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Abstract. We introduce policy-compliant signatures (PCS). A PCS
scheme can be used in a setting where a central authority determines
a global policy and distributes public and secret keys associated with
sets of attributes to the users in the system. If two users, Alice and Bob,
have attribute sets that jointly satisfy the global policy, Alice can use her
secret key and Bob’s public key to sign a message. Unforgeability ensures
that a valid signature can only be produced if Alice’s secret key is known
and if the policy is satisfied. Privacy guarantees that the public keys and
produced signatures reveal nothing about the users’ attributes beyond
whether they satisfy the policy or not. PCS extends the functionality
provided by existing primitives such as attribute-based signatures and
policy-based signatures, which do not consider a designated receiver and
thus cannot include the receiver’s attributes in the policies. We describe
practical applications of PCS which include controlling transactions in
financial systems with strong privacy guarantees (avoiding additional
trusted entities that check compliance), as well as being a tool for trust
negotiations.
We introduce an indistinguishability-based privacy notion for PCS and
present a generic and modular scheme based on standard building blocks
such as signatures, non-interactive zero-knowledge proofs, and a (predicate-
only) predicate encryption scheme. We show that it can be instantiated
to obtain an efficient scheme that is provably secure under standard
pairing-assumptions for a wide range of policies.
We further model PCS in UC by describing the goal of PCS as an
enhanced ideal signature functionality which gives rise to a simulation-
based privacy notion for PCS. We show that our generic scheme achieves
this composable security notion under the additional assumption that
the underlying predicate encryption scheme satisfies a stronger, fully
adaptive, simulation-based attribute-hiding notion.

1 Introduction

Digital signatures provide authenticity to messages in the sense that everyone
can verify that a signed message was indeed signed by a specific sender, and
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not modified afterwards. Attribute-based signatures [26] and policy-based sig-
natures [4] extend this concept by introducing policies that the sender needs to
satisfy to generate a valid signature. We take this one step further and introduce
policy-compliant signatures (PCS) with policies that take into account attributes
of both, the sender and the receiver. This is useful in settings where messages
have a designated receiver. A prevalent example of such a setting are blockchain
applications, in which a sender signs a transaction sending funds to a given
receiver. If such a system is used within a corporation and PCS are used for
generating these signatures, the company can set a policy, restricting who can
send funds to whom.

In more detail, a PCS scheme allows a central authority to generate a master
public key and a master secret key for a given policy. The authority can then
use the master secret key to generate public/private key pairs associated with
a set of attributes. The signer Alice then uses her private signing key and the
receiver Bob’s public key to create a signature for a message. The signature can
be publicly verified using all public keys. It is only valid if Alice’s and Bob’s
attributes together satisfy the global policy.

Security requirements. Unforgeability of ordinary signature schemes ensures that
valid signatures cannot be produced without knowledge of the secret key, and
that signed messages cannot be modified without invalidating the signature.
The unforgeability notion of PCS additionally requires that even with access to
the secret key, it should not be possible for a malicious sender to craft a valid
signature if the policy is not satisfied by the sender and the receiver.

In addition to unforgeability, PCS provide privacy for the sender’s and re-
ceiver’s attributes. Our privacy notion captures three different attack scenarios:
First, outsiders only seeing the public keys and signatures between two parties
should not learn anything about the attributes of these parties beyond the fact
whether they satisfy the policy. Secondly, a (possibly malicious) sender should
not learn anything about the receiver’s attributes except whether their attributes
satisfy the policy. And finally, a (possibly malicious) receiver should not learn
anything about the sender’s attributes except whether their attributes satisfy
the policy.

The core challenge to obtain PCS. Consider the following attempt to obtain
the functionality of a PCS scheme: A central authority is in charge of checking
compliance of every single transaction by ensuring that whenever a sender S
with attributes x sends a message to a receiver R with attributes x∗, the policy
specified by F (x, x∗) is satisfied. While conceptually simple, it does not satisfy
our needs: One goal of PCS is to avoid a central authority assisting in the
signature generation and verification because this results in a central point of
failure in the execution of the system. Stated differently, the authority shall only
be used to issue the credentials but the (non-interactive) signature generation
and verification must be possible only with the public values associated to the
receiver and the secret values of the sender.
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In a second attempt, we let the authority issue ordinary signature key pairs
(pk, sk) and a certificate of the respective attributes Cx to each participant in the
system. To send a message m, a sender S signs the message m and proves, using
a non-interactive zero-knowledge proof, that the attributes associated with the
certificates of the sender and the receiver satisfy the policy F (x, x∗). This second
attempt looks more appealing, but it has the drawback that the sender must
be aware of the recipient’s attributes since otherwise no proof can be generated
about the compliance with attributes not owned by the sender—especially if
the certificate Cx∗ is supposed to (computationally) hide the attributes of the
receiver.4

We see that the main challenge to obtain PCS is to ensure that only valid
signatures can be generated by a sender without a trusted authority assisting
in the signature generation while the attributes of any entity in the system are
hidden at any time, even from the sender. At first sight, this appears contradictory
as it excludes any solution where the sender “proves” a joint statement including
a receiver, using only public information about the receiver, which hides the
receiver’s attributes. The key idea to overcome this issue is to employ a specific
form of predicate encryption that allows every participant to only learn a single
bit of information upon generating a signature. This single leaked bit is F (x, x∗)
and the process does not leak anything beyond this evaluation. We additionally
show that this specific form of predicate encryption is in fact necessary to obtain
PCS.

1.1 Applications of PCS

Applications to financial payment systems. PCS can be used in all settings in
which messages are sent to designated receivers and a global policy about the
senders and receivers needs to be publicly verifiable. This naturally occurs in fi-
nancial transactions, such as paying online services when purchasing, for example,
digital content (such as movies) or services (such as online games or lotteries) that
are region-dependent or age restricted. Typically, such services require additional
authentication upon payment such as identity card information through scanning
or manual input. PCS signatures can merge the act of authentication with the
basic task of signing a transaction. A policy can be expressed as a list of require-
ments for say n categories of services Si. For age and/or country restrictions, a
policy might be given by (Age ≥ 18∧S1)∨ (Age ≥ 16∧Country = CH∧S2)∨ . . . .
Assume Alice obtained a key-pair from a credential management entity that is
tied to her country of residence (akin to obtaining an ID card), and each service
of Bob is assigned the correct category (identified also by a PCS public key for
credential Si). Then the payment system needs no additional check of the policy
if the transactions are signed using a PCS scheme. If a transaction is successful,
4 For the same reason, attempts to derive PCS in a black-box way from existing policy-
based primitives fail (cf. Section 1.3) because they would require to implement a
policy only based on the public key of the receiver, which does not allow to efficiently
obtain their attributes.
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(an honest) Bob can be sure that the client had access to appropriate private
credentials. Thanks to the public verifiability, the transaction can be validated
by an external auditor and by the attribute hiding property of PCS the exact
combination of client attributes and service is not leaked (to the auditor) by the
signature system.

Furthermore, in blockchain systems such as Bitcoin [28], a transaction trans-
ferring funds from a sender Alice to a receiver Bob contains a signature from
Alice on the transaction details. Before adding such a transaction to a new block,
the miners verify the validity of the transaction including the signature. When
the used signature scheme is replaced by a PCS scheme, such transactions are
only valid if the global policy allows Alice to send funds to Bob. This can be
useful if the blockchain is used in a corporate environment where the money flow
needs to be restricted in certain ways, e.g., defined by a legal system. Imagining a
toy example, one could define a new company-wide digital token T with address
format addr = (pkpcs, . . .). A transaction transferring tokens T from addrA to
addrB can only be valid if a (publicly verifiable) PCS signature confirms this
transaction. By issuing credentials to employees and to facilities (such as canteens)
within the company, and defining the policy to steer token flow (e.g., employees
are allowed to exchange tokens or consume the tokens at company facilities),
such tokens can be bound to a specific purpose at the sole cost of having to verify
PCS signatures and address formats. The security of PCS makes it impossible
for any sender to violate the company policy, both by accident or malice. This
renders other compliance checks for this policy obsolete, such as techniques
that are only triggered after suspicious transactions are observed and that often
result in a complete revocation of a user’s privacy [9,15]. The attribute-hiding
property of PCS further ensures that no information about the attributes of
the transacting entities beyond that they satisfy the policy is revealed by the
signatures and addresses (in the above toy example, we would not reveal whether
it is a transaction between employees or between an employee and a facility).
Thanks to this, the pseudonymity of the used blockchain system is preserved.

Applications to trust negotiations. Another application of PCS are trust-negotiation
systems [19,25]. Assume Alice and Bob work for an intelligence agency and need
to exchange secret information. Further assume these agencies have a policy
on who is allowed to exchange information with whom, e.g., based on the divi-
sions and ranks of the involved parties as in role-based access control systems.
In [25], the example assumes Alice has top-level clearance and before sending a
message M , she must make sure that Bob also has top-level clearance. In the
language of [25], what PCS brings to this setting is a simple implementation of
the following two-party protocol: The common input are the access-control policy
F (defined on the space of party credentials), and the agency’s public parameters
ppagency (equivalent to a company-wide public-key infrastructure). Alice’s private
inputs are her message M and her credentials credA, and Bob’s private input is
his credentials credB . The output outA of Alice and outB of Bob are defined to
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be

outA =
{

1, if F (credA, credB)
0, otherwise

outB =
{
M, if F (credA, credB)
⊥, otherwise

.

Assuming the agency has set up the public-key infrastructure, the above
functionality is realized as follows: Alice encrypts the message M with Bob’s
(encryption) public key and signs the corresponding ciphertext with a PCS scheme
(using her secret signing key, and Bob’s signature public key). If the resulting
signature is valid, then Alice sends the packet to Bob and otherwise does not send
the message. If the policy is satisfied, then Bob learns the message. Otherwise,
Bob learns nothing. The PCS scheme itself does not leak anything beyond the
fulfillment of the policy.

1.2 Our Contributions and Organization of this Paper

PCS Notion. As a conceptual contribution, we introduce the notion of PCS (see
Section 3). In addition to the syntactical requirements, we define unforgeability
(in Section 3.2). This includes policy enforcement, i.e., unforgeability ensures
that a signature that verifies with respect to the public verification key of the
sender A and the receiver B can only be produced when possessing the secret
signing key of A and if the attributes of A and B satisfy the policy.

Furthermore, we define an indistinguishability-based attribute hiding notion
(in Section 3.3). This notion intuitively guarantees that an adversary cannot
distinguish public keys and signatures generated for different sets of attributes,
as long as the policy does not separate them.

Generic construction and concrete instantiation. We first provide an efficient
generic construction of PCS from standard tools using digital signatures, (predicate-
only) predicate encryption, and NIZK in Section 4. We show that relying on
predicate-only PE is a tight fit for our goal in the sense that any PCS scheme
gives rise to a related PE scheme. This settles an important feasibility question
regarding constructions and efficiency for PCS in general.

Our generic construction is not only theoretically interesting, it also admits
efficient instantiations (w.r.t. the indistinguishability-based attribute-hiding no-
tion) based on standard pairing assumptions coupled with Groth-Sahai proofs
for the rich class of predicates expressible by inner-products [22]. The policies
that are realizable on top of the inner-product functionality range from CNF
formulas and exact threshold clauses (with conjunctive or disjunctive clauses) to
hidden-vector-encryption which in turn opens up the field for PCS to efficiently
implement subset predicates, comparison predicates and their conjunctions as
defined in [8].

Composable PCS and SIM-based notion. Finally, we cast PCS as an ideal, en-
hanced signature functionality in the spirit of [2,11] to model the ideal composable
guarantees of PCS. We then derive a simpler simulation-based attribute hiding
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notion (in Section 5.1) and prove that an unforgeable and sim-based secure PCS
scheme realizes the ideal signature functionality. By definition of the ideal system,
the sim-based notion guarantees that everything an attacker can learn from
the public keys and signatures can be efficiently produced by a simulator given
only the public information and the information for which signatures the policy
is satisfied. This allows to capture precisely which information is leaked by a
PCS scheme. We show that our generic construction achieves this notion if the
underlying PE scheme satisfies a related (fully adaptive) simulation-based notion,
which is stronger than what has been considered in the literature so far, notably
in [17].

1.3 Related Work

We provide an overview of cryptographic primitives which have been introduced
in the context of attribute-based and policy-dependent constructions to shed
light on the role and necessity of PCS in this space.

Attribute-based signatures and policy-based signatures. Attribute-based signatures
(ABS) [26] have similar goals to PCS: In an ABS scheme, an authority can generate
secret signing keys associated to a set of attributes. The signer can then sign
messages for some policy and the resulting signature is only valid if the signer’s
attributes satisfy the policy. Policy-based signatures [4] generalize this concept
by allowing the policies to depend not only the sender’s attributes but also on
the signed messages. A clear distinction from PCS is that they do not allow the
policies to depend on the receiver’s attributes. Thus, the notions and security
guarantees are very different.

Another difference between PCS and ABS is that an ABS scheme allows the
sender to choose the policy for each message at the time of signing, whereas the
policy in PCS schemes is fixed by the authority during the setup. This gives ABS
more flexibility. Note, however, that allowing the sender to choose the policy
in PCS schemes would be detrimental to our privacy guarantees: We want to
protect the receiver’s attributes even from malicious senders. Allowing the sender
to choose many different policies and then verify the resulting signatures would
allow a malicious sender to find the precise attributes of all receivers.

Finally, ABS provide an additional security guarantee that PCS do not offer,
namely unlinkability of signatures. That is, given two signatures, one cannot
determine whether they have been produced by the same signer; one only learns
that somebody satisfying the policies signed. In a PCS scheme, this is not required
since it is not needed for the applications we have in mind. For example, when
used in a blockchain system providing pseudonymity, the signatures are anyway
linked to the pseudonyms of the senders and receivers of transactions. Trying to
hide the signer would thus not be useful in this context.

Designated verifier signatures. Designated verifier signatures have been intro-
duced by Jakobsson et al. [21]. As in our setting, they consider signatures produced
for a designated receiver. They require that only this receiver can verify the
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signatures. Furthermore, the receiver should not be able to convince others of
the validity of such signatures. This is in contrast to PCS, which can be verified
publicly. The setting and security requirements are thus very different.

Matchmaking Encryption. The high-level goals of PCS and matchmaking en-
cryption (ME) introduced by Ateniese et al. [1] seem similar, but turn out to
be quite distinctive due to the respective applications in mind. ME captures a
non-interactive variant of a secret-handshake (with payload), that is, in addition
to the functionality that PCS supports. In ME, the sender has the freedom to
define the receiver’s policy and the receiver can in addition to its private key
(for the attributes), receive an additional policy decryption key that captures
a policy on the sender’s attributes under which the receiver is able to decrypt
the ciphertext. These two receiver private keys can conceptually be merged into
one single attribute-policy decryption key, which results in a seemingly simpler
notion that is realizable from standard FE (capturing the policy as a specific
function). This notion is dubbed arranged ME (A-ME).

In a nutshell, our unforgeability requirements are stronger and require that
even if sender and receiver collude, they should not be able to produce a valid
(publicly verifiable) signature (authenticity of ME is a guarantee for an honest
receiver not to be fooled by a ciphertext of a sender that does not possess the
required attributes). Second, the ME authenticity game does not provide an
oracle to the adversary for computations on the private key, therefore disallowing
all attacks that are based on malleable ciphertexts, which is problematic for our
needs. This aspect also influences the obtained privacy guarantees. In the ME
security game, the adversary only obtains a single value (the ciphertext) that
is a function of the sender’s secret key. For ME, this makes a lot of sense as
it is used to replace a handshake with a single payload message. We, however,
need a signing oracle and hence obtain strictly stronger privacy. For the sake
of self-containment, we sketch an (A-)ME scheme which does not provide the
attribute hiding property of PCS in the full version.

Finally, constructions of PCS for simple policies like CNF, conjunctions
of equalities or comparisons, are in the standard model and have practical
instantiations. In contrast, even for simple equality policies where the FE and
randomized FE are not needed as building blocks, the constructions of [1] are in
the random oracle model.

Access control encryption. The notion of access control encryption (ACE) [3, 16]
is a cryptographic primitive that allows to control the information flow within a
system. ACE is not suitable to achieve the task we need. First, the system relies
crucially on a third-party called the sanitizer which is a role that does not fit
into our setting. Secondly, ACE only protects the information flow within the
system (when running through a sanitizer), whereas in our system, corrupted
parties might meet offline trying to generate a valid joint signature, which must
be part of the attack model.
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Predicate encryption and attribute-based encryption. Predicate encryption and
attribute-based encryption allow decryption of ciphertexts only for users with
secret keys matching a certain policy. While PCS are signatures and not encryption
schemes, they are still related because of the required privacy notion. In particular,
our indistinguishability-based and simulation-based attribute hiding properties
are closely related to the respective notions for these encryption schemes.

The notion of predicate encryption has first been considered in [8, 22]. In the
work of Boneh and Waters [8], the authors construct a scheme that allows for
comparison, subset and arbitrary conjunctive queries. In the succeeding work of
Katz et al. [22], the authors present a scheme for the inner product functionality
and the authors also observe that the inner product functionality is sufficient
for polynomial predicate evaluations as well as DNF and CNF formulas. We
mention more regarding the common policies of these schemes below. Since
the results of Boneh and Waters [8] and Katz et al. [22], more works for the
same functionality class have been proposed [29,30], as well as for the stronger
notion of partially-hiding predicate encryption [17,31]. Partially-hiding predicate
encryption is a generalization of predicate encryption in which the ciphertext
is extended with public attributes. The function associated with the functional
key is then first applied on the public information and the result is then used
together with hidden attribute of the ciphertext.

2 Preliminaries

We denote the security parameter with λ ∈ N and use 1λ as its unary rep-
resentation. We call a randomized algorithm A probabilistic polynomial time
(PPT) if there exists a polynomial p(·) such that for every input x the running
time of A(x) is bounded by p(|x|). A function negl : N → R+ is called negligi-
ble if for every positive polynomial p(λ), there exists λ0 ∈ N such that for all
λ > λ0 : negl(λ) < 1/p(λ). If clear from the context, we sometimes omit λ for
improved readability. The set {1, . . . , n} is denoted as [n] for n ∈ N. For the
equality check of two elements, we use “=”. The assign operator is denoted with
“:=”, whereas randomized assignment is denoted with a← A, with a randomized
algorithm A and where the randomness is not explicit. If the randomness is
explicit, we write a := A(x; r) where x is the input and r is the randomness. For
algorithms A and B, we write AB(·)(x) to denote that A gets x as an input and
has oracle access to B, that is, the response for an oracle query q is B(q).

Further preliminaries on digital signature schemes, non-interactive zero-
knowledge proofs and predicate encryption can be found in the full version.

3 Policy-Compliant Signatures

In this section, we introduce the notion of policy-compliant signature (PCS)
schemes together with the notion of unforgeability and indistinguishability-based
attribute hiding. We start by describing the syntax of PCS schemes, which
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consists of four algorithms, responsible for the setup of the parameters, the key
generation and the signature generation and verification.

Definition 3.1 (Policy-Compliant Signatures). Let {Xλ}λ∈N be a family
of attribute sets and denote by Xλ the powerset of Xλ. Further let F = {Fλ}λ∈N
be a family of sets Fλ of predicates F : Xλ×Xλ → {0, 1}. Then a policy-compliant
signature (PCS) scheme for the functionality class Fλ is a tuple of four PPT
algorithms PCS = (Setup,KeyGen,Sign,Verify):

Setup(1λ, F ): On input a unary representation of the security parameter λ and
a policy F ∈ Fλ, output a master public and secret key pair (mpk,msk).

KeyGen(msk, x): On input the master secret key msk and a set of attributes
x ∈ Xλ, output a public and secret key pair (pk, sk).

Sign(mpk, skS , pkR,m): On input the master public key mpk, a sender secret key
skS, a receiver public key pkR and a message m, output either a signature σ
or ⊥.

Verify(mpk, pkS , pkR,m, σ): On input the master public key mpk, a sender public
key pkS, a receiver public key pkR, a message m and a signature σ, output
either 0 or 1.

A Policy-Compliant Signature scheme is called correct, if for all messages m,
policies F ∈ Fλ, and sets of attributes x1, x2 ∈ Xλ, for all pairs (mpk,msk)
in the support of Setup(1λ, F ), all key pairs (pkS , skS) and (pkR, skR) in the
corresponding support of KeyGen(msk, x1) and KeyGen(msk, x2), respectively,

Pr [Verify(mpk, pkS , pkR,m,Sign(mpk, skS , pkR,m)) = F (x1, x2)]
≥ 1− negl(λ),

where the probability is over the random coins of Sign and Verify.

3.1 Adversarial Capabilities in the Security Games

Before diving into the security properties, we briefly explain the adversarial
capabilities. The adversary can (using the oracle QKeyGen or QKeyGenLR) obtain
public keys for chosen attributes, which models honest parties in the system of
which the public key is known; (using the oracle QCor) obtain the secret key
corresponding to a given public key, which models the adversary corrupting a
party; and (using the oracle QSign) obtain signatures relative to chosen public
keys, which models the adversary seeing signatures from honest parties.

More formally, in a context where a master secret key msk is defined (as will
be the case in our security experiments), we capture the above by defining the
following stateful oracles that maintain the initially empty sets QK, QC, and
QS.

Key-Generation Oracle QKeyGen(·): On the ith input of an attribute set xi,
generate (pki, ski) ← KeyGen(msk, xi), add (i, pki, ski, xi) to QK, and re-
turn pki.
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Left-or-Right Key-Generation Oracle QKeyGenLR(·, ·): On the ith input
of a pair of attribute sets xi,0 and xi,1, generate (pki, ski)← KeyGen(msk, xi,β),
add (i, pki, ski, xi,0, xi,1) to QK, and return pki. In this case, the bit β is
defined by the security game.

Corruption Oracle QCor(·): On input an index i, if QK contains an entry
(i, ·, ski, ·) ∈ QK or (i, ·, ski, ·, ·) ∈ QK for some ski, then add that entry from
QK to QC and return ski. Otherwise, return ⊥.

Signing Oracle QSign(·, ·, ·): On input a (sender) index i, a (receiver) public
key pk′, and a message m, if QK contains an entry (i, pki, ski, ·) ∈ QK or
(i, pki, ski, ·, ·) ∈ QK for some pki and ski, then return σ ← PCS.Sign(mpk, ski,
pk′,m) and add (i, pki, pk′,m, σ) to QS. Otherwise, return ⊥.

3.2 Existential Unforgeability
The unforgeability notion captures that an adversary A is not able to create a
valid signature for a public key that belongs to an uncorrupted party. Additionally,
the adversary should also not be able to create a valid signature for a pair of
public keys that do not fulfill the policy. More precisely, any signature for a
new message m∗ that successfully verifies, with respect to arbitrary sender and
receiver public keys, constitutes a forgery unless the adversary has obtained the
private key corresponding to the public key associated to the sender’s attribute
set x, and the receiver public key is associated to attribute set x∗ obtained via the
key generation oracle, and F (x, x∗) = 1. An interesting special case is regarding
collisions of public keys. Here a forgery is valid unless the adversary has corrupted
all indexes i corresponding to that public key.5 Note that as a further special case
that the adversary cannot create a valid signature w.r.t. public keys that have
not been output by the key generation authority (formally, the condition on the
last line in Fig. 1 is trivially true). Looking ahead, this game-based notion in fact
captures all unforgeability properties we motivated for PCS: we show in Section 5
that Definition 3.2 implies ideal unforgeability properties when modeling PCS as
an enhanced signature functionality.

We capture these requirements using an existential unforgeability game:

Definition 3.2 (Existential Unforgeability of a PCS Scheme). Let PCS =
(Setup,KeyGen,Sign,Verify) be a PCS scheme as defined in Definition 3.1. We
define the experiment EUF-CMAPCS in Fig. 1 and define the advantage of an
adversary A = (A1,A2) by

AdvEUF-CMA
PCS,A (λ) = Pr[EUF-CMAPCS(1λ,A) = 1].

A PCS scheme PCS is called existential unforgeable under adaptive chosen
message attacks or existential unforgeable for short if for any polynomial-
time adversary A = (A1,A2), there exists a negligible function negl such that:
AdvEUF-CMA

PCS,A (λ) ≤ negl(λ).

5 This is vital to our use case of PCS: as long as a given user is not corrupted, no one
is able to produce valid signatures that could be considered valid signatures of that
party.
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EUF-CMAPCS(1λ,A)
(F, st)← A1(1λ)
(mpk,msk)← Setup(1λ, F )
(pk, pk∗,m∗, σ∗)← AQKeyGen(·),QCor(·),QSign(·,·,·)

2 (st,mpk)
Output: Verify(mpk, pk, pk∗,m∗, σ∗) = 1 ∧[[

∃(·, pk, ·, ·) ∈ QK \ QC ∧ (·, pk, pk∗,m∗, ·) 6∈ QS
]
∨

∀(i, pk, ·, xi), (·, pk∗, ·, x∗) ∈ QK : F (xi, x∗) = 0
]

Fig. 1: Unforgeability Game of PCS.

3.3 Indistinguishability-Based Attribute Hiding

We formalize the notion of attribute hiding as a security game. In this security
game, the adversary has access to a left-or-right key-generation oracle that it can
query multiple times using pairs of attribute sets (x0, x1) to obtain the key for
xβ , where β is a random bit sampled in the beginning of the game. The goal of
the adversary is to guess the bit β. To achieve this, it additionally has access to
a corruption oracle with with it can obtain the secret keys corresponding to pre-
viously obtained public keys. This is only allowed for public keys that previously
have been generated for the same attribute set, i.e. x0 = x1. Furthermore, the
adversary is also allowed to query a signing oracle to obtain signatures generated
for sender and receiver key pairs of its choice.

To prevent the adversary from trivially distinguishing between the generated
public keys, we need to exclude two kinds of trivial attacks: first, if xβ is seen as the
receiver attributes, then distinguishing is trivial if the adversary possesses a secret
key for the attribute set x such that F (x, xβ) 6= F (x, x1−β). Second, if a signing
query is asked for a pair of challenge keys such that F (xβ , x′β) 6= F (x1−β , x

′
1−β),

where xβ and x1−β are the attribute sets potentially associated with the sender
key and x′β and x′1−β are the attribute sets potentially associated with the receiver
key, then distinguishing is trivial. Any other interaction is deemed valid.

Definition 3.3 (IND-Based Attribute Hiding). Let PCS = (Setup,KeyGen,
Sign,Verify) be a PCS scheme as defined in Definition 3.1. For β ∈ {0, 1},
we define the experiment AHPCS

β in Fig. 2, where all oracles are defined as
in Section 3.1. The advantage of an adversary A = (A1,A2) is defined by

AdvAH
PCS,A(λ) = |Pr[AHPCS

0 (1λ,A) = 1]− Pr[AHPCS
1 (1λ,A) = 1]|.

We call an adversary valid if all of the following hold with probability 1 over the
randomness of the adversary and all involved algorithms:

– for every (i, ·, ·, xi,0, xi,1) ∈ QC and for all (·, ·, ·, xj,0, xj,1) ∈ QK, we have
xi,0 = xi,1 =: xi and F (xi, xj,0) = F (xi, xj,1),
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– and for all (i, ·, pkj , ·, ·) ∈ QS, and (i, ·, ·, xi,0, xi,1), (·, pkj , ·, xj,0, xj,1) ∈ QK,
we have F (xi,0, xj,0) = F (xi,1, xj,1).

A PCS scheme PCS is called attribute hiding if for any valid polynomial-
time adversary A = (A1,A2), there exists a negligible function negl such that:
AdvAH

PCS,A(λ) ≤ negl(λ).

AHPCS
β (1λ,A)

(F, st)← A1(1λ)
(mpk,msk)← PCS.Setup(1λ, F )
α← AQKeyGenLR(·,·),QCor(·),QSign(·,·,·)

2 (st,mpk)
Output: α

Fig. 2: The Strong Attribute Hiding Game for PCS.

4 Construction of a Policy-Compliant Signature Scheme

We present in Section 4.1 our policy-compliant signature scheme, show that it
is correct in Section 4.2, proof its security in Sections 4.3 and 4.4, and show
in Section 4.5 how the scheme, which is quite generic, can be instantiated from
standard assumptions.

4.1 The Scheme

The high-level idea of the scheme is to let PCS signatures generated by the
signer contain proofs that part of the target’s public key can be decrypted. Recall
that the challenge of our notion is to publish a single public-key that hides
all attributes, but where all a priori legitimate parties can figure out the bit
of information whether they jointly satisfy the policy. For this step, we use a
predicate-only predicate encryption scheme for the specific functionality class
induced by the policy. To allow for the evaluation of the global policy on the inputs
of the sender and the receiver using a predicate encryption scheme, we define
a deterministic encoding function SubPol(F, x) = (SubPol1(F, x),SubPol2(F, x))
that takes as input the global policy F and a set of attributes x and outputs a
subpolicy encoding fx (output of SubPol1) and the attribute encoding x (output
of SubPol2) for the associated PE scheme. Functionally, we have

SubPol(F, x) = (SubPol1(F, x),SubPol2(F, x)),
s.t. ∀x, x′ ∈ X : F (x, x′) = SubPol1(F, x)(SubPol2(F, x′)︸ ︷︷ ︸

=fx(x′)

). (1)
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We note that the usage of PE is not a coincidence here as there is an interesting
theoretical connection between PCS and PE which we give in the full version.
To turn the scheme into a secure PCS scheme, we still need to protect the
integrity which entails the binding of public-keys and the proof-of-decryption,
as well as binding public keys to the authority. Here, we make use of two types
of signatures, namely existentially unforgeable signatures as well as strongly
unforgeable signatures. Finally, a NIZK proof is used to establish the core
relation of Fig. 4 to prove the above binding and correct decryption.

The full scheme is given in Fig. 3. Later in Sections 4.3 and 4.4 we prove
the concrete security of the scheme. The implied succinct asymptotic security
statement can be stated as follows:

Theorem 4.1 (Security of our PCS Construction (Asymptotic version)).
The PCS scheme PCS in Fig. 3 (w.r.t. policies F ∈ F) is unforgeable and attribute
hiding, if the signature schemes DSpriv and DSP are unforgeable, the signature
scheme DSpub is strongly unforgeable, PE is an attribute-hiding (predicate-only)
predicate encryption scheme (for the induced predicates from Eq. (1)), and NIZK
is a secure non-interactive zero-knowledge proof of knowledge system for the
relation RZK of Fig. 4.

4.2 Correctness

The correctness of the construction described in Fig. 3 follows from the cor-
rectness of the predicate encryption scheme, the signature schemes, and the
non-interactive zero-knowledge proof. Note that for the sake of exposition, we
assume perfect correctness. However, even if any of the underlying building
blocks has negligible correctness failure, this propagates through our scheme
and would make it violate correctness only with negligible probability. Consider
any two attribute sets x, y with F (x, y) = 1 (the other case for F (x, y) = 0 is
straightforward) and let (mpk,msk)← Setup(1λ), (pkx, skx)← KeyGen(msk, x),
(pky, sky) ← KeyGen(msk, y) and σ ← Sign(mpk, pky := (vky, cty, σypub), skx :=
(vkx, skDS

x , skfx , σ
x
priv),m) for an arbitrary message m. We have σ 6= ⊥ because

the check during the signature generation whether PE.Dec(skfx , cty) = 1 will
be satisfied for F (x, y) = 1 due to the correctness of the scheme PE and the
requirement in Eq. (1). Furthermore, the signature on the sender’s public key
verifies by the correctness of the signature scheme DSpub during the signing
process. In the signature verification step, the calls to Verify for the signatures
schemes DSpub,DSpriv and DSP always return 1 by the correctness of the signature
schemes DSpub,DSpriv and DSP. Furthermore, NIZK.Verify always returns 1 by
the correctness of NIZK. This proves the correctness of the PCS scheme.

4.3 Existential Unforgeability

After showing the correctness of our construction, we prove its unforgeability.
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Setup(1λ, F ):
CRS← NIZK.Setup(1λ)
mskPE ← PE.Setup(1λ)
(vkpub, skpub)← DSpub.Setup(1λ)
(vkpriv, skpriv)← DSpriv.Setup(1λ)
mpk := (F,CRS, vkpub, vkpriv)
msk := (mskPE, skpub, skpriv)
Return (mpk,msk)

KeyGen(msk, x):
Parse msk := (mskPE, skpub, skpriv)
(vkP, skP)← DSP.Setup(1λ)
(fx,x) = SubPol(F, x)
ct← PE.Enc(mskPE,x)
skfx ← PE.KeyGen(mskPE, fx)
σpub ← DSpub.Sign(skpub, (vkP, ct))
σpriv ← DSpriv.Sign(skpriv, (vkP, skfx))
pk := (vkP, ct,σpub)
sk := (vkP, skP, skfx , σpriv)
Return (pk, sk)

Sign(mpk, sk, pkR,m):
Parse mpk = (F,CRS, vkpub, vkpriv)

sk = (vkS , skS , skfx , σpriv)
pkR = (vkR, ctR, σpub)

If DSpub.Verify(vkpub,

(vkR, ctR), σpub) = 0
Return ⊥

If PE.Dec(skfx , ctR) = 0
Return ⊥

π ← Prove(CRS,
(vkpriv, vkS , vkR, ctR),
(skfx , σpriv))

with L defined corresponding to Fig. 4.
σ′ ← DSP.Sign(skS , (m,π))
Return σ := (π, σ′)

Verify(mpk, pkS , pkR,m, σ):
Parse mpk = (F,CRS, vkpub, vkpriv)

pkS = (vkS , ctS , σSpub)
pkR = (vkR, ctR, σRpub)
σ = (π, σ′)

(Return 0 if parsing fails or σ = ⊥)
Return
DSpub.Verify(vkpub, (vkR, ctR), σRpub)
∧DSpub.Verify(vkpub, (vkS , ctS), σSpub)
∧NIZK.Verify(CRS, (vkpriv, vkR,

vkS , ctR), π)
∧DSP.Verify(vkS , (π,m), σ′)

Fig. 3: The Policy-Compliant Signature Scheme. It uses a NIZK proof sys-
tem NIZK, a predicate encryption scheme PE, and three digital signature
schemes DSpub,DSpriv and DSP.
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Relation RZK:
Instance: x = (vkpriv, vkS , vkR, ctR)
Witness: w = (skfx , σpriv)
RZK(x,w) = 1 if and only if:

DSpriv.Verify(vkpriv, (vkS , skfx), σpriv) = 1 and PE.Dec(skfx , ctR) = 1

Fig. 4: Relation used for the PCS scheme in Fig. 3.

Theorem 4.2. Let DSpub = (DSpub.Setup,DSpub.Sign,DSpub.Verify) be a SUF-CMA
secure signature scheme and let DSpriv = (DSpriv.Setup,DSpriv.Sign,DSpriv.Verify)
and DSP = (DSP.Setup,DSP.Sign,DSP.Verify) be a EUF-CMA secure signature
scheme and let NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) be an extractable
proof system, then the construction PCS = (Setup,KeyGen,Enc,Dec), defined in
Figure 3, is existentially unforgeable. Namely, for any PPT adversary A, there
exist PPT adversaries B,B′,B′′ and B′′′, such that

AdvEUF-CMA
PCS,A (λ) ≤ AdvSUF-CMA

DSpub,B (λ) + 2q · AdvEUF-CMA
DSP,B′ (λ)

+ AdvEUF-CMA
DSpriv,B′′ (λ) + AdvExt

NIZK,B′′′(λ),

where q denotes the number of queries to QKeyGen.

Proof (Sketch). To prove the unforgeability of our PCS scheme, we introduce
several bad events and bound their respective probabilitises by the unforgeability
of the different signature schemes as well as the extractability of the NIZK proof
system.

The first event that we need to bound is the event that an adversary generates
a valid key toegether with a valid signature, without querying the key generation
oracle. This event cannot occur due to the strong unforgeability of the signature
scheme DSpub. We need strong unforgeability here to prevent an adversary from
turning an existing key into a new key by generating a different, valid, signature
for this key. The second event that we need to bound is the event that the
adversary is able to generate a valid signature using an existing key for which it
does not know the corresponding secret key. This event can directly be bounded
by the existential unforgeability of the signature scheme DSP. The third, and
last, event that we need to bound is the event in which the adversary creates
a valid signature for two keys that do not fulfill the policy. The occurrence of
this event can be bound by the extractability of the NIZK proof system and
the unforgeability of the signature scheme DSpriv and DSP. In more detail, if an
adversay is able to create a valid signature for a key pair, where the corresponding
attributes do not fulfill the policy, then it has either (1) generated a NIZK proof
for an incorrect statement, which is a contradiction to the extractability of the
NIZK proof system; (2) has generated a valid witness for the NIZK proof by
forging a signature of the DSpriv signature scheme. This event is a contradiction
to the existential unforgeability of the DSpriv signature scheme. The third, and
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Game CRS, π pk justification

G0
CRS← NIZK.Setup(1λ)
π ← NIZK.Prove(CRS, x, w)

KeyGen(msk, x0)

G1
CRS← S1(1λ)
π ← S2(CRS, τ, x)

KeyGen(msk, x0)
Zero-knowledge

of NIZK

G2
CRS← S1(1λ)
π ← S2(CRS, τ, x)

KeyGen(msk, x1 ) AH of PE

G3
CRS← NIZK.Setup(1λ)
π ← NIZK.Prove(CRS, x, w)

KeyGen(msk, x1)
Zero-knowledge

of NIZK

Fig. 5: Overview of the games to prove the indistinguishability of attribute-hiding
of the policy-compliant signature scheme described in Fig. 3.

last, possiblity of the adversary to produce a forgery would be to if it obtained
two public keys which allowed for a “mix and match” attack, which however is
exlcuded by bounding the collision probability of the keys. The proof then follows
by showing that if none of these bad events occur, then no PCS forgery exists.

The formal proof of this theorem can be found in the full version. ut

4.4 Indistinguishability-Based Attribute Hiding

We next prove that our PCS scheme is attribute hiding.

Theorem 4.3. Let PE = (PE.Setup,PE.KeyGen,PE.Enc,PE.Dec) be a predicate
encryption scheme, let NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) be a NIZK
proof system and let DSpub = (DSpub.Setup,DSpub.Sign,DSpub.Verify) be a strongly
unforgeable signature scheme, then the construction PCS = (Setup,KeyGen,
Enc,Dec), defined in Figure 3, is attribute hiding. Namely, for any valid PPT
adversary A, there exist PPT adversaries B,B′ and B′′, such that:

AdvAH
PCS,A(λ) ≤ 2 · AdvZK

NIZK,B(λ) + AdvAH
PE,B′(λ) + AdvSUF-CMA

DSpub,B′′ (λ).

Proof. To prove this statement, we use a hybrid argument with the games defined
in Fig. 5. Note that G0 corresponds to the game AHPCS

0 (1λ,A) and G3 to the
game AHPCS

1 (1λ,A). This results in:

AdvAH
PCS,A(1λ) = |Pr[AHPCS

0 (1λ,A) = 1]− Pr[AHPCS
1 (1λ,A) = 1]|

= |Pr[G0(λ,A) = 1]− Pr[G3(λ,A) = 1]|.

We describe the different games in more detail:



Policy-Compliant Signatures 17

Game G1: In this game, we change from an honestly generated CRS and honestly
generated proofs to a simulated CRS and simulated proofs. The transition
from G0 to G1 is justified by the zero-knowledge property of NIZK. Namely,
we can exhibit a PPT adversary B0 such that:

|Pr[G0(λ,A) = 1]− Pr[G1(λ,A) = 1]| ≤ AdvZK
NIZK,B0

(λ).

Game G2: In this game, we change the attributes used for the generation of
the challenge public keys pki from xi,0 to xi,1 for all i. The transition from
G1 to G2 is justified by the attribute-hiding property of PE and the strong
unforgeability of DSpub. Intuitively, we rely on the strong unforgeability of the
signature scheme DSpub to prevent an adversary from learning any information
about the challenge keys by obtaining a signature for a maliciously generated
key. Namely, we can exhibit PPT adversaries B1 and B2 such that:

|Pr[G1(λ,A) = 1]− Pr[G2(λ,A) = 1]| ≤ AdvAH
PE,B1

(λ) + AdvSUF-CMA
DSpub,B2

(λ).

Game G3: This game is the AHPCS
1 (1λ,A) game. In this game, we change back

from a simulated CRS and simulated proofs π to an honestly generated CRS
and honestly generated proofs π. As the transition from G0 to G1, this
transition is justified by the zero-knowledge property of NIZK. Namely, we
can exhibit a PPT adversary B3 such that:

|Pr[G2(λ,A) = 1]− Pr[G3(λ,A) = 1]| ≤ AdvZK
NIZK,B3

(λ).

Putting everything together, we obtain the theorem. ut

We present the proofs for the different transitions in the full version.

4.5 Efficient Instantiations based on Inner-Product PE

In this section, we show that our generic PCS scheme can be instantiated efficiently
for certain policies such as the ones mentioned in the introduction. Since the most
efficient predicate-only PE schemes are known for the inner-product functionality
class in the standard model, we focus on this instantiation and briefly recall the
associated realizable policies established in [8, 22]. The two functionality classes
we recall are:

Inner-Product Functionality. The functionality class is defined as F IP
N,k = {F IP

N,k :
ZkN × ZkN → {0, 1}} by the equation

F IP
N,k(x,y) =

{
1 if 〈x,y〉 = 0 mod N,
0 if 〈x,y〉 6= 0 mod N.
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Hidden-Vector Functionality. Define Σ∗ = Σ ∪ {∗} with Σ = {0, 1}. The func-
tionality class is defined as FHV

k = {FHV
k : Σk

∗ ×Σk → {0, 1}} by the equation

FHV
k (x,y) =

{
1 if ∀i ∈ [k] (xi = yi or xi = ∗),
0 otherwise.

In the following, we call a predicate encryption scheme that implements the IP
functionality inner-product encryption (IPE) and refer to a predicate encryption
scheme that implements the HV functionality as hidden-vector encryption (HVE).
Note that the predicates in the associated PE schemes correspond to the functions
F IP
N,k(x, ·) and FHV

k (x, ·) parameterized by the vector x corresponding to the
first argument of the above functions, respectively. As shown in [22], HVE with
dimension ` can be realized generically based on IPE of dimension 2`.

Instantiating the generic scheme. The elements of our generic construction
are digital signatures, predicate encryption, and NIZK. For inner-product predi-
cates there exist efficient PE schemes for the assumed indistinguishability-based
security [29,30] (and also for a certain type of simulation-based security [17]). For
the signature scheme used by the authority to generate σpub and the signature
scheme used by the client, we can use BLS signatures [6] (or BB signatures [5]
to avoid switching to an idealized model). For the signature scheme used by
the authority to generate σpriv, we however have to pay attention, as it is used
as part of the witness in a NIZK computation. The only source of practical
inefficiency comes from the additional usage of the NIZK proof for the relation
RZK(x,w)↔ DSpriv.Verify(vkpriv, (vkS , skfx), σpriv)∧Dec(skfx , ctR) = 1, as it com-
bines a generic signature verification with a proof of decryption of the PE scheme.
Note that there are two signature schemes involved: the signature scheme with
which the authority produces σpriv is the crucial one in this section. For the “inner
signature” (the one used by a party to sign the final message) it will only be
convenient to assume that vkS is encoded as a group element of some cyclic group
(which is the case for the variants discussed above). Note that the NIZK relation
does not involve signatures of the inner scheme, just the representation of the
public key as part of the statement.

To avoid the potential source of inefficiency from the NIZK we can use
predicate encryption and signature schemes that align well with the use of the
Groth-Sahai framework [18, 20] to verify the relation RZK. We achieve such a
combination by using the (pairing-based) structure-preserving signature (SPS)
scheme from Kiltz et al. [23] in combination with the (pairing-based) inner-product
PE scheme from Okamoto et al. [29] that yields pairing product equations to
verify relation RZK.

In a nutshell, pairing groups are represented as a tuple (G1,G2,GT , q, g1, g2, e)
where G1,G2,GT are cyclic groups of prime order q, g1 and g2 are generators of
G1 and G2, respectively. Finally, e : G1 ×G2 7→ GT is an efficiently computable
non-degenerate bilinear map and gT := e(g1, g2) is a generator of the target
group. Groth-Sahai proofs implement a NIZK for a collection of product pairing
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equations of the form

s∏
i=1

e(xi, Ai) ·
s′∏
i=1

e(Bi, yi) ·
s′∏
i=1

s∏
j=1

e(xi, yi)γi,j = tT

where Ai ∈ G1, Bi ∈ G2, tT ∈ GT and γi,j ∈ Zq are constants (and part of
the statement to be proven), and xi ∈ G1 as well as yi ∈ G2 are the private
witness variables (and s, s′ are integers). A priori, GS proofs for product pairing
equations are only witness-indistinguishable unless certain additional constraints
are met [20]. But even if those conditions are not met, efficient transformations
can turn GS NIWI into full NIZK proofs (with extractability for group elements)
with low overhead as shown in [13] by creating an OR-Proof system (allowing a
simulator to always find a witness) and using the controlled malleability of the
GS proof systems. We refer to [14, Theorem 3.2 and Appendix B] for the full
details. As mentioned above, we instantiate the paring-based primitives from [29]
(encryption) and [23] (signature):

– In the PE scheme of [29], ciphertexts are represented as pairs ct = (c1, c2),
where c2 ∈ GT is the blinded plaintext m and has the form c2 = m · gζ (for a
random ζ chosen during encryption) and c1 is an N -vector c1 = (A1, . . . AN )
with Ai ∈ G1 (for an integer parameter N of the scheme). The decryption
key for functionality fx is represented by an N -vector skfx = (k1, . . . , kN )
with ki ∈ G2. The decryption operation is m′ ← c2/

∏N
i=1 e(Ai, ki). Note

that to turn the scheme into a predicate-only PE scheme, we can fix m = IGT

and do not need the extra blinding of the ciphertext (fixing ζ := 1) and
hence the decryption operation satisfies the equation c2 = gT = e(g1, g2) =∏N
i=1 e(Ai, ki).

– In the SPS scheme of [23], a signature string is a tuple σ = (s1, s2, s3, s4)
with s4 ∈ G2, and si ∈ G1×(k+1)

1 , i ∈ {1, 2, 3} for an integer parameter k.
The public key of this system consists of four matrices Mi, where M1,M2 ∈
Gk+1×k

2 , M3 ∈ Gn+1×k
2 , and M4 ∈ Gk+1×k

2 (where n is the parameter
specifying the message length). Verifying a signature σ with respect to this
public key amounts to the following collection of 2k + 1 pairing product
equations, where a message x ∈ Gn1 is encoded as m := (g1, x1, . . . , xn): For
each j ∈ [k] we check that

k+1∏
i=1

e((s1)i, (M4)j,i) =

k+1∏
i=1

e((m)i, (M3)j,i) ·
k+1∏
i=1

e((s2)i, (M1)j,i) ·
k+1∏
i=1

e((s3)i, (M2)j,i)

holds, as well as e((s2)j , s4) = e((s3)j , g2) is satisfied for each j ∈ [k + 1].

Therefore, the relation in Fig. 4 can be expressed as proving a satisfying
assignment of the above pairing product equations, where the (private) decryption
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key and the private signature are the private witness variables of the above
equations, whereas the ciphertext and public keys can be treated as the constants
(and hence part of the statement).

Instantiating logical formulas. By applying the techniques of [22] in our
setting, we can implement various policies expressed as logical formulas. While
all previous techniques are applicable to our setting, we only dive into simple
reductions for completeness, as the core principle is the same for any technique
mapping a logical formula to inner-products or hidden-vector functionalities.

IPE and threshold clauses. Assume a finite list of variables Pi, i = 1 . . . q, where
each variable can take on values pi from a finite set P. Assume a policy F is
expressed as a combination of sender and receiver properties. We assume that
the policy is expressed as a list of requirements, each requirement being a clause,
and where one requires that exactly d out of k of the requirements (clauses) must
be satisfied (e.g., d = 1 as in our introductory example).

That is, we have a set of clauses {Ki}i∈[k], each with ni sender properties
and mi receiver properties of the form

Ki = (P (s)
idx(i,1) = pi,1 ∧ · · · ∧ P (s)

idx(i,ni) = pi,ni
∧ P (r)

idx(i,ni+1)

= pi,ni+1 ∧ · · · ∧ P (r)
idx(i,ni+mi) = pi,ni+mi),

which we call a conjunctive clause. Here, P (s)
idx(i,j) resp. P (r)

idx(i,j) denote variables
Ph indexed via an indexing function h = idx(i, j) (which is induced by such a
finite policy). Note that the variables constrain the sender (superscript (s)) and
the receiver (superscript (r)).

Our goal is to map the policy F to the functionality class F IP
k+1. In par-

ticular, we must show how the authority performs the mapping (fx,x) ←
SubPol(F, (x1, . . . , xn)) in the scheme of Fig. 3, where x1, . . . , xn is the assign-
ment of attributes to each Pi of a user Alice (note that we omit treating null
values for simplicity). The authority performs the following computation:

1. The authority precomputes which clauses Alice cannot satisfy anymore, and
which ones she potentially can satisfy with a matching receiver. The authority
defines for all i ∈ [k]:

Xi :=

1 if
ni∧
j=1

(xidx(i,j) = pi,j) = 1,

0 otherwise.

The first part of the output of the subpolicy algorithm SubPol is fx(·) :=
F IP
N,k+1((X1, . . . , Xk, 1), ·), where we assume N > k.

2. The authority precomputes which clauses Alice cannot satisfy if she is the
receiver, and which ones she potentially can satisfy with a matching sender.
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The authority defines:

Yi :=

1 if
mi∧
j=1

(xidx(i,ni+j) = pi,ni+j) = 1,

0 otherwise,

for all i ∈ [k]. The second part of the output of the subpolicy algorithm
SubPol is x := (Y1, . . . , Yk,−d).

We observe that if a sender obtains a secret key generated based on the vector
(X1, . . . , Xk, 1) and signs (as shown in Fig. 3) a message for a receiver public key
that contains the ciphertext generated based on vector (Y1, . . . , Yk,−d) as shown
above, we have

〈(X1, . . . , Xk, 1), (Y1, . . . , Yk,−d)〉 = 0
⇐⇒ 〈(X1, . . . , Xk), (Y1, . . . Yk)〉 = d

because N > k (which is assumed to avoid wraparound complications). Since
each of the products Xi · Yi signals the joint fulfillment of the original clause
Ki (thanks to the precomputation step), this means that exactly d clauses are
jointly satisfied, which corresponds to the policy F .

We note that if the policy F has disjunctive clauses instead, that is for each
i ∈ [k]

Ki = (P (s)
idx(i,1) = pi,1 ∨ · · · ∨ P (s)

idx(i,ni) = pi,ni
∨ P (r)

idx(i,ni+1)

= pi,ni+1 ∨ · · · ∨ P (r)
idx(i,ni+mi) = pi,ni+mi),

(where for d = k we obtain CNF formulas) an analogous reasoning yields that
the reduction to inner products for dimension 2k + 1 can be achieved by having
the authority follow the above steps but define for all i ∈ [k], X2i−1 := 1 and

X2i :=

1 if
ni∨
j=1

(xidx(i,j) = pi,j) = 1,

0 otherwise,

as well as for all i ∈ [k]

Y2i−1 :=


1 if

mi∨
j=1

(xidx(i,ni+j) = pi,ni+j) = 1,

0 otherwise,

Y2i :=


0 if

mi∨
j=1

(xidx(i,ni+j) = pi,ni+j),

1 otherwise.
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The authority finally computes fx(·) := F IP
N,2k+1((X1, . . . , X2k, 1), ·) and x :=

(Y1, . . . , Y2k,−d) (and generates the associated keys and ciphertext as prescribed
in Fig. 3). The above is seen to represent the policy F by observing that each
clause i is represented by two variables such that the sum X2i−1 ·Y2i−1 +X2i ·Y2i
equals 0 if no party satisfies the clause, and 1 in any other case.

HVE and CNF formulas. HVE opens up the space for many policies and is itself
realizable from the inner product functionality [8, 22]. For example, for CNF
formulas, i.e., as above with d = k, where k is the number of disjunctive clauses,
the reduction to HVE for dimension k is straightforward: The authority defines

Xi =

∗ if
ni∨
j=1

(xidx(i,j) = pi,j) = 1,

1 otherwise.

and

Yi =

1 if
mi∨
j=1

(xidx(i,ni+j) = pi,ni+j) = 1,

0 otherwise.

The the authority computes fx(·) := FHV
k ((X1, . . . , Xk), ·) and x := (Y1, . . . , Yk)

and generates the associated keys and ciphertext as prescribed in Fig. 3.
This accurately represents the CNF policy F : A sender can only decrypt

the ciphertext in the public key of a receiver if for each clause i, either the
sender already satisfies that clause and thus the resulting vector has the wildcard
symbol ∗ at this position, or the receiver has a satisfying assignment and hence
its vector must be equal to 1 at this position to match the sender’s value.

5 Universal Composability and SIM-Based PCS

Simulation-based security has the advantage that, instead of arguing and ex-
cluding trivial attacks, we follow the real/ideal world paradigm, where in the
ideal-world, the leakage to the simulator and the unforgeability properties are
captured in an explicit fashion.

The ideal PCS functionality. In this section, we cast policy compliant signature
as an enhanced signature functionality following [2,11] that incorporates all of
our declared goals for this primitive. We give the description in Section 5. The
difference to a standard signature functionality are at a high-level the following:

– There is a distinct trusted party, denoted M that is responsible for the setup.
M is responsible to generate the signing keys for parties with respect to the
attributes they possess. Note that at this level of abstraction, we do not
discuss how the authority decides to assign an attribute to a party. This will
be managed by the higher-level protocols. The attributes of honest parties
do not leak to the adversary, which captures that the obtained public key
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does not leak any attributes. However, the adversary learns by definition of
the signature algorithm, whether the corrupted parties are allowed to send
messages to the new honest parties.

– On signing operations, only valid signatures are recorded. That is, if party
Pi with attributes xPi

signs a message m for party Pj with attributes xPj
,

then the record (m,σ, vM , vPi
, vPj

, 1) is only stored if F (xPi
, xPj

) = 1, where
vM denotes the public parameters and vPi

, vPj
are the unique public keys

associated with parties Pi and Pj , respectively.
– On verification queries of the form (verify, sid,m, σ, v′M , v′A, v′B), the func-

tionality ensures aside of completeness and unforgeability w.r.t. honest signers
also that no valid signature can be generated for any combination of v′A, v′B
unless the public keys are associated to attributes x′A and x′B such that
F (x′A, x′B) = 0.

– On top of unforgeability, privacy guarantees that the adversary learns at most
the policy evaluation F (xi, xj) (associated with the respective keys) for every
signing query. For corrupted parties, the adversary learns their attributes
x̃ (since it learns all inputs and outputs by that party upon corruption by
default) as well as all evaluations F (x̃, xj).

Functionality FuncM,F
PolSig

The functionality interacts with an arbitrary party set P := {P1, . . . , Pn} and
adversary S. The functionality is parameterized by a distinct identity M 6∈ P of
the credential manager and the class of supported policies F .
Initialize F ← ⊥, xPi , vPi ← ⊥ for all Pi ∈ P\{M} and vM ← ⊥. The functionality
maintains the initialized party set I := {Pi ∈ P | vPi 6= ⊥} (and we omit the explicit
inclusion of parties for simplicity).
Policy Initialization. Upon input (policy-gen, sid, F ) from party M do
the following: if vM 6= ⊥ or F 6∈ F , ignore the request; otherwise, provide
(policy-gen, sid, F ) to S. Upon receiving (policy-gen, sid, v) from S, output
(policy-gen, sid, v) to M and set vM ← v.
Key Generation. Upon input (key-gen, sid, P, x) from partyM , where P ∈ P\I,
do the following: ignore the request if vM = ⊥; otherwise define xPi ← x and
compute:

1. Provide the leakage information {(P̂ , Pi) 7→ F (xP̂ , xPi ) | for all corrupted P̂ ∈
I}} to S.

2. Provide (key-gen, sid, Pi) to S. Upon receiving (verification-key, sid, Pi, v)
from S, verify that for all P ∈ I vP 6= v, and if this is the case, set vPi ← v
and output (verification-key, sid, x, v) to Pi. If v is not unique, ignore the
input from S.

Signing. On input (sign, sid,m, v) from party P ∈ I:

– If v = vPj for some Pj ∈ I and F (xP , xPj ) = 1 then provide
(sign, sid,m, P, v, 1) to S. Upon receiving (signature, sid,m, P, v, σ) from
S, verify that no entry (m,σ, vM , vP , vPj , 0) is stored. If it is, then output an
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error message to P and halt. Else, output (signature, sid,m, v, σ) to P , and
store the entry (m,σ, vM , vP , vPj , 1).

– In any other case, provide (sign, sid,m, P, v, 0) to S and when receiving
(signature, sid,m, s) from S, output (signature, sid,m, v, s) to P . (This
case guarantees that such messages are not considered as signed.)

Verification. Upon input (verify, sid,m, σ, v′
M , v′

A, v
′
B) from any

party P , hand (verify, sid,m, σ, v′
M , v′

A, v
′
B) to S. Upon receiving

(verified, sid,m, v′
M , v′

A, v
′
B , φ) from S do:

1. If v′
M = vM , v′

A = vPi , v′
B = vPj for some Pi, Pj ∈ I and the entry

(m,σ, vM , vPi , vPj , 1) is recorded, then set f = 1. (Condition 1 guarantees
completeness: If the verification keys are the registered ones and σ is a legiti-
mately generated signature for m, then the verification succeeds.)

2. Else, if v′
M = vM , v′

A = vPi , v′
B = vPj for some Pi, Pj ∈ I and Pi is not

corrupted and no entry (m,σ, vM , vPi , vPj , 1) for any σ′ is recorded, then set
f = 0 and record the entry (m,σ, vM , vPi , vPj , 0). (Condition 2 guarantees
unforgeability: For any combination of generated public keys, the signer is not
corrupted, and never signed m, then the verification fails.)

3. Else, if v′
M = vM , v′

A = vPi , v′
B = vPj for some Pi, Pj ∈ I and no entry

(m,σ, vM , vPi , vPj , 1) for any σ′ is recorded, then set f = 0 if F (xPi , xPj ) = 0,
and otherwise set f ← φ. Record the entry (m,σ, vM , vPi , vPj , f). (Condition
3 guarantees policy compliance of dishonest signers: For any combination of
generated public keys, even if everyone is corrupted the verification must fail
if the policy is not satisfied.)

4. Else, if v′
M = vM but we have that ∀Pi ∈ I : v′

A 6= vPi or ∀Pi ∈ I : v′
B 6= vPi ,

then set f ← 0 and record the entry (m,σ, vM , v′
A, vB′ , 0). (Condition 4 ensures

that no valid signatures can exist w.r.t. public keys not issued by the credential
manager.)

5. Else, if there is an entry (m,σ, v′, f ′) stored, then let f = f ′ . (Condition 5
guarantees consistency: All verification requests with identical parameters will
result in the same answer.)

6. Else, let f = φ and record the entry (m,σ, v′
M , v′

A, v
′
B , φ). (If no condition

applies, then let the adversary decide.)
7. Finally, output (verified, sid,m, f) to P .

Corruption Mode. The party M is not corruptible. For all other parties Pi,
the functionality supports the standard corruption mode [12], that is, upon input
(corrupt, Pi) on the backdoor tape, send all previous inputs to S and hand over
the control of Pi’s input and output tapes to S and providing the adversary all
capabilities that an honest party has. Additionally, whenever a party Pi gets
corrupted, provide the leakage information {(Pi, Pj) 7→ F (xPi , xPj ) |Pj ∈ I}.

Blueprint usage of the scheme in UC. As with signatures [2, 11], a PCS scheme
PCS = (Setup,KeyGen,Sign,Verify) can be mapped in a straightforward way to
a UC protocol tailored to realize the low-level functionality FuncM,F

PolSig (low level
in the sense that it exports the interface without much abstraction). The main
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difference to an ordinary signature scheme is the presence of a trusted party
assisting in the key generation step. That is, we have a trusted (credential)
manager M incorruptible by definition6, where we assume secure point-to-point
channels between M and each Pi. The protocol πPCS

M can be specified as follows:

– Party M :
• On input (policy-gen, sid, F ), run Setup(1λ, F ) and generate the output

(policy-gen, sid,mpk). Store msk internally.
• On input (key-gen, sid, P, x), run KeyGen(msk, x) and send the message

(x, (pk, sk)) to party P over a secure channel.
– Party Pi:
• Upon receiving (for the first time) the message (x, (pk, sk)) fromM on the

secure channel, store it internally and output (verification-key, sid, x, pk).
If the party has initialized its public key already, messages from M are
ignored.

• On input (sign, sid,m, v), if this party has already a secret key sk, then
execute σ ← Sign(v, sk,m) and return (signature, sid,m, v, σ).

• On input (verify, sid,m, σ, v′M , v′A, v′B), return the output (verified, sid,m,
Verify(v′M , v′A, v′B ,m, σ)).

With this composable understanding in mind, we now set out to establish
a concise and simpler SIM-based PCS notion in the spirit of [7, 24, 27] that
implies the UC realization of the ideal PCS functionality, which we show formally
in Theorem 5.2. Looking ahead, the proof of Theorem 5.2 reveals that all the
ideal unforgeability properties (Conditions 2, 3, and 4) of FuncM,F

PolSig follow from
the game-based unforgeability notion defined in Definition 3.2, which is thereby
validated to capture what we intended to model.

5.1 Simulation-Based Attribute Hiding

Our starting point is the already established game-based notion, where the
adversary gets access to a variety of oracles, as defined in Section 3.1. Following [7,
24, 27], we consider a simulator S = (SSetup,SKG,SCor,SSgn), where SSetup
simulates Setup and SKG, SCor, and SSgn simulate the oracles QKeyGen, QCor,
and QSign, respectively. These simulator algorithms have a shared state and in
addition to the inputs to the oracles, get a leakage set L. The set L is initially
empty and gets augmented during the experiment analogous to how the simulator
in the UC functionality obtains information.

Definition 5.1 (SIM-Based AH). Let PCS = (Setup,KeyGen,Sign,Verify)
be a PCS scheme as defined in Definition 3.1. We define the experiments
RealPCS(1λ,A) and IdealPCS(1λ,A,S) for a PPT adversary A and a PPT sim-
ulator S = (SSetup,SKG,SCor,SSgn) in Fig. 6. In the real world, the adversary

6 Formally, the property of such trusted third parties to be incorruptible is modeled
by instructing its protocol machine to ignore the corruption request on the backdoor
tape.
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has access to oracles as defined in Section 3.1. The simulator algorithms have a
shared state s, which is modelled as giving them s as input, and allowing all of
them to update the state s. In the ideal experiment, the initially empty sets IQK
and IQC are maintained. Furthermore, all but SSetup get as an additional input
the leakage set L, which is initially empty. The sets are updated according to the
following rules:

– When A queries the key generation oracle using xj, the following gets added
to L (before SKG is invoked):

{(i, j) 7→ F (xi, xj) | (i, pki, xi) ∈ IQC}.

After the simulator SKG has been invoked, (j, pkj , xj) is added to QK, where
pkj is the output of SKG.

– When A makes a corruption query i with (i, pki, xi) ∈ QK, then the following
gets added to L (before SCor is invoked):

(
xi, {(i, j) 7→ F (xi, xj) | (j, pkj , xj) ∈ IQK}

)
.

Additionally, (i, pki, xi) ∈ IQK is also added to IQC.

– When A makes a signing query (i, pkR,m), the following gets added to L:

{(i, j) 7→ F (xi, xj) | (i, pki, xi), (j, pkR, xj) ∈ IQK}.

This models that adversaries learn whether a pair of keys satisfy the policy by
observing a signature for these keys.

The advantage of a PPT adversary A in the experiment is defined as:

AdvSim
PCS,A,S(λ) = |Pr[RealPCS(1λ,A) = 1]− Pr[IdealPCS(1λ,A,S) = 1]|.

A PCS scheme PCS is simulation attribute hiding, if for any PPT adversary
A there exists a PPT simulator S, such that AdvSim

PCS,A,S(λ) ≤ negl(λ), where
negl(·) is a negligible function.
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RealPCS(1λ,A)
(F, τ)← A1(1λ)
(mpk,msk)← Setup(1λ, F )
α← AQKeyGen(·),QCor(·),QSign(·,·,·)(τ,mpk)
Output: α

IdealPCS(1λ,A,S)
(F, τ)← A1(1λ)
(mpk, s)← SSetup(1λ, F )
α← ASKG(s,L),SCor(s,L,·),SSgn(s,L,·,·,·)(τ,mpk)
Output: α

Fig. 6: Real and ideal experiments for the simulation-based attribute hiding defini-
tion for the scheme PCS. Both experiments interact with an adversaryA. The ideal
experiment additionally interacts with a simulator S = (SSetup,SKG,SCor,SSgn).
The simulator gets the initially empty leakage set L, which grows during the
experiment as described in Definition 5.1.

We conclude with the following theorem:

Theorem 5.2. Protocol πPCS
M securely realizes FuncM,F

PolSig if PCS is existentially
unforgeable (Definition 3.2) and simulation-based attribute hiding (Definition 5.1).

Proof. We prove the theorem in two main steps. First we assume a hybrid world
with a functionality like FuncM,F

PolSig but which does not protect the privacy of
any party’s attributes, but only enforces the ideal unforgeability guarantees. We
show that there is a UC simulator Suc that can simulate the real-world perfectly
unless the environment (together with the dummy adversary) provoke an event
that implies a forgery of the PCS scheme as captured by game EUF-CMAPCS

in Fig. 1. The second step of the proof is to switch to the true ideal world
with FuncM,F

PolSig. We re-design the previous simulator to obtain S ′uc that uses the
assumed simulator Spcs = (SSetup,SKG,SCor,SSgn) required by Definition 5.1.
Any environment that notices this switch to S ′uc can be used to distinguish
RealPCS and IdealPCS.

In more detail, we have the following hybrid worlds:

Hybrid H0: This is the real-world process with protocol πPCS
M .

Hybrid H1: Here we assume an “ideal functionality” Funchyb that acts like
FuncM,F

PolSig but with the following difference:

· On input (key-gen, sid, P, x), behave as FuncM,F
PolSig does but additionally

output x to the adversary.
Designing a simulator for this world follows the pattern of the signature
simulator of [11] with additional setup, that is. We define the simulator Suc:
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- On input (policy-gen, sid, F ) from Funchyb, execute Setup(1λ, F ) and
then return to the functionality (policy-gen, sid,mpk). Store msk for
future use.

- On input (key-gen, sid, Pi) alongside the leakage set {(P̂ , Pi) 7→ F (xP̂ ,
xPi

) | for all corrupted P̂ ∈ I}}, and the additional leakage information
x specific to Funchyb, the simulator executes KeyGen(msk, x), stores
the obtained key-pair (pk, sk) as (Pi, pk, sk) for future use. Provide
(verification-key, sid, Pi, pk) to the functionality.

- On input (sign, sid,m, P, v, b) from Funchyb, obtain the record (P, pk, sk)
and execute σ ← Sign(v, sk,m) (give up activation if this party has not yet
obtained its key). Return to the functionality (signature, sid,m, P, v, σ).

- On input (verify, sid,m, σ, v′M , v′A, v′B) from Funchyb, let
φ← Verify(v′M , v′A, v′B ,m, σ) and return (verified, sid,m, v′M , v′A, v′B , φ)
to the functionality.

- On a corruption request for party Pi, Suc corrupts Pi in the ideal function-
ality (and formally also obtains leakage set {(Pi, Pj) 7→ F (xPi

, xPj
) |Pj ∈

I} that is not needed here since the simulator has full knowledge of
attributes), checks for a previously stored record (Pi, pk, sk) and if such
a record exists returns sk. (And from now onward, the simulator acts as
relay between environment and functionality.)

Hybrid H2: This hybrid is the ideal functionality (i.e., the ideal protocol for)
FuncM,F

PolSig together with simulator S ′uc. We define S ′uc by stating what the
difference is compared to Suc. This will be handy when arguing about the
indistinguishability of this and the previous hybrid.
- On input (policy-gen, sid, F ) from FuncM,F

PolSig, simulator S ′uc executes
(mpk, s) ← SSetup(1λ, F ) (instead of Setup) and stores s for future use
(instead of msk). Initialize the leakage set L ← ∅. The interaction with
the functionality is just like Suc.

- On input (key-gen, sid, Pi) alongside the leakage set L = {(P̂ , Pi) 7→
F (xP̂ , xPi

) | for all corrupted P̂ ∈ I}}—but without the additional leak-
age x from above–from FuncM,F

PolSig, S ′uc computes L ← L∪L and executes
SKG(s,L) to obtain pk and an updated state s. The simulator stores the
tuple (Pi, pk,⊥) (no secret key is stored). The remaining interaction with
the functionality is identical to Suc.

- On input (sign, sid,m, P, v, b) from FuncM,F
PolSig, the simulator updates the

leakage set L only if there is an entry (P ′, v, ·) by adding the tuple
(P, P ′, b). Next, retrieve a previously stored record (P, pk,⊥) and generate
the signature σ ← SSgn(s,L, P, v,m) (which also updates the state s).
The interaction between the simulator and the functionality is the same
as in Suc.

- On input (verify, sid,m, σ, v′M , v′A, v′B) from FuncM,F
PolSig, the simulator be-

haves identically to Suc.
- On a corruption request for party Pi, S ′uc corrupts Pi in FuncM,F

PolSig, and
includes the additional leakage information L = {xPi

} ∪ {(Pi, Pj) 7→
F (xPi

, xPj
) |Pj ∈ I} by computing L ← L ∪ L. Next, it retrieves the
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record (Pi, pk, ·) and if such a record exists returns sk ← SCor(s,L, Pi)
(which also updates s) and returns sk. (And from now, the simulator acts
as relay between environment and functionality.)

In the full version, we state and prove two claims that show the indistinguishability
of hybrid H0 and H1 and the indistinguishability of H1 and H2. Combining
both claims yields that for any UC environment (and without loss of generality
in the dummy adversary model, see [10]) the (real) protocol execution of πPCS

M is
indistinguishable from the ideal protocol execution with functionality FuncM,F

PolSig
and ideal adversary (i.e., simulator) S ′uc. The theorem follows. ut

5.2 On the SIM-Based Security of our Generic Scheme

If we assume that the underlying predicate-only predicate encryption scheme of
our construction in Fig. 3 satisfies the strong simulation-based PE security notion
as defined in the full version, then the generic scheme achieves the simulation-
based and therefore the composable notion of PCS. We note that the requirement
in the simulation-based PE security is the adaptive (and thus stronger) version
of what is proven so far in the literature, such as in [17, 29]. We leave it as an
interesting open problem to realize PE schemes that fulfill the stronger (adaptive)
simulation-based security notion based on reasonable assumptions. We note that
such schemes require idealized models such as proofs in the bilinear generic group
model [24] or the random oracle model.

Theorem 5.3. Let PE = (PE.Setup,PE.KeyGen,PE.Enc,PE.Dec) be a simu-
lation secure predicate encryption scheme, let further NIZK = (NIZK.Setup,
NIZK.Prove,NIZK.Verify) be a NIZK proof system and let
DSpub = (DSpub.Setup,DSpub.Sign,DSpub.Verify) be a strong unforgeable signa-
ture scheme, then there exists a simulator S such that the construction PCS =
(Setup,KeyGen,Enc,Dec), defined in Figure 3, is simulation private. Namely, for
any PPT adversary A there exist PPT adversaries B,B′ and B′′, such that:

AdvSim
PCS,A,S(λ) ≤ AdvZK

NIZK,B(λ) + AdvSim
PE,B′,S′(λ) + AdvSUF-CMA

DSpub,B′′ (λ).

Proof. The simulator S for the proof of this theorem is described in the full
version. Informally, the simulator S uses the simulators of the predicate encryption
scheme to generate the keys. For answering signature queries, the simulator S
additionally receives the policy evaluation of the associated attributes of the keys
that are used for the signature query. Since S knows if the statement is part of
the language of the NIZK system, it can use the NIZK simulator to generate
a valid proof for the statement relying on the zero-knowledge property of the
NIZK system.

As in the proof of Theorem 4.3, we assume that the adversary A only queries
the signing oracle using public keys that previously have been output by one
of the key oracles or has been a reply to the challenge query. The argument
here is the same as in the proof of Theorem 4.3, which results in the summand
AdvSUF-CMA

DSpub,B′′ (λ) of the bound in the theorem.
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To show that the ideal world with the simulator S is indistinguishable from
the real world, we use a hybrid argument where the hybrids are formally defined
in the full version. Note that H0 corresponds to the real world RealPCS(1λ,A)
and H2 to the ideal world IdealPCS(1λ,A,S). This results in:

AdvSim
PCS,A,S(λ) = |Pr[H0(λ,A) = 1]− Pr[H2(λ,A) = 1]|.

We describe the different games in more detail:

Hybrid H1: In this hybrid, we change from an honestly generated CRS and
honestly generated proofs to a simulated CRS and simulated proofs. The
transition from H0 to H1 is justified by the zero-knowledge property of NIZK.
Namely, we can exhibit a PPT adversary B0 such that:

|Pr[H0(λ,A) = 1]− Pr[H1(λ,A) = 1]| ≤ AdvZK
NIZK,B0

(λ).

Hybrid H2: This hybrid is the IdealPCS(1λ,A) world. In this hybrid, we change
from honestly generated keys to simulated keys. The transition from H1 to
H2 is justified by the simulation policy hiding property of PE. Namely, we
can exhibit a PPT adversary B1 such that:

|Pr[H1(λ,A) = 1]− Pr[H2(λ,A) = 1]| ≤ AdvSim
PE,B1,S′(λ).

Putting everything together, we obtain the theorem. ut

We present the proofs for the different transitions in the full version.
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