
Laconic Private Set Intersection and
Applications

Navid Alamati1, Pedro Branco2 Nico Döttling3, Sanjam Garg1,4, Mohammad
Hajiabadi5, and Sihang Pu3

1 UC Berkeley
2 IT, IST - University of Lisbon

3 Helmholtz Center for Information Security (CISPA)
4 NTT Research

5 University of Waterloo

Abstract. Consider a server with a large set S of strings {x1, x2 . . . , xN}
that would like to publish a small hash h of its set S such that any client
with a string y can send the server a short message allowing it to learn
y if y ∈ S and nothing otherwise. In this work, we study this problem of
two-round private set intersection (PSI) with low (asymptotically opti-
mal) communication cost, or what we call laconic private set intersection
(`PSI) and its extensions. This problem is inspired by the recent general
frameworks for laconic cryptography [Cho et al. CRYPTO 2017, Quach
et al. FOCS’18].
We start by showing the first feasibility result for realizing `PSI based
on the CDH assumption, or LWE with polynomial noise-to-modulus ra-
tio. However, these feasibility results use expensive non-black-box cryp-
tographic techniques leading to significant inefficiency. Next, with the
goal of avoiding these inefficient techniques, we give a construction of
`PSI schemes making only black-box use of cryptographic functions. Our
construction is secure against semi-honest receivers, malicious senders
and reusable in the sense that the receiver’s message can be reused across
any number of executions of the protocol. The scheme is secure under
the φ-hiding, decisional composite residuosity and subgroup decision as-
sumptions.
Finally, we show natural applications of `PSI to realizing a semantically-
secure encryption scheme that supports detection of encrypted messages
belonging to a set of “illegal” messages (e.g., an illegal video) circulating
online. Over the past few years, significant effort has gone into realiz-
ing laconic cryptographic protocols. Nonetheless, our work provides the
first black-box constructions of such protocols for a natural application
setting.

1 Introduction

Laconic cryptography [13,40,20,18] is an emerging paradigm which enables re-
alizing cryptographic tasks with asymptotically-optimal communication in just
two messages. In this setting, the receiver has a potentially large input, and the

size of her protocol message only depends on the security parameter, and not
her input size. The second message, sent by the sender, may grow with the size
of the sender’s input, but should be independent of the receiver’s input size.

The pioneering work of [13] introduced the notion of laconic oblivious transfer
(laconic OT), which allows a receiver with a large input D ∈ {0, 1}n to send a
short hash digest h of her input D. Next, a sender with an input (i ∈ [n],m0,m1),
sends a short message ots to the receiver, enabling the receiver to learn mD[i],
and nothing more. We require (a) the sizes of h and ots be poly(log(n), λ), where
λ is the security parameter; (b) the sender’s computation time be poly(log(n), λ)
and (c) and receiver’s second-phase computation time be poly(log(n), λ).

The notion of laconic OT, and the techniques built around it, have led to
breakthrough results in the last few years, which, among others, include the first
construction of identity-based encryption from CDH [17,16,8,19], and two-round
MPC protocols from minimal assumptions [24,25,4].

Laconism beyond OT? Motivated by the developments enabled by laconic OT, it
is natural to ask whether we can push the boundary further, realizing laconism
for richer functionalities. Laconic OT by itself does not seem to be sufficient
for this task (at least generically). Specifically, the general laconic OT+garbled
circuit based approach for a function f(·, ·) results in protocols in which the size
of the sender’s protocol message grows with the receiver’s input size.

The work of Quach, Wee and Wichs [40] shows how to realize laconic cryp-
tography for general functionalities using LWE. However, two significant issues
remain. Firstly, it is not clear whether we can achieve laconism from other as-
sumptions, for functionalities beyond OT. As mentioned above, research in la-
conic OT has led to several breakthrough feasibility results, motivating the need
for developing techniques that can be realized using wider assumptions and for
richer functionalities. Secondly, existing constructions of laconic primitives are
non-black-box, leading to inefficient constructions. Addressing the above short-
comings, our goals are twofold: (1) Feasibility: Can we realize laconic primitives
beyond OT from assumptions other than LWE? and (2) Black-boxness: Can we
make the constructions black-box?

Black-box techniques. We use the notion “black-box” techniques in the sense
that the construction should not use an explicit circuit-level description of cryp-
tographic primitives. In this sense, we think of constructions which e.g., com-
pute cryptographic primitives inside garbled circuits (as previous laconic OT
constructions) or use general purpose NIZK proofs (which express statements in
terms of NP-complete languages) as “non-black-box” techniques.

Laconic PSI. We make the first progress toward the above two goals with respect
to a non-trivial functionality: Laconic Private Set Intersection (`PSI) and its
family. Private set intersection (PSI) is a cryptographic primitive that allows
two parties to learn the intersection of their input sets and nothing else. Because
of its usefulness and versatility, this cryptographic primitive has been extensively

2

studied in numerous settings throughout the years (see e.g., [35,39,31,42,36,38]
and references therein).

Laconic PSI allows a receiver to send a short digest of its large data set, which
in turn can be used by a sender to compute a PSI second round message. We
require that the total communication complexity as well as the sender’s running
time to be independent of the receiver’s input size.

1.1 Our Results

As our first result, we give a generic construction of laconic PSI from a prim-
itive called anonymous hash encryption, which in turn can be realized from
CDH/LWE [17,16,8]. Our construction builds on the Merkle-tree garbled circuit
based approach of [17,16,8,22,23,26], showing how to use garbled circuits to per-
form binary search on a set of sorted values. Prior to our work there did not exist
any construction of a laconic primitive from CDH beyond OT. We also obtain
an LWE instantiation with polynomial modulus to noise ration, improving the
subexponential ratio of [40].

The above construction is non-black-box caused by the use of garbled circuits.
As our second contribution, we achieve a black-box construction of laconic PSI
from the φ-hiding assumption.

Both constructions above are only semi-honest secure, and can be made mali-
cious (UC) secure by using Non-Interactive Zero Knowledge (NIZK).6 However,
the eventual protocol will be non-black-box. To enhance applicability, we show
how to make our second construction secure against malicious senders, and semi-
honest receivers in the CRS model, by additionally assuming decisional compos-
ite residuosity (DCR) and subgroup decision assumptions. We term this notion
reusable malicious laconic PSI, meaning the receiver’s message may be re-used.7

Applications. We show an application of laconic PSI in realizing a primitive that
we dub self-detecting encryption. A self-detecting encryption acts like a normal
public-key encryption with a key difference that it is possible to detect whether
the underlying message of a given ciphertext belongs to a database of special
(e.g., “illegal”) messages. This can be determined just by knowing the database
values, as opposed to the system’s secret key. Such encryption systems provide a
feature for detecting the presence of illegal contents, without compromising the
privacy of legal messages. There has only been a limited number of proposals
for this task so far, and all of them use heavy tools (e.g., FHE) for this purpose
(see [28] for more details). We formally define this notion, and show how to
realize it using laconic PSI.

In a self-detecting encryption, an authority (e.g., a government entity or a
delegated NGO) publishes a small hash value of a (possibly large) database of

6 Note that in the laconic setting we cannot prove malicious security against a receiver
since it is information-theoretically impossible to extract its input. Thus, since the
NIZK will only be computed by the sender, the protocol will remain laconic.

7 We use the word reusability only in conjunction with malicious security, since in the
semi-honest setting, reusability is satisfied by default.

3

special messages such that a user can encrypt a message using the system’s
public key and the hash value. If the message belongs to the database, then
the authority can detect it; else, the message remains hidden to the authority.
We require that the size of the hash and the encryption running time to be
independent of the database size.

We note that attribute-based encryption does not provide a solution to the
above problem, because either the authority should reveal its database to a
master-key generator, or it should be the master-key generator itself – both of
which defeat our security purposes.

Additional new results: Labeled laconic PSI and malicious laconic OT (LOT).
We extend our laconic PSI techniques to build a reusable labeled laconic PSI.
Labeled PSI [34,11] is a flavor of PSI, where the sender holds a label `i associated
with each set element xi, and the receiver will learn the labels corresponding to
the intersection elements. Labeled PSI has several practical applications (e.g.,
private web service queries [11]).

Moreover, we show how to use our techniques to realize the first construction
of a reusable LOT secure against malicious senders and semi-honest receivers.

DV-NIZK range proofs for DJ ciphertexts. As a building block for our laconic
PSI protocol, we propose a Designated-Verifier Non-Interactive Zero-Knowledge
(DV-NIZK8) scheme for range proof with Damg̊ard Jurik (DJ) ciphertexts, which
may be of independent interest. Our DV-NIZK has statistical simulation sound-
ness and computational zero-knowledge given that the subgroup decision (SD)
assumption holds [5,29].

Such range proofs can also be constructed in the random oracle model (ROM)
via the Fiat-Shamir transform (e.g., [15,3,9,43]), which might yield the best
efficiency. As our LPSI construction is modular, this can be done independently
of the remaining results in the paper. The goal of our DV-NIZK is to provide
an efficient standard model construction which we see as a reasonable middle
ground between feasibility from the weakest assumption (at the cost of unrealistic
efficiency) and practical efficiency (at the cost of relying on strong heuristic
assumptions such as the ROM).

1.2 Previous Work

Laconic PSI can be seen as a particular case of unbalanced PSI. Protocols for un-
balanced PSI were presented in [2,41,12,11]. The protocol of [41] achieves linear
communication complexity on the receiver’s set size in the pre-processing model.
The protocols of [12,11] rely on somewhat homomorphic encryption (SWHE)
and proceed in two rounds. However, the communication complexity scales with
the size of the receiver’s set (and logarithmic with the size of the sender’s set),
in contrast with our protocol whose communication complexity scales with the
sender’s set size.
8 DV-NIZK only allows the designated prover to prove that it holds a witness for a

certain NP statement to a verifier in just one message

4

Comparison with [2]. Ateniese et al. in [2] proposed a semi-honest size-hiding
PSI protocol9 inspired by RSA accumulators that achieves communication com-
plexity independent of the receiver’s set size. However, we emphasize that their
scheme does not fit the framework of laconic cryptography since it requires the
sender to know the factorization of a CRS modulus N. Thus, either it requires
pre-processing (giving a designated secret key to the sender), or it requires three
rounds in the CRS model. In contrast, laconic cryptography requires (a) two
rounds and (b) no pre-processing (i.e., neither party receives a secret key cor-
related with the CRS). Both (a) and (b) are crucially used in applications of
laconic cryptography. Specifically, these restrictions prevent use of [2] in settings
with multiple senders, an aspect that has been critical for laconic cryptography
applications. Finally, we remark that the security of [2] relies on random oracles,
whereas we prove security in the standard model and achieve a substantially
stronger security notion without resorting to heavy generic tools.

All of above constructions are just secure against semi-honest adversaries,
except for [11] which achieves security against a malicious receiver.

1.3 Open Problems

The main open question is to realize laconic cryptography for functionalities
richer than PSI. A second question is to build laconic PSI in a black-box way
from assumptions not involving φ-hiding (e.g., pairings alone).

In this work, we build DV-NIZK for proving equality of plaintexts across dif-
ferent encryption schemes, namely between the DJ [15] and the BGN [5,29] en-
cryption schemes. This scheme opens the door to new applications since it allows
us to extend the capabilities of GS/GOS proof systems [29,30] to non-pairing-
based primitives with additional properties (in our case to the DJ cryptosystem).
We believe that these ideas will have applications beyond range proofs, e.g., one
can think of further uses of structure preserving cryptography, so we leave this
as an open problem for future works.

2 Technical Overview

2.1 Semi-Honest PSI from CDH/LWE

Our protocol uses hash encryption and garbled circuits, building on [17,8,22],
while introducing new techniques. A hash-encryption scheme allows one to en-
crypt a message m to the output h of a hash function by specifying an index/bit
(i, b) (denoted HEnc(h,m, (i, b))), so that knowledge of a consistent pre-image
value z allows for decryption (Hash(z) = h and zi = b) while having semantic
security against inconsistent pre-image values (i.e., against z where Hash(z) = h
but zi = b̄).10

In all discussion below we assume the sender’s and receiver’s elements are in
{0, 1}λ and that the output of Hash also has λ bits.

9 Such schemes were also studied in [33,37,32].
10 Enc also takes as input a public parameter pp, which we ignore here.

5

Receiver’s set size is 2. We first assume the receiver has only two elements
SR = {id1, id2} and the sender has a single element id. The receiver sends
hrroot := Hash(id1, id2). Consider a circuit F[id], with id hardwired, which on
input (id′, id′′) outputs id if id ∈ {id′, id′′}; else, ⊥. The sender garbles F[id] to get

(C̃0, {lbi,b})11and sends psi2 := (C̃0, {cti,b}), where cti,b := HEnc(hrroot, lbi,b, (i, b))).
The receiver who has the pre-image z := (id1, id2) can retrieve only the labels
lbi,zi , and the rest will be hidden. Thus, by garbled circuit security the receiver
will only learn the output of F[id](id1, id2), as desired.

Moving beyond |SR| = 2. Suppose the receiver has four elements SR = {id1, id2, id3, id4}
in ascending order. The receiver Merkle-hashes all these values and sends hrroot,
the root hash. Let h1 and h2 be the two hash values at level one (i.e., h1 =
Hash(id1, id2)). If the sender knows the value of, say, h1, he may hash-encrypt
{lbi,b} (defined in the previous paragraph) under h1, so that the receiver can only
open the labels that correspond to the bits of z = (id1, id2), revealing the value
of F[id](id1, id2). However, h1 is statistically hidden given hrroot. Thus, we use the
idea of deferred evaluation [17,13,16,8], delegating the task of hash-encrypting
{lbi,b} to the receiver herself, via garbled circuits.

In essence, we want the receiver to be able to compute the hash encryption of
{lbi,b} wrt either h1 or h2 (depending on whether id ≤ id2 or not), but not both;
because obtaining both hash encryptions will allow the receiver to open both
labels lbi,0 and lbi,1 for some indices i (because (id1, id2) 6= (id3, id4)), destroying
garbled circuit security. Thus, the sender has to make sure that the receiver
will be able to obtain only either of the above hash encryptions, the one whose
sub-tree contains id. To enable this, we perform binary search.

Performing binary search. We handle the above difficulty by performing binary
search using ideas developed in the context of registration-based encryption [22].
The hash of each node is now computed as the hash of the concatenation of its
left child’s hash, right child’s hash, and the largest identity under its left child.
For example, the hash root is hrroot = Hash(h1, h2, id2), where h1 and h2 are the
hash values of the two nodes in the first level, and in turn h1 = Hash(id1, id2, id1).
Now let id be the sender’s element, and change F[id] to be a circuit that on input

(id′, id′′, ∗) outputs id if id ∈ {id′, id′′}, else ⊥. Letting (C̃0, {lbi,b}) be the garbling
of F[id], consider a circuit G[id, {lbi,b}] which on input (h, h′, id′) outputs a hash-
encryption of lbi,b either under h or under h′, depending on whether id ≤ id′

or id > id′. Let (C̃′, {lb′}i,b) be the garbling of G[id, {lbi,b}], let {cti,b} be the

hash encryption of {lb′i,b} wrt hrroot, and return psi2 := (C̃0, C̃′, {cti,b}). Using
the pre-image z := (h1, h2, id2) of hrroot, the receiver can retrieve the labels
{lb′i,z[i]}, allowing to compute G[id, {lbi,b}](h1, h2, id2), which will produce a hash
encryption {ct′i,b} of {lbi,b} under either h1 or h2, depending on whether id ≤ id2,
or not. For concreteness, suppose id ≤ id2, meaning that {ct′i,b} are formed under
h1, and so the pre-image z′ = (id1, id2, id1) of h1 will lead to {lbi,z′i}, which along

11 C̃0 stands for the garbled circuit and {lbi,b}i are the corresponding labels of inputs.

6

with C̃0 will reveal the value of F[id](id1, id2, id1). Of course, the receiver a priori
does not know whether {ct′i,b} are encryptions under h1 or h2, so the receiver
should try decrypting wrt both, and see which one succeeds.

Are we done? Unfortunately, when arguing security, a subtle issue emerges.
Suppose a hash-encryption ciphertext reveals its hash value (e.g., the hash is ap-
pended to the ciphertext). Then, the ciphertexts {ct′i,b} will reveal whether they
were encrypted under h1 or h2; equivalently, whether id ≤ id2 or id > id2. We
cannot allow this information to be leaked if id /∈ SR. To fix this issue we assume
the hash-encryption scheme is anonymous, meaning that, roughly, a random ci-
phertext leaks no information about the underlying hash value. This property
was defined in [8] for achieving anonymous IBE. The use of anonymous hash
encryption does not resolve the issue completely yet. For concreteness, suppose
id < id1. This means that {ct′i,b} is encrypted under h1, and so by decrypting
{ct′i,b} using z′ = (id1, id2, id1), the receiver will obtain meaningful labels, eval-

uating the garbled circuit C̃0 to ⊥ (rightly so, because id /∈ SR). On the other
hand, if the receiver tries decrypting {ct′i,b} using z′′ = (id3, id4, id3) which is not

a pre-image of h1, then the resulting labels will be meaningless, evaluating C̃0 to
junk. This leaks which path is the right binary search path, giving information
about id. To fix this issue, we change the circuit F so that if id /∈ SR, then de-
cryption along any path will result in a random value. Specifically, sample two
random values r and r′, let F[id, r, r′](id′, id′′, ∗) return r if id /∈ {id′, id′′} and
r′ otherwise. We will also include r in the clear in psi2. Now the receiver can
check decryption along which path (if any) yields r; in which case, the receiver
can determine the intersection identity. To argue security, if we use anonymous
garbled circuits [8], then we can argue if id /∈ SR, then psi2 is pseudorandom to
the receiver. Arguing this formally (especially for the general case) is non-trivial,
requiring a delicate formulation of hybrids.

Receiver’s security? The receiver’s hash hrroot is computed deterministically from
SR, so it cannot be secure. But this is easy to fix: On the leaf level we append
the identities with random values, and only then will perform the Merkle hash.

2.2 Reusable Laconic PSI

We now outline our techniques for obtaining laconic PSI in a black-box way, for
both semi-honest and malicious cases.

A semi-honestly secure protocol Our starting point is a recent construction of a
one-way function with encryption from the φ-hiding assumption due to Goyal,
Vusirikala and Waters [27], and we remark that similar accumulator-style ideas
were used before to construct PSI [2]. Since the protocol of [27] is “almost” a
PSI protocol, we will directly describe the underlying semi-honestly secure PSI
based. Assume for a moment that both the receiver’s input SR and the sender’s
input SS are subsets of a polynomially-sized universe U = {1, . . . , `}. We will

7

later remove this size-restriction on U . We have a common reference string crs
which is composed of an RSA modulus N = PQ, a uniformly random generator
g ∈ Z∗N and pairwise distinct primes p1, . . . , p`.

For the sake of simplicity, we will assume in this outline that the sender’s
input set SS is a singleton set {w} ⊆ U . The actual protocol will be obtained by
running the protocol we will now sketch for every element in the sender’s input
set. The protocol commences as follows: The receiver first hashes its input set
into

h = g
r
∏
i∈SR

pi mod N,

where r is chosen a uniformly chosen random from [N] (and thus rmod φ(N) is
statistically close to uniform). The receiver then sends h to the sender.

The sender, whose input is SS = {w}, chooses a uniformly random value
ρ ←$ [N] and a uniformly random seed s for a suitable randomness extractor
Ext, and computes the values f ← gρpw and R ← Ext(s, hρ). It sends s, f and
R to the receiver.

The receiver, upon receiving f and R, will check for all elements i ∈ SR

whether it holds that Ri
?
= R, for Ri ← Ext(s, f

r·
∏
j∈SR\{i}

pj). If it finds such an
i, it outputs {i} as the intersection of SR and SS. Correctness of this protocol
follows routinely12. by noting that if w ∈ SR then

f
r·
∏
j∈SR\{w}

pj = g
ρ·r·

∏
j∈SR

pj = hρ.

Also, note that this scheme is laconic, as the size of the messages exchanged by
the parties is independent of the size of the set SR.

Arguing security against a semi-honest sender is also routine, as h is in fact
statistically close to a uniformly random group element in Z∗N . Proving secu-
rity against a semi-honest receiver is a bit more involved and proceeds via the
following hybrid modifications. Let SS = {w} be the sender’s input such that
w /∈ SR. In the first hybrid, we will choose the modulus N such that pw divides
φ(N); under the φ-hiding assumption this change will go unnoticed. Now, via a
standard lossiness-argument, we have that f = gρpw loses information about gρ,

i.e., gρ has high min-entropy given f . This means that hρ = g
ρr·

∏
i∈SR

pi has also
high min-entropy as w /∈ SR and thus pw does not divide r ·

∏
i∈SR

pi (w.o.p).
Consequently, as hρ has high min-entropy conditioned on f , in the next hybrid
change we can replace R = Ext(s, hρ) with a uniformly random value, incurring
only a negligible statistical distance via the extraction property of Ext. In the
next hybrid change, we can switch the modulus N back to normal mode, i.e.,
such that pw does not divide φ(N). But now f = gρpw is statistically close to
uniform in Z∗N . Thus, in the last hybrid change we can replace f with a uni-
formly random value in Z∗N and get that the view of the receiver is independent
of w, as required.

For the case that the sender’s input SS contains more than a single element,
we mount a hybrid argument repeating the above modifications for each element
of SS not in the receiver’s set SR.

12 We will not further discuss the small correctness-error of this protocol as our final
protocol will not suffer from this defect

8

Large universes The above protocol has the drawback that the size of the com-
mon reference string crs depends linearly on the size of the universe U , which is
highly undesirable. There is a standard way of overcoming this issue: Instead of
explicitly listing all the primes pi in crs, we will describe them implicitly via a
pseudorandom function (PRF).13 For this purpose, we need a PRF which maps
into the set of primes of a certain size. This can e.g. be achieved by using rejec-
tion sampling: we first sample y ← Fk(x|i) (starting with i = 1) and check if y
is a prime number. If it is, we output y; else, we increment i until a prime is hit.
Under standard number-theoretic assumptions, this process finds a prime after a
logarithmic number of steps. One small issue is that, in the above security proof,
we need to replace one of the primes with a prime provided by the φ-hiding ex-
periment. We resolve this issue by making the PRF programmable in one point,
e.g., by setting Fk,k′(x|i) = F ′k(x|i) ⊕ ki for a PRF F ′, k′ = (k1, . . . , kξ) and a
suitable choice of ξ.

A first attempt at malicious sender security Our protocol thus far, however, offers
no security against a malicious sender. The main issue is that a corrupted sender
may choose the values f and R arbitrarily, and further, there is no mechanism for
a simulator against a malicious sender to extract the senders input w. Of course,
this protocol can be made secure against malicious senders by letting the sender
prove via a general purpose NIZK proof that it follows the semi-honest protocol
correctly. This however would necessitate to make non-black-box use of our semi-
honest laconic PSI protocol, contrary to our goal of achieving a fully black-box
protocol.

Re-inspecting the above protocol, we have not made full use of the fact that
the extracted string R is uniformly random. Our first idea to make the sender
extractable is to make better use of R. Instead of sending R in the plain, we will
use R as random coins for a public key encryption (PKE) scheme to encrypt the
sender’s input w. More concretely, we will modify the above protocol as follows.
We include a public key pk of a PKE scheme in the common reference string crs
and, instead of having the sender include R in the plain in its message to the
receiver, it will include a ciphertext ct ← Enc(pk, i;R). We also need to modify
the procedure of the receiver. The receiver will recover Ri as before, but will
now use Ri to re-encrypt the index i, that is, for each i ∈ SR it will compute
cti ← Enc(pk, i;Ri).

First notice that, as a side bonus, this modification makes our laconic PSI
scheme perfectly correct, given that the PKE scheme is perfectly correct, as now
cti uniquely specifies the element i.

In terms of security, we first observe that this modification does not harm
security against a semi-honest receiver given that the PKE scheme is IND-CPA
secure. In the above sketch of a security proof, we have argued that, if w is
not in the set SR, then R is uniformly random from the view of the receiver.
This means now that ct is a freshly encrypted ciphertext, using fresh random

13 We remark that we use a PRF, not because we want uniform outputs, but to im-
plicitly define the set of primes. A similar trick was used in [6].

9

coins (independent of ρ). Moreover, we can use IND-CPA security of the PKE to
replace ct with an encryption of 0, and then continue as above to argue security
against a semi-honest receiver.

To establish security against a malicious sender, we would like to argue as
follows. The simulator can now generate the public key pk in crs together with
a secret key sk. Given a message (s, f, ct) by a malicious sender, the simulator
can recover the set element w by decrypting the ciphertext ct using sk. At a first
glance this seems to provide us with security against malicious senders. And
indeed, the simulator will recover all elements for which the receiver would have
declared to be in the intersection. There is a grave issue however: The simula-
tor has no means of detecting whether the honest receiver would actually have
succeeded in re-encrypting the index i. In other words, the malicious sender can
make the simulator false positives, such that the simulator declares an element
i to be in the intersection, whereas an honest receiver would not have.

Switch groups, extract everything! We briefly recall some facts about the Damg̊ard-
Jurik cryptosystem [15]. The group Z∗Nξ+1 contains a cyclic subgroup NRN of
order φ(N)14. Now let g0 ∈ NRN be a generator of NRN . Then we can generate
the entire group Z∗Nξ+1 by g0 and 1 + N , i.e. we can write every h ∈ Z∗Nξ+1

as h = gt0 · (1 + N)m for some t ∈ Zφ(N) and m ∈ ZNξ . Furthermore, we can
efficiently compute discrete logarithms relative to 1 +N , i.e. if h = (1 +N)m for
an m ∈ ZNξ , then we can efficiently compute m from h. Finally, the decisional
composite residue (DCR) assumption in Z∗Nξ+1 states that a random element
in NRN is indistinguishable from a random element in Z∗Nξ+1 . It follows that

g1 = gt10 and g2 = gt20 · (1 + N) (for uniformly random t1, t2 ←$ Zφ(N)) are

computationally indistinguishable. Moreover, if h = gt2 for a t < N ξ−1, we can
efficiently compute t from h using φ(N) as a trapdoor by first computing

hφ(N) = g
t·φ(N)
2 = g

tφ(N)
0︸ ︷︷ ︸
=1

·(1 +N)t·φ(N) = (1 +N)t·φ(N) mod Nξ+1,

from which we can efficiently compute t · φ(N) (as t · φ(N) < Nξ) and thus t.
Given this, we will now make the following additional modification to our PSI

protocol. Instead of choosing the element g in the common reference string crs
to be a random generator of Z∗N , we choose g to be a random generator of NRN ,
where NRN is the subgroup of order φ(N) in Z∗Nξ+1 (for a sufficiently large but
constant ξ). Our first observation is that this does not affect the security proof
in the case of a semi-honest receiver, since NRN is still a cyclic group of order
φ(N) and the above argument using the φ-hiding assumption works analogously
in this group.

14 Note that NRN is not a cyclic group and we only assume this here for simplicity.
Actually, if we choose N as a product of two safe primes, then we could find a cyclic
subgroup JN which is the group of elements with Jacobi symbol 1, and its subgroup
TN composing of Nξ-th powers of JN has order φ(N)/2. Namely, just replace the
group pair (Z∗Nξ+1 ,NRN) with (JN ,TN) to fix this issue. Please refer to Section 3.1
and Section 6 for details.

10

Assume for a moment we had a mechanism which ensures that the group
element f in the sender’s message is of the form f = ga for an a < N ξ−1. We
can then argue security against a malicious sender as follows: First we make a
hybrid change and choose the element g in the common reference string like g2
above, i.e. we choose g = gt0(1 + N); under the DCR assumption this change
goes unnoticed. Now, given that f = ga for an a < N ξ−1 and using φ(N) as
a trapdoor, the simulator can efficiently compute a from f as described above.
Since it can also recover the index w from the ciphertext ct as described above,
it can now check if a is of the form a = ρ · pw. If so, it recovers ρ and performs
the same re-encryption test for ct which the real receiver would perform. This
makes the simulation indistinguishable from the real experiment.

2.3 DV-NIZK Range Proofs for DJ Ciphertexts

The final component which is missing to make the above argument succeed is a
mechanism which ensures that the group element f is indeed of the form f = ga

for a small a. For the sake of generality, we will make the following discussion
for general DJ-ciphertexts, that is, ciphertexts of the form c = ht · (1 + N)a

(where h = gz1 is the public key). If we can show that such a ciphertext encrypts
a small value a, proving that f = ga and c = ht · (1 +N)a for the same a can be
efficiently proven via a standard hash-proof system (HPS) [14].

First, we observe that, to show that c = ht · (1+N)a encrypts a value a < 2k

for some parameter k, it suffices to prove that some ciphertexts c0, . . . , ck−1
encrypt bits b1, . . . , bk−1. Assume for now we had a DV-NIZK protocol Π to
prove that the ciphertexts c0, . . . , ck−1 all just encrypt bits. The prover can
convince the verifier as follows that c encrypts a value a < 2k. First the prover
encrypts bit bi in a ciphertext ci and sets c′ =

∏k−1
i=0 c

2i

i (it is not hard to see that
c′ encrypts a). Now, the prover uses Π to to convince the verifier that c0, . . . , ck−1
indeed encrypt bits. Furthermore, it can use a standard HPS to prove that c and
c′ indeed encrypt the same value. Zero-knowledge follows routinely. To see that
this protocol is sound, observe that if the ci indeed encrypt bits, then c′ must
encrypt a value bounded by 2k.

A DV-NIZK proof system for ciphertext equality across different encryption
schemes Alas, we do not know of a black-box DV-NIZK which proves that
DJ ciphertexts encrypt bits. However, for the pairing-based Boneh-Goh-Nissim
(BGN) cryptosystem [5], such a proof system was constructed by Groth, Ostro-
vsky and Sahai [29]. Consequently, if we could prove in a black box way that a
BGN ciphertext encrypts the same value as DJ ciphertext we would be done.

Recall that, in the BGN cryptosystem, public keys are of the form (G,H),
where G and H a generators of subgroups of a composite-order pairing group G.
BGN ciphertexts are of the form C = GmHr, where m is the encrypted message
and r are random coins.

Our final contribution is a DV-NIZK proof system which allows us to prove
that a DJ ciphertext and a BGN ciphertext encrypt the same value.

11

To simplify the description of our prove system, assume we have BGN public
keys (G,H1), . . . , (G,H`), i.e. each key sharing the same G but having fresh and
random Hi, and an element H0. Furthermore, assume that we have DJ public
keys h1, . . . , h`, and an element h0. We will assume that both sequences of keys
are in a public setup, together with the elements H0, h0.

Suppose further that we have BGN ciphertexts C1, . . . , C`, where Ci =
GmiHr

i , i.e., all ciphertexts use the same random coins r but encrypt possi-
bly different bits mi.

15 As mentioned above, using the NIZK scheme from [29],
we can prove that the ciphertexts Ci = GmiHr

i are indeed well-formed and that
mi ∈ {0, 1}. Moreover, we have C0 = Hr

0 , which can be proven well-formed using
a standard hash proof system (HPS) [14].

Assume further that we are given DJ ciphertexts c1, . . . , c`, where ci = hti ·
(1+N)m

′
i , i.e., again the ciphertexts share the same random coins t.16 Moreover,

assume that we have a value hr0 exactly as above. We want to prove that it holds
for all i ∈ [`] that mi = m′i. Our DV-NIZK proof system for equality of BGN
and DJ ciphertexts now proceeds roughly as follows:

– The verifier starts by sampling a uniformly random binary string σ←$ {0, 1}`
and computes F = HA

0

∏
Hσi
i ∈ G and f = hα0

∏
hσii ∈ Z∗Nξ+1 , for uniformly

random values A,α. It sends crs = (F, f) to the prover and keeps σ as the
designated-verifier key.

– The prover is given ciphertexts C1, . . . , C` and c1, . . . , c` with Ci = Gm
i

Hr
i

and ci = hti(1 + N)mi , and the values C0 = Hr
0 and c0 = ht0. It computes

K = F rGτ and k = f t(1+N)τ where τ is sampled according to a distribution
which is wide enough to drown the mi, but short enough such that it is
bounded by N . The proof π is consists of (K, k).

– The verifier, given the proof π = (K, k), computes the discrete log y (in base

(1 +N)) of k−1cα0
∏`
i=1 c

σi
i and checks if Gy = K−1CA0

∏`
i=1 C

σi
i .

For completeness, note that

k−1cα0
∏

cσii =
(
hα0
∏

hσii

)−t
(1 +N)−τ

(
ht0
)α∏(

hti(1 +N)mi
)σi

= (1 +N)
∑
σimi−τ ,

from which the verifier can recover y =
∑
σimi − τ . Moreover

L = K−1CA0
∏

Cσii =
(
HA

0

∏
Hσi
i

)−r
G−τ (Hr

0)
A
∏

(Hr
i G

mi)σi = G
∑
σimi−τ

and thus Gy = L.
The zero-knowledge property can be established by noting that the term τ

statistically drowns
∑
i σimi.

To prove reusable statistical soundness (or simulation soundness), we argue
as follows. First note that σ is statistically hidden, given F = HA

0

∏
Hσi
i and f =

15 Via a standard rerandomization argument we can show that reusing the same random
coins across different keys does not harm CPA security.

16 Same as above.

12

hα0
∏
hσii , by the uniform values A,α. We need to show that if there is an index i

for which mi 6= m′i, then the verifier will reject with high probability, irrespective
of the (adversarial) choices of τ, τ ′ (which are not necessarily short)17. It follows
from the above description that the verifier accepts a proof if the condition∑

σi,jmi − τj mod n =
(∑

σi,jm
′
i − τ ′j mod Nξ

)
mod n

is satisfied, where n is the order of the subgroup of G generated by G. In the
main body we will show that, given that n > Nξ, this condition will be violated
with probability ≈ 1/2 if the there exists an index i for which mi 6= m′i. By
repeating the protocol λ times, we achieve negligible soundness error.

2.4 Labeled Laconic PSI and Laconic OT

Our laconic PSI construction can be easily extended into a labeled laconic PSI,
in which the receiver also learns labels associated with set elements in the inter-
section. To achieve this, we simply use an extractor with an output size twice
as large: the first half is used as above to perform the re-encryption step; the
other half is used as an one-time pad to encrypt the corresponding label. It is
easy to see that the receiver can only recover the labels for the elements within
the intersection, since the security proof follows the same blueprint as before.

We also build an LOT using the same ideas as above. The receiver com-

mits to a database D ∈ {0, 1}Γ by computing h = g
r
∏Γ
i=1 ei,Di

0 mod Nξ+1,
where each prime ei,b is the output of a PRF (just as before). The sender com-
putes fj = g

ρjeL,j
0 , Fj = g

ρjeL,j
1 (1 + N)ρjeL,j for each j ∈ {0, 1}, together with

a range proof. Moreover, he encrypts each message as ctj = kj ⊕ mj where
kj ← Ext(sj , h

ρj). Again, security follows the same reasoning as above. Our
LOT protocol is the first one to provide security against a malicious sender
while incurring in communication complexity independent of the size of D.

3 Preliminaries

We use λ to denote the security parameter. By negl(λ), we denote a negligible
function in λ. For an integer n, [n] denotes {1, . . . , n}. If A is an algorithm,
we denote by y ← A(x) the output y after running A on input x. For a S,
x←$S denotes sampling x uniformly at random from S. If D is a distribution,
then x←$D denotes sampling x according to D, and y ∈ D indicates y is in
the support of D. We say that D is B-bounded if for every x←$D, we have
|x| < B, except with negligible probability. If D0, D1 are two distributions, we
use D0 ≈ε D1 to indicate that D0 and D1 are statistically indistinguishable.
Throughout this work, φ will denote the Euler’s totient function.

17 We assume that the verifier rejects if it fails to compute the discrete logarithm of
k−1 ∏ dσii .

13

In terms of cryptographic primitives we need public-key encryption (PKE),
designated-verifier zero-knowledge (DV-NIZK) proof systems, programmable pseu-
dorandom functions (PPRF) [36] and strong randomness extractors. The hard-
ness assumptions used in this work are the φ-hiding, decisional composite residu-
osity (DCR), subgroup decision (SD), computational Diffie-Hellman (CDH) and
learning with errors (LWE). Apart from φ-hiding and DCR assumptions we de-
scribed below, other primitives/assumptions are reviewed in the full version of
this paper [1].

3.1 Hardness Assumptions

We start by introducing some notation. Let Primes(κ) denote the set of prime
numbers of bit-length κ. Let

RSA(λ) = {N : N = PQ and P,Q ∈ Primes(λ/2) and gcd(P − 1, Q− 1) = 2}

and
RSAe(λ) = {N : e|φ(N)}

for any e ≤ 2λ.

Definition 1 (Phi-Hiding) The phi-hiding assumption, denoted as φ-hiding,
states that for all ε > 0 and 3 < e < 2λ/4−ε and all PPT adversaries A, we have
that

|Pr [1← A(N, e) : N ←$RSA(λ)]− Pr [1← A(N, e) : N ←$RSAe(λ)]| ≤ negl(λ) .

Let N = PQ where P,Q are safe primes (that is, P = 2p′+1 and Q = 2q′+1
for primes p′, q′) and consider the multiplicative group Z∗Nξ+1 where ξ is a fixed
non-negative integer. Recall that Z∗Nξ+1 can be written as the product of two

subgroups HN × NRN where HN = {(1 + N)i : i ∈ [Nξ]} and NRN = {xNξ :
x ∈ Z∗Nξ+1} (the subgroup of Nξ-residues) which has order φ(N). Given (1+N)m

mod Nξ+1, there is a polynomial-time algorithm that allows to recover m [15].
Furthermore, let JN be the group of elements with Jacobi symbol 1, i.e., JN =

{x : (x|N) = 1, x ∈ Z∗Nξ+1}. Note that JN can be written as the direct product
of two cyclic groups HN ×TN with order Nξ and φ(N)/2, respectively. Also, the
subset membership problem for (JN ,TN) is still hard if DCR assumption holds
as shown in Section 8.2 of [14].

The following lemma is straightforwardly adapted from [27].

Lemma 1 ([27]) Assume that the φ-hiding assumption holds. Let Ext be a (κ−
1, negl(λ))-strong extractor. For every admissible stateful PPT adversary A and
for all λ, κ such that λ ≥ 5κ, we have that∣∣∣∣∣∣∣∣Pr

b← A(yb) :

N ←$RSA(λ); s←$ {0, 1}λ
e←$Primes(κ); g ← TN

G← A(N, s, e, g); b←$ {0, 1}
y0 ← Ext(s, gGe

−1

mod Nξ+1); y1←$Y

− 1

2

∣∣∣∣∣∣∣∣ ≤ negl(λ)

14

where an admissible adversary is one that outputs G such that e does not divide
G.

In this work, we also make use of the DCR assumption which we define in the
following. We present the DCR assumption as a subgroup indistinguishability
assumption [7].

Definition 2 (Decisional Composite Residuosity) Let N = RSA(λ) and
let ξ ≥ 0 be a fixed integer. The decisional composite residuosity (DCR) as-
sumption states that for all PPT adversaries A,

|Pr [1← A(N, x) : x←$Z∗Nξ+1]− Pr [1← A(N, x) : x←$NRN]| ≤ negl(λ) .

Lemma 2 ([14]) N = RSA(λ) and let ξ ≥ 0 be a fixed integer. Assume that the
DCR assumption holds. Then for all PPT adversaries A,

|Pr [1← A(N, x) : x←$ JN]− Pr [1← A(N, x) : x←$TN]| ≤ negl(λ) .

Proof (Proof (sketch)).

The proof follows from the following observation: The map x → x2(−1)b

where b←$ {0, 1} sends the uniform distribution on NRN to the uniform dis-
tribution on TN , and the uniform distribution on HN × NRN to the uniform
distribution on HN × TN .

3.2 Laconic Private Set Intersection

Laconic Private Set Intersection. An `PSI is a two-round protocol that imple-
ments a PSI functionality and has special compactness properties.

Definition 3 A `PSI scheme LPSI = (GenCRS,R1,S,R2) is defined as follows:

– GenCRS(1λ): Takes as input a security parameter 1λ, and outputs a common
reference string crs.

– R1(crs, SR): Takes as input a crs and a set SR. It outputs a first PSI message
psi1 and a state st.

– S(crs, SS , psi1): Takes as input a crs, a set SS and a first PSI message psi1.
It outputs a second PSI message psi2.

– R2(crs, st, psi2): Takes as input a crs, a state st and a second message psi2.
It outputs a set I.

We require the following properties.

– Correctness: The protocol satisfies PSI correctness in the standard sense.

– Efficiency Requirements. There exists a fixed polynomial poly such that
the length of psi1 and the running time of S are at most poly(λ, log |SR|).

15

For malicious security, we work in the standard UC-framework [10] that
allows us to prove security of protocols under arbitrary composition with other
protocols. Let F be a functionality, π a protocol that implements F and E be a
environment, an entity that oversees the execution of the protocol in both the real
and the ideal worlds. Let IDEALF,Sim,E be a random variable that represents the

output of E after the execution of F with adversary Sim. Similarly, let REALGπ,A,E
be a random variable that represents the output of E after the execution of π
with adversary A and with access to the functionality G.

Definition 4 A protocol π UC-realizes F in the G-hybrid model if for every
PPT adversary A there is a PPT simulator Sim such that for all PPT envi-
ronments E, the distributions IDEALF,Sim,E and REALGπ,A,E are computationally
indistinguishable.

We present the (reusable) PSI ideal functionality.

Reusable PSI functionality. The functionality FrPSI is parametrized by a universe
U and works as follows:

– Setup phase. R sends (sid, SR) to FrPSI where SR ⊆ U . It ignores future
messages from R with the same sid.

– Send phase. S sends (sid, i, SS ⊆ U) to FrPSI. FrPSI sends (sid, i, SR ∩ SS) to
R. It ignores future messages from S with the same sid and i ∈ N.

4 Semi-Honest Laconic PSI from CDH/LWE

We show how to realize semi-honest `PSI from CDH/LWE. Our construction is
non-black-box, making use of garbled circuits. This leads to the first feasibility
result based on CDH, and an alternative LWE construction to that of [40].

Our construction makes use of hash encryption schemes in conjunction with
garbled circuits, which we review below.

Definition 5 (Hash Encryption [17,8]) A hash encryption scheme HE = (HGen,
Hash,HEnc,HDec) is defined as follows.

– HGen(1λ, n): Takes as input a security parameter 1λ and an input size n and
outputs a hash key pp.

– Hash(pp, z): Takes as input a hash key pp and z ∈ {0, 1}n, and determinis-
tically outputs h ∈ {0, 1}λ.

– HEnc(pp, h, {mi,b}i∈[n],b∈{0,1}; {ri,b}): Takes as input a hash key pp, a hash
output h, messages {mi,b} and randomness {ri,b}, and outputs {cthi,b}i∈[n],b∈{0,1}.
We write it shortly as {cthi,b}. Overloading notation, each ciphertext cthi,b
is computed as cthi,b = HEnc(pp, h,mi,b, (i, b); ri,b).

– HDec(z, {cthi,b}): Takes as input a hash input z and {cthi,b} and outputs n
messages (m1, . . . ,mn).

We require correctness meaning that for the variables above, (m1, . . . ,mn) =
(m1,z[1], . . . ,mn,z[n]). We define two notions of security.

16

– Semantic Security: Given z ∈ {0, 1}n, no adversary can distinguish be-
tween encryptions of messages made to indices (i, z̄i). For any PPT A, sam-
pling pp ←$ HGen(1λ, n), if (z, {mi,b}, {m′i,b}) ←$ A(pp) and if mi,z[i] =
m′i,z[i] for all i ∈ [n], then A cannot distinguish between HEnc(pp, h, {mi,b})
and HEnc(pp, y, {m′i,b}), where h := Hash(pp, z).

– Anonymous Semantic Security: For a random {mi,b} with equal rows
(i.e., mi,0 = mi,1), the output of HEnc(pp, h, {mi,b}) is pseudorandom even
in the presence of the hash input. Formally, for any z ∈ {0, 1}n, sampling
pp ←$ HGen(1λ, n), h := Hash(pp, z), and sampling {mi,b} uniformly at
random with the same rows, then v := (pp, z,HEnc(pp, h, {mi,b})) is in-
distinguishable from another tuple in which we replace the hash-encryption
component of v with a random string.

We have the following results from [8,21].

Lemma 3 Assuming CDH/LWE there exists anonymous hash encryption schemes,
where n = 3λ (i.e., Hash(pp, ·) : {0, 1}3λ 7→ {0, 1}λ).18 Moreover, the hash func-
tion Hash satisfies robustness in the following sense: for any input distribution
on z which samples at least 2λ bits of z uniformly at random, (pp,Hash(pp, z))
and (pp, u) are statistically close, where pp←$ HGen(1λ, 3λ) and u←$ {0, 1}λ.

We also review the notion of garbled circuits and the anonymous property,
as defined in [8].

Definition 6 (Garbled Circuits) A garbling scheme for a class of circuits
{C : {0, 1}n 7→ {0, 1}m} consists of (Garb,Eval,Sim) satisfying the following.

– Correctness: for all C ∈ C, m ∈ {0, 1}n, Pr[Eval(C̃, {lbi,m[i]}) = C(m)] = 1,

where (C̃, {lbi,b})←$ Garb(1λ,C).

– Simulation Security: For any C ∈ C and m ∈ {0, 1}n: (C̃, {lbi,m[i]})
c≡

Sim(1λ,C(m)), where (C̃, {lbi,b})←$ Garb(1λ,C).
– Anonymous Security [8]: For any C ∈ C, choosing y ←$ {0, 1}m, the

output of Sim(1λ, y) is pseudorandom.

Lemma 4 ([8]) Anonymous garbled circuits can be built from one-way func-
tions (OWFs).

Notation on Hash Encryption. Throughout this section we assume
Hash(pp, ·) : {0, 1}n 7→ {0, 1}λ, where n = 3λ. We use {lbi,b} to define a sequence
of pairs of labels, where (throughout this section) i ∈ [n] and b ∈ {0, 1}. For
r := {ri,b} we let HEnc(pp, h, {lbi,b}; r) denote the ciphertexts {cthi,b}, where
cthi,b = HEnc(pp, h, lbi,b, (i, b); ri,b). We further overload the notation as fol-
lows. We use {lbi} to denote a sequence of 3λ elements. For r := {ri,b} we

18 We note that the CDH construction of [8] satisfies a weaker notion of anonymity, in
which only some part of the ciphertext is pseudorandom. But for ease of presentation
we keep the notion as is, and remark that our `PSI construction works also with
respect to that weaker notion.

17

Circuit F[id, r, r′](id′, x, x′):

– Hardwired: target identity id and ran-
domness values r and r′.

– Operation: Return

y :=

{
r id = id′

r′ else

Circuit V[pp, id, {lbi,b}, r](h1, h2, id
′):

– Hardwired: Hash public parameter
pp, target identity id, labels {lbi,b}, ran-
domness r.

– Operation: Return

ct :=

{
HEnc(pp, h1, {lbi,b}; r) id ≤ id′

HEnc(pp, h2, {lbi,b}; r) else

Procedure DecPath(pth, psi2):

– Input: A leaf-root Path pth and ciphertext psi2 := (C̃0, . . . , C̃d, {cth(d)i,b }).
– Operation: Parse pth := ((id, x, x′︸ ︷︷ ︸

z0

), (h0, h
′
0, id0︸ ︷︷ ︸
z1

), . . . , (hd−1, h
′
d−1, idd−1︸ ︷︷ ︸
zd

), hrroot). For

w ∈ {d, . . . , 1}:
1. Let {lb(w)

i } := HDec(zw, {cth(w)
i,b }).

2. Set {cth(w−1)
i,b } := Eval(C̃w, {lb(w)

i }).
Let {lb(0)i } := HDec(z0, {cth(0)i,b }). Return Eval(C̃0, {lb(0)i }).

Table 1. Circuits F,V and procedure DecPath

let HEnc(pp, h, {lbi}; r) denote a hash encryption where both plaintext rows are
{lbi}; namely, the ciphertexts {cthi,b}, where cthi,b = HEnc(pp, h, {mi,b}; ri,b),
where mi,0 = mi,1 = lbi, for all i.

Tree Terminology. Throughout this section we work with full binary trees. The
depth of a tree is the length of a root-leaf path. We call the leaf level level 0,
the level above it level one, and so on. We order the root-leaf paths from left
to right; namely, the path from the root to the leftmost leaf node is the first
root-leaf path, and the path from the root to the rightmost leaf node is the 2dth
root-leaf path, where d is the depth. Each node has an associated hash value,
computed based on values associated to its children. Thus, when representing a
root-leaf path, we include both children of each branching intermediate node.

Sender’s Set Size is One. We assume without loss of generality that the sender
holds a single element. For the general case where the sender may have multiple
elements, we reuse the first message of the receiver for each element in the
sender’s set. The overall running time of the sender will only scale with its own
set size, and not with the receiver’s set size.

Construction 1 (`PSI Construction) We require the following ingredients
in our `PSI Construction.

1. A hash encryption scheme HE = (HGen,Hash,HEnc,HDec), where
Hash(pp, ·) : {0, 1}3λ 7→ {0, 1}λ.

18

2. A garbling scheme GS = (Garb,Eval,Sim).
3. Circuits F and V, as well as procedure DecPath, defined in Table 1.

We assume the elements of the receiver and the sender are strings in {0, 1}λ.
We refer to each element as an identity. Build (GenCRS,R1,S,R2) as follows.

GenCRS(1λ): Return crs←$ HGen(1λ, 3λ).

R1(crs, SR): Assume |SR| = 2d. (With small tweaks the same construction works
if SR is not a power of two.)

– Parse crs := pp. Let n := 2d, and sort SR := {id1, . . . , idn}, where idi < idi+1

for all i. Populate the leaf node values as follows. For each idi ∈ SR, sample

xi, x
′
i ←$ {0, 1}λ, and let h

(0)
i := Hash(pp, idi, xi, x

′
i). Set H[v

(0)
i] := h

(0)
i and

ID[v
(0)
i] := idi.

1. For w ∈ [d], populate the values for the nodes at level w as follows.
Informally, the hash value for each node is the hash of the concatenation
of its left child, right child, and the largest identity value under its left
child. Formally, noting we have 2d−w nodes on level w, for j ∈ [2d−w], set

h
(w)
j := Hash(pp, (h

(w−1)
2j−1 , h

(w−1)
2j , id[j,w])), where id[j,w] denotes the larges

leaf identity under the left child of the current node (i.e., id[j,w] = idf ,

where f := (2j − 1)2w−1.) Set H[v
(w)
j] = h

(w)
j and ID[v

(w)
j] = id[j,w].

2. Set psi1 := (d, hrroot), where hrroot := h
(d)
1 (i.e., the root hash value). Set

st := (SR, {xi}, {x′i}, {v
(w)
j }) for all values of i ∈ [n], w ∈ {0, . . . , d} and

j ∈ [2d−w].

S(crs, id, psi1):

– Parse psi1 := (d, hrroot) and crs := pp. Sample r, r′ ←$ {0, 1}λ and let C0 :=

F[id, r, r′] (Table 1). Garble (C̃0, {lb(0)i,b })←$ Garb(C0). For 1 ≤ w ≤ d
1. Sample rw at random, and let Cw := V[pp, id, {lb(w−1)i,b }, rw].

2. Garble (C̃w, {lb(w)
i,b })←$ Garb(Cw).

– Let {cthi,b} ←$ HEnc(pp, hrroot, {lb(d)i,b }). Return psi2 := (C̃0, . . . , C̃d, {cthi,b}, r).

R2(crs, st, psi2):

– Parse st := (SR, {xi}, {x′i}, {v
(w)
j }), psi2 := (C̃0, . . . , C̃d, {cthi,b}, r) and SR :=

{id1, . . . , idn}. For i ∈ [n] let pthi := ((idi, xi, x
′
i), . . . , hrroot) be the i’th leaf-

root path in the tree, and let

ri := DecPath(pthi, C̃0, . . . , C̃d, {cthi,b}).

If for a unique index i ∈ [n], ri = r, then output idi. Otherwise, output ⊥.

Theorem 1. Assuming the hash encryption HE is anonymous and robust (ro-
bustness defined in Lemma 3), and that the garbling scheme GS is anonymous,
the `PSI protocol of Construction 1 is correct and provides statistical security for
the receiver and semi-honest security for the sender. As a result, such `PSI pro-
tocols can be realized from CDH/LWE.

19

Roadmap for the Proof of Theorem 1. The fact that the protocol provides sta-
tistical security for the receiver follows from the robustness of HE. In particular,

robustness implies that h
(0)
i values statistically hide SR. We can continue this

to argue that all the first-level hash values (i.e., h
(1)
i) also hide SR, and hence,

continuing like this, the root hash value hrroot statistically hides SR.
We now prove that the protocol provides sender security against semi-honest

receivers. Let id be the sender’s input message, and SR := {id1, . . . , idn} be the
receiver’s set, where idi < idi+1. Assuming id /∈ SR we will show that the sender’s
protocol message is pseudorandom in the receiver’s point of view. For simplicity
suppose id < id1; the general case follows via simple changes, which we will
explain later. Let

pth := ((id1, x1, x
′
1︸ ︷︷ ︸

z0

), (h0, h
′
0, id0︸ ︷︷ ︸
z1

), . . . , (hd−1, h
′
d−1, idd−1︸ ︷︷ ︸
zd

), hrroot) (1)

be the leaf-root path from leaf id1 to the root. Note hrroot = Hash(pp, zd),
and hi = Hash(pp, zi) for i ∈ {0, . . . , d − 1}. Noting that hrroot is the receiver’s
protocol message produced based on her random coins st, we define the following
hybrids for the sender’s response message.

Hyb0: The sender’s response message psi2 is formed as in the protocol.

Hyb1: Sample r, r′ ←$ {0, 1}λ. Let (C̃0, {lb(0)i } ←$ Sim(F, r′). For 1 ≤ w ≤ d

1. Sample {cth(w−1)i,b } ←$ HEnc(pp, hw−1, {lb(w−1)i }).
2. Let (C̃w, {lb(w)

i })←$ Sim(V, {cth(w−1)i,b }).

Let {cthi,b} ←$ HEnc(pp, hrroot, {lb(d)i }). Return psi2 := (C̃0, . . . , C̃d, {cthi,b}, r).

Lemma 5 Given R’s random coins, Hyb0 and Hyb1 are indistinguishable.

Hyb2: Sample psi2 at random.

Lemma 6 Given R’s random coins, Hyb1 and Hyb2 are indistinguishable.

The above two lemmas establish sender’s security; namely — if id /∈ SR, then
the sender’s message psi2 is pseudorandom for the receiver. We prove Lemma 5,
Lemma 6 and correctness in the full paper [1].

5 Reusable DV-NIZK Range Proofs for DJ Ciphertexts

In this section, we construct a DV-NIZK scheme for ranges of DJ ciphertexts.
The main idea of our construction is the following: the prover proves that a BGN
ciphertext [5] is within a certain range (this can be done via the protocol of [29]).
Then it proves that the DJ and BGN ciphertexts encrypt the same value.

We first recall the required cryptosystems used in this section.

20

BGN cryptosystem. Recall that the BGN cryptosystem [5] is defined over a group
G of order n = pq for primes p, q. The public key is composed by (G, n,G,H)
where G is a generator of G and H is an element of order p (let pG be the sub-
group of order p). The public key is composed by (G, n,G,H) and a ciphertext
for a message m ∈ {0, 1} is of the form C = GmHt for t←$Zn.

Damg̊ard-Jurik cryptosystem. The Damg̊ard-Jurik (DJ) cryptosystem19 [15] is
defined over Z∗Nξ+1 where N ←$RSA(λ). The public key is formed by (N, ξ, g, h)
where g←$TN and h = gx for x←$ [N]. A ciphertext has the form (c1, c2) where
c1 = gtmod Nξ+1 and c2 = ht(1 +N)mmod Nξ+1 for t←$ [N] and m ∈ [Nξ].

5.1 Equality of Plaintexts in DJ and BGN ciphertexts.

We now show how to prove that a BGN and a DJ ciphertexts encrypt the same
value. Consider the following language

EQ∆ =

D0, h0, {Di, c1,i, c2,i}i∈[`] : ∃(r, t, {mi}) s.t.

mi ∈ {0, 1}
D0 = Hr

0 ∈ G
Di = GmHr

i ∈ G
c0 = ht0 ∈ ZNξ+1

c1 = gt ∈ ZNξ+1

c2,i = hti(1 +N)mi ∈ ZNξ+1

where ∆ = (G, n,G,H0, {Hi}i∈[`], N, ξ, g, h0, {hi}i∈[`]), G,H0, {Hi}i∈[`] ∈ G and
g, h0, {hi}i∈[`] ∈ ZNξ+1 .

The DV-NIZK construction for the language above is outlined in Section 2.
We defer the full construction and its analysis to [1].

5.2 DV-NIZK for Range Proofs of DJ Ciphertexts with Equal
Discrete Log

Let N ← RSA(λ) and ξ ≥ 0 be a fixed integer. Consider the following language
of ranges:

REDJ∆ =

{
c1 ∈ {Z∗Nξ+1}2 : ∃t ∈ {d−Nξ/2, . . . , N ξ/2e} s.t.

t ∈ [−B,B]
c1 = gt mod Nξ+1

}
which is parametrized by ∆ = (g,B,N, ξ) where g ∈ TN , B ∈ Z, N and ξ.

In the following, we present a DV-NIZK scheme for the language above. The
main idea is quite simple: The prover outputs BGN ciphertexts Di encrypting
bits mi and DJ ciphertexts (c1,i, c2,i that encrypt the same values as Di (we
can prove this using the scheme from the previous section). Then, the prover

proves that (c1, c2) encrypts the same value as
(∏`

i=0 c
2i

1,i,
∏`
i=0 c

2i

2,i

)
. Since DJ

is linearly-homomorphic, we conclude that (c1, c2) encrypts m =
∑`
i=0 2imi ≤

2`−1.
Due to space restrictions, the full construction is presented in [1].

19 Here, we present a slightly different variant of the scheme in [15].

21

6 Reusable Laconic Private Set Intersection

In this section, we present a protocol that implements `PSI in a black-box
fashion. We then prove that the protocol guarantees security against a semi-
honest receiver and against a malicious sender. The input sets are subsets of a
universe U of exponential size.

Protocol. We now present the construction for reusable PSI.

Construction 2 Let U be a universe which contains the input sets of the parties.
Let κ ∈ Z such that 5κ ≤ λ and ξ ∈ N. We require the following ingredients in
this construction:

1. A PPRF PPRF : K × U → Primes(κ) which outputs a prime number.20

2. A DV-NIZK

NIZKREDJ∆ = (NIZK.GenCRSREDJ∆ ,NIZK.ProveREDJ∆ ,NIZKVerifyREDJ∆)

for the language REDJ∆ which is defined in Section 5, for some ∆ =
(g0, B,N, ξ).

3. An IND-CPA PKE scheme PKE = (PKE.KeyGen,PKE.Enc,PKE.Dec)

4. A (κ− 1, negl(λ))-strong extractor Ext : S × ZNξ+1 → {0, 1}λ.

We assume that the receiver’s set is of size M and the sender’s set is of size
m, where M > m. The protocol is composed by the following algorithms:

GenCRS(1λ) :

– Sample N ←$RSA(λ), that is, N = PQ where P,Q are safe prime numbers.
Choose B such that Nξ−1/2 ≥ B > N2κ.

– Sample a pair of public and secret keys (pk, sk) ← PKE.KeyGen(1λ). Addi-
tionally, sample a PPRF key k←$K. Set ∆ = (g0, B,N, ξ) where g0←$TN .

– Output crs = (N, pk, g0, B, k,∆).

R1(crs, SR) :

– Parse crs := (N, pk, g0, B, k,∆), and SR := {idi}i∈[M] ⊆ U
– Compute the prime numbers pi ← PPRF(k, idi), for all i ∈ [M].

– Sample r←$ [N/4] and compute h = g
r
∏
i∈[M] pi

0 mod Nξ+1.

– Run (crs1, td1)← NIZK.GenCRSREDJ∆(1λ).

– Output st = (r, td1) and psi1 = (h, crs1).

20 We remark that we use a PPRF, not because we want uniform outputs, but to
implicitly define the set of primes. A similar trick was used in [6].

22

S(crs, SS, psi1) :

– Parse crs := (N, pk, g0, B, k,∆), psi1 := (h, crs1) and SS := {id′i}i∈[m] ⊆ U .
– For i ∈ [m] do the following:
• Sample ρi←$ [N/4]. Compute the prime numbers pi ← PPRF(k, id′i).
• Sample an extractor seed si←$S and compute Ri ← Ext(si, h

ρimod Nξ+1)
• Compute fi = gρipi0 mod Nξ+1 and cti ← PKE.Enc(pk, id′i;Ri).
• Compute πi ← NIZK.ProveREDJ∆ (crs1, xi, wi) where xi = fi and wi =
ρipi.

– Output psi2 = {fi, cti, si, πi}i∈[m].

R2(crs, st, psi2) :

– Parse st := (r, td1) and psi2 := {fi, cti, si, πi}i∈[m]. Set I = ∅
– For all j ∈ [m] do the following:
• If 0← NIZK.VerifyREDJ∆(td1, xj , πj) where xj = fj, abort the protocol.
• If there is a i ∈ [M] such that

ctj = PKE.Enc(pk, idi;R
′
i)

where R′i ← Ext(sj , f
ri
j mod Nξ+1) and ri = r

M∏
`=1, 6̀=i

p`, then add the

element idi to I.
– Output I.

Communication cost. Here, we analyze the communication cost of the protocol
as a function of the input set sizes |SS| = m and |SR| = M and we omit poly-
nomial factors in the security parameter λ. The first message outputted by R1

has size O(1). The second message outputted by S has size O(m). The overall
communication cost is O(m), that is, it is independent of M .

Analysis. We now analyze the correctness and security of the protocol.

Theorem 2. The protocol presented in Construction 2 is correct given that
NIZKREDJ∆ is complete and PKE is correct.

The proof is presented in the full paper [1].

Theorem 3. The protocol presented in Construction 2 securely UC-realizes func-
tionality FrPSI in the GCRS-hybrid model against:

– a semi-honest receiver given that the φ-hiding assumption hold and NIZKREDJ∆
is zero-knowledge;

– a malicious sender, given that the DCR assumption holds and NIZKREDJ∆
is reusable sound.

Proof. We start by proving that the protocol is secure against semi-honest ad-
versaries corrupting the receiver.

23

Lemma 7 The protocol is secure against a semi-honest receiver.

We first show how the simulator SimR works. In the following, let SimNIZK be
the zero-knowledge simulator from Lemma ?? for the NIZKREDJ∆ scheme.

1. SimR takes the input SR of R and sends it to the ideal functionality FrPSI.
2. CRS generation. To generate the CRS, Sim behaves as the honest algo-

rithm would do.
3. The simulator creates the semi-honest receiver’s view exactly as in the real

protocol and keeps st = (r, td1) to itself.
4. Upon receiving a message psi1 = (h, crs1) from R and a message I (of size
m′, that is, |I| = m′) from the ideal functionality FrPSI, the simulator does
the following:
– Sample a subset X of sizem−m′ from the universe U and sets SS = I∪X .
– For all i ∈ I, SimR computes (fi, cti, si, πi) as in the real protocol.
– For all i ∈ SS \ I, SimR simulates proofs πi ← SimNIZK(td1, x) for x = fi

where fi←$TN . Then, it encrypts cti ← PKE.Enc(pk, 0;Ri) where Ri ←
{0, 1}λ.

To prove indistinguishability between the real protocol and the simulated
one, we consider the following sequence of hybrids:

Hyb0: The is the real protocol.

Hyb1: This hybrid is identical to the previous one, except that, for i ∈ SS \ I,
SimR simulates the proofs πi ← SimNIZK(td1, x) for xi = fi.

Claim 1 Hybrids Hyb0 and Hyb1 are statistically indistinguishable.

The claim above follows directly from the statistical zero-knowledge of the
scheme NIZKREDJ∆ .

Hyb2,`: This hybrid is identical to the previous one, except that the simulator
samples fu` ←$TN and computes

Ru` ← Ext

(
s, f

rq−1
u`

∏M
j pj

u` mod Nξ+1

)
where qu` ← PPRF(k, xu`) for all u` ∈ {i : xi ∈ SS \ I} and pj ← PPRF(k, yj)
for all yj ∈ SR. The hybrid is defined for ` = 1, . . . ,m−m′.
Claim 2 Hybrids Hyb1 and Hyb2,m−m′ are indistinguishable.

The proof of the claim is deferred to the full paper [1].

Hyb3,`: This hybrid is identical to the previous one except that SimR computes

Ru` ←$ {0, 1}λ for all u` ∈ {i : xi ∈ SS \ I}. The hybrid is defined for ` =
1, . . . ,m−m′.
Claim 3 Assume that Ext is a (κ − 1, negl(λ))-strong extractor and that the
φ-hiding assumption holds. Then hybrids Hyb2,m−m′ and Hyb3,m−m′ are in-
distinguishable.

The proof of the claim is in [1].

24

Hyb4,`: This hybrid is identical to the previous one except that SimR encrypts
ctu` ← PKE.Enc(pk, 0;Ru`) for all for all u` ∈ {i : xi ∈ SS \ I}. The hybrid is
defined for ` = 1, . . . ,m−m′. Hybrid Hyb4,m−m′ is identical to the simulation.

Claim 4 Assume that PKE is an IND-CPA PKE. Then hybrids Hyb3,m−m′
and Hyb4,m−m′ are indistinguishable.

The claim follows directly from the IND-CPA property of the underlying
PKE. That is, given an adversary A that distinguishes both hybrids, we can
easily build an adversary B against the IND-CPA property of PKE. This adver-
sary B simply chooses as messages m0 = xu` (where xu` ∈ SS \ I) and m1 = 0.
It outputs whatever A outputs.

We first show how the simulator SimS extracts the sender’s input:

1. CRS generation. SimS generates the crs following the algorithm GenCRS,
except that it sets g0 = g′0(1 + N) for g′0←$TN . It keeps φ(N) to itself
(which can be computed using the prime numbers P,Q) and the secret key
sk corresponding to pk. It outputs crs = (pk, g0, B, k,∆)

2. SimS samples h←$TN and computes (crs1, td1)← NIZK.GenCRSREDJ∆(1λ).
It sends psi1 = (h, crs1) to the malicious sender.

3. Whenever SimS receives a message psi2 = {fi, ct, si, πi}i∈[m] from the sender,

the simulator initially sets SS and does the following for all i ∈ [m]:
– It checks if 1← NIZK.VerifyREDJ∆(td1, xj , πj) where xj = fj , and aborts

otherwise.
– It computes id′i ← PKE.Dec(sk, cti) and pi ← PPRF(k, id′i). Additionally,

it extracts ζi by recovering ζ ′i from (1 + N)ζ
′
i = f

φ(N)
i and computing

ζ = ζ ′/φ(N) over the integers. It computes ρ′i = ζi/pi over the integers.

If cti = PKE.Enc(pk, id′i;Ri) where Ri = Ext(si, h
ρ′imod Nξ+1), then it

adds id′i to SS.
4. It sends SS to FPSI and halts.

We now show that the simulation is indistinguishable from the real protocol
via the following sequence of hybrids.

Hyb0: This hybrid is the real protocol.

Hyb1: This hybrid is identical to the previous one except that the simulator
computes the first message (sent by the receiver) as h←$TN .

Claim 5 Hybrids Hyb0 and Hyb1 are statistically indistinguishable.

Since g0 is a generator of TN , the distributions of gx and h←$TN are identical.
It follows that the hybrids are indistinguishable.

Hyb2: This hybrid is identical to the previous one, except that g0 = g′0(1 +N)
for g′0←$TN (instead of choosing g0←$TN). Additionally, SimS keeps (φ(N), sk)
while creating crs.

Claim 6 Assume that the DCR assumption holds. Then hybrids Hyb1 and
Hyb2 are indistinguishable.

25

Hyb3: This hybrid is identical to the previous one except that the simulator,
instead of checking if there is an index i for which

ctj = PKE.Enc(pk, idi;R
′
i)

where R′i = Ext(sj , f
ri
j) and ri = r

M∏
`=1, 6̀=i

p` (as in the real protocol), it does

the checks as in the simulation. That is, it computes id′i ← PKE.Dec(sk, cti) and
pi ← PPRF(k, id′i). Additionally, it extracts ζi by recovering ζ ′i from (1 +N)ζ

′
i =

f
φ(N)
i and computing ζ = ζ ′/φ(N). It computes ρ′i = ζi/pi over the integers.

Then, it checks if cti = PKE.Enc(pk, id′i;Ri) where Ri = Ext(si, h
ρ′i).

Claim 7 Hybrids Hyb2 and Hyb3 are indistinguishable given that PKE is cor-
rect and NIZKREDJ∆ is simulation sound.

By the simulation soundness of NIZKREDJ∆ , ζi < Nξ−1/2. Hence, ζ ′i < Nξ/2
and thus ζ ′imod Nξ is equal to ζ ′i as an integer. Computing ζ = ζ ′i/φ(N) yields
ρipi over Z. Thus ρi = ζi/pi over Z.

Thus, performing the checks in this hybrid has the same outcome as in the
real protocol. ut

Setting the parameters. The value B is such that Nξ−1/2 ≥ B > N2κ for 5κ ≤ λ.
Then, it is enough to set ξ = 3, so that we can find a B that fulfills the condition.

Achieving statistical security against the sender. The protocol presented in Con-
struction 2 achieves computational security against a malicious sender given that
the DCR assumption holds (recall that NIZKREDJ∆ achieves statistical reusable
soundness).

The only place where we use the DCR assumption in the proof of security
against a malicious sender is when we replace g0←$TN by g0 = g′0(1+N). Hence,
consider the following modification of the protocol presented in Construction 2:
In GenCRS, the element g0 is chosen as g′0(1+N) for g′0. This simple modification
of the protocol yields a new one which is statistically secure against a malicious
sender. On the other hand, security against a semi-honest receiver now relies on
the hardness of φ-hiding (as before) and the DCR assumption.

7 Self-Detecting Encryption

In this section we define self-detecting encryption, and show how to build it from
laconic PSI. We first give a semi-honest definition, and will present the malicious
definition in the full paper [1].

Definition 7 A Self-Detecting Encryption (SDE) scheme is tuple of (random-
ized) algorithms SDE = (Prm,Gen,Hash,Enc,Dec,Detect) such that:

26

– Prm(1λ): Takes as input a security parameter 1λ, and outputs a public pa-
rameter pp.

– Gen(pp): Takes as input a public parameter pp, and outputs a pair of keys
(pk, sk).

– Hash(pp,DB): Takes as input a public parameter pp and a database DB, and
outputs a hash value h and a private state st. We require |h| ≤ poly(λ), for
a fixed polynomial poly.

– Enc(pk, h,m): Takes as input a public key pk, a hash value h, and a message
m, and outputs a ciphertext ct.

– Dec(sk, ct): Takes as input a secret key sk and a ciphertext ct, and outputs
a message m or ⊥.

– Detect(st, ct): Takes as input a private state st and a ciphertext ct, and out-
puts a message m or ⊥.

We require the following properties:

– Correctness. For any message m, letting pp ←$ Prm(1λ) and (pk, sk) ←$

Gen(pp): Pr[Dec(sk,Enc(pk,m)) 6= m] ≤ negl(λ).
– Detection. For any pp ∈ Prm, any (pk, sk) ∈ Gen(1λ), any database of

strings DB, and any message m, letting (h, st) ←$ Hash(pp,DB) and ct ←$

Enc(pk, h,m), if m ∈ DB then Detect(st, ct) = m.
– Efficiency. The size of h and running time of Enc are independent of the

database size. There exists a polynomial poly s.t. for all n := n(λ), any DB ∈
{0, 1}n, letting h←$ Hash(pp,DB) and pp, pk be as above, then |h| ≤ poly(λ)
and also the running time of Enc(pk, h,m) is upper bounded by poly(|m|, λ).

– Database Hiding. For any two databases (DB0,DB1) of equal size, if (h0, ∗)←$

Hash(pp,DB0) and (h1, ∗) ←$ Hash(pp,DB1) then h0 and h1 are indistin-
guishable where pp←$ Gen(1λ).

– Semantic Security. For any database of strings DB and any two mes-

sages (m0,m1): (pk, h,Enc(pk, h,m0))
c≡ (pk, h,Enc(pk, h,m1)), where all the

variables are sampled as above.
– Security Against the Authority. For any two messages (m0,m1), if m0 /∈

DB and m1 /∈ DB then(
pk, (h, st),Enc(pk, h,m0))

c≡ (pk, (h, st),Enc(pk, h,m1)
)
,

where pp←$ Prm(1λ), (pk, sk)←$ Gen(pp), and (h, st)←$ Hash(pp,DB).

We now show how to realize self-detecting encryption from semi-honest la-
conic PSI. Informally, the SDE hash is the receiver’s first-round laconic PSI
message, and the encryption of a message m consists of a PKE encryption of m
as well as a second-round PSI message based on m.

Construction 3 Let PKE = (KeyGen′,Enc′,Dec′) be a CPA-secure PKE scheme21

and LPSI = (GenCRS,R1,S,R2) a laconic PSI.

21 We proceed with an independent PKE scheme for the sake of simplicity.

27

– Prm(1λ): Sample crs←$ LPSI.GenCRS(1λ), and let pp := crs.
– Gen(pp): Run PKE.Gen′(1λ) to generate a pair of keys (pk, sk).
– Hash(pp,DB): Let h be the output of the receiver on DB and pp, i.e., h ←$

LPSI.R1(pp,DB). In addition, let st be the private state of the receiver.
– Enc(pk, h,m): Output (ct1, ct2), where ct1 ←$ PKE.Enc′(pk,m) and ct2 ←$

LPSI.S(pp, {m}, h).
– Dec(sk, ct = (ct1, ct2)): Output PKE.Dec′(sk, ct1).
– Detect(st, ct = (ct1, ct2)): Output R2(st, ct2).

Correctness and efficiency follow immediately.

– Statistical database hiding follows from PSI-receiver statistical security.
– Semantic security and security against the authority property of the scheme

follows from the CPA security of PKE scheme Π and the sender’s security.
Observe that if m /∈ DB then both ct1 and ct2 computationally hide the
message even in the presence of the private state st of PSI. Specifically, one
can argue that ct1 computationally hides m because of the CPA security of
PKE scheme Π, and ct2 computationally hides m because of the sender’s
security of laconic PSI. The arguments above can be made formal via a
routine hybrid argument, and we omit the details.

Acknowledgment

Pedro Branco thanks the support from DP-PMI and FCT (Portugal) through the
grant PD/BD/135181/2017. This work is supported by Security and Quantum
Information Group of Instituto de Telecomunicações, by the Fundação para a
Ciência e a Tecnologia (FCT) through national funds, by FEDER, COMPETE
2020, and by Regional Operational Program of Lisbon, under UIDB/50008/2020.

Nico Döttling: This work is partially funded by the Helmholtz Association
within the project ”Trustworthy Federated Data Analytics” (TFDA) (funding
number ZT-I-OO1 4).

Sanjam Garg is supported in part by DARPA under Agreement No. HR00112020026,
AFOSR Award FA9550-19-1-0200, NSF CNS Award 1936826, and research grants
by the Sloan Foundation, Visa Inc., and Center for Long-Term Cybersecurity
(CLTC, UC Berkeley). Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not necessarily
reflect the views of the United States Government or DARPA.

Mohammad Hajiabadi is supported in part by NSF CNS Award 2055564.

References

1. Alamati, N., Branco, P., Döttling, N., Garg, S., Hajiabadi, M., Pu, S.: Laconic pri-
vate set intersection and applications. Cryptology ePrint Archive, Report 2021/728
(2021), https://ia.cr/2021/728

28

https://ia.cr/2021/728

2. Ateniese, G., De Cristofaro, E., Tsudik, G.: (If) size matters: Size-hiding private set
intersection. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011:
14th International Conference on Theory and Practice of Public Key Cryptography.
Lecture Notes in Computer Science, vol. 6571, pp. 156–173. Springer, Heidelberg,
Germany, Taormina, Italy (Mar 6–9, 2011)

3. Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky, V.: Sub-
linear lattice-based zero-knowledge arguments for arithmetic circuits. In: Shacham,
H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2018, Part II. Lec-
ture Notes in Computer Science, vol. 10992, pp. 669–699. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 19–23, 2018)

4. Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious
transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) Ad-
vances in Cryptology – EUROCRYPT 2018, Part II. Lecture Notes in Computer
Science, vol. 10821, pp. 500–532. Springer, Heidelberg, Germany, Tel Aviv, Israel
(Apr 29 – May 3, 2018)

5. Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005: 2nd Theory of Cryptography Conference. Lecture Notes
in Computer Science, vol. 3378, pp. 325–341. Springer, Heidelberg, Germany, Cam-
bridge, MA, USA (Feb 10–12, 2005)

6. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure com-
putation under DDH. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology –
CRYPTO 2016, Part I. Lecture Notes in Computer Science, vol. 9814, pp. 509–539.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 14–18, 2016)

7. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability - (or: Quadratic residuosity strikes back). In:
Rabin, T. (ed.) Advances in Cryptology – CRYPTO 2010. Lecture Notes in Com-
puter Science, vol. 6223, pp. 1–20. Springer, Heidelberg, Germany, Santa Barbara,
CA, USA (Aug 15–19, 2010)

8. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE, leak-
age resilience and circular security from new assumptions. In: Nielsen, J.B., Rijmen,
V. (eds.) Advances in Cryptology – EUROCRYPT 2018, Part I. Lecture Notes in
Computer Science, vol. 10820, pp. 535–564. Springer, Heidelberg, Germany, Tel
Aviv, Israel (Apr 29 – May 3, 2018)

9. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy. pp. 315–334. IEEE Computer Society Press, San Francisco,
CA, USA (May 21–23, 2018)

10. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science. pp.
136–145. IEEE Computer Society Press, Las Vegas, NV, USA (Oct 14–17, 2001)

11. Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled PSI from fully homomorphic
encryption with malicious security. In: Lie, D., Mannan, M., Backes, M., Wang,
X. (eds.) ACM CCS 2018: 25th Conference on Computer and Communications
Security. pp. 1223–1237. ACM Press, Toronto, ON, Canada (Oct 15–19, 2018)

12. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic
encryption. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM
CCS 2017: 24th Conference on Computer and Communications Security. pp. 1243–
1255. ACM Press, Dallas, TX, USA (Oct 31 – Nov 2, 2017)

13. Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic
oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.) Advances

29

in Cryptology – CRYPTO 2017, Part II. Lecture Notes in Computer Science,
vol. 10402, pp. 33–65. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 20–24, 2017)

14. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive cho-
sen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) Advances in
Cryptology – EUROCRYPT 2002. Lecture Notes in Computer Science, vol. 2332,
pp. 45–64. Springer, Heidelberg, Germany, Amsterdam, The Netherlands (Apr 28 –
May 2, 2002)

15. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001: 4th Inter-
national Workshop on Theory and Practice in Public Key Cryptography. Lecture
Notes in Computer Science, vol. 1992, pp. 119–136. Springer, Heidelberg, Germany,
Cheju Island, South Korea (Feb 13–15, 2001)

16. Döttling, N., Garg, S.: From selective IBE to full IBE and selective HIBE. In: Kalai,
Y., Reyzin, L. (eds.) TCC 2017: 15th Theory of Cryptography Conference, Part I.
Lecture Notes in Computer Science, vol. 10677, pp. 372–408. Springer, Heidelberg,
Germany, Baltimore, MD, USA (Nov 12–15, 2017)

17. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) Advances in Cryptology – CRYPTO 2017,
Part I. Lecture Notes in Computer Science, vol. 10401, pp. 537–569. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 20–24, 2017)

18. Döttling, N., Garg, S., Goyal, V., Malavolta, G.: Laconic conditional disclosure
of secrets and applications. In: Zuckerman, D. (ed.) 60th Annual Symposium on
Foundations of Computer Science. pp. 661–685. IEEE Computer Society Press,
Baltimore, MD, USA (Nov 9–12, 2019)

19. Döttling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of identity-
based and key-dependent message secure encryption schemes. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018: 21st International Conference on Theory and Practice
of Public Key Cryptography, Part I. Lecture Notes in Computer Science, vol. 10769,
pp. 3–31. Springer, Heidelberg, Germany, Rio de Janeiro, Brazil (Mar 25–29, 2018)

20. Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.: Trapdoor
hash functions and their applications. In: Boldyreva, A., Micciancio, D. (eds.)
Advances in Cryptology – CRYPTO 2019, Part III. Lecture Notes in Computer
Science, vol. 11694, pp. 3–32. Springer, Heidelberg, Germany, Santa Barbara, CA,
USA (Aug 18–22, 2019)

21. Garg, S., Gay, R., Hajiabadi, M.: New techniques for efficient trapdoor functions
and applications. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology – EURO-
CRYPT 2019, Part III. Lecture Notes in Computer Science, vol. 11478, pp. 33–63.
Springer, Heidelberg, Germany, Darmstadt, Germany (May 19–23, 2019)

22. Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A.: Registration-based encryp-
tion: Removing private-key generator from IBE. In: Beimel, A., Dziembowski, S.
(eds.) TCC 2018: 16th Theory of Cryptography Conference, Part I. Lecture Notes
in Computer Science, vol. 11239, pp. 689–718. Springer, Heidelberg, Germany,
Panaji, India (Nov 11–14, 2018)

23. Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A., Sekar, S.: Registration-based
encryption from standard assumptions. In: Lin, D., Sako, K. (eds.) PKC 2019:
22nd International Conference on Theory and Practice of Public Key Cryptogra-
phy, Part II. Lecture Notes in Computer Science, vol. 11443, pp. 63–93. Springer,
Heidelberg, Germany, Beijing, China (Apr 14–17, 2019)

30

24. Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear
maps. In: Umans, C. (ed.) 58th Annual Symposium on Foundations of Computer
Science. pp. 588–599. IEEE Computer Society Press, Berkeley, CA, USA (Oct 15–
17, 2017)

25. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from mini-
mal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology –
EUROCRYPT 2018, Part II. Lecture Notes in Computer Science, vol. 10821, pp.
468–499. Springer, Heidelberg, Germany, Tel Aviv, Israel (Apr 29 – May 3, 2018)

26. Goyal, R., Vusirikala, S.: Verifiable registration-based encryption. In: Shacham, H.,
Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2020, Part I. pp. 621–
651. Lecture Notes in Computer Science, Springer, Heidelberg, Germany, Santa
Barbara, CA, USA (Aug 16–20, 2020)

27. Goyal, R., Vusirikala, S., Waters, B.: New constructions of hinting PRGs, OWFs
with encryption, and more. In: Shacham, H., Boldyreva, A. (eds.) Advances in
Cryptology – CRYPTO 2020, Part I. pp. 527–558. Lecture Notes in Computer
Science, Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16–20,
2020)

28. Green, M.: (2019), https://blog.cryptographyengineering.com/2019/12/08/on-
client-side-media-scanning/

29. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for
NP. In: Vaudenay, S. (ed.) Advances in Cryptology – EUROCRYPT 2006. Lecture
Notes in Computer Science, vol. 4004, pp. 339–358. Springer, Heidelberg, Germany,
St. Petersburg, Russia (May 28 – Jun 1, 2006)

30. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) Advances in Cryptology – EUROCRYPT 2008. Lecture Notes in
Computer Science, vol. 4965, pp. 415–432. Springer, Heidelberg, Germany, Istan-
bul, Turkey (Apr 13–17, 2008)

31. Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection.
In: Fehr, S. (ed.) PKC 2017: 20th International Conference on Theory and Prac-
tice of Public Key Cryptography, Part I. Lecture Notes in Computer Science, vol.
10174, pp. 175–203. Springer, Heidelberg, Germany, Amsterdam, The Netherlands
(Mar 28–31, 2017)

32. Hubacek, P., Wichs, D.: On the communication complexity of secure function eval-
uation with long output. In: Roughgarden, T. (ed.) ITCS 2015: 6th Conference on
Innovations in Theoretical Computer Science. pp. 163–172. Association for Com-
puting Machinery, Rehovot, Israel (Jan 11–13, 2015)

33. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vad-
han, S.P. (ed.) TCC 2007: 4th Theory of Cryptography Conference. Lecture Notes
in Computer Science, vol. 4392, pp. 575–594. Springer, Heidelberg, Germany, Am-
sterdam, The Netherlands (Feb 21–24, 2007)

34. Jarecki, S., Liu, X.: Fast secure computation of set intersection. In: Garay, J.A.,
Prisco, R.D. (eds.) SCN 10: 7th International Conference on Security in Commu-
nication Networks. Lecture Notes in Computer Science, vol. 6280, pp. 418–435.
Springer, Heidelberg, Germany, Amalfi, Italy (Sep 13–15, 2010)

35. Kissner, L., Song, D.X.: Privacy-preserving set operations. In: Shoup, V. (ed.)
Advances in Cryptology – CRYPTO 2005. Lecture Notes in Computer Science,
vol. 3621, pp. 241–257. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 14–18, 2005)

36. Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-
party private set intersection from symmetric-key techniques. In: Thuraisingham,

31

B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017: 24th Conference on
Computer and Communications Security. pp. 1257–1272. ACM Press, Dallas, TX,
USA (Oct 31 – Nov 2, 2017)

37. Lindell, Y., Nissim, K., Orlandi, C.: Hiding the input-size in secure two-party
computation. In: Sako, K., Sarkar, P. (eds.) Advances in Cryptology – ASI-
ACRYPT 2013, Part II. Lecture Notes in Computer Science, vol. 8270, pp. 421–440.
Springer, Heidelberg, Germany, Bengalore, India (Dec 1–5, 2013)

38. Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based PSI via
cuckoo hashing. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology –
EUROCRYPT 2018, Part III. Lecture Notes in Computer Science, vol. 10822, pp.
125–157. Springer, Heidelberg, Germany, Tel Aviv, Israel (Apr 29 – May 3, 2018)

39. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: Fu, K., Jung, J. (eds.) USENIX Security 2014: 23rd USENIX Security
Symposium. pp. 797–812. USENIX Association, San Diego, CA, USA (Aug 20–22,
2014)

40. Quach, W., Wee, H., Wichs, D.: Laconic function evaluation and applications. In:
Thorup, M. (ed.) 59th Annual Symposium on Foundations of Computer Science.
pp. 859–870. IEEE Computer Society Press, Paris, France (Oct 7–9, 2018)

41. Resende, A.C.D., Aranha, D.F.: Faster unbalanced private set intersection. In:
Meiklejohn, S., Sako, K. (eds.) FC 2018: 22nd International Conference on Fi-
nancial Cryptography and Data Security. Lecture Notes in Computer Science,
vol. 10957, pp. 203–221. Springer, Heidelberg, Germany, Nieuwpoort, Curaçao
(Feb 26 – Mar 2, 2018)

42. Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execu-
tion. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS
2017: 24th Conference on Computer and Communications Security. pp. 1229–1242.
ACM Press, Dallas, TX, USA (Oct 31 – Nov 2, 2017)

43. Thyagarajan, S.A.K., Bhat, A., Malavolta, G., Döttling, N., Kate, A., Schröder,
D.: Verifiable timed signatures made practical. In: ACM CCS 20: 27th Conference
on Computer and Communications Security. pp. 1733–1750. ACM Press (2020)

32

	Laconic Private Set Intersection and Applications

