to their semi-functional counterparts as well,
but now ensure that the challenge ciphertext components that the accepting keys
interact with are only nominally semi-functional. Here the difference between a
regular ciphertext, a nominally semi-functional, and a standard semi-functional
ciphertext is that – regular ciphertexts lie in a special subgroup with no special
blinding terms; while nominally semi-functional ciphertexts have structured
blinding factors outside the special subgroup but it does not affect decryption
irrespective of the type of secret key being used; and a standard semi-functional
ciphertext has unstructured blinding factors outside the special subgroup such
that it affects decryption when using semi-functional keys. Now switching portions
of the challenge ciphertext as nominally semi-functional is necessary because of
two reasons: first, making the entire challenge ciphertext semi-functional will
affect decryption w.r.t. accepting keys which will be distinguishable for the
adversary; second, it is unclear how to sample the challenge ciphertext in which
only one component is semi-functional while other are regular sub-encryptions due
to the fact that these different ciphertext components are significantly correlated.
Thus, we get around this barrier by ensuring that the challenge ciphertext is
sampled as what we call a partial semi-functional ciphertext (which has nominally
semi-functional components along with a standard semi-functional component).

Please see Section 3 for the formal construction and proof. Our construction
relies on standard assumptions over composite-order bilinear groups, but could
be also be easily adapted to prime-order groups with a security proof in the
generic group model as in [29].

DABE ◦ IPFE for Inner Product Predicates, with Policy Hiding. Next,
we extend the construction of decentralized attribute based encryption by
Michalevsky and Joye [31] to incorporate inner product functional encryption.
Observe that [31] supports only inner product predicates but allows for hiding
the policy in the ciphertext. While our extension to the scheme of [31] also yields
a multi-authority ABE extended to support inner products as above, the details
of the transformation are quite different. We observe that the algebraic structure
of [31] makes it amenable to incorporating the IPFE functionality using ideas
developed in the literature for constructing IPFE generically from public-key
encryption which have special structural and homomorphic properties [3,7,10].
We proceed to describe this transformation next.

In an overly simplified version of the Michalevsky-Joye construction, one could
interpret the i-th key authority as simply sampling a pair of secret exponents
δi, wi ← Zp, where δi is regarded as the partial message masking term, while wi
is considered the i-th attribute bit binding term. Now each authority’s public key
is simply set as the group encodings

[
δi
]

and
[
wi
]
. Implicitly, the scheme uses

the linear combination of partial message masking terms δ =
∑
i δi to derive the

main message masking term (used for deriving the secret key encapsulating the
message, or the KEM key in short).
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To encrypt a message m under attribute x, the user chooses randomness
r ← Zp and computes

[
rδ
]
T

to be used as the KEM key, and binds each attribute
bit to a ciphertext component as

[
(xiα+wi)r

]
(where

[
α
]

is taken from the CRS).
It sets the ciphertext to be C0 =

[
r
]
, Cm = m ·

[
rδ
]
T

, and Ci =
[
(xiα+ wi)r

]
for i ∈ [n]. While a partial secret key for policy vector y for user GID is simply
generated as Ki,y =

[
δi− yiwih

]
where

[
h
]

is computed as H(GID) so as to bind
the different authorities’ secret keys. The decryption can be simply performed
given the bilinear operation as:

Dec({Ki,y}i,CT) = Cm∏
i
e(Ci,H(GID)yi )·

∏
i
e(Ki,y,C0)

=
m·
[
rδ

]
T[

〈x,y〉αrh+�����∑
i
wihyir

]
T
·
[
δr−�����∑

i
yiwihr

]
T

= m[
〈x,y〉αrh

]
T

As discussed above, we upgrade the [31] construction using ideas from [3,7,10]
as follows. During key generation, each authority now samples a vector of partial
masking terms instead of a single element, i.e. δi ← Z`p, and appropriately sets
the public key too. Implicitly, the main message masking term is now set as
δ =

∑
i δi. To encrypt a message vector u under attribute vector x, the user

chooses randomness r ← Zp and computes
[
rδ
]
T

to be used as the KEM key for
encrypting u index-by-index, and binds the attribute bit as before. Thus, only
the message binding ciphertext component changes to Cm =

[
rδ + u

]
T

. Looking
ahead, it will be decryptor’s job to first homomorphically take an inner product
between the Cm vector and the inner product key vector v. Next, a partial secret
key for policy vector y and inner-product vector v for user GID is generated as
Ki,y,v =

[∑
j δi,jvj − yiwih

]
. In words, the idea here is that the partial secret

key now uses a linear combination of its partial (un)masking term
∑
j δi,jvj

depending on the underlying inner-product vector v. The decryption can be
naturally extended by performing inner products via the bilinear operations.

As in the case of our first construction, the proof techniques in [31] do not
apply directly as they were specially designed for ABE which is an all-or-nothing
encryption primitive, and do not translate directly to IPFE. Again, we solve this
issue by a careful analysis in the dual system paradigm [34]. We refer the reader
to the full version for more details.

Function-Hiding DDFE for Inner Products. In this section, we describe the
main ideas in the construction of our function hiding DDFE for inner products.
The functionality of IP-DDFE was discussed in Section 1.3. Informally, the security
of DDFE requires that the adversary cannot distinguish two sets {CT0

i } and {CT1
i }

of ciphertexts even given a set {SKi} of secret keys and a set {MSKi} of master
secret keys of corrupted parties as long as two sets of values are the same that
are legitimately obtained from {CT0

i } and {CT1
i } using {SKi} and {MSKi}. Let

us recall dynamic decentralized inner product functional encryption (IP-DDFE)
by Chotard et al. [22].

The starting point of the IP-DDFE scheme of [22] is the multi-client inner
product functional encryption (IP-MCFE) scheme in [20], where participants
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{1, ..., n} in the system are a priori fixed, and there is an authority who generates
encryption keys mcEKi for each party and a master secret key mcMSK, which
is used to generate secret keys mcSK. Here, mcMSK = {mcMSKi}i∈[n] and
mcEKi = mcMSKi (and we denote an encryption key for i by mcMSKi in what
follows). We also recall that in MCFE, only a set of ciphertexts with the same label
can be decrypted. Chotard et al. [22] lifted the IP-MCFE scheme to an IP-DDFE
scheme via following steps. First, each party joins the system dynamically by
generating a key Ki of a pseudorandom function (PRF) as a master secret key
MSKi. In encryption and key generation for party set U , party i ∈ U generates
mcMSKi,U on the fly, which corresponds to mcMSKi of the IP-MCFE scheme
for participants U . Then, it can generate mcCTi,U and mcSKi,U with mcMSKi,U ,
which corresponds to CTi and SKi of the IP-DDFE scheme. Second, they introduce
a class of DDFE called DSum, which allows a decryptor to securely obtain
mcSKU =

∑
i∈U mcSKi,U from encryption of partial secret keys {mcSKi,U}i∈U .

Then, the decryptor can compute mcDec(mcSKU , {mcCTi,U}i∈U ). DSum also
plays a role in preventing combination of partial secret keys for which the agreed
vectors are inconsistent.

Our Function-Hiding IP-DDFE. Our approach is to lift function-hiding IP-MCFE
to function-hiding IP-DDFE following their blueprint. Unfortunately, there are
no function-hiding IP-MCFE schemes, and we need to start with constructing
this. Our first idea is to leverage the recent conversion by Abdalla et al. [1] from
IPFE to IP-MCFE. However, this idea does not work since all parties share the
same encryption key of an IPFE scheme in their converted schemes, and once a
single party is corrupted, the adversary can learn the entire function (or vector)
in secret keys. Thus, we could not achieve a function-hiding IP-MCFE scheme
even if we apply the conversion to a function-hiding IPFE scheme.

To address this challenge, we devise a new technique to convert function-
hiding IPFE to function-hiding IP-MCFE, which is inspired by the function-hiding
multi-input IPFE scheme by Datta et al. [23]. In their scheme, each party i has a
master secret key iMSKi of a function-hiding IPFE scheme, the ciphertext miCTi
of xi is iCTi[(xi, 1)], and the secret key miSK of {yi}i∈[n] is {iSKi[(yi, ri)]}i∈[n]
where ri are randomly chosen so that

∑
i∈[n] ri = 0. iCTi[x] and iSKi[y] denotes

the ciphertext of x and the secret key of y in the function-hiding IPFE scheme,
respectively. To lift their MIFE to MCFE, we need to add the label checking
mechanism and security against corruption of parties. Fortunately, we can achieve
the latter almost for free since each party uses independent master secret key and
corruption of a party does not affect other parties’ ciphertexts and secret keys.
We can achieve the former by changing miCTi to iCTi[(xi, ti)] where ti = H(lab)
is a hash of a label. Then, a decryptor can learn

∑
(〈xi,yi〉+ tiri), which reveals∑

〈xi,yi〉 only when t1 = · · · = tn. We can prove the masking term tiri hides
〈xi,yi〉 under the SXDH assumption in the random oracle model.

Our next step is to lift function-hiding IP-MCFE to function-hiding IP-DDFE.
To do so, we must address additional technical challenges as described next.
In the original definition of IP-DDFE, recall that each secret key is associated
with (yi,U ,y = {yi′}i′∈U ) where the first element yi is a vector for a linear
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function while the third element y is an agreed vector that controls combination
of partial secret keys. More precisely, a decryptor can combine partial secret
keys to obtain a full secret key for y only when it has {SKi}i∈U associated with
y. However, y cannot be hidden in the blueprint by Chotard et al. To tackle
this, we observe that the role of the agreed vector is analogous to a label in the
ciphertext, controlling combination of partial secret keys. Thus, we alternatively
use an independent label labK to create a natural symmetry between inputs for
encryption and key generation. Now, since the vector yi for a linear function can
be hidden by function-hiding IP-MCFE, we obtain function-hiding IP-DDFE.

Another deviation from their blueprint arises in the part that securely
generates mcSKU from mcSKi,U . In our IP-MCFE construction, mcSKi,U =
iSKi[(yi, ri)] and mcSKU = {iSKi[(yi, ri)]}i∈U . Thus, we do not need to sum
up mcSKi,U to obtain mcSKU , instead, each party has to somehow generate a
secret share ri without interaction such that

∑
i∈[U ] ri = 0 only when all mcSKi,U

are generated on behalf of the same label. To handle this issue, we employ a
technique by Chase and Chow [18] to generate such shares via pseudorandom
function. Please see Section 4 for more details.

Distributed Ciphertext-Policy ABE The recent construction of Agrawal-
Yamada [8] proposed a succinct ciphertext-policy ABE for log-depth circuits
provably secure under LWE in the bilinear generic group model. In our work,
we extend the setup and key generation in [8] among a polynomial number of
authorities that are working completely non-interactively and asynchronously.
We start by describing the syntax of a distributed CP-ABE scheme. In a fully
distributed setting, the authorities run their local setup algorithms individually
to generate a fresh master public-secret key pair (PK,MSK) per authority such
that given a sequence of, say N , master public keys {PKi}i∈[N ], an encryptor
could encrypt a message µ for a predicate circuit F of its choice. Such ciphertexts
can be decrypted after obtaining a partial predicate key from all N authorities
for a consistent identifier GID, and attribute vector x such that F (x) = 1. Note
that here the key generation algorithm is run locally (and independently) by each
authority, which on input its master key MSKi along with GID and attribute x,
computes a partial key SKi,GID,x. While correctness is natural, security must be
defined carefully.

In this work, we consider the strongest form of corruption, where we allow
the adversary to pick the key parameters for all corrupt authorities, and also
allow it to query honest authorities on identifier-attribute pairs (GID,x) such
that F ∗(x) = 1 (where F ∗ is the challenge predicate circuit) as long as there
is at least one honest authority to which the adversary did not query the pair
(GID,x). All other queries are unconstrained since if F ∗(x) = 0, then such keys
should not be useful for decryption to begin with. The intuition behind allowing
the queries to honest authorities such that F ∗(x) = 1 is that we want to prevent
partial secret keys for two distinct accepting attributes provided by two distinct
authorities to be usable for decryption.

To describe our construction, we recall the high level structure of the Agrawal-
Yamada scheme [8], which in turn uses the BGG+ ABE construction [13]. Roughly,
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a BGG+ ciphertext is sampled in two steps — first, it samples a sequence of 2`
encodings {ψi,b}i,b; second, depending upon the attribute x the final ciphertext
consists of ` encodings {ψi,xi}i. (Note that BGG+ is a key-policy scheme, whereas
we are building a ciphertext-policy system.) The main idea behind the ciphertext-
policy ABE of [8] is as follows:

Setup : Sample 2` random exponents wi,b, store it as master secret key, and give
its encoding {

[
wi,b

]
1}i,b as the public key.

KeyGen : To generate a secret key for attribute x ∈ {0, 1}`, first sample a random
exponent δ and then given out

[
δ/wi,xi

]
2 for i ∈ [`] as the secret key.

Enc : To encrypt under predicate F , the encryptor samples all 2` BGG+ encodings
{ψi,b}i,b, and also samples a random exponent γ. It then gives out the
ciphertext as a BGG+ secret key for predicate C along with encodings[
γwi,bψi,b

]
1 for i ∈ [`], b ∈ {0, 1}.

Dec : A decryptor pairs the encodings
[
γwi,xiψi,xi

]
1 with

[
δ/wi,xi

]
2 to learn[

γδψi,xi
]
T

, and then it performs the BGG+ decryption in the exponent to
learn the plaintext.

For the multi-authority extension, each authority samples its own sequence of
2` random exponents w(j)

i,b for j ∈ [N ]. Then during encryption, the encryptor N -
out-of-N (additively) secret shares the BGG+ encodings {ψi,b}i,b into {φ(j)

i,b }i,b for
j ∈ [N ]. Now it encodes each sequence of {φ(j)

i,b }i,b terms under the corresponding
authority’s master public key as above. During decryption, a decryptor will first
recover {φ(j)

i,xi
}i for all j in the exponent, then add them to reconstruct the actual

BGG+ ciphertext {ψi,xi}i which it can decrypt as before. In order to let multiple
independent authorities sample the same δ, we rely on a hash function which we
model as a ROM, and set

[
δ
]

2 = H(GID).
Although our multi-authority transformation is natural, the proof does not

follow trivially from [8]. This is primarily due to the fact that in the distributed
setting, the adversary could potentially make key queries on accepting attributes
as long as there is at least one honest party that does not receive the same query.
Such queries did not exist in the single-authority setting. However, we can extend
the single-authority proof to the multi-authority setting by a careful analysis of
the additional “bad” zero-test queries that an adversary can make. Please see
the full version for more details.

1.5 Predicting New and Useful Primitives via MPFE

One of the most exciting benefits of MPFE is that it provides the right framework
to pose new, compelling questions that have not been studied before. For example,
a very interesting question is what new kinds of dynamic key accumulation are
possible, namely how to combine keys of different users chosen dynamically. So
far, most existing literature on FE systems that enable aggregation of multiple
decryption keys still consider very restricted scenarios: (i) each partial decryption
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key corresponds to a portion of a much larger decryption key of a single user (e.g.,
distributed/decentralized/multi-authority FE etc), (ii) each partial decryption
key corresponds to a function and many such keys may be combined if they each
encode the same function (e.g. adhoc MIFE, D-MCFE).

However, the ability to combine keys in much more creative ways can enable
several cool new applications. As an example, consider the following notion of
“reputation point based encryption” – in this setting, each user key is associated
with a subject tag T (say math, history etc) and a reputation value v (that
is, a point score denoted as an integer). Now an encryptor specifies a tag T ′

along with a threshold reputation value w, and hides its message m under it.
That is, CT(T ′, w,m) denotes such a ciphertext, and we require the functionality
that such a ciphertext should be decryptable by any sequence of user keys
SK(T1, v1), . . .SK(T`, v`) where all the subject tags match (T ′ = T1 · · · = T`) and
the combined reputation value of the group

∑
i≤` vi is greater than threshold w.

For example, an encryption of a message under subject ‘math’ and minimum
reputation value of 1000 points can be decrypted by not only a single user with
1000 reputation points in ‘math’ but also by say a group of three users with
400, 250, 350 reputation points (respectively) in ‘math’, but not by a group of
users who satisfy either the subject check or the reputation point check but not
both. To the best of our knowledge, such an encryption framework has not been
studied before, but our MPFE framework enables expressing and introducing
such an encryption functionality.

2 Multi-Party Functional Encryption

In this section, we define our notion of multi-party functional encryption (MPFE).
Let nx be the number of ciphertext inputs and ny be the number of key inputs.
Let X = Xpub×Xpri be the space of ciphertext inputs and Y = Ypub×Ypri be the
space of key inputs. We define two aggregation functions as Aggx : Xnx → X ∗,
and Aggy : Yny → Y∗.

An MPFE scheme is defined as a tuple of 4 algorithms/protocols MPFE =
(Setup,KeyGen,Encrypt,Decrypt). To suitably capture existing primitives, we
define our Setup algorithm/protocol to run in three modes, described next.
Setup modes. The Setup algorithm/protocol can be run in different modes:
central, local, or interactive. For mode ∈ {Central, Local, Interactive}, consider the
following.

Central : Here the Setup algorithm is run by one trusted third party which outputs
the master secret keys and encryption keys for all users in the system.

Local : Here it is run independently by different parties without any interaction,
and each party outputs its own encryption key and/or master secret key.

Interactive : Here it is an interactive protocol run by a set of users, at the end of
which, each user has its encryption key and/or master secret key. We note
that these keys may be correlated across multiple users.

A multi-party functional encryption (MPFE) consists of the following:
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Setup
(
1λ, nx, ny,Aggx,Aggy

)
: This algorithm/protocol can be executed in any

one of the three modes described above.7 Given input the security parameter,
number of ciphertext inputs nx, number of key inputs ny and two aggregation
functions Aggx, Aggy as defined above, this algorithm outputs a set of
encryption keys {EKi}i≤nx , master secret keys {MSKi}i≤ny and public key
PK.

KeyGen (PK,MSK, j, y = (ypub, ypri)): Given input the public key PK, a master
secret key MSK, user index j ∈ [ny] and a function input y = (ypub, ypri),
this algorithm outputs a secret key SKy.

Encrypt (PK,EK, i, x = (xpub, xpri)): Given input the public key PK, an encryp-
tion key EK, user index i ∈ [nx], an input x = (xpub, xpri), this algorithm
outputs a ciphertext CTx.

Decrypt
(
PK, {SKj}j≤ny , {CTi}i≤nx

)
: Given input the public key PK, a set of

secret keys {SKj}j≤ny and a set of ciphertexts {CTi}i≤nx , this algorithm
outputs a value z or ⊥.

We remark that in the local setup mode, it will be helpful to separate the setup
algorithm into a global setup, denoted by GSetup along with a local setup, denoted
by LSetup, where the former is used only to generate common parameters of the
system, such as group descriptions and such.

Correctness. We say that an MPFE scheme is correct if, ∀(nx, ny) ∈ N2, ciphertext
inputs xi ∈ X for i ∈ [nx], key inputs yj ∈ Y for j ∈ [ny], message and function
aggregation circuits Aggx and Aggy, it holds that:

Pr

z = z′ :

(PK, {EKi}, {MSKj})← Setup(1λ, nx, ny,Aggx,Aggy)
CTi ← Encrypt(PK,EKi, i, xi) ∀i ∈ [nx]
SKj ← KeyGen(PK,MSKj , j, yj) ∀j ∈ [ny]
z ← Decrypt

(
PK, {SKj}j≤ny , {CTi}i≤nx

)
z′ = U

(
Aggx({xi}),Aggy({yj})

)
 = 1.

Recall that U is the universal circuit with appropriate input and output size.

Indistinguishability based security. Next, we define security of MPFE. The security
definition is modelled in a similar fashion to MIFE security [24, §2.2] while taking
into account corruption queries.

For any choice of parameters λ, nx, ny, aggregation functions Aggx,Aggy, and
master keys K = (PK, {EKi}i∈[nx], {MSKj}j∈[ny ])← Setup(1λ, nx, ny,Aggx,Aggy),
we define the following list of oracles:

CorruptK(·), upon a call to this oracle for any i ∈ [nx] or j ∈ [ny], the adversary
gets the corresponding encryption key EKi or master secret key MSKj . In the
case of a local setup, the adversary could instead also supply the oracle with
adversarially generated keys for the corresponding user; whereas in case of an
interactive setup, the adversary could simulate the behavior of the queried user
7 We omit specifying the mode in the syntax for notational brevity.
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index in the setup protocol. (Let Sx ⊆ [nx] and Sy ⊆ [ny] denote the set of
user indices for which the corresponding encryption and master keys have been
corrupted.)8

KeyK,β(·, ·), upon a call to this oracle for an honest user index j ∈ [ny], function
inputs (yk,0j , yk,1j ) (where yk,bj =

(
yk,bj,pub, y

k,b
j,pri

)
for b ∈ {0, 1}), the challenger first

checks whether the user j was already corrupted or not. That is, if j ∈ Sy, then
it sends nothing, otherwise it samples a decryption key for function input yk,βj
using key MSKj and sends it to the adversary. (Here β is the challenge bit chosen
at the start of the experiment.)

EncK,β(·, ·), upon a call to this oracle for an honest user index i ∈ [nx], message
inputs (x`,0i , x`,1i ) (where x`,bi =

(
x`,bi,pub, x

`,b
i,pri

)
for b ∈ {0, 1}), the challenger first

checks whether the user i was already corrupted or not. That is, if i ∈ Sx, then
it sends nothing, otherwise it samples a ciphertext for input x`,βi using key EKi
and sends it to the adversary.

We let Qx and Qy be the number of encryption and key generation queries
(respectively) that had non-empty responses. Let Qx = {(i, (x`,0, x`,1))}`∈[Qx] be
the set of ciphertext queries and Qy = {(j, (yk,0j , yk,1j ))}k∈[Qy ] be the set of key
queries.

We say that an adversary A is admissible if:

1. For each of the encryption and key challenges, the public components of
the two challenges are equal, namely x`,0pub = x`,1pub for all ` ∈ [Qx], and
yk,0pub = yk,1pub for all k ∈ [Qy].

2. For each of the encryption and key challenges, the private components of the
two challenges are also equal, namely x`,0pri = x`,1pri for all ` ∈ [Qx] whenever
(i, (x`,0, x`,1)) ∈ Qx and i ∈ Sx, and yk,0pri = yk,1pri for all k ∈ [Qy] whenever
(j, (y`,0, y`,1)) ∈ Qy and j ∈ Sy. That is, the private components must be
the same as well if the user index i or j, that the query was made for, was
corrupted during the execution.

3. There do not exist two sequences (−→x 0,−→y 0) and (−→x 1,−→y 1) such that:

U
(
Aggx({x0

i }),Aggy({y0
j })
)
6= U

(
Aggx({x1

i }),Aggy({y1
j })
)

and i) for every i ∈ [nx], either xbi was queried or EKi was corrupted, and
ii) for every j ∈ [ny], either ybj was queried or MSKj was corrupted, and

8 Note that in case EKi is completely contained in some MSKj then make a master
secret corruption query for j will also add the corresponding index i to Sx, and
vice versa. At a very high level, although having separate aggregation functions for
partial secret key and ciphertexts as part of the framework allows us to capture a
highly expressive class of encryption scheme; defining the most general notion of
security for MPFE that captures all different types of setup and key distribution
settings could be very dense. To that end, here we provide a clean security game
which captures the existing encryption primitives. Capturing security for each setup
mode and corruption model individually would be more precise in certain settings.
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iii) at least one of inputs
{
xbi
}
,
{
ybj
}

were queried and indices i, j were not
corrupted. (Note that if i ∈ [nx] or j ∈ [ny] were queried to the Corrupt
oracle, the adversary can generate partial keys or ciphertexts for any value
of its choice.)
An MPFE scheme (Setup,KeyGen,Encrypt,Decrypt) is said to be IND secure

if for any admissible PPT adversary A, all length parameters nx, ny ∈ N, and
aggregation functions Aggx,Aggy, there exists a negligible function negl(·) such
that for all λ ∈ N, the following holds

Pr

ACorruptK(·),KeyK,β(·),EncK,β(·)(1λ,PK) = β :
K← Setup(1λ, nx, ny,Aggx,Aggy),

K = (PK, {EKi}i, {MSKj}j),
β ← {0, 1}

 ≤ 1
2+negl(λ).

Remark 2.1 (Weaker notions of security). We say the scheme is selective IND
secure if the adversary outputs the challenge message and function pairs at the
very beginning of the game, before it makes any queries or receives the PK.
One may also consider the semi-honest setting, where the Corrupt oracle is not
provided, or the case of static corruptions where the adversary provides all its
corruptions once and for all at the start of the game.

Due to space constraints, we provide our definition of dynamic MPFE in the
full version, and also provide a general feasibility of MPFE for circuits from the
minimal assumption of MIFE for circuits.

3 Multi-Authority ABE ◦ IPFE for LSSS Access Structures

In this section, extend the construction of Abdalla et al. [4] (ACGU20) to the
multiparty setting. As discussed in Section 1, we support ny = n for some fixed,
polynomial n and Local mode of setup algorithm, so that each key generator
generates its key components locally and independently. The number of encryptors
nx = 1 and public, private input (φ,v). Each of the n key generators has public
inputs (GIDi, xi,ui) where xi ∈ {0, 1} and ui ∈ Z`q for i ∈ [n]. The ciphertext
aggregation function remains trivial but the key aggregation function checks
if GID1 = GID2 = . . . = GIDn, u1 = u2 = . . . = un, and outputs (fx,u) if so,
where x = (x1, . . . , xn) and fx is a function that takes as input three arguments
(φ,v,u) and outputs 〈u,v〉 if φ(x) = 1.

In other words, we build a multi-authority attribute-based inner product
functional encryption (MA-AB-IPFE) scheme for linear secret sharing schemes
(LSSS) access structures. We rely on simple asumptions over bilinear maps.

3.1 Specializing the MPFE Syntax
Since our framework of MPFE described in Section 2 is general enough to capture
a large family of functionalities, using the general syntax as-is would result in a
cumbersome definition in which multiple parameters are non-functional. Hence,
we specialize the general framework to the specific functionality of interest here
for ease of exposition.
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Syntax. A MA-AB-IPFE scheme for predicate class C = {Cn : Xn → {0, 1}}n∈N
and inner product message space U = {U`}`∈N consists of the following PPT
algorithms:

GSetup(1λ)→ PP. On input the security parameter λ, the setup algorithm
outputs public parameters PP.

LSetup(PP, 1n, 1`, i)→ (PK,MSK). On input the public parameters PP, attribute
length n, message space index `, and authority’s index i ∈ [n], the authority
setup algorithm outputs a pair of master public-secret key (PK,MSK) for the
i-th authority.

KeyGen(MSKj ,GID, b,u)→ SKj,GID,b,u. The key generation algorithm takes as
input the authority master secret key MSKj , global identifier GID, an attribute
bit b ∈ {0, 1}, and key vector u ∈ U`. It outputs a partial secret key SKj,GID,b,u.

Enc({PKi}i∈[n], C,v)→ CT. The encryption algorithm takes as input the list of
public keys {PKi}i, predicate circuit C, and a message vector v ∈ U`, and
outputs a ciphertext CT.

Dec({SKi,GID,x,u}i∈[n],CT)→ m/⊥. On input a list of n partial secret keys
{SKi,GID,x,u}i and a ciphertext CT, the decryption algorithm either outputs
a message m (corresponding to the inner product value) or a special string
⊥ (to denote decryption failure).

Correctness. A MA-AB-IPFE scheme is said to be correct if for all λ, n, ` ∈ N,
C ∈ Cn, u,v ∈ U`, x ∈ Xn,GID, if C(x) = 1, the following holds:

Pr

Dec(SK,CT) = 〈u,v〉 :

PP← GSetup(1λ)
∀i ∈ [n] : (PKi,MSKi)← LSetup(PP, 1n, 1`, i)
∀j ∈ [n] : SKj,GID,xj ,u ← KeyGen({PKi}i,MSKj ,GID, xj ,u)
CT← Enc({PKi}i, C,v), SK = {SKi,GID,xi,u}i

 = 1.

Security. In terms of security, a MA-AB-IPFE provides powerful notion of
encrypted message vector indistinguishability where the adversary is allowed to
corrupt the key generation authorities and also make key queries for message
vector distinguishing key vectors (as long as the attribute does not satisfy the
encrypted predicate). Below we provide the selective security variant of the
corresponding property.9

Definition 3.1 (Selective MA-AB-IPFE security with static corruptions).
A MA-AB-IPFE scheme is selectively secure with static corruptions if for every
stateful admissible PPT adversary A, there exists a negligible function negl(·)

9 In this work, we only focus on standard semantic security, but one could also
amplify to its CCA counterpart by relying on the generic CPA-to-CCA amplification
techniques [28].
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such that for all λ ∈ N, the following holds

Pr

AO(key,·,·,·)({PKi}i∈[n]\S∗ ,CT) = b :

PP← GSetup(1λ)
(1n, 1`, S∗, C, (v0,v1), {PKi}i∈S∗)← A(1λ,PP)
∀i ∈ [n] \ S∗ : (PKi,MSKi)← LSetup(PP, 1n, 1`, i)
b← {0, 1},CT← Enc({PKi}i∈[n], C,vb)
key = {(PKi,MSKi)}i∈[n]\S∗


≤ 1

2 + negl(λ),

where the oracle O(key, ·, ·, ·) has the master key for honest authorities hardwired.
The oracle on input a tuple of a global identifier GID, an authority index j ∈ [n]\S∗,
and an attribute-key vector pair (b,u), responds with a partial secret key computed
as SKj,GID,b,u ← KeyGen(MSKj ,GID, b,u). Note that the adversary is only allowed
to submit key queries for non-corrupt authorities (i.e., j /∈ S∗). Also, the adversary
A is admissible as long as every secret key query made by A to the key generation
oracle O satisfies the condition that — (1) either 〈u,v0〉 = 〈u,v1〉, or (2) C does
not accept any input x such that xj = b for (b, j) ∈ QGID where QGID contains
the attribute bits queries for GID10.

3.2 Construction

Let Gen be a composite-order bilinear group generator. Also, let G and GT be the
source and target groups, respectively. Additionally, we rely on a hash function
H : {0, 1}∗ → G that maps global identities GID to elements of G and we later
model it as a random oracle in the proof. Below we provide our MA-AB-IPFE
scheme based on composite-order bilinear maps for the predicates described as
an access policy for a linear secret sharing scheme.

GSetup(1λ)→ PP. The setup algorithm samples a bilinear group as follows

(p1, p2, p3,G,GT , e (·, ·))← Gen(1λ, 3).

It samples a random generator g1 ∈ G1, and sets the global public parameters
as PP = (g1, N = p1p2p3,G,GT , e (·, ·)).
(Notation. Here and throughout, we use the ‘bracket’ notation for
representing group elements. Where [1]1 := g1, and [1]T,1 := e (g1, g1).)

LSetup(PP, 1n, 1`, i)→ (PK,MSK). The algorithm samples two random vectors
α,w ← Z`N , and sets the authority public-secret key pair as PK =
(PP,

[
α
]
T,1,

[
w
]

1) and MSK = (α,w). (Here and throughout, note that[
w
]

1 and similar terms can be computed as gw
1 .)

KeyGen(MSKj ,GID, b,u)→ SKj,GID,b,u. It parses the authority key as described
above. If b = 0, it sets the secret key as empty string. Otherwise, it first

10 Note that in general this could be a non-falsifiable condition to check if S∗ is ω(log λ)
and the predicate class contains general non-monotonic functions.
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hashes the GID to create a masking term
[
µ
]
∈ G as

[
µ
]

= H(GID). It then
outputs the secret key as

SKj,GID,b,u =
[
〈α,u〉

]
1 ·
[
µ · 〈w,u〉

]
.

Note that since the vectors u,w,α are known to the algorithm in the clear,
thus the above key term can be computed efficiently.

Enc({PKi}i∈[n], (A, ρ),v)→ CT. The encryption algorithm first parses the keys
PKi as (PP,

[
αi

]
T,1,

[
wi

]
1), and the predicate contains an m1 ×m2 access

matrix A with function ρ mapping the rows to the attribute positions. It
samples a m2 × ` matrix S and (m2 − 1)× ` matrix T′ uniformly at random
as S← Zm2×`

N and T′ ← Z(m2−1)×`
N . It sets a m2× ` matrix T, and arranges

two m1 × ` matrices ∆ and Γ as

T =
(

0>
T′
)
, ∆ =

 α>ρ(1)
...

α>ρ(m1)

 , Γ =

 w>ρ(1)
...

w>ρ(m1)

 .

That is, the matrix T contains all zeros in the first row and is random
otherwise. It also samples a random vector as r← Zm1

N , and computes the
ciphertext CT = (C0, C1, C2, C3) as:

C0 =
[
s1 + v

]
T,1, C1 =

[
A · S + ∆� (r⊗ 1>)

]
T,1,

C2 =
[
r
]

1, C3 =
[
A ·T + Γ� (r⊗ 1>)

]
1.

Here the vector s1 is the first column vector of matrix S> (that is, s1 = S> ·e1
where e1 is the first fundamental basis vector of Zm2

N ).
Dec({SKi,GID,xi,u}i∈[n],CT)→M. It parses the secret key and ciphertext as

described above. Let (A, ρ) be the access policy associated with the ciphertext,
and u be the key vector associated with the partial secret keys. (This could
either be explicitly addded to the ciphertext and secret keys above, or passed
as an auxiliary input.)
The decryptor first computes the LSSS reconstruction vector z such that
z> ·A = e>1 = (1, 0, . . . , 0). The decryptor then arranges the key terms as

K =

 SKρ(1),GID,xρ(1),u
...

SKρ(m1),GID,xρ(m1),u


and recovers the inner product message value M by computing the discrete
log of the following the following:[

M
]
T,1 = 〈C0,u〉

(z> · C1 · u) ·
z> · e (K,C2)

e (H(GID), z> · C3 · u)

where the matrix vector operations involving group elements and exponents
are performed by first raising the exponent of each term (component-by-
component) for performing multiplication in the exponent, and then followed
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by multiplication of the resulting encodings to simulate addition being
performed in the exponent. Also, the operation e (K,C2) performs the pairing
operation element-by-element for each element of the vector.

3.3 Correctness and Security

Due to space constraints, the proof is provided in the full version [6].

4 Function-Hiding DDFE for Inner Products

In this section, we present our function-hiding decentralized dynamic inner
product functional encryption (IP-DDFE) scheme. As described in Section 1, we
have the setup algorithm in the Local mode, so that each party i can dynamically
join the system by generating a public key PKi and a master secret key MSKi.
For encryption, party i sets (xpub, xpri) =

(
(UM , labM ),xi

)
where UM is the set

of parties whose inputs will be combined and labM is a label which imposes
a constraint on which values can be aggregated together. For key generation,
party i sets (ypub, ypri) =

(
(UK , labK),yi

)
where UK , labK have the same roles as

UM , labM , respectively. The function Aggx checks if the public inputs (UM , labM )
match for all parties and that all the ciphertexts are provided for the set UM . If
so, outputs (UM ,x) where x = (x1‖ . . . ‖xnx). The function Aggy checks that all
values UK and labK are the same for all parties. If so, it outputs the function
fUK ,y=(y1‖...‖yny ) which takes as input (UM ,x), checks that UM = UK and if so,
outputs 〈x,y〉.

As discussed in the introduction, we first obtain a function-hiding multi-client
inner product functional encryption (IP-MCFE) scheme, and then lift it to a
function-hiding IP-DDFE scheme in a non-black box manner. We first define
necessary notions to describe our IP-MCFE and IP-DDFE scheme. As before, we
will specialize the MPFE syntax for ease of exposition.

4.1 Specializing the MPFE Syntax

Syntax of MCFE. Let F be a function family such that, for all f ∈ F , f :
M1 × · · · ×Mn → Z. Let L be a label space. An MCFE scheme for F and L
consists of four algorithms.

Setup(1λ, 1n): It takes a security parameter 1λ and a number 1n of slots, and
outputs a public parameter PK, encryption keys {EKi}i∈[n], a master secret
key MSK. The other algorithms implicitly take PK.

KeyGen(MSK, f): It takes MSK and f ∈ F , and outputs a secret key SK.
Enc(i,EKi, xi, lab): It takes MSK, an index i ∈ [n], xi ∈Mi, and a label lab and

outputs a ciphertext CTi.
Dec(CT1, ...,CTn,SK): It takes CT1, ...,CTn and SK, and outputs a decryption

value d ∈ Z or a symbol ⊥.
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Correctness. An MCFE scheme is correct if it satisfies the following condition.
For all λ, n ∈ N, (x1, ..., xn) ∈M1 × · · · ×Mn, f ∈ F , lab ∈ L, we have

Pr

d = f(x1, ..., xn) :

(PK, {EKi},MSK)← Setup(1λ, 1n)
CTi ← Enc(i,EKi, xi, lab)
SK← KeyGen(MSK, f)
d = Dec(CT1, ..., ,CTn,SK)

 = 1.

Security. We basically adopt the security definition for MCFE in [2] and extend
it to function-hiding security. We also introduce a selective vatiant because our
final goal is IP-DDFE with selective security, and selectively secure IP-MCFE is
sufficient for the security analysis of our IP-DDFE scheme.

Definition 4.1 (Function-hiding security of MCFE). An MCFE scheme is
Leaky-xx-yy-function-hiding (xx ∈ {sel, sta, adt}, yy ∈ {any, pos}) if for every
stateful PPT adversary A, there exists a negligible function negl(·) such that for
all λ, n ∈ N, the following holds

Pr
[
β ← AQCor(),QEncβ(),QKeyGenβ()(PK) : β ← {0, 1}(PK, {EKi},MSK)← Setup(1λ, 1n)

]
≤ 1

2 + negl(λ)

where QCor(i) outputs EKi, QEncβ(i, x0
i , x

1
i , lab) outputs Enc(i,EKi, xβi , lab), and

QKeyGenβ(f0, f1) outputs KeyGen(MSK, fβ). Let qc,i,lab be the numbers of
queries of the forms of QEncβ(i, ∗, ∗, lab). Let HS be the set of parties on which
the adversary has not queried QCor at the end of the game, and CS = [n]\HS.
Then, the adversary’s queries must satisfy the following conditions.

– For i ∈ CS, the queries QEncβ(i, x0
i , x

1
i , lab) and QKeyGenβ(f0, f1) must

satisfy x0
i = x1

i and Leaky(i, f0) = Leaky(i, f1), respectively.11

– There are no sequences (x0
1, ..., x

0
n, f

0, lab) and (x1
1, ..., x

1
n, f

1, lab) that satisfy
all the conditions:
• For all i ∈ [n], [QEncβ(i, x0

i , x
1
i , lab) is queried and i ∈ HS] or [x0

i = x1
i ∈

Mi and i ∈ CS].
• QKeyGenβ(f0, f1) are queried.
• f0(x0

1, ..., x
0
n) 6= f1(x1

1, ..., x
1
n).

– When xx = sta: the adversary cannot query QCor after querying QEnc or
QKeyGen even once.

– When xx = sel: the adversary must make all queries in one shot. That
is, first it outputs (CS, {i, x0

i , x
1
i , lab}, {f0, f1}) and obtains the response:

({EKi}i∈CS , {Enc(i,EKi, xβi , lab)}, {KeyGen(MSK, fβ)}).
– When yy = pos: for each lab ∈ L, either qc,i,lab > 0 for all i ∈ HS or
qc,i,lab = 0 for all i ∈ HS.

11 The leakage function captures information that EKi reveals from SK.

23



Syntax of DDFE. We define the syntax of DDFE. Note that we use an identifier
i ∈ ID to specify each party while they use PK for identifier in the original
definition [22], since it allows more precise indexing than the indexing by PK12.
We assume that the correspondence between id i and public key PKi is publicly
known, or it could be supplied as an input to the local setup algorithm. We
describe the syntax of DDFE in the context of MPFE and change some expressions
from the original definition. For instance, we use MSK instead of SK for secret
keys of each party, public/private inputs for Enc and KeyGen instead of using
empty keys, and so on.

Let ID,K,M be an ID space, a key space, and a message space, respectively.
K,M consist of a public part and a private part, that is, K = Kpri ×Kpub,M =
Mpri ×Mpub. Let f be a function such that f :

⋃
i∈N(ID × K)i ×

⋃
i∈N(ID ×

M)i → Z. A DDFE scheme for f consists of five algorithms.
GSetup(1λ): It takes a security parameter 1λ and outputs a public parameter

PP. The other algorithms implicitly take PP.
LSetup(PP): It takes PP and outputs local public parameter PKi and a master

secret key MSKi. The following three algorithms implicitly take PKi.
KeyGen(MSKi, k = (kpri, kpub)): It takes MSKi and k ∈ K, and outputs a secret

key SKi.
Enc(MSKi,m = (mpri,mpub)): It takes MSKi and m ∈ M, and outputs a

ciphertext CTi.
Dec({SKi}i∈UK , {CTi}i∈UM ): It takes {SKi}i∈UK , {CTi}i∈UM and outputs a

decryption value d ∈ Z or a symbol ⊥ where UK ⊆ ID and UM ⊆ ID
are any sets.

Correctness. An DDFE scheme for f is correct if it satisfies the following
condition. For all λ ∈ N, UK ⊆ ID, UM ⊆ ID, {i, ki}i∈UK ∈

⋃
i∈N(ID ×

K)i, {i,mi}i∈UM ∈
⋃
i∈N(ID ×M)i, we have

Pr

d = f({i, ki}i∈UK , {i,mi}i∈UM ) :

PP← GSetup(1λ)
PKi,MSKi ← LSetup(PP)
CTi ← Enc(MSKi,mi)
SKi ← KeyGen(MSKi, ki)
d = Dec({SKi}i∈UK , {CTi}i∈UM )

 = 1.

Note that we can consider the case where UK and UM are multisets as in the
original definition in [22]. However, we do not consider the case here since it
induces ambiguity that can be also found in [22]13. We assume that N contains 0
here and (ID × K)0 = {i, ki}i∈∅ = ∅. That is, UK and UM can be an empty set,
which corresponds to the case where Dec does not take secret keys/ciphertexts
as input.
12 In [22], some definitions have ambiguity that seems to stem from the indexing by

pk. For instance, correctness of DDFE in Definition 1 implicitly assumes that skpk is
uniquely decided by pk, while the syntax does not require such a condition. Another
example is the IP-DDFE construction in [22, § 7.2].

13 Concretely, when UK is a multiset, and i′ ∈ UK has multiplicity 2, how to treat
ki′ ∈ {ki}i∈UK is unclear.
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Security. We naturally extend the security definition for DDFE in [22] to the
function-hiding setting as follows.

Definition 4.2 (Function-hiding security of DDFE). An DDFE scheme is
xx-yy-function-hiding (xx ∈ {sel, adt}, yy ∈ {sym, asym}) if for every stateful
PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,
the following holds

Pr
[
β ← AQHonestGen(),QCor(),QEncβ(),QKeyGenβ()(PP) : β ← {0, 1}PP← GSetup(1λ)

]
≤ 1

2 + negl(λ).

Each oracle works as follows. For i ∈ ID, QHonestGen(i) runs (PKi,MSKi) ←
LSetup(PP) and returns PKi. For i such that QHonestGen(i) was queried, the ad-
versary can make the following queries: QCor(i) outputs MSKi, QEncβ(i,m0,m1)
outputs Enc(MSKi,mβ), and QKeyGenβ(i, k0, k1) outputs KeyGen(MSKi, kβ).
Note that kβ and mβ consist of the private elements kβpri,m

β
pri and the public

elements kpub,mpub, respectively (we always require that k0
pub = k1

pub = kpub
and m0

pub = m1
pub = mpub as the public elements are not hidden in SK or CT).

Let S be the set of parties on which QHonestGen(i) is queried, HS be the set of
parties on which the adversary has not queried QCor at the end of the game, and
CS = S\CS. Then, the adversary’s queries must satisfy the following conditions.

– There are no sequences ({i, k0
i }i∈UK , {i,m0

i }i∈UM ) and ({i, k1
i }i∈UK , {i,m1

i }i∈UM )
that satisfy all the conditions:
• For all i ∈ UK , [QKeyGenβ(i, k0

i , k
1
i ) is queried and i ∈ HS] or [k0

i = k1
i ∈

K and i ∈ CS].
• For all i ∈ UM , [QEncβ(i,m0

i ,m
1
i ) is queried and i ∈ HS] or [m0

i = m1
i ∈

M and i ∈ CS].
• f({i, k0

i }i∈UK , {i,m0
i }i∈UM ) 6= f({i, k1

i }i∈UK , {i,m1
i }i∈UM ).

– When xx = sel: the adversary first generates a set S of honest users in one
shot. After that it makes the corruption, key generation, encryption queries
in one shot to obtain {MSKi}, {KeyGen(MSKi, kβ)}, {Enc(EKi,mβ)}.

– When yy = sym: for i ∈ CS, the queries QKeyGenβ(i, k0, k1) and
QEncβ(i,m0,m1) must satisfy k0 = k1 and m0 = m1, respectively14.

Definition 4.3 (Inner Product Functional Encryption (IPFE)). Let
Π = (p,G1,G2,GT , e, g1, g2) be bilinear groups. IPFE for Π is a class of FE
where M = GN

1 , and function f ∈ F is represented by [y]2 ∈ GN
2 where y ∈ ZN

p

and defined as f([x]1) = [〈x,y〉]T . We say IPFE is function-hiding if it has both
message and function privacy.

Definition 4.4 (IP-MCFE). Let B ∈ N be a bound of the infinity norm of
vectors. IP-MCFE is a class of MCFE where Mi = [−B,B]N, Z = Z, and
L = {0, 1}∗. The function f is represented by y ∈ [−B,B]nN and defined as
f(x1, ...,xn) = 〈(x1||...||xn),y〉.
14 The symmetric setting captures the case where MSKi can be used to not only

encrypt/key generation but also decryption/decoding of CTi/SKi.
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Definition 4.5 (IP-DDFE). Let B ∈ N be a bound of the infinity norm of vectors.
IP-DDFE is a class of DDFE where ID = {0, 1}∗, Kpri = Mpri = [−B,B]N,
Kpub =Mpub = 2ID × L, Z = Z for label space L = {0, 1}∗. The function f is
defined as, for {ki = (yi,UK,i, labK,i)}i∈U ′

K
and {mi = (xi,UM,i, labM,i)}i∈U ′

M
,

f({i, ki}i∈U ′
K
, {i,mi}i∈U ′

M
) =

{∑
i∈U ′

K
〈xi,yi〉 the condition below is satisfied

⊥ otherwise

– U ′K = U ′M , and ∀i ∈ U ′K ,UK,i = UM,i = U ′K .
– ∃(labK , labM ) ∈ L2,∀i ∈ U ′K , labK,i = labK , labM,i = labM .

Definition 4.6 (One key-label restriction for IP-DDFE). We define an
additional restriction for the adversary in the security game for IP-DDFE. We say
an IP-DDFE scheme is xx-yy-function-hiding under the one key-label restriction
if it satisfies Definition 4.2 where the adversary’s queries additionally satisfy the
following condition: QKeyGen with respect to user i ∈ ID and label labK ∈ L
(the query of the form of QKeyGen(i, ∗, ∗, ∗, labK)) can be made only once for
each pair (i, labK).

Definition 4.7 (All-or-nothing encryption (AoNE)). AoNE is a class of
DDFE where ID = {0, 1}∗, Mpri = {0, 1}L for some L ∈ N, Mpub = 2ID × L,
K = ∅, Z = {0, 1}∗. The function f is defined as, for U ′K ∈ 2ID and {mi =
(xi,UM,i, labM,i)}i∈U ′

M
,

f({i}i∈U ′
K
, {i,mi}i∈U ′

M
) =

{
{xi}i∈U ′

M
the condition below is satisfied

⊥ otherwise

– ∀i ∈ U ′M ,U ′M = UM,i.
– ∃labM ∈ L,∀i ∈ U ′M , labM,i = labM .

This means that KeyGen is unnecessary, and Dec works without taking secret
keys as input in AoNE (recall that U ′K can be an empty set).

Chotard et al. showed that sel-sym-IND-secure AoNE can be generically
constructed from identity-based encryption [22]15. We also use pseudorandom
functions and non-interactive key exchange with quite simple requirements, which
can be realized by the original Diffie-Hellman key exchange. We formally define
it in the full version.

4.2 Construction of Function-Hiding IP-MCFE

We first construct a function-hiding IP-MCFE scheme as a step to a function-
hiding IP-DDFE scheme. Let Π = (p,G1,G2,GT , e, g1, g2) be bilinear groups.
15 In AoNE, there are no secret keys and thus the IND-security defined in [22] is exactly

the same as function-hiding security in our paper.
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Let iFE = (iSetup, iKeyGen, iEnc, iDec) be a function-hiding IPFE scheme (recall
that iKeyGen, iEnc take a group-element vector as input instead of a Zp-element
vector (see Definition 4.3)) and H : L → G1 be a hash function modeled as a
random oracle. The construction of function hiding IP-MCFE for vector length N
is provided in Figure 4.1.

Setup(1λ, 1n): On input the security parameter 1λ, the number of slots 1n, the setup
algorithm outputs (PK,EKi,MSK) as follows.

{iMSKi}i∈[n] ← iSetup(1λ, 12N+2)
PK = Π, EKi = iMSKi, MSK = {EKi}i∈[n].

KeyGen(MSK, {yi}i∈[n]): The key generation algorithm takes as input the master secret
key MSK, and vectors {yi}i∈[n] and outputs SK as follows. It randomly chooses
ri ∈ Zp so that

∑
i∈[n] ri = 0 and compute

ŷi = (yi, 0N, ri, 0), iSKi ← iKeyGen(iMSKi, ŷi), SK = {iSKi}i∈[n].

Enc(i,EKi,xi, lab): The encryption algorithm takes as input user index i ∈ [n], an
encryption key EKi, an input vector xi, a label lab and outputs CTi as follows.

[tlab]1 = H(lab), x̂i = (xi, 0N, tlab, 0), CTi = iCTi ← iEnc(iMSKi, [x̂i]1).

Dec(SK,CT1, ...,CTn): The decryption algorithm takes as input the secret key SK,
ciphertexts CT1, ...,CTn and outputs d as follows.

[d]T =
∏
i∈[n]

iDec(iSKi, iCTi).

Fig. 4.1. Function-Hiding IP-MCFE

Correctness and Security. For correctly generated (SK,CT1, ...,CTn) for {yi,xi},
we have ∏

i∈[n]

iDec(iSKi, iCTi) = [
∑
i∈[n]

〈x̂i, ŷi〉]T = [
∑
i∈[n]

〈xi,yi〉]T .

In our scheme, EKi has a power to decode both CTi and SKi since EKi is a
part of MSK. This is captured as the function Leaky below.

Theorem 4.8. If the SXDH assumption holds in G1 and iFE is function-hiding,
then our IP-MCFE scheme is Leaky-sel-pos-function-hiding in the random oracle
model, where Leaky(i, {yi}i∈[n]) = yi.

Due to limited space, we present the proof in the full version.
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4.3 Construction of Function-Hiding IP-DDFE

We next construct our function-hiding IP-DDFE scheme. Intuitively, our IP-DDFE
scheme instantiates our IP-MCFE scheme in parallel per each party set via a
pseudorandom function in a non-black box manner. Nevertheless, in the security
proof, we can delete the information of the challenge bit β in a hybrid sequence
similarly to the security proof of IP-MCFE.

Let iFE = (iSetup, iKeyGen, iEnc,Dec) be a function-hiding IPFE scheme
with the length of the random tape for iSetup(1λ, 12N+2) being p(λ,N),
AoNE = (aGSetup, aLSetup, aEnc, aDec) be an all-or-nothing encryption scheme,
NIKE = (nSetup, nKeyGen, nSharedKey) be a non-interactive key exchange scheme,
{PRFK

1 } : L → Zp, {PRFK
2 } : 2ID → {0, 1}p(λ,N) be families of pseudorandom

functions where ID denotes an identity space, and H : 2ID × L → G1 is a hash
function modeled as a random oracle. Let K1,K2 be key spaces of PRF1,PRF2.
We assume that the range of nSharedKey and the key space for PRF1 are the
same, namely, K1. Our construction for vector length N is provided in Figure 4.2.

Correctness and Security. Thanks to the correctness of AoNE, we have ˜iCTi =
iCTi, ĩSKi = iSKi. For all labK , {Ki,j,1},U , we have∑

i∈U
ri =

∑
i∈U

∑
j∈U
i 6=j

(−1)j<iPRFKi,j,1
1 (labK) = 0

since Ki,j,1 = Kj,i,1. For all i ∈ U , iSKi and iCTi are generated under the
same iMSKi since they are generated using the same random tape PRFKi,2

2 (U).
Thus, thanks to the correctness of iFE, we have

∑
i∈U iDec(ĩSKi, ˜iCTi) =

[
∑
i∈U 〈x̂i, ŷi〉]T = [

∑
i∈U 〈xi,yi〉]T .

We show security via the following theorem.

Theorem 4.9. If {PRFK
1 }, {PRFK

2 } are families of pseudorandom functions,
NIKE is IND-secure, AoNE is sel-sym-IND-secure, the SXDH assumption holds
in G1, and iFE is function-hiding, then our IP-DDFE scheme is sel-sym-function-
hiding under the one key-label restriction in the random oracle model.

Due to space constraints, we present the proof in the full version.
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