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Abstract. We show that Yao’s garbling scheme is adaptively indistin-
guishable for the class of Boolean circuits of size S and treewidth w
with only a SO(w) loss in security. For instance, circuits with constant
treewidth are as a result adaptively indistinguishable with only a polyno-
mial loss. This (partially) complements a negative result of Applebaum
et al. (Crypto 2013), which showed (assuming one-way functions) that
Yao’s garbling scheme cannot be adaptively simulatable. As main tech-
nical contributions, we introduce a new pebble game that abstracts out
our security reduction and then present a pebbling strategy for this game
where the number of pebbles used is roughly O(δw log(S)), δ being the
fan-out of the circuit. The design of the strategy relies on separators, a
graph-theoretic notion with connections to circuit complexity.

1 Introduction

Suppose that Alice, who holds a function represented as a Boolean circuit C, and
Bob, who holds an input x to that function, want to jointly evaluate y = C(x)
such that Alice learns nothing about x while Bob learns nothing about C (except
for some side-information that is unavoidable). Yao put forward4 the following
elegant solution:

1. Alice first sends C̃, a “garbling” of the circuit C, to Bob,
2. Bob then obtains x̃, a “garbling” of his input x, from Alice via oblivious

transfer,
3. Bob finally evaluates C̃ on x̃ to learn y and sends it over to Alice.
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Yao showed how the garbling steps above can be carried out using a symmetric-
key encryption (SKE) scheme (and hence one-way functions). This has been
ever since referred to as Yao’s garbling scheme, and is the focus of this work. We
describe it next in slightly more details.

Yao’s garbling scheme. Let (Enc,Dec) be a (special) SKE. To garble a circuit
C : {0, 1}n → {0, 1}` with fan-in 2 and arbitrary fan-out:

1. Alice first samples a pair of secret keys (k0w, k1w) for each wire w in C.
2. For every gate g : {0, 1}2 → {0, 1} with left input wire u, right input wire
v, and output wire w, she then computes a garbling table g̃ consisting of the
four ciphertexts listed in Table 1.(a) in random order.

3. Finally, she constructs the output mapping µ which, for each output wire w,
maps each of the keys (k0w, k1w) to the bit it “encodes”.

The garbled circuit C̃ consists of all the garbling tables g̃ and the output map
µ, Alice sends it over to Bob. This constitutes the offline phase of the proto-
col. To garble an input x = x1‖ . . . ‖xn, Alice simply gives out, for each input
wire wi, the key kxiwi corresponding to the bit xi. This constitutes the online
phase of the protocol. To evaluate the garbled circuit on the garbled input, the
encryption scheme must satisfy a special correctness property : for each cipher-
text c ← Enck(m) there should exist a single key (i.e., k) such that decryption
passes. Using the keys in the garbling input, Bob can now evaluate C “over the
encryption” as follows:

1. Starting from the input level and in some topological order, he progressively
decrypts each garbling table in C̃ by trying the two keys in hand on all the
four ciphertexts for each garbling table. Thus, in each step, he learns one of
the secret keys corresponding to the output wire of the gate in consideration.

2. At the end of this process, Bob recovers exactly one of the two keys associated
with each output wire of the circuit. This allows him to use the output map
µ to “decode” the revealed output keys to the output string y ∈ {0, 1}`.

The scheme as described above is what is regarded to be the original formulation
of Yao’s garbling scheme [33,27]. A slight variant in which Alice defers sending
the output map µ to the online phase (along with x̃) is also of interest [27],
although it suffers from a higher online complexity compared to the original
formulation. To avoid confusion, we refer to the original scheme as Yao’s offline
garbling scheme and the modified scheme as Yao’s online garbling scheme or, in
short, Online Yao and Offline Yao respectively. Our work concerns the security
of Offline Yao.

Security. Even though garbling schemes found several applications (see [7]), its
security was formally analysed much later in [33]. They consider a simulation-
based notion5 captured by the following experiment:
5 This is an equivalent formulation of the definition in [33] and is taken from [27].
Our overview of the proof in [33] to be discussed in Section 1.2 has been adapted
accordingly.
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Table 1. Garbling tables for (a) general gate g (b) constant-0 gate and (c) constant-1
gate. u and v denote the two input wires and w denotes the output wire. The two keys
associated with (say) the wire u are denoted by k0u and k1u.

1. The adversary submits a circuit-input pair (C, x) to the challenger.
2. The challenger responds either with the real garbling (C̃, x̃) (i.e., real game

or Real) or with a “simulated” garbling where a constant-0 circuit is used
instead of C (i.e., simulated game or Sim). The constant-0 circuit has the
same topology as C but with all its gates replaced by constant-0 gates.

3. The adversary wins if it guesses which case it is.

Then they gave a reduction from the (special) indistinguishability of the under-
lying SKE for offline Yao. Note that the adversary in the above security game
must select the garbling input x at the same time as the circuit C. This is in
conflict with the online-offline nature of the actual scheme where Bob (a poten-
tial adversary) sees C̃ before he commits to x. Hence Bob could have chosen the
input, adaptively, based on C̃. In fact, such a scenario does arise in applications
such as one-time programs and secure outsourcing [6]. Therefore it is natural
to consider strengthening the above selective definition of simulatability to an
adaptive definition where A gets to choose the input after it sees the garbling of a
circuit of its choice. Unfortunately, this is too strong a notion to attain for Offline
Yao: it was shown in [4] that the online complexity of a garbling scheme (or, more
generally, a randomised encoding scheme) in the adaptive setting must exceed
the output-size of the circuit (given that one-way functions exist). Jafargholi
and Wichs [27] observed that this negative result does not apply to Online Yao
since the output map there gets sent in the online phase, and even managed to
prove adaptive simulatability of Online Yao. Security of other variants of Yao’s
garbling scheme was also proved [22,26]. However, the case of Offline Yao was
largely ignored.

1.1 Our Results

Although the negative result in [4] rules out adaptive simulatability of Offline
Yao, it is not clear if it also applies to its adaptive indistinguishability [7], which
is defined by the following experiment:

1. The adversary submits a pair of circuits (C0,C1) of the same topology to the
challenger

2. The challenger. flips a coin b and responds with C̃b.
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3. The adversary then submits a pair of inputs (x0, x1) such that C0(x0) =
C1(x1) and the challenger responds with x̃b.

4. The adversary wins if it guesses the bit b correctly.

Although it is a weaker notion of security, adaptive indistinguishability suffices
for certain applications (e.g., adaptively-indistinguishable symmetric-key func-
tional encryption [26]).

Selective Adaptive
Offline Yao Online Yao Offline Yao Online Yao

Simulatability [33] [4] [27]Indistinguishability This work

Table 2. Security of Yao garbling and its variants. The (only) negative result is high-
lighted in red.

Our results. We help (partially) complete the landscape for security of Yao’s
garbling (see Table 2). To this end, we characterise the adaptive indistinguisha-
bility of Offline Yao in terms of the treewidth6 of the circuit. Our main results
are informally stated below.

Theorem (main). Consider the class of Boolean circuits C of size S with
treewidth w = w(S). Offline Yao is adaptively indistinguishable for C with SO(w)

loss in security.

For Boolean circuits of constant (resp., poly-logarithmic) treewidth, we ob-
tain the following corollary.

Corollary. Offline Yao is adaptively indistinguishable for Boolean circuits of
size S and O(1) (resp., polylog(S)) treewidth with a polynomial (resp., quasi-
polynomial) in S loss in security.

Interpreting our results. Treewidth is a notion from algorithmic graph theory
that has found several applications in parametrised and circuit complexity (see
Section 1.3) Intuitively, it is a (graph) property that measures how “far” the
circuit is from a formula (and, more generally, how far a graph is from a tree):
in particular, the smaller the treewidth the closer the circuit is to a formula.
Therefore, it is not surprising that having a low treewidth limits how powerful
a circuit can be. A precise characterisation of this (from above) was given in
[19]: every circuit of size S and treewidth w = w(S) can be simulated in depth
6 Since treewidth is defined for undirected graphs, whenever we refer to the treewidth
of a directed graph (or a circuit) we refer to the treewidth of the graph obtained by
ignoring the direction of its edges.
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w log(S). Thus, e.g., circuits of constant treewidth can be simulated in NC1.
Whether the converse is true in general – i.e., whether NCi can be simulated
using circuits with treewidth O(logi−1(S)) – is an open problem to the best of our
knowledge.7 However it is partially true: namely, NC1 circuits can be simulated
using polynomial-sized Boolean formulae (which, by definition, have treewidth
1) [41,13]. Consequently, the first corollary applies to functions computable in
NC1.

Given the aforementioned negative result from [4], we find any proof of adap-
tive security for Offline Yao rather surprising. Nevertheless, there are scenarios
where our results also lead to improvements in concrete efficiency (even after the
loss in security is taken into account). We describe one such scenario next. Recall
from the discussion above that for functions computable in NC1, we show se-
curity of Offline Yao at only a polynomial loss. Moreover, the online complexity
of garbling such a function using Offline Yao depends only on the input length
n (times the security parameter λ). Now, note that PRGs of arbitrary stretch
(say nc for a constant c ∈ N) exist in NC1 [15,23]. However, if one were to use
Online Yao, then the online complexity is substantial (nc × λ). This example is
particularly interesting since Offline Yao for such a function is not simulatable
at all as a consequence of the negative result.

Finally, a remark on the optimality of our upper bound: it was recently
shown in [30] that any black-box reduction that proves indistinguishability of
Offline Yao (or, for that matter, Online Yao) must lose security by a factor that
is sub-exponential in the depth of the circuit. Therefore, there remains a gap
between the lower bound proved there and the upper bound shown here.

Implications to simulatability of Online Yao. It is worth pointing out that our
results may also imply tighter reductions for simulatability of Online Yao. The
reduction for simulatability of Online Yao from [27] loses a factor that is expo-
nential in the width of a circuit: our approach can be seen as an extension of their
techniques. Since treewidth is bounded from above by width, in cases where there
is a gap between treewidth and width for a circuit class, our approach would
lead to a tighter reduction for simulatability of Online Yao compared to [27]. A
more detailed explanation follows later in Remark 1.

Comparison with [26]. We conclude the section by comparing our result with
[26], which is also concerned with adaptively-indistinguishable garbled circuits.
The construction in [26] builds on [22] and therefore has Offline Yao as its ba-
sis. However, it requires (i) applying an additional layer of somewhere equivocal
encryption to the garbling table and (ii) modifying the circuit to be garbled in
order to make the security proof go through. These modifications lead to their
construction being less efficient compared to plain Offline Yao, but it does allow
them to prove adaptive indistinguishability. It is not clear if any of the ideas
employed there can be used to argue the indistinguishability of Offline Yao (this
is, in fact, posed as an open question there).

7 See this question (48504) posted on CSTheory, Stack Exchange.
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1.2 Technical Overview

Outline. Our starting point is the reduction provinf adaptive simulatability of
Online Yao [27]. The key idea in [27] is to abstract out the hybrid argument
using a pebble game on the circuit, which we call the black-gray (BG) pebble
game (Definition 8). To be precise, they showed that if a circuit allows a BG
pebbling strategy of length τ that uses σ (black) pebbles, then there exists a
reduction proving adaptive simulatability of Online Yao with a loss in security
at most O(τ2σ). This allows us to shift the focus from security reductions to
the conceptually-cleaner task of coming up with “pebble-efficient” strategies.
We start off below by describing this connection and then explain why this
approach falls short when it comes to arguing adaptive indistinguishability (or
simulatability) of Offline Yao. Next we show how this issue can be remedied, key
to it is a new pebble game, which we call the black-gray-red (BGR) pebble game
(Definition 11). Analogous to [27], we prove that if there exists a BGR pebbling
strategy of length τ that uses σ (“grayscale”, i.e. black or gray) pebbles, then
there exists a reduction for adaptive indistinguishability of Offline Yao where the
loss in security is at most O(τ2σ) (Theorem 6). Finally to complete the proof –
and as our main technical contribution – we describe a pebble-efficient strategy
for the BGR pebble game in which the number of (grayscale) pebbles used grows
only with the treewidth of the circuit (Theorem 5). The strategy has a divide-
and-conquer flavour and crucially relies on the notion of separators from graph
theory. We next elaborate on each of the steps above.

Pebble game and hybrids. The reduction in [27] builds on the reduction for
selective simulatability of Offline Yao [33]. Both these works follow a sophisti-
cated hybrid argument which can be described abstractly using a BG pebbling
strategy.

Pebbles and garbling modes. The BG pebble game (formally defined in Defini-
tion 8), as its name suggests, uses two types of pebbles: black and gray. A pebble
configuration P for a circuit C determines how the garbled circuit C̃ is simulated
in the hybrid HP . To be more precise, the pebble configuration P can associate
each gate g in C with a black or gray pebble. In order to translate P to the
garbling C̃, the simulator in hybrid HP does the following:

– if g carries no pebble in P, then the corresponding garbling table in C̃ consists
of an honest garbling table of g (Table 1.(a))

– if g carries a gray pebble, then the garbling table encodes a constant-0 gate
(Table 1.(b)).

– if g carries a black pebble then the garbling table encodes either a constant-0
or a constant-1 gate (Table 1.(c)) depending on the value of (the output wire
of) g when C is run on the garbling input x.

The three modes above of simulating individual gates are named real, simulated
and input-dependent modes respectively or, in short, Real, Sim and Input, re-
spectively (Table 3.(a)). Note that the real garbling game corresponds to the
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empty pebble configuration (since all the gates are honestly garbled), whereas
the simulated game will correspond to the all-gray configuration (since all the
gates have been replaced by the constant-0 gate).

Pebbling rules. Note that any arbitrary configuration of pebbles P describes a
valid hybrid HP . The role of the pebbling rules is to model indistinguishability
of neighbouring hybrids. To be more precise, if a pebble configuration Q can be
obtained from another configuration P by a valid pebbling move (or vice versa)
then the hybrids HP and HQ should be indistinguishable. Consequently a BG
pebbling strategyP , which must start from an empty configuration and end with
the all-gray configuration, leads to a valid sequence of hybrids that establishes
that the real garbling game and simulated garbling game are indistinguishable,
proving the security of the garbling scheme. In the BG pebble game, the following
moves (see Figure 1) are allowed:

g g8.1

g g8.2

Fig. 1. Rules for BG pebble game.

1. a black pebble can be placed on or removed from a gate g if and only if g’s
predecessor gates are pebbled black; and

2. a black pebble on a gate g can be replaced by a gray pebble if g’s successor
gates are pebbled, either black or gray.

To understand the rationale behind the two rules, one needs to take a closer
look at the structure of a garbling table in Yao’s scheme. Since this is not that
relevant to the current discussion, we refer the readers interested in more details
to Section 3.

Selective Simulatability of Offline Yao. Observe that in order to simulate C̃ in a
hybrid HP , the simulator only needs to know the output value of those gates that
are pebbled black in P (i.e., the gates in Input mode). In the selective setting,
since the adversary commits to the garbling input x in the offline phase, the
value of all the gates is available beforehand. Hence, in this case the simulator
has the luxury of using as many pebbles as it needs. Therefore the pebbling
strategy (implicitly) employed in [33] is the following:

1. starting from the input gates, pebble the circuit completely black in some
topological order, and then

2. starting from the output gates and in reverse topological order, replace each
black pebble with a gray pebble.
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To complete the description of the hybrid HP in the selective setting, one thing
remains to be addressed. For concreteness, let’s consider the simulated game,
which corresponds to the all-gray pebble configuration (the argument for other
hybrids is analogous). Note that it is not possible to send the honestly-generated
output map µ in HP since this will lead to the output being mapped to the all-0
string. However, since x is available in the offline phase, [33] resolved this issue by
programming the output map to map the zero-keys of the output wires to C(x).
The adversary cannot tell this from the honest output map since the change is
information-theoretic.

Since the above pebbling strategy takes at most 2S moves (and uses S black
pebbles) the corresponding hybrid argument only loses a 2S factor. It is possible
to further reduce to adaptive simulatability via random guessing, but this incurs
an additional loss in security that is exponential in the length of x.

Adaptive Simulatability of Online Yao. In order to avoid this exponential loss in
the adaptive setting, [27] had to mainly tackle two issues, both arising from the
fact that the garbling input x is now only available in the online phase.

1. Firstly, simulating the hybrids could not rely on the knowledge of the values
of too many gates in C.

2. Secondly, the output map could no longer be programmed in the offline phase
since the output C(x) is only determined in the online phase.

The first issue was resolved in [27] by employing BG pebbling strategies that
were more frugal in terms of the number of black pebbles used. To this end, they
proved that if there exists a BG pebbling strategy of length τ that uses σ black
pebbles, then the loss in the resulting security is at most O(τ2σ). Here, loosely
speaking, the 2σ factor is the cost of randomly guessing the output values of the
gates pebbled black, which they require in order to carry out the simulation of
the hybrids (as well as the reduction).8 To complete their proof, [27] described
two (generic) pebbling strategies: one where σ grows only with the width of
the circuit and another where σ grows only with the depth of the circuit. A
consequence of the latter is the adaptive simulatability of log-depth (i.e., NC1)
circuits with a polynomial loss in security.

The second issue, on the other hand, was basically side-stepped by modifying
the garbling scheme to defer the sending of the output map to the online phase,
i.e., by resorting to online Yao. This tweak allowed [27] to carry out a “deferred
programming” of the output map since the garbling input is available in the
online phase. The cost is an increased online complexity which is now dependent
also on the output size.

Indistinguishability of Offline Yao: Our Approach. Unfortunately, given
the negative result from [4], it is unlikely that a result as strong as [27] could

8 This is one of the earliest applications of the piecewise-guessing framework [24].
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be shown for adaptive simulatability of Offline Yao.9 However, as we will see,
relaxing the security requirement to adaptive indistinguishability offers some
wiggle room. The key to exploiting this, as we explain next, is to discard the
simulated garbling mode (Sim) in the hybrids altogether, which allows us to
argue security without having to program the output map.

Bypassing the simulated mode. A standard way to show that a simulation-based
definition implies an indistinguishability-based definition (e.g., think of semantic
security and IND-CPA) is to use a two-step hybrid argument where the simulated
game acts as an intermediary between the “left” and “right” indistinguishability
games. If one attempts to use this approach in our context and use the result
from [27] to argue adaptive indistinguishability of offline Yao garbling, we im-
mediately run into the issue with programming the output map. Thus it seems
that the necessity to program the output map is tied to the simulated game, and
hence to the simulated mode of garbling. The main idea behind our reduction is
therefore to avoid the simulated mode and instead only work with the real and
input-dependent modes, which do not require programming the output map.
Thus in all our hybrids, the output map is simply the honestly-generated output
map and therefore can be generated in the offline phase itself.

Our approach. Our idea is to directly replace – gate by gate – the honest garbling
table of gates in C0 (Real0) with that of gates in C1 (Real1). Since the luxury
of programming the output map is no longer available, it is crucial to ensure
that the evaluation of the garbled circuit in all intermediate hybrids is correct
at all times: even though C0(x0) = C1(x1) holds (by definition) there is no
guarantee that the output of the internal gates of C0 and C1 match. An error
propagated as a result of one circuit influencing the computation of another may
render the hybrids trivially distinguishable to the adversary (via evaluation of
the garbling). To this end, we employ the input-dependent modes for (C0, x0) and
(C1, x1) (resp., Input0 and Input1). In more details, in all our hybrids, we ensure
that a gate in Real0 mode is never adjacent to another gate in the Real1 mode.
This is accomplished by maintaining a “frontier” of gates in Input0 and Input1
mode in between the gates in real mode . This separation of the left (Real0 and
Input0) and right (Real1 and Input1) modes guarantees that the computations
belonging to the two circuits do not “corrupt” each other. We point out that
this is reminiscent of (circuit) simulation strategies adopted in certain works in
circuit complexity [19] (see Section 1.3).

The design of our black-gray-red (BGR) pebble game is carried out keeping
the above blueprint in mind. Looking ahead, one can think of it as a symmetrised
formulation of the BG pebble game. Our proof that a BGR strategy implies a
valid sequence of hybrids is mostly similar to that in [27]: we show that if there

9 Since pseudo-random generators (of arbitrary stretch) exist in NC1 [15,23], the
result in [4] rules out reductions with polynomial loss for offline Yao. This is in
stark contrast to the aforementioned positive result from [27] for online Yao for
NC1 circuits.
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exists a BGR pebbling strategy of length τ that uses σ grayscale (i.e. black or
gray) pebbles, then there exists a reduction to adaptive indistinguishability of
Offline Yao with a loss in security at most O(τ2σ) (Theorem 6).10 The bulk of
our technical work goes into coming up with pebble-efficient strategies for the
BGR pebble game. This task turns out to be considerably more involved than
for the BG pebble game (primarily due to the constraints introduced by the
additional rules in the BGR game). The best strategy we could come up with
exploits the treewidth w of the circuit, and as a result the number of (grayscale)
pebbles used is roughly σ := wδ log(S), where S is the size of the circuit and
δ its fan-out. The strategy has a divide-and-conquer flavour and crucially relies
on the notion of separators from graph theory [40,11]. In the remainder of the
technical overview, we informally present the BGR pebble game and then briefly
explain the treewidth-based BGR strategy.

BGR pebble game. Let g denote the location of a gate in G := Φ(C0) = Φ(C1),
the directed acyclic graph (DAG) underlying the circuits, and let g0 (resp., g1)
denote the corresponding gate in C0 (resp., C1). The BGR pebble game (formally
defined in Definition 11), as its name suggests, uses three types of pebbles: black,
gray and red. In order to translate a BGR pebble configuration P to the garbling
C̃, the simulator in hybrid HP does the following for all internal gates g:

– if g carries no pebble in P, then its garbling table in C̃ will be the honest
garbling table of g0,

– if g carries a black pebble then the honest garbling table will be replaced by
that of constant-0 or constant-1 gate depending on the output value of g0
when C0 is run on x0,

– if g carries a gray pebble, then the simulation is the same as in previous case
except that the garbling depends on the output value of g1 when C1 is run
on x1,

– if g carries a red pebble, then its garbling table in C̃ will be the honest
garbling table of g1.

The input is then garbled as follows: For the i-th input gate, if this gate carries no
pebble or a black pebble, then the i-th key in x̃ is the key corresponding to the ith
bit of x0, otherwise it is the key corresponding to the ith bit of x1. (The pebbles
on the output gates are simply ignored.) The four modes of simulation above
are real and input-dependent modes for the left and right game respectively or,
in short, Real0, Input0, Input1 and Real1 respectively (see Table 3.(b)). Note that
the semantics of gates that carry no pebble or a black pebble is the same as in
the BG pebble game (if one sets (C0, x0) = (C, x)), but a gray pebble is now
interpreted differently. A BGR pebbling strategy starts off with a configuration
with all gates empty (i.e., honest garbling of C0) but the goal is now to pebble
them all red (i.e., honest garbling of C1). Thus the extreme hybrids correspond to
the left and right games in the adaptive indistinguishability game. The pebbling
rules, listed below (see Figure 2), are designed keeping the above discussion in
10 We use the piecewise-guessing framework [24] instead of a direct argument as in [27].
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mind and so that indistinguishability of neighbouring hybrids can be argued
(Lemma 1):

11.1 11.3

11.2 11.2

Fig. 2. Rules for BGR pebble game.

1. a black pebble can be placed on or removed from a gate g if and only if g’s
predecessor gates are pebbled black; and

2. a black pebble on a gate g can be swapped with a gray pebble if g’s successor
gates are pebbled, either black or gray; and

3. a gray pebble on a gate g can be swapped with a red pebble if g’s predecessor
gates are pebbled gray.

Note that the dynamic between no pebbles and black pebbles is similar to the
dynamic between red and gray pebbles (hence the reason we consider it to be
a symmetric version of the BG pebble game). Since the output values of gates
which carry a black or gray pebble in P need to be known to carry out the
simulation of HP , the goal here is to minimise the number of such “grayscale”
pebbles.

Treewidth, separators and BGR pebbling strategies. Compared to the BG pebble
game, pebble-efficient strategies for the BGR pebble game are harder to come by.
(This is not surprising, in hindsight, given the negative result [4].) In particular,
the generic pebbling strategies used in [27] no longer work without incurring
a blow-up in the number of pebbles employed.11 Below we briefly explain our
treewidth-based strategy, the best (generic) strategy we could come up with.

Crucial to our strategy is the notion of separators. Informally, a separator
for a circuit C of size S is a subset of gates S such that removing S (and the
edges incident on it) from C partitions C into sub-circuits of “comparable” size.
Slightly more formally, S partitions C into sub-circuits C1, . . . ,Cp such that for
every sub-circuit Ci, |Ci| ≤ 2S/3 (say). In a classical result from graph theory,

11 The width-based BG strategy from [27,22] can be modified to obtain a comparable
BGR strategy for levelled circuits. However, the resulting security bounds do not
yield any advantage over simply guessing the input (which we want to avoid).
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it is shown that the size of separator of a graph (and therefore a circuit) is
at most its treewidth [40,11]. Since treewidth is a monotonous property – i.e.,
removing wires or gates from C can only decrease its treewidth – the process of
decomposition into sub-circuits using separators can be recursively carried out
further (using a different separator each time) till one ends up with constant-size
sub-circuits. Such a recursive decomposition is also carried out in the simulation
in [19, Theorem 2] (also see [9,35]).

Our pebbling strategy exploits this recursive decomposition to minimise the
number of grayscale pebbles used. To this end, the pebbling strategy maintains
long-term grayscale pebbles only at the separators. These pebbles help reduce
the task at hand to that of (recursively) pebbling the resulting sub-circuits, one
at a time reusing pebbles in that process. Therefore, our pebbling strategy can
be recursively described as follows:

– place grayscale pebbles at the separator S of G,
– recursively, one at a time, place red pebbles on each subcircuit Ci,
– replace the grayscale pebbles on S with red pebbles.

Since the depth of the recursion is bounded by O(logS) (thanks to the prop-
erty of the separator), the hope would be that the number of grayscale pebbles
maintained overall does not blow up. We show that this is indeed the case as
our main technical contribution (Theorem 5).

Theorem (main). Any circuit C of size S, fan-out δ and treewidth w can be
BGR pebbled using O(δw log(S)) grayscale pebbles.

Translating the above divide-and-conquer approach into an actual pebbling
strategy (Section 4) turns out to be tricky due to the intricate nature of the
BGR pebbling rules. We refer the readers to Section 4 for the details.

Epilogue. It is instructive to review the above pebbling strategy in terms of
the actual simulation. The (garbling tables of) circuit C0 is being progressively,
piece by piece, replaced by the (garbling tables of) circuit C1 as dictated by
the recursion, with the bulk of the replacement happening at the base of the
recursion. It is exactly those long-term grayscale pebbles placed on the separators
which act as the frontier between the pieces of C0 and C1. This ensures that
computations of the two circuits are insulated from each other .

Remark 1. We remark that our result on the BGR pebbling complexity can also
be used to prove tighter security bounds for simulatability of Online Yao for
circuit classes where the treewidth is smaller as the width. This is true since
any BGR sequence with complexity σ implies a BG sequence with complexity
at most σ: simply consider the BG sequence obtained from a BGR sequence
by substituting all the red pebbles with a gray pebble, and note that for BG
pebbling only the number of black pebbles is counted.
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1.3 Related Work

Garbling. Most of the works on garbling that are relevant to our paper have
already been discussed in Section 1. In addition to them, [5,25,20,31] pertain
to adaptively-secure garbling and are also worth pointing out. Besides, there
are several constructions of garbling schemes which aim to exploit structured
primitives to improve upon other aspects of garbling like, e.g., online complexity
(e.g., [12,3]). We refer the readers to [7] for an excellent exposition on both the
historial and technical aspects of Yao’s garbling.

Treewidth, Separators and Computational Complexity. Treewidth [40]
has its roots in algorithmic graph theory. Many hard graph-theoretical problems
become tractable when one restricts to graphs of bounded treewidth. In some
cases, this leads to even NC algorithms for problems which are otherwise known
to be NP-complete (e.g., [9]). More often than not, this is because bounding the
treewidth leads to divide-and-conquer algorithms, sometimes via separators (see
[10] for an instructive survey). Unsurprisingly, this also has several consequences
in circuit complexity (e.g., [1,2,36,34]), and perhaps the most relevant to our
work are [28,19]. It was shown in [28] that circuits with constant treewidth can
be simulated in NC1; [19] extended this result by using separators to show that
circuits of size S and treewidth w can be simulated in depth w log(S). Both these
results can be regarded to be a generalisation of Spira’s theorem that Boolean
formulae can be simulated by NC1 circuits [41].

Computing Separators. The problem of computing (balanced) separators in
its full generality is NP-complete [18,37]; finding minimal separators is NP-
hard [14]. The parameterised complexity of this problem is well-studied and it
is W[1]-hard (in both the size of the separator and size of the components) [37].
However, when restricted to constant-degree graphs, the problem becomes fixed-
parameter tractable [37]. For results pertaining to approximation algorithms for
computing (balanced) separators, see [16,17,18].

2 Preliminaries

2.1 Notation

By [a, b], we denote the sequence of integers a, a+1, . . . , b−1, b. All our logarithms
are base two.

Notation for graphs. For a graph G = (V, E) and a subset S ⊆ V, G|S denotes
the subgraph of G obtained by restricting to the set of vertices in S. That is
G|S = (S, E|S) where E|S := {(u, v) ∈ E : u, v ∈ S}. For a directed graph G, a
vertex u ∈ V is a predecessor (resp., successor) of another vertex v ∈ V if (u, v) ∈
E (resp., (v, u) ∈ E). We say that u is adjacent to v if it is either a predecessor or
a successor of v. These definitions can be naturally extended to a set of vertices
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S by taking a union over all the vertices in S. The degree δ of a vertex is the
number of vertices adjacent to it. The in-degree δin (resp., out-degree δout) of
a vertex is its number of predecessors (resp., successors). The degree, in-degree
and out-degree of a graph is obtained by taking the corresponding maximum
over all its vertices.

Notation for circuits. We consider Boolean circuits with explicit input and out-
put gates, associated with the input and output wires respectively. For a circuit
C : {0, 1}n → {0, 1}` with S gates (including the n input and ` output gates)
and W wires of which n (resp., `) are input (resp., output) wires, we denote the
DAG that represents the topology of the circuit C by Φ(C). That is, Φ(C) is a
graph with V = [1, S] obtained by:

1. assigning the input (resp., output) gates to the vertices [1, n] (resp., [S − `+ 1, S]),
2. assigning the internal gates to the vertices [n+ 1, S − `], and
3. assigning the wires of the circuit to the edges.

The wires are assigned an index from [1,W ], with the input (resp., output)
wires indexed from [1, n] (resp., [W − `+ 1,W ]). An internal gate of a circuit
is represented by a four-tuple (g, u, v, w) where g : {0, 1}2 → {0, 1} denotes
the predicate implemented, and u, v and w denote the left input, right input
and output wires, respectively. We use V0(w) (resp., V1(w)) as a short-hand for
V0(C0, x0, w) (resp., V1(C1, x1, w)), the function that returns the value of the
wire w when the circuit C0 (resp., C1) is evaluated on the input x0 (resp., x1).

2.2 Garbling

The formal definition of syntax and security of garbling schemes is originally
from [7]. Our definitions are taken mostly from [26].

Definition 1 (Indistinguishability). A function ε : N → [0, 1] is negligible
if for every polynomial p(λ) there exists an λ0 ∈ N such that ε(λ) ≤ 1/p(λ) for
all λ ≥ λ0. Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be two distribution ensembles
indexed by a security parameter λ. We say that Xλ and Yλ are (ε(λ), T (λ))-
indistinguishable if for any adversary A of size at most T (λ),

|Pra←Xλ [A(a) = 1]− Pra←Yλ [A(a) = 1]| ≤ ε(λ).

Definition 2 (Garbling Scheme). A garbling scheme GC is a tuple of PPT
algorithms (GCircuit,GInput,GEval) with syntax and semantics defined as follows.

(C̃,K)← GCircuit(1λ,C). On inputs a security parameter λ and a circuit C :

{0, 1}n → {0, 1}`, the garble-circuit algorithm GCircuit outputs the garbled
circuit C̃ and key K.

x̃← GInput(K,x). On input an input x ∈ {0, 1}n and key K, the garble-input
algorithm GInput outputs x̃.

y = GEval(C̃, x̃). On input a garbled circuit C̃ and a garbled input x̃, the evaluate
algorithm GEval outputs y ∈ {0, 1}`.
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Correctness. There is a negligible function ε = ε(λ) such that for any λ ∈ N,
any circuit C and input x it holds that

Pr
[
C(x) = GEval(C̃, x̃)

]
= 1− ε(λ),

where (C̃,K)← GCircuit(1λ,C), x̃← GInput(K,x).

Definition 3 (Adaptive Indistinguishability.). A garbling scheme GC is
(ε, T )-adaptively-indistinguishable for a class of circuits C, if for any probabilistic
adversary A of size T = T (λ),∣∣Pr [GA,GC(1λ, 0) = 1

]
− Pr

[
GA,GC(1λ, 1) = 1

]∣∣ ≤ ε(λ).
where the experiment GA,GC,S(1

λ, b) is defined as follows:

1. A selects two circuits C0,C1 ∈ C such that Φ(C0) = Φ(C1) and receives C̃b
where (C̃b,K)← GCircuit(1λ,Cb).

2. A specifies x0, x1 such that C0(x0) = C1(x1) and receives x̃b ← GInput(K,xb).
3. Finally, A outputs a bit b′, which is the output of the experiment.

In the selective counterpart of Definition 3,the adversary has to select (along
with the circuit) the input also in the first step. For self-containment, we provide
the definition of selective indistinguishability in Definition 4.

Definition 4 (Selective Indistinguishability.). A garbling scheme GC is
(ε, T )-selective-indistinguishable for a class of circuits C, if for any probabilistic
adversary A of size T = T (λ),∣∣Pr [HA,GC(1λ, 0) = 1

]
− Pr

[
HA,GC(1λ, 1) = 1

]∣∣ ≤ ε(λ).
where the experiment GA,GC,S(1

λ, b) is defined as follows:

1. A selects two circuits C0,C1 ∈ C and two inputs x0, x1 such that Φ(C0) =
Φ(C1) and C0(x0) = C1(x1). It receives (C̃b, x̃b) where (C̃b,K)← GCircuit(1λ,Cb)
and x̃b ← GInput(K,xb)

2. A outputs a bit b′, which is the output of the experiment.

Remark 2. A few remarks concerning Definitions 3 and 4 are in order:

1. We call the experiments corresponding to b = 0 and b = 1 in Definitions 3
and 4 the “left” and “right” experiments, respectively.

2. When the context is clear, we use the simpler notation F0 and F1 to denote
the experiments FA,GC,S(1

λ, 0) and FA,GC,S(1
λ, 1), respectively. Similarly,

we use G0, G1, H0 and H1 for the experiments in Definitions 3 and 4
3. We use TG = TG(λ) (resp., TH = TH(λ)) to denote the time taken to run

experiment G (resp., H).
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Offline Yao. We formally describe Yao’s original garbling scheme in the full
version of the paper [29]. In addition to satisfying the standard notion of secu-
rity for SKE (IND-CPA), the SKE needs to satisfy the following property for
correctness of the garbling schemes to hold.

Definition 5 (Special Correctness [27]). We say that an SKE (Gen,Enc,
Dec) with message space M satisfies special correctness if for every security
parameter λ, every key k ← Gen(1λ), every message m ∈ M, and encryption
c← Enck(m), Deck′(c) = ⊥ holds for all k′ 6= k with overwhelming probability.

2.3 Pebble Games

In this section, we formally define the pebble games that are relevant to our
discussion.

Definition 6 (Reversible black pebble game [8,38]). Consider a DAG
G = (V, E) with V = [1, S] and let XB = {⊥, B}. Let T ⊆ V denote the sinks of
G. Consider a sequence P := (P0, . . . ,Pτ ) of pebble configurations for G, where
Pi ∈ XVB for all i ∈ [0, τ ]. We call such a sequence a reversible black pebbling
strategy12 for G if (i) every vertex is empty in the initial configuration (i.e.,
P0 = (⊥, . . . ,⊥)), (ii) every sink is black-pebbled in the final configuration (i.e.,
Pτ (j) = B for all j ∈ T ), and (iii) every configuration is obtained by applying
the following rule to its preceding configuration:

1. ⊥ ↔ B: a black pebble can be placed on or removed from a vertex if its
predecessors are black-pebbled. In particular, a black pebble can be placed on
or removed from a source vertex at any time. More formally, ∃!j∗ ∈ V such
that
– (Pi+1(j

∗) = B and Pi(j∗) = ⊥) or (Pi+1(j
∗) = ⊥ and Pi(j∗) = B),

– ∀j ∈ preG(j
∗) : Pi(j) = B, and

– ∀j ∈ V \ {j∗} : Pi+1(j) = Pi(j).

The space-complexity of a reversible black pebbling strategy P = (P0, . . . ,Pτ )
for a DAG G is defined as the maximum number of black pebbles used at any
point in the strategy:

σG(P) := max
i∈[0,τ ]

|{j ∈ [1, S] : Pi(j) = B}|.

Definition 7. If P = (P0, . . . ,Pτ ) is a black pebbling strategy of space-complexity
σ for a graph G, we say that P is a (σ, τ)-strategy for G. We say that a class
of graphs G has a (σ, τ)-strategy if every graph G ∈ G has a (σ, τ)-strategy. Sim-
ilarly, we say that a class of circuits C has a (σ, τ)-strategy if for every circuit
C ∈ C, Φ(C) has a (σ, τ)-strategy.
12 To be precise, such a pebbling strategy is said to be persistent [38] since the final

configuration consists of the sinks pebbled. In this paper, we only deal with persistent
strategies.
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Remark 3. Similar definitions apply to the rest of the pebble games considered
in the paper.

Definition 8 (Black-gray (BG) pebble game [22,27]). Consider a DAG
G = (V, E) with V = [1, S] and let XBG = {⊥, B, G} denote the set of colours
of the pebbles. Consider a sequence P := (P0, . . . ,Pτ ) of pebble configurations
for G, where Pi ∈ XVBG for all i ∈ [0, τ ]. We call such a sequence a black-gray
pebbling strategy for G if (i) every vertex is empty in the initial configuration
(i.e., P0 = (⊥, . . . ,⊥)), (ii) every vertex is gray-pebbled in the final configuration
(i.e., Pτ = (G, . . . , G)) and (iii) every configuration is obtained by applying one
of the following rules to its preceding configuration (see Figure 1):

1. ⊥ ↔ B: a black pebble can be placed on or removed from a vertex if its
predecessors are black-pebbled. In particular, a black pebble can be placed on
or removed from a source vertex at any time. More formally, ∃!j∗ ∈ V such
that
– (Pi+1(j

∗) = B and Pi(j∗) = ⊥) or (Pi+1(j
∗) = ⊥ and Pi(j∗) = B),

– ∀j ∈ preG(j
∗) : Pi(j) = B, and

– ∀j ∈ V \ {j∗} : Pi+1(j) = Pi(j).
2. B 7→ G: a black pebble on a vertex v ∈ V can be replaced with a gray pebble

if v’s successors are pebbled (either black or gray). In particular, a black
pebble on a sink can be replaced by a gray pebble at any time. More formally,
∃!j∗ ∈ V such that
– Pi+1(j

∗) = G and Pi(j∗) = B,
– ∀j ∈ sucG(j

∗) : Pi(j) ∈ {B, G}, and
– ∀j ∈ V \ {j∗} : Pi+1(j) = Pi(j).

The space-complexity of a BG pebbling strategy P = (P0, . . . ,Pτ ) for a DAG
G is defined as the maximum number of black pebbles used at any point in the
strategy:

σG(P) := max
i∈[0,τ ]

|{j ∈ [1, S] : Pi(j) = B}|.

Remark 4. The rule to place or remove a black pebble in Definition 8 (Rule 8.1)
is the same as in Definition 6 (Rule 6.1). Therefore the BG pebble game can be
thought of as an extension of the RB pebble game (with a different goal).

2.4 Graph theory

We recall the definition of treewidth and graph separators, and then state a cru-
cial theorem connecting them, which will be exploited in our pebbling strategy.
We emphasise that understanding the definition of treewidth is not essential to
understanding our pebbling strategies: it is the notion of separators, along with
Theorem 1, which is key.

Definition 9 ([40,11]). A tree decomposition of a graph G = (V, E) is a tree,
T , with nodes X1, . . . ,Xp, where each Xi ⊆ V, satisfying the following properties:
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1. Each graph vertex is contained in at least one tree node (i.e., ∪i∈[1,p]Xi = V).
2. For every edge (v, w) ∈ E, there exists a node Xi that contains both v and w.
3. The tree nodes containing a vertex v form a connected subtree of T .

The width of a tree decomposition is the size of its largest node Xi minus one. Its
treewidth w(G) is the minimum width among all possible tree decompositions.

Definition 10 ([40]). For a graph G = (V, E), a set S ⊆ V is said to be
a separator if the graph G|S has at least two components, and each of these
components has size at most 2|V|/3.13

Theorem 1 ([40,11]). A graph G with treewidth w(G) has a separator of size
at most w(G).

3 Hybrid Argument and the BGR Pebble Game

In this section, we formally show that black-gray-red (BGR) pebbling strategies
lead to security reductions for Offline Yao. We start off in Section 3.1 by formally
defining the BGR pebble game and then explain the semantics of its pebbles,
described already (albeit informally) in Section 1.2. This enables us to define a
hybrid HP in terms of a pebble configuration P . Then, in Section 3.2, we justify
the pebble rules by proving that neighbouring pebble configurations can indeed
be proved indistinguishable (Lemma 1). Finally, we put these two steps together
in Section 3.3 and show that BGR strategies imply adaptive indistinguishability
of Offline Yao (Theorem 4) using the piecewise-guessing framework [24]. Since
most of the ideas in Sections 3.2 and 3.3 are similar to pre-existing works [27,24],
we skip detailed proofs and resort to high-level sketches.

3.1 Pebble Configurations and Hybrids

The BGR pebble game is a symmetric version of the BG pebble game. In addition
to the ones in BG pebble game (Rules 8.1 and 8.2), there are additional rules
(Rules 11.2 and 11.3) which govern how the red pebbles interact with the gray
pebbles. Intuitively speaking, the dynamic between no pebbles and black pebble
(Rule 11.1) is similar to the dynamic between red pebbles and gray pebbles
(Rule 11.3): see Remark 5. A more formal definition of the game is given next.

Definition 11 (Black-Gray-Red (BGR) pebble game). Consider a DAG
G = (V, E) with V = [1, S] and let XBGR = {⊥, B, G, R} denote the set of colours
of the pebbles. A pebble is called grayscale if it is black or gray. Consider a
sequence P := (P0, . . . ,Pτ ) of pebble configurations for G, where Pi ∈ XVBGR
for all i ∈ [0, τ ]. We call such a sequence a BGR pebbling strategy for G if (i)
every vertex is empty in the initial configuration (i.e., P0 = (⊥, . . . ,⊥)), (ii) and
every vertex is red-pebbled in the final configuration (i.e., Pτ = (R, . . . , R)) and
(iii) every configuration is obtained by applying one of the following rules to its
preceding configuration (see Figure 2):
13 To be precise, such a separator is called “balanced” [19]. In this paper, we only

consider balanced separators.
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1. ⊥ ↔ B: a black pebble can be placed on or removed from a vertex if its
predecessors are black-pebbled. In particular, a black pebble can be placed on
or removed from a source vertex at any time. More formally, ∃!j∗ ∈ V such
that
– (Pi+1(j

∗) = B and Pi(j∗) = ⊥) or (Pi+1(j
∗) = ⊥ and Pi(j∗) = B),

– ∀j ∈ preG(j
∗) : Pi(j) = B, and

– ∀j ∈ V \ {j∗} : Pi+1(j) = Pi(j).
2. B↔ G: a black pebble on a vertex v ∈ V can be swapped with a gray pebble if

v’s successors carry grayscale pebbles (i.e., either black or gray). In particu-
lar, a black pebble on a sink vertex can be swapped with a gray pebble at any
time. More formally, ∃!j∗ ∈ V such that
– (Pi+1(j

∗) = G and Pi(j∗) = B) or (Pi+1(j
∗) = B and Pi(j∗) = G),

– ∀j ∈ sucG(j
∗) : Pi(j) ∈ {B, G}, and

– ∀j ∈ V \ {j∗} : Pi+1(j) = Pi(j).
3. G ↔ R: a gray pebble can be swapped with a red if its predecessors are gray-

pebbled. In particular, a gray pebble on a source vertex can be swapped with
a red pebble at any time. More formally, ∃!j∗ ∈ V such that
– (Pi+1(j

∗) = G and Pi(j∗) = R) or (Pi+1(j
∗) = R and Pi(j∗) = G),

– ∀j ∈ preG(j
∗) : Pi(j) = G, and

– ∀j ∈ V \ {j∗} : Pi+1(j) = Pi(j).

The space-complexity of a BGR pebbling strategy P = (P0, . . . ,Pτ ) for a DAG
G is defined as the maximum number of grayscale pebbles used at any point in
the strategy:

σG(P) := max
i∈[0,τ ]

|{j ∈ [1, S] : Pi(j) ∈ {B, G}}|.

Remark 5. A few remarks on the BGR pebble game are in order:

1. Note that Rules 11.1 and 11.2 (the B 7→ G part) correspond to the rules in
the BG pebble game. The end goals in the two games are however different.

2. When restricted to either black and empty (Rule 11.1) or gray and red
pebbles (Rule 11.3), the BGR pebble game simplifies to the reversible black
pebble game of Bennett [8] defined in Definition 6. This is obvious for the
black pebbles since the BGR pebble game is an extension of the BG pebble
game which, in turn, is an extension of the reversible black pebble game. To
see why this is the case for gray and red pebbles, simply think of vertices
with red pebbles as being empty (i.e., R = ⊥) and gray pebbles as black
pebbles (i.e., G = B), and note that Rule 11.3 is now the same as Rule 11.1.
Therefore, if one starts with an all-red (i.e., empty) configuration, the gray
pebbles can be placed using reversible pebbling rules. Some of the reversible
pebbling strategies will serve as crucial subroutines in the BGR pebbling
strategies in the coming sections.

3. When restricted to black and gray pebbles, the BGR pebble game again sim-
plifies to the reversible pebble game played on the graph with the direction
of the edges flipped. However, we do not make use of this observation.

4. Only black pebbles can be placed on empty vertices. Gray (resp., red) pebbles
have to replace black or red (resp., gray) pebbles, respectively.
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5. By the pebbling rules, in any strategy a vertex that is empty can never end
up adjacent to another vertex with red pebble in any BGR pebbling strategy.
Moreover, a vertex with gray (resp., black) pebble cannot be a predecessor
of a vertex with no (resp. red) pebble; the converse is however possible.
These properties will turn out to be important sanity checks in ensuring
the validity of BGR pebbling strategies in the later sections. Moreover, they
ensure correctness of the simulations they represent.
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Table 3. (a) Garbling modes in [27]. The gate is denoted by g and the value of its
output wire w when run on input x is denoted by V (w). (b) Garbling modes in our
case. The gates g0 and g1 are the gates in the same position in the circuits C0 and C1,
respectively. The value V0(w) (resp., V1(w)) denotes the bit going over the wire w in
the computation C0(x0) (resp., C1(x1)).

Template for Hybrids. A pebble configuration P ∈ XVBGR is used to encode
a selective hybrid HP . For an internal gate v, the translation is carried out as
described below:

– if v carries no pebble (⊥) in P then g is garbled as in the left game (Real0),
– a black pebble (B) on v indicates that the garbling of g is input-dependant

on x0 and C0, (Input0)
– a gray pebble (G) on v indicates that the garbling of g is input-dependant

on x1 and C1 (Input1)
– a red pebble (R) on v indicates g is garbled as in the right game (Real1).

The distributions corresponding to the four garbling modes – Real0, Input0, Input1
and Real1 – are formally defined in Table 3(b). (Note that the semantics of
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gray pebbles is different from that in the BG pebble game.) This information
is sufficient to construct the garbled circuit C̃. What remains to complete the
description of HP , is describing how to generate the input garbling x̃ and the
output map. If an input gate carries no (resp., a red) pebble then the garbling key
for x0 (resp., x1) is selected in that hybrid. The output map, on the other hand,
is simply the default one prescribed in the scheme and therefore the pebbles on
the output gates are ignored. We refer the readers to the full version of the paper
[29] for a formal definition of HP .

Sequence of hybrids. A pebbling strategy P = {P0, . . . ,Pτ} will give rise to a
sequence of selective hybrids

H0 = HP0 , . . . ,HPτ = H1, (1)

Note that the extreme games correspond to the left selective experiment H0 =
HA,GC(1λ, 0) (since P0 = (⊥, . . . ,⊥)) and right selective experiment H1 =
HA,GC(1λ, 1) (since Pτ = (R, . . . , R)), respectively. The exact pebbling strategy
will be discussed later in Section 4. In the next section, we prove the indistin-
guishability of two neighbouring hybrids in such a sequence.

3.2 Indistinguishability of Neighbouring Hybrids

Lemma 1 (neighbouring indistinguishability). Let P and Q denote two
neighbouring configurations in a BGR pebbling strategy. If the underlying encryp-
tion scheme SKE is (ε, T )-IND-CPA secure, then HP and HQ are (3ε, T − TH)-
indistinguishable, i.e., for any adversary A of size at most T − TH

|Pr [〈A,HP〉 = 1]− Pr [〈A,HQ〉 = 1]| ≤ 3ε.

Proof. Recall that hybrids correspond to pebble configurations and that two
neighbouring hybrids differ by a single pebble. We split the proof into three cases
which correspond to the pebbling moves ⊥ ↔ B, B↔ G and R↔ G respectively.
The reduction in the first and last cases is similar, and relies on the indistin-
guishability of the underlying encryption scheme (similar to [27, Lemma 1]).
Therefore in the claim below we focus on the first case. In the second case, we
argue that the hybrids are identically distributed (similar to [27, Lemma 2]).
Moreover, since the proofs are similar to those in [27], we refer the reader to the
full version of the paper [29].

Claim (Rule 11.1: ⊥ ↔ B). If the underlying encryption scheme SKE is (ε, T )-
IND-CPA secure, and if Q is obtained from P using Rule 11.1 then the hybrids
HP and HQ are (3ε, T − TH)-indistinguishable.

Claim (Rule 11.2: B ↔ G). If Q is obtained from P using Rule 11.2 then the
hybrids HP and HQ are identically distributed.

ut
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Selective indistinguishability. Combining Lemma 1 with the semantics of the
pebbles (Table 3) yields (via the standard hybrid argument) selective indistin-
guishability of Offline Yao.

Theorem 2. Suppose that a class of circuits C has a (σ, τ)-BGR pebbling strat-
egy. If the encryption scheme SKE is (ε, T )-secure then YGCSKE is (3τε, T −
TH)-selectively-indistinguishable for C.

3.3 Adaptive Indistinguishability via Piecewise Guessing

Observe that in the hybrid HP , the knowledge of the committed garbling inputs
x0 and x1 is used to compute the output value of gates that carry grayscale
pebbles in the configuration P . So, in principle, the simulation of HP can be
carried out if this information is available as an “advice”. Moreover, the indistin-
guishability of two successive hybrids can be shown (Lemma 1) if such advice for
both the hybrids is available. In case the number of grayscale pebbles is small,
the size of this advice could potentially be smaller than the size of garbling in-
puts x0 and x1. This means that it is possible to apply the piecewise-guessing
framework [24]. We explain this in detail next.

Applying the piecewise-guessing framework. The main theorem in [24] is stated
below in Theorem 3 after having been simplified and tailored for our application
to circuit garbing. The result of applying Theorem 3 to Offline Yao is stated
in Theorem 4. Furthermore, exploiting the properties of the pebbling strategies
we design, we provide an optimised version of Theorem 4 later in Section 4.2
(Theorem 6).

Theorem 3 (Theorem 2 in [24] tailored to Definitions 3 and 4). Let G0,
G1, H0 and H1 be as in Definitions 3 and 4. Furthermore, let H0 = HP0

, . . . ,HPτ =
H1 be the sequence of hybrids from Equation (1) and suppose that every pebbling
configuration Pi in the strategy P0, . . . ,Pτ can be be computed in time Tp. As-
sume that for each i ∈ [0, τ − 1], there exists a function αi : {0, 1}∗ → {0, 1}σ
such that the hybrids HPi and HPi+1

are (ε, T )-indistinguishable when A com-
mits to αi(C0,C1, x0, x1) as advice at the beginning of the experiment (instead of
(x0, x1)). Then G0 and G1 are (ε · τ · 2σ, T − (Tσ + Tp))-indistinguishable where
Tσ denotes the time to sample a string in {0, 1}σ uniformly at random.

Theorem 4. Suppose that a class of circuits C has a (σ, τ)-BGR pebbling strat-
egy. If the encryption scheme SKE is (ε, T )-secure then YGCSKE is (τ2σ ·
3ε, T − (TH + Tσ + Tp))-adaptively-indistinguishable for C.

Proof (Sketch). As already observed, the advice function αi should return the
values of the output wires of all those gates that carry grayscale pebbles in Pi
and Pi+1. Therefore, in Theorem 3 we set

αi(C0,C1, x0, x1) := (V0(w) : (g, u, v, w) ∈ C0 and P(g) = B)‖
(V1(w) : (g, u, v, w) ∈ C1 and P(g) = G)

(2)
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where P := Pi+1 if Pi+1 is obtained from Pi by adding a grayscale pebble; and
P := Pi otherwise.14 The length of the advice is therefore smaller than in the
selective hybrid in case the pebbling complexity of G = Φ(C0) = Φ(C1) is smaller
than the input length. What remains is to show that indistinguishability of two
consecutive hybrids can be shown relying only on αi := αi(C0,C1, x0, x1). To
see this note that the knowledge of the committed garbling inputs x0 and x1
is used to compute the output value of gates that carry grayscale pebbles in
the configuration P . Since these are already present in the hint, the reduction
algorithm can simply extract these values from αi and use them instead of
explicitly computing V0(·) and V1(·). Following the arguments in Lemma 1, we
get that if the encryption scheme is (ε, T )-secure then the experiments HPi and
HPi+1

are (3ε, T − TH)-indistinguishable when A commits to αi, and the proof
now follows Theorem 3. ut

4 BGR Pebbling Strategy

In this section, we describe our main strategy for the BGR pebble game. Then,
we discuss the implications of our pebbling strategy to the security of Offline
Yao (Section 4.2).

4.1 BGR Pebbling via Separators

The strategy we describe, BGRSwitch, is implicit in the simulation in [19]. As a
consequence of Theorem 1, a graph G with treewidth w(G) can be recursively
decomposed using separators of size at most w(G) into smaller and smaller
“component” sub-graphs till the sub-graph is of a manageable (constant) size.As
a result, one gets a “component tree” out of the graph, starting with the whole
graph at the root and ending with manageable-sized sub-graphs as leaves . For
a graph with S vertices and degree δ, the depth of the component tree is at
most O(logS) and its out-degree is at most δ · |S| (since each vertex in S can
be connected to at most δ components). The pebbling strategy using separators
exploits this recursive structure to minimise the number of grayscale pebbles
employed.

Remark 6. Note that Theorem 1 does not provide any guarantees on whether
such a sequence of separators can be found efficiently. This becomes crucial
when simulating the hybrids since it determines the factor Tp. We address this
question at the end of this section.

RB Pebbling via Separators. We first describe RBTreewidth, a space-efficient
RB pebbling strategy that will be used as a subroutine in BGRSwitch. RBTreewidth

14 Recall from the proof of Lemma 1 that for pebbling configurations Pi and Pi+1 that
differ by a pebbling move B ↔ G, the corresponding hybrids HP1 and HPi+1 are
identically distributed.

23



places a black pebble on any vertex on a graph G of size S and treewidth w us-
ing σ := O(w log(S)) pebbles. To the best of our knowledge, this strategy is
new and might be of independent interest.15 Since the strategy is reversible, by
RBTreewidth−1 we denote the reverse strategy that removes a black pebble. This
strategy, thanks to the observation in Remark 5.2, will also be used to both place
or remove a gray pebble on an all-red-pebbled graph (RGRTreewidth).

Lemma 2. Every node in a DAG G with S vertices, in-degree δin and treewidth
w can be black-pebbled following the RB pebbling rules using at most σ :=
O((δin + w) log(S)) black pebbles in at most τ := (δinw)

O(log(S)) steps.

Lemma 3. Starting from the all-red configuration, every node in a DAG G with
S vertices, in-degree δin and treewidth w can be gray-pebbled following the BGR
pebbling rules using at most σ := O((δin + w) log(S)) gray(scale) pebbles in at
most τ := (δinw)

O(log(S)) steps.

Proof (of Lemma 2). We denote the pebbling strategy by RBTreewidth and it
takes as input a graph (component) C and a vertex v∗ to be pebbled. It uses
the same recursive decomposition into components as will be in BGRSwitch (i.e.,
the component tree). The base case is when the graph C is of small enough size
(i.e., with O(1) vertices) and here RBTreewidth simply places a black pebble on
v∗ using as many black pebbles as needed; i.e.:

1. place black pebbles on all vertices in C in topological order (Rule 6.1); and
then

2. remove the black pebbles on the ancestors of v∗ in reverse topological order
(Rule 6.1).

Otherwise, RBTreewidth splits C into smaller components using its separator,
recursively places a black pebble on every vertex in the separator in topological
order, places a black pebble on v∗ by recursing on the component C∗ that con-
tains v∗. Finally, it recursively removes the black pebbles on the separator in
reverse topological order. The details are given below.

1. Decomposes C into its components C1, . . . , Cp using its separator S ⊆ C,
where C = S ∪ C1 ∪ . . . ∪ Cp and Ci := C|Ci .

2. Recursively place black pebbles on the vertices in S in topological order .
That is, for each vertex s ∈ S chosen in topological order:
(a) recursively place a black pebble on each predecessor of s (unless it al-

ready carries a black pebble) in topological order,
15 It is possible to bound the space-complexity of RB pebbling on DAGs of treewidth w

using existing results. First, use the fact that the RB pebbling number of a graph of
size S is upper bounded by the plain black pebbling [39] number with a multiplicative
log(S) factor [32]. Second, use the fact that the black pebbling number is upper
bounded by treewidth w (via so-called pathwidth) with another multiplicative log(S)
factor [11, Theorem 2, Corollary 24]. Consequently, we get that the RB pebbling
number is at most w log2(S). But this is a worse bound compared to what we show
directly in Lemma 2.
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(b) place a black pebble on s (Rule 6.1), and
(c) recursively remove the black pebbles on each predecessor of s that is not

in S in reverse topological order.
3. Recursively pebble the component C∗ ∈ C1, . . . , Cp which contains v∗.
4. Undo Item 2 by recursively removing the black pebbles on the separator in

reverse topological order. That is, for each vertex s ∈ S chosen in reverse
topological order:
(a) recursively place a black pebble on each predecessor of s in topological

order,
(b) remove the black pebble on s (Rule 6.1), and
(c) recursively remove the black pebbles on each predecessors of s in reverse

topological order.

As we explain next, carrying out Items 2 and 4 in topological and reverse
topological order, respectively, is crucial for the efficiency (and correctness) of
RBTreewidth. Recall that the property of the separator S guarantees that the
components C1, . . . , Cp are themselves of small enough size (see Definition 10).
Therefore, once S is pebbled black RBTreewidth can be called on all the resulting
components as there are no edges between the components. However, pebbling a
vertex s in S itself is tricky: the predecessors of s could very well be in different
components (since there are no guarantees for the vertices in the separator).
However, we do have the guarantee that all the predecessors of a predecessor
(outside S) of s belong to the same component or the separator, and are reach-
able via either source vertices or vertices belonging to S. Therefore, as long
as the vertices in S are black-pebbled in topological order, S can be completely
pebbled in Item 2 by recursing on small enough components. A similar argument
applies when the black pebbles on the separator are removed in Item 4.

With this in mind, we now analyse RBTreewidth. The reason this strategy
requires at most σ := O(w log(S)) black pebbles is similar to what we will see in
the proof of Theorem 5. The number of pebbles is governed by the expression

σ(i) ≤ (w + δin) + σ(i+ 1), (3)

where the index i is the depth of the recursion of RBTreewidth. The factor (w+
δin) is the cost of black pebbles placed on the separator in Item 2 and the factor
σ(i + 1) is the cost of recursions in Items 2 to 4. Note that since the size of
the components in each these recursive calls is at most 2/3 of the size of the
original component C, the overall depth of the recursion remains O(log(S)).
The upper bound on the number of pebbles claimed in the lemma follows on
solving Equation (3).

As for the number of steps, it is governed by the expression

τ(i) ≤ τ(i+ 1)O(δinw). (4)

since RBTreewidth is recursively called at most O(δinw) times on the (sub-)
components. As in the case of space-complexity, since we end up with constant-
size components at the end of the recursion, the base cost is O(1). The lemma
follows on solving Equation (4). ut
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Recursive Switching. We are now primed to describe BGRSwitch. It takes as
input:

1. the original graph G = (V, E) that is to be pebbled
2. the vertices C ⊆ V that define the graph component C = G|C being currently

considered
3. the “higher” separator U , which is the union of all the separators in the

“higher” recursive calls that resulted in the creation of the current component
C.

Note that C and U are disjoint sets by definition. Throughout the execution of
BGRSwitch, we maintain a few pebbling properties as invariants:

– At the start of the execution of BGRSwitch on the current component C, it is
guaranteed that the vertices in U are all black-pebbled. This, in some sense,
“isolates” C from the rest of the graph and, as a result, it can be pebbled
independently of the rest.

– At the end of the execution of BGRSwitch, we guarantee that the vertices C
in C are red-pebbled (via black and then gray), except for the children of
the higher separator U , which will be left gray-pebbled.

Next, let’s see what happens in BGRSwitch when called on (G, C,U) (in the first
call C = V and U = ∅). The base case is when the current component C := G|C is
of small enough size (i.e., with O(1) vertices). Here BGRSwitch simply switches
C to red by using as many pebbles as needed; i.e.:

1. place black pebbles on all vertices in C (Rule 11.1),
2. replace them with gray pebbles (Rule 11.2), and
3. replace the gray pebbles with red pebbles (Rule 11.3) except if the vertex is

a child of the upper separator U .

Otherwise, BGRSwitch does the switching from no pebbles to red pebbles for
C by recursively splitting into smaller components using the separator for C as
follows .

1. Decompose C = G|C into its components C1, . . . , Cp using its separator
S ⊆ C, where C = S ∪ C1 ∪ . . . ∪ Cp and Ci := G|Ci . (Midpoint-separator
analogy)

2. Place black pebbles on the vertices in S using RBTreewidth. Note that this
is possible only because all the vertices that are required to carry this out
are either empty or belong to U and therefore are black-pebbled.

3. Recursively switch each component C1, . . . , Cp using BGRSwitch. After all
component are switched, all vertices in C, except the ones that are children
of S, are red-pebbled; the children of S are left gray-pebbled.

4. Replace the black pebbles on the separator S with gray pebbles by using
Rule 11.2.

5. Replace the gray pebbles on S and its adjacent vertices with red pebbles
(except if the vertex is a child of the upper separator) using Rule 11.3 and
RGRTreewidth.
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Note that during the whole strategy, we maintain as invariant a black-gray fron-
tier between the empty and red-pebbled vertices, and this frontier is exactly at
the separators. That is, at any point of the pebbling no two vertices such that one
is empty and the other is red-pebbled are related (see Remark 5.5). As pointed
out in the technical overview (Section 1.2), it is this frontier that insulates the
computations in the two circuits and help ensure correctness at all times. In the
following theorem we formally analyse its space- and time-complexity.

Theorem 5 (Main theorem). Every DAG G with S vertices, degrees δin, δout ≤
δ and treewidth w can be BGR-pebbled using at most σ = O((δin+wδout) log(S))
grayscale pebbles in at most τ := (δw)O(log(S)) steps.

Proof. To bound the space-complexity of BGRSwitch, first note that the algo-
rithm indeed maintains the invariants stated above:

1. At the start of the execution of BGRSwitch on the current component C, it
is guaranteed that the vertices in U are all black-pebbled. Hence, on input a
component at depth of recursion i ∈ [0, O(log(S))], there are |U(i)| = O(iw)
pebbles that remain black-pebbled.

2. At the end of the execution of BGRSwitch, all the vertices C in C are red-
pebbled, except for children of the higher separator U , which will be left
gray-pebbled. Hence, after the execution of BGRSwitch on a component at
depth i > 0 there are up to δout · |U(i)| = O(iδoutw) many gray pebbles on
the graph.

Now, in Item 3 there are up to δw many components, among which some are
already switched, some not, and one is currently processed. For the former set
of components, all nodes within these which are children of U ∪ S are peb-
bled gray. Hence, by the above, there are up to δout · (|U(i)| + 1) + |U(i)| =
O(iδoutw) nodes that remain gray- or black-pebbled while BGRSwitch is pro-
cessed on a lower component. Now, while some node on the separator S ′ in the
currently-processed component is pebbled using RBTreewidth or RGRTreewidth
(cf. Item 2), there are up to |S ′| ≤ w additional nodes that remain pebbled. By
Lemmas 2 and 3, the space-complexity of RBTreewidth/RGRTreewidth is bounded
by O((δin + w) log(S)). Thus, we arrive at

σ(i) ≤ O(iδoutw) + w +O((δin + w) log(S)) = O((δin + wδout) log(S)).

As for the number of steps, on input a component at depth of recursion i,
the time-complexity of BGRSwitch is governed by the expression

τ(i) ≤ (δinw)
O(log(S)) · w + τ(i+ 1)δw. (5)

The first factor is the cost of the subroutines used to pebble the separator black:
the subroutine is called at most |S| ≤ w times, each time incurring a cost of at
most (δinw)O(log(S)) (Lemma 2). The second factor is the cost of recursively call-
ing BGRSwitch on at most δw (sub-)components. Since we end up with constant-
size components at the end of the recursion, the base cost is O(1). On solving
Equation (5), the theorem follows. ut
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Computing the separators. Finally, let us return to the question of computing
the sequence of separators underlying our pebbling strategy. While we are not
aware of an efficient algorithm for computing balanced separators (see discus-
sion in Section 1.3), it suffices for our purpose that a separator of size w can
be found in time at most SO(w): since we anyway lose a similar factor in the
distinguishing advantage, the overall (asymptotic) loss that the reduction incurs
remains similar. Therefore, we simply enumerate all w-sized subsets of vertices
till we find a balanced separator – note that given a separator it is easy to verify
that it is indeed one, i.e., the problem lies in NP. Since computing any BGR
pebbling configuration requires knowledge of at most O(log(S)) many separa-
tors, the total time required to compute a pebbling configuration is at most
Tp = O(log(S)Sw).

4.2 Optimised Piecewise Guessing

Recall that in Theorem 4, the loss in adaptive security is exponential in the BGR
pebbling complexity. This is because the reduction requires as advice the value
of the output wire of all the gates that are grayscale pebbled. Therefore when
Theorem 4 is used in conjunction with Theorem 5, the loss is exponential in the
treewidth as well as degree. First, note that for Yao’s garbling scheme, we only
consider Boolean circuits with fan-in 2. We argue next that the dependence on
out-degree can be removed thanks to the structure of the configurations in the
BGRSwitch pebbling strategy. The resulting theorem is stated in Theorem 6.

Let’s return to the recursive step in Item 3 which is the cause of dependence
on the degree. At the start of this step, all the vertices in the separator S have
been pebbled. Then each component Ci is recursively switched to red one at a
time. At the end of switching Ci, each vertex in Ci is pebbled red, except for
those vertices that are children of S (or U) which are left gray. Therefore we can
restrict our focus on those vertices that have its predecessors in the separator –
let’s consider one such vertex v∗. Note that in any configuration where v∗ carries
a gray pebble, it is guaranteed that its predecessors in the separator are black-
pebbled. Therefore, instead of requiring the value of the gate g∗ corresponding
to v∗ as an advice, it can simply be computed as a function of the values of
its predecessor gates (which are included in the advice). To sum up, instead
of providing as advice the values of the output wires of all the gates that are
grayscale pebbled as in Equation (2), it suffices to provide a much smaller advice
as outlined above. As a result of this observation, we get the following optimised
version of Theorem 4. This leads to the corollaries stated in Section 1.1.

Theorem 6. Suppose that a class of circuits C of size S, fan-in 2 has degree δ
and treewidth w. If the encryption scheme SKE is (ε, T )-secure then YGCSKE
is (3τ2σε, T − (TH + Tσ + Tp))-adaptively-indistinguishable for C where

τ := (δw)O(log(S)), σ := O(w log(S)) and Tp := O(log(S)Sw).
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5 Conclusion and Open Problems

Yao’s garbling scheme is one of the most fundamental cryptographic construc-
tions. In this work, we took another step towards completing the landscape of its
security. Our result leads to several interesting questions, the most natural being
whether the upper bound on loss in security can be improved. To this end, one
could look at other (orthogonal) graph properties. Another pressing question is
whether there are other applications of treewidth in cryptography (which seems
relatively overlooked compared to other fields such as circuit complexity or al-
gorithmic graph theory). This closely concerns the divide-and-conquer approach
employed in our security reduction: it seems that the approach of surgically re-
placing one circuit with another should find use in other scenarios. Our hope is
that this work spurs further research in this direction.
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