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Abstract. Oblivious transfer (OT) is a foundational primitive within
cryptography owing to its connection with secure computation. One of
the oldest constructions of oblivious transfer was from certified trapdoor
permutations (TDPs). However several decades later, we do not know if
a similar construction can be obtained from TDPs in general.
In this work, we study the problem of constructing round optimal obliv-
ious transfer from trapdoor permutations. In particular, we obtain the
following new results (in the plain model) relying on TDPs in a black-box
manner:

– Three-round oblivious transfer protocol that guarantees indistingui-
shability-security against malicious senders (and semi-honest receivers).

– Four-round oblivious transfer protocol secure against malicious ad-
versaries with black-box simulation-based security.

By combining our second result with an already known compiler we
obtain the first round-optimal 2-party computation protocol that relies
in a black-box way on TDPs.
A key technical tool underlying our results is a new primitive we call
dual witness encryption (DWE) that may be of independent interest.

Keywords: Two-Party Computation · Trapdoor Permutations · Obliv-
ious Transfer.

1 Introduction

Oblivious transfer (OT) is one of the most recognizable protocols in cryptogra-
phy. It is a protocol executed by two parties, designated as sender and receiver,
with inputs (l0, l1) and b respectively. The goal of the protocol is for the re-
ceiver to learn lb, while not learning anything about l1−b. At the same time, the
sender should be oblivious to the receiver’s input b. The importance of OT is
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underlined by its fundamental role in cryptography, as it is known to be both
necessary and sufficient for secure multiparty computation (MPC) [31]. In fact,
recent works [3, 9] further strengthen this connection to devise round-preserving
transformations from OT to MPC.

In this work, we revisit the well-studied problem of building round-optimal
OT in the plain model that are secure against malicious adversaries, who may ar-
bitrarily deviate from the protocol specification. We focus on the task of building
such protocols from general assumptions, and in particular, trapdoor permuta-
tions (TDPs). Roughly speaking, TDPs are permutations that are easy to com-
pute, but hard to invert unless one knows a “trapdoor” (in which case inversion
becomes easy).

OT and TDPs are, in fact, historically linked — the first constructions of
semi-honest5 1-out-of-2 OT protocols [13] were based on TDPs. Subsequent
works devised compilation strategies to transform the protocol of [13] to the
setting of malicious senders and receivers. In particular, [30] constructed a four-
round OT protocol that makes non-black-box use of TDPs. More recently, [35]
improved this result by only making black-box use of TDPs. Moreover, the round
complexity of these protocols is optimal (w.r.t. black-box simulation) [30].

A significant disadvantage of these works (including [13]), however, is that
when it comes to proving security against malicious adversaries, they require the
TDPs to be certifiable. Namely, it must be possible to publicly recognize whether
a given (possibly adversarially chosen) function is a permutation.

Investigating how to construct complex cryptographic protocols relying on
trapdoor permutations is interesting from both the theoretical and the practical
perspective.

Indeed, for this reason, the issue of certifiability of TDPs has garnered much
interest in the context of the other popular application of TDPs, which is to
build non-interactive zero-knowledge (NIZK) [18, 14, 1, 19, 20, 21, 23, 6, 29]. In
a similar vein, in this work we ask whether it is possible to forego the reliance
on certifiability in building round-optimal OT from TDPs:

Does there exist fully black-box round-optimal OT from trapdoor permutations?

Indeed, one simple way to relax the certifiability requirement is to let the
party choosing the TDP proving in zero-knowledge that the TDP was sampled
honestly. However this necessarily increases the number of rounds (or requires
trusted assumptions). Such an approach has been used in [36], in which the
authors show that one-way permutations (without trapdoors) are sufficient to
construct OT if one of the two parties is all-powerful. Thus, the problem becomes
interesting if one considers the round complexity of constructions.

On the use of Certifiability. To the best of our knowledge, we are not aware
of any maliciously secure round-optimal OT protocol that uses the underlying
trapdoor permutations even in a non-black-box way.

5 A semi-honest adversary, unlike a malicious adversary, follows the protocol specifi-
cation. However, it may still try to glean additional information from the execution
of the protocol.
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In both of the classical applications of TDPs, namely, NIZK and OT, the
certifiability property is crucially used for security. In the case of NIZKs, it is
used to guarantee soundness against malicious provers in the classical protocol
of [14]. In the case of OT, it is used to guarantee security against malicious
senders. In both of these applications, one of the parties (the prover, in the case
of NIZKs, and the sender, in the case of OT) is required to sample a function
f from a family of trapdoor permutations. This is done by sampling an index I
via the index generation algorithm of the family of functions. If the party does
not sample the index I honestly, the resultant function is no longer guaranteed
to be a permutation. In such a scenario, in both of these applications, security
completely breaks down (we will give an example hereafter in the paper). A
cheating prover is able to break soundness, and a cheating sender is able to
break receiver input privacy.

In the context of NIZKs, [1] proposed a technique to address this issue when
the TDP family is full domain. Here, we say that a TDP family is full domain
if the domain is {0, 1}p(n) for some polynomial p, else we say that the domain
is partial. Subsequent works [20, 21, 19, 23] showed that for the case of partial
domain, it suffices for one to start with TDPs that are doubly-enhanced, i.e.,
TDPs that additionally have domain and range samplers with additional secu-
rity properties (see Section 3.1). [6] was able to further relax the requirements
for partial domain to only require TDPs that are public-domain, i.e. the domain
is both efficiently recognizable, and almost uniformly sampleable. In [18] the au-
thors propose a non-interactive proof to certify that the RSA public key specifies
a permutation in the random-oracle (RO) model.

These solutions, however, are in the common random string (CRS) model (or
in the RO model), and are not applicable to our plain model setting. The main
technical focus of our work is to eliminate the use of certifiability in building
OT, without relying on a CRS or on the RO, and requiring the least possible
number of rounds. To achieve this goal, we rely on new notion of dual witness
encryption (DWE).

1.1 Our Results

We resolve the aforementioned question in the affirmative, and provide details
for our result below.

Dual Witness Encryption. As a stepping stone to our solution, we define the
notion of dual witness encryption for the pair of disjoint languages (L0, L1) such
that L1 is in NP. Intuitively, the notion defines a public-key encryption scheme
where the public key (the instance) can either come from L0, L1 or may even
lie outside the union of these two sets. The scheme guarantees: (i) information
theoretic security when encryption is performed using a public-key belonging
to the set L0; and (ii) efficient decryption when encrypted using a public-key
belonging to the set L1 if the decryptor is additionally in possession of a witness
attesting to this fact.
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For use in our OT protocols, we construct a dual witness encryption (DWE)
scheme where the public keys will correspond to functions f . Specifically, we
build a DWE scheme for (L0, L1) where (i) L0 is the set functions for which a
large fraction of points in the domain result in collisions (the reader can think
of this as meaning that at least half the points in the domain result in collision
on application of functions f in L0); whereas (ii) L1 is the set of TDPs output
by an honest TDP generation algorithm Gen. While we discuss the details of the
encryption scheme in the technical overview, for the purposes of this discussion
it is helpful to think of an (overly) simplified version of a ciphertext in the
encryption scheme to be (f(k), k⊕m)6 where k is a randomly sampled key, and
m is the message to be encrypted. Intuitively, if the instance f used to compute
an encryption is a function for which many points in the domain have the same
image, then f(k) (which is a part of the ciphertext) information theoretically
hides the specific key k chosen for encryption, and thereby hides the message m.
Instead, if the function f used for the decryption is a TDP, and the randomness
used to generate such a function is known, then there exists an efficient procedure
that inverts f(k) and decrypts the message. We note that in this case there are
instances that belong neither to L0 nor to L1 (e.g., the functions for which only
a small fraction of points in the domain result in collisions). This is our main
tool for tackling uncertifiability. As stated above, this is an oversimplification of
our scheme, and we provide more details both for the construction of the tool,
and how it is used, in the next section.

As an additional contribution, we show the existence of a dual witness en-
cryption schemes for other languages. For instance the pair of languages (L0, L1),
where L0 represents the language of Diffie-Hellman (DH) tuples, and L1 repre-
sents the language of non-DH tuples. In this case, when an encryption is com-
puted using a DH tuple, the encrypted message is information theoretically hid-
den. In any other case, when the encryption is computed using a tuple that is not
DH, it is possible to efficiently decrypt the message. Moreover, the decryption is
efficient if the exponents of the non-DH-tuple are known by the decryptor. We
also argue that it is possible to extend the above construction to the language
of non-Quadratic Residuosity tuples [24]7.

Comparison with similar notions. Dual witness encryption is similar to witness
encryption with some important differences: First, we require semantic security
to hold even against unbounded adversaries when the instance used for the
encryption belongs to L0. Second, unlike witness encryption, we do not define
completeness or hiding for instances that are outside L0 and L1.

The notion of instance-dependent commitment (ID commitment) [7] enables a
committer to commit to a message with respect to an NP language L. When the
statement used to compute the commitment is not in L, then the commitment

6 Note that this is not an accurate description of the encryption scheme, but is helpful
to provide an intuition.

7 We note that in this example L0 ∪ L1 = {0, 1}?, but this is not always the case, as
we show hereafter.
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is statistically hiding, in any other case the commitment is statistically binding.
The notion of extractable ID commitment, in addition, admits an efficient ex-
traction procedure that on input a commitment computed with respect to an
instance in L, outputs the committed message. In [17] the authors show how to
construct such an extractable ID commitment scheme for all the languages that
admit hash proof systems (e.g., QNR, QR, DDH, DCR). It is easy to see that
an extractable ID commitment for the language L is a DWE for the languages
(L0, L1) with L0 = {0, 1}? − L and L1 = L. Moreover, any DWE such that
L0 ∪ L1 = {0, 1}? is an extractable ID commitment for the language L1. The
main difference between DWEs and extractable ID commitments is that the ex-
tractable ID commitments are defined with respect to one NP-language, whereas
our notion provides different guarantees depending on whether the statement is
in L0, L1 or in neither of the two languages.

Round Optimal Oblivious Transfer. Using Dual Witness Encryption (DWE), we
obtain the following results.

Theorem 1 (informal). Assuming full domain trapdoor permutations, we
construct a fully black-box three-round oblivious transfer protocol that is secure
against semi-honest receivers and malicious senders.

Theorem 2 (informal). Assuming full domain trapdoor permutations, we
construct a fully black-box four-round fully simulatable oblivious transfer pro-
tocol.

Round Optimal Two-Party Computation. An immediate corollary from the The-
orem 1, in conjunction with the work of [28] building a non-interactive secure
two-party protocol in the OT-hybrid model is the following.

Corollary 1. Assuming full domain trapdoor permutations, there exists a fully
black-box round optimal secure two-party computation protocol.

Functions with partial domain. To the best of our knowledge, to extend the
results of previous works [35, 30] in the case of functions with partial domain
requires, in addition to the certifiability property, (i) the existence of a sampler
which uniformly samples elements from the domain/range; and (ii) the existence
of an efficient algorithm that checks whether a given element belongs inside or
outside the domain of the function. These properties are called respectively ef-
ficiently sampleable domain/range and efficiently recognizable domain. We show
how to extend our theorems and corollary to the case of functions with partial
domain by removing the requirement on the function to be certifiable, while
maintaining the same requirements of efficiently sampleable domain/range and
efficiently recognizable domain.
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2 Technical Overview

To illustrate the main ideas underlying this work, it will suffice to assume full
domain TDPs, and the extension to partial domains are deferred to the technical
sections.

Background: 3-round semi-honest OT. Before we describe the main ideas in our
construction, let us recall the basic three-round construction based on enhanced
trapdoor permutations (TDPs) in the semi-honest setting (EGL) [13, 30].

Let l0, l1 ∈ {0, 1} be the input of the sender S and b be the input bit of the
receiver R, the construction is presented in Figure 1.

Receiver R(b) Sender S(l0, l1)

(f, f−1)
$←− Gen(1λ)

f

x
$←− {0, 1}λ, z1−b

$←− {0, 1}λ

zb ← f(x)

z0, z1

∀c ∈ {0, 1},

wc = lc ⊕ h(f−1(zc))

w0, w1

l̃b ← h(x)⊕ wb

Fig. 1: The EGL OT protocol ([13]). Security holds against semi-honest receivers
and malicious senders

Here h(·) is a hardcore bit of f . If the parties follow the protocol (i.e. in the
semi-honest setting) then S cannot learn the receiver’s input (the bit b) as both
z0 and z1 are random strings. Also, due to the one-way property of f and the
security of the hard-core predicate, R cannot distinguish w1−b from random as
long as z1−b is randomly chosen.

Prior works [30] ([35] respectively) devised non-black-box (black-box respec-
tively) approaches to deal with both malicious senders and receivers. When deal-
ing with malicious senders, they still require certifiable TDPs. Without ceritifi-
ability, challenges arise, which are highlighted below.

Main challenge: necessity of certification. In the above described semi-honest
protocol, a malicious sender is free to deviate from the protocol. If the malicious
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sender sends a function f that is not a permutation, by simply looking at values
z0 and z1, it could decide which one of the values is randomly sampled from
the domain of the function, and which one is computed by evaluating f on a

random point. Specifically, {x $←− {0, 1}λ : x} and {x $←− {0, 1}λ : f(x)} are
distinguishable to the sender for such an f , thereby leaking the receiver’s input.
To see why this is true, let us consider an extreme case in which a malicious
sender picks a function f in which half of the points in the domain of f all have
the same image y. Such a malicious sender, upon receiving the values z0, z1,
checks if there exists d ∈ {0, 1} such that y = zd. If this is the case, then the
malicious sender outputs d, otherwise it outputs a random bit. It is easy to see
that such a malicious sender guesses the input of the receiver with the probability
negligibly close to 1/2 + 1/4. The natural approach to dealing with a malicious
adversary is to force an adversarial party to prove honest behavior using a zero-
knowledge proof. In fact, in the NIZK constructions based on certifiable TDPs,
removing certification is non-trivial since it has direct bearing on the soundness.
A cheating prover that picks a function f that is not a permutation can break
the soundness of the NIZK. In this context, [1] proposed the first approach to
avoiding certifiability. Their solution proposes a special purpose NIZK to prove
that f is a trapdoor permutation over the full domain. Thus the prover, when
sending over f also sends a special purpose proof that f is indeed a trapdoor
permutation over the full domain. As mentioned earlier, these results were further
extended to the partial domain setting by [23, 6] for a more restricted class of
TDPs. Unfortunately, all the above solutions are in the common random string
(CRS) model, and therefore not applicable in our setting. Following the above
line of work, the natural idea could be to devise a zero-knowledge proof in the
plain model whereby the sender proves that the function f is indeed a trapdoor
permutation. However, as we discuss below, this runs into fundamental barriers.
The main challenge in requiring the sender to send a zero-knowledge proof to
the receiver, is the limitation on the number of rounds. Even in the four-round
setting, the receiver sends its last message in the third round, and thereby must
know by the end of the second round if f sent by the sender is a permutation.
This would thereby require the sender to complete its zero-knowledge proof by
the send round, but providing such a zero-knowledge proof in two rounds is
impossible [22]. Another näıve solution to extend the techniques of [1] in the
plain model, would be to run a challenge-response protocol. In this, the party
that wants to check if a function f is a permutation (the receiver R in this
case), upon receiving the function f from the party that wants to certify that
f is a permutation (the sender S in this case), samples random values from the
domain, evaluates them, and sends them to S. S then inverts the received values
and sends them back to R. R now can check if the received values correspond to
the values he sampled from the domain of the function. It is easy to see that if the
function is not a permutation, then (with some probability) one of the evaluated
points R sends to S has a multiple pre-images, and S has no way to determine
which pre-image R picked, resulting in R rejecting the function. The problem
with this approach is that it requires at least three rounds of communication.
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And this is clearly unacceptable if we want to construct an OT protocol that
overall consists of three (or even four) rounds.

Dual Witness Encryption (DWE). As alluded to in our result section, we will
rely on a Dual Witness Encryption scheme for the languages (L0, L1), where L1

is an NP language. A Dual Witness Encryption is described by an encryption
algorithm and a decryption algorithm. The encryption algorithm takes as input
an instance (either in L0 or in L1) and a message, and outputs a ciphertext ct.
The decryption algorithm takes as input a ciphertext, an instance x ∈ L1 and a
witness for x, and returns a string. A DWE enjoys the following two properties:

Completeness: If the cipthertext ct is computed using an instance x ∈ L1,
then the decryption algorithm, on input x and a witness for x, efficiently
outputs the plaintext of ct.

Hiding: If the the cipthertext ct is computed using an instance x ∈ L0, then ct
hides the plaintext in an information-theoretic sense.

Our main idea in a nutshell. We now show how to use our techniques to trans-
form the EGL protocol of Figure 1 into a protocol that protects the input of
the receiver against malicious senders relying on TDPs only. An honest receiver
wants to prevent a cheating sender from being able to view z0 and z1 if the sender
has not picked f honestly. To facilitate this intuition, the receiver encrypts, using
the dual witness encryption using f as the instance, its messages (z0 and z1),
and sends over the corresponding ciphertext to the sender. On the one hand,
if the sender has indeed picked a function by running the generation algorithm
Gen, then it can decrypt and obtain z0 and z1, on the other hand if the selected
function has a lot of collisions, then the ciphertext will hide z0 and z1. But this
only gives us a weak form of security against malicious senders since the f picked
might not have a lot of collisions. The security is then amplified using a weak
notion of OT combiners. More precisely, we use a (1, k)-combiner that takes as
input k OT instantiations and outputs a secure OT against malicious senders as
long as there is at least one OT that is secure against malicious sender. We note
that for simulation based security, we will have to do some further work and add
an additional round. This construction is already sufficient to obtain a 3-round
OT protocol that retains its security against malicious senders and semi-honest
receivers8 relying on uncertified TDPs.

Constructing a DWE scheme for TDPs. We start with the construction of the
main tool used in our work: a DWE that encrypts with respect to a function f .
For simplicity, we will limit our discussion to a bit encryption scheme, with a
natural extension to encryption of bit strings. The rough idea to encrypt a bit
m, is to sample an element x from the domain, compute y ← f(x), and generate
the ciphertext to be (y, xj ⊕m, j), where xj is the j-th bit of x for a randomly

8 We provide privacy for the input of the receiver in the sense that a malicious sender
cannot distinguishes between when the receiver is using the input 0 and when he is
using the input 1.
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sampled j. On the one hand, if f was indeed a permutation, generated alongside
the corresponding trapdoor f−1 (that can be obtained from the randomness used
to ran the generation algorithm), one can decrypt the ciphertext. On the other
hand, if f is not a permutation, then with some probability y has a collision, and
thereby there exists at least another x′ 6= x such that f(x′) = f(x) = y. Hence,
with probability 1/n x and x′ differ at the j-th position (where n is the size of x),
thereby hiding m since the decryptor has no way to tell whether x or x′ was used
in the encryption. Of course, this only achieves a weak notion of security, that
needs to be amplified. In order to amplify the security, we want to increase the
likelihood of sampling an x such that f(x) has a collision. We take the natural
approach and additively secret share m as m← m1⊕· · ·⊕mq, for an appropriate
parameter q, and repeat the above strategy of encryption, with fresh randomness
for each mi separately. Now, when f is not a permutation, as long as at least
one of the mi remains hidden, m remains information theoretically hidden. In
the technical section, we elaborate on this idea, and discuss the appropriate
parameters required to guarantee security.

Towards a simulation-based secure construction. To obtain a complete solution
(i.e., a protocol that is simulation based secure against malicious senders and
receivers), we integrate the above idea in the [35] construction. However, doing
so creates further challenges. The remainder of the section is dedicated to our
solution, and how we tackle the challenges that arise.
Let us now look at our solution is more detail.

The ORS [35] methodology. The starting point for our protocol is the black-box
OT protocol presented in [35]. Their protocol is constructed in two steps. In the
first step, they construct a black-box OT protocol that is one-sided simulatable,
i.e. the protocol is fully simultable against a malicious receiver, but only satisfies
input indistinguishability against a malicious sender. In the second step, they
then provide a general transformation that allows one to go from one sided
simulatable OT to fully simulatable OT in a black-box manner. Since we can
directly use their transformation in the second step, we limit our discussion
to the construction of a one sided simulatable OT protocol. Looking back at
our description of the semi-honest three-round oblivious transfer protocol, if we
are to consider a fully malicious receiver R? then this protocol is already no
longer secure. Indeed R? could just compute z1−b = f(y) picking a random

y
$←− {0, 1}λ. In this way R? can retrieve both the inputs of the sender l0 and

l1. In [30] the authors solve this problem by having the parties engage in a coin-
flipping protocol such that the receiver is forced to set at least one of z0 and
z1 to a random string. This is done by forcing the receiver to commit to two
strings (r0, r1) in the first round (for the coin-flipping) and providing a witness-
indistinguishable proof of knowledge (WIPoK) that either z0 = r0 ⊕ r′0 or z1 =
r1⊕r′1 where r′0 and r′1 are random strings sent by the sender in the second round.
The resulting protocol, as observed in [35], leaks no information to S about R’s
input. Moreover, the soundness of the WIPoK forces a malicious R? to behave
honestly, and the PoK allows to extract the input from the adversary in the
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simulation. Therefore, the protocol constructed in [30] is one-sided simulatable.
The main drawback in the above approach, addressed in [35], is that the use of a
WI scheme requires using the commitment scheme in a non-black-box manner.
Instead, in [35] the authors propose an approach that makes only black-box use
of the underlying primitives. The main insight in [35] was to recast the problem
in terms of equivocal and binding commitments, and having the output of the
coin-flipping to be a pair of strings (z0, z1).

1. Receiver R, on secret input b, chooses random strings r0 and r1. R then
sends across commitments com0, com1 such that com1−b is a commitment to
r1−b while comb is an equivocal commitment. R now proves that one of the
commitments is binding.

2. The sender S then samples a trapdoor permutation from the family f, f−1 ←
Gen(1λ), and sends f to R. S also additionally samples a random string r,
and sends it over to R.

3. R will now choose its decommitments to send to S. For com1−b it will de-

commit to r1−b, but for comb, R does the following. R sample x
$←− {0, 1}λ

and computes zb ← f(x), and sets rb ← zb ⊕ r. R now decommits comb to
rb, and both decommitments are sent to S.

4. S on receiving the decommitments, checks if they are valid before proceeding.
It then sets za ← ra ⊕ r for a ∈ {0, 1}, and sends (w0, w1) to the receiver
where wa ← `a ⊕ h(f−1(za)).

Since one of the commitments are guaranteed to be binding from the soundness
of the proof, the receiver can only equivocate one of the strings, and thereby
knows the pre-image to only one of the strings. From the above description,
the main technical contributions of [35] are to realize the above protocols in a
black-box manner using the commit-and-prove protocol due to [32]. The above
description is sufficient to discuss the main ideas and challenges underlying our
work, for a more detailed discussion of [35] we refer the reader to the technical
sections. Given the description of the above protocol, and equipped with the
dual witness encryption, the natural approach is for the receiver to encrypt
its decommitments sent in the third round using the function f sent by the
sender. This seems to work as a valid defense against a malicious sender, but
an unwanted consequence of this modification is that simulation now fails for a
malicious receiver. Let us see why this is the case.

Defending against a malicious receiver. Consider an execution of the simulator
with a malicious receiver. At some point during the simulation, the simulator
will receive the encrypted messages from the receiver, and must proceed with
the simulation. But just from looking at the ciphertext, it does not know if
the ciphertexts contain legitimate decommitments, or some arbitrary values.
Why is this a problem? In the real execution of the OT protocol, an honest
sender, having picked f to be a permutation, will decrypt the ciphertexts and
abort if the ciphertexts do not decrypt to a legitimate decommitment. Therefore,
in order to avoid a trivial distinguisher, the simulator must also perform this
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check. One natural way would be for the simulator to mimic the honest sender’s
behavior and decrypt the ciphertext, and then decide the appropriate action
from the decrypted value. Unfortunately, this strategy does not work, and we
illustrate why this would be a problem. In the above protocol, we said that the
intuitive reason for the receiver not to learn l1−b is that it does not know the
pre-image of the random string, and thereby can do no better than guessing the
hardcore predicate of the pre-image. To formalize this in the proof, we need to
make a redution to security of the hardcore bit of f . Such a reduction receives
only the function f and but must be able to complete the interaction against
the malicious receiver. And importantly, must do so without knowledge of the
randomness ρ used to generate f . A consequence of this is that decrypting is no
longer an option since the reduction does not have ρ. In essence, if we have to
decrypt to check, then we are breaking the security of the hardcore predicate.
One way to get around decrypting, is to have some sort of “public check” such
as a witness indistinguishable proof of knowledge as done in [30]. But the trivial
application of this approach results in a non-black-box use of the underlying
primitives, which we cannot afford to do. And indeed, it is unclear how one
would prove honest behavior in such a scenario in a black-box manner. Taking
a step back, we are seemingly deriving two distinct security properties from the
function f : (i) for the security of the hardcore predicate against a malicious
receiver; and (ii) hiding of the DWE scheme if f is not a permutation. The issue
then is that when we want to rely on the security of the hardcore predicate,
we do not care for the ciphertext to be hiding, since we are guaranteed that
the function f used in the reduction, is a permutation. This seems to indicate
that, while the current construction ties both these security properties, it does
not necessarily have to be the case. Our approach is to decouple the above
properties in a surprisingly simple manner. We use now two functions, an inner
fOT for the OT (and security of the hardcore predicate), and an outer fdWE for
the DWE scheme. The sender now samples the two functions along with the
corresponding trapdoors. As before, the functions are sent to the reciever in the
second round. The receiver then uses fOT to compute zb and uses fdWE to encrypt
the decommitment. This solves the issue indicated above since the reduction can
decrypt without breaking the security of the hardcore predicate. This means that
we can now reduce the security of the scheme to the security of the function
fOT. But now, a malicious sender could choose fdWE to be a permutation, while
choosing fOT maliciously. We seem to have lost the advantage of using the DWE
scheme. Our final solution is to stick to the idea of using two functions. But
instead of fixing the roles of the two functions, allow the receiver to determine
the roles of the corresponding function. As mentioned before, this provides only
a weak guarantee and is amplified through the use of OT combiners. While we
have described the main ideas underlying the construction, implementing these
ideas involve further work, and we refer the reader to the relevant technical
sections for the details.
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2.1 Related Work

Oblivious Transfer. As stated earlier, oblivious transfer (OT) plays a fundamen-
tal role in cryptography and has a large body of work starting with [13]. We
restrict ourselves to relevant works focusing on the round optimality of OT. In
the random oracle model, [34] constructs a two-round OT protocol with indistin-
guishability based security against malicious receivers, but simulation security
against malicious senders. In the CRS model, [37] constructs a fully maliciously
secure two-round protocol. Moving to the relevant setting of the plain model,
[30] showed that four rounds are necessary for a fully maliciously secure OT
protocol with black-box simulation, and further proved that this was tight by
constructing a four round OT protocol. The subsequent work [35] improved this
construction by making only black-box use of the underlying primitives. In [26]
the authors propose a weaker notion of trapdoor permutations whose permu-
tation domains are polynomially dense (i.e., contain polynomial fractions of all
strings of a particular length), and shows that these are sufficient to obtain semi-
honest OT. Unfortunately, it does not seem that the construction of [26] would
work against malicious senders, as the security of the protocol relies on the trap-
door function having a specific structure (i.e., being polynomially dense) that
needs to be certifiable.

Round-complexity of 2PC. Studying the round complexity for secure compu-
tation has been the focus of many works in the past years. Whereas for un-
conditional security it is inherent to have protocol that are non-constant round
[2, 8, 12], for the computational case it was showed that three rounds are suf-
ficient to achieve security against semi-honest adversaries [40, 41], and subse-
quently [33, 31] showed constant round protocols for the case of malicious ad-
versaries. In [30] the authors show that five rounds are necessary and sufficient
to compute any two-party functionality where both parties can get the output
(with black-box simulation)9. This result was later improved in [35] by showing
how to obtain a 5-round protocol with black-box use of the underlying certifiable
enhanced trapdoor permutations. In [16] the authors consider the case where the
parties have a simultaneous message exchange channel10 available and show that
four rounds are necessary and sufficient to do secure computation assuming 3-
robust non-malleable commitments. A followup work [10] showed how to obtain
a four-round secure protocol when a simultaneous message exchange channel is
available under the assumption of enhanced certifiable trapdoor permutations.
We remark that in this paper we do not assume simultaneous message exchange
channels.

Certifying trapdoor permutations. We have already mentioned some relevant
works in this area and we now extend our discussion. [39, 23] discuss the security
of the 1-out-of-k oblivious transfer protocol [13] which is based on trapdoor per-
mutations, noting that its security is compromised in the case of partial-domain

9 In this work we only refer to black-box simulation.
10 In this model everyone can send messages at the same time.
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trapdoor functions (when k ≥ 3). [39, 23] then show how doubly enhanced
trapdoor functions can be used to overcome this issue. Clearly, the problem of
certifying trapdoor permutations does not arise when only semi-honest parties
are considered (like in the case of semi-honest OT), but it is fundamental in the
case of malicious adversary. This problem, for the case of secure computation,
has been circumvented in [30, 35, 16, 10] by simply using certifiable trapdoor
permutations. That is, by using trapdoor permutations equipped with a verifi-
cation algorithm that can be used to check if a function is a permutation or not.
The problem of getting rid of the certifiability property has been studied mostly
for the case of NIZK in the shared random string model [1]. Recently [6] has
studied additional certifiable properties that allows recognizing elements in the
domain, as well as uniformly sample from it even for illegitimate functions, and
show that some of these properties are necessary to apply the results of [1] to
obtain a secure NIZK even for maliciously sampled trapdoor functions.

2.2 Organization of the Paper

In the next section we provide the fundamental background required to read our
paper. We dedicate Section 4 to defining the notion of dual witness encryption,
providing a few examples for the languages of DH tuples and QR tuples. In
Section 5 we show how to instantiate a DWE for the language of non-TDPs. We
devote Sections 6 and 7 to our 4-round OT protocol secure against malicious
adversaries, and Section 8 to our round-optimal 2-PC protocol. For the formal
construction and proofs of our 3-round OT protocol we refer the reader to the
full version.

3 Background

Notation. We denote the security parameter by λ and use “||” as concatenation
operator (i.e., if a and b are two strings then by a||b we denote the concatenation

of a and b). For a finite set Q, x
$←− Q denotes a sampling of x from Q with

uniform distribution. We use “=” to check equality of two different elements
(i.e. a = b then...), “←” as the assigning operator (e.g. to assign to a the value
of b we write a ← b). and := to define two elements as equal. We use the
abbreviation PPT that stands for probabilistic polynomial time. We use poly(·)
to indicate a generic polynomial function. A polynomial-time relation R (or
polynomial relation, in short) is a subset of {0, 1}∗×{0, 1}∗ such that membership
of (x,w) in R can be decided in time polynomial in |x|. For (x,w) ∈ R, we call
x the instance and w a witness for x. For a polynomial-time relation R, we
define the NP-language LR as LR = {x|∃w : (x,w) ∈ R}. Analogously, unless
otherwise specified, for an NP-language L we denote by RL the corresponding
polynomial-time relation (that is, RL is such that L = LRL

).
When it is necessary to refer to the randomness r used by and algorithm A

we use the following notation: A(·; r). We assume familiarity with the notion of
computational and statistical indistinguishability, sigma-protocols and with the
DDH assumption. We refer to the full version for the formal definitions.
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3.1 Injective TDFs and TDPs

In this section we define the notion of trapdoor function following mostly the
notation proposed in [6].

Definition 1 (Trapdoor function). A family of one-way trapdoor functions,
or TDFs, is a collection of finite functions, denoted fα : {Dα → Rα}, accom-
panied by PPT algorithms Gen, SD (domain sampler), SR (range sampler) and
two (deterministic) polynomial time algorithms Eval (forward evaluator) and Inv
(backward evaluator) such that the following conditions hold.

1. On input 1λ, the algorithm Gen selects a random index α of a function fα,
along with a corresponding trapdoor td.

2. On input α, algorithm SD samples an element from domain Dα.
3. On input α, algorithm SR samples an image from the range Rα.
4. On input α and any x ∈ Dα, y ← Eval(α, x) with y = fα(x).
5. On input td and any y ∈ Rα, Inv(td, y) outputs x such that Eval(α, x) = y.

The standard hardness condition refers to the difficulty of inverting fα on
a random image, sampled by SR or by evaluating Eval on a random pre-image
sampled by SD, when given only the image and the index α but not the trapdoor
td. That is, let I0(1λ) denote the first element in the output of Gen(1λ) (i.e., the
index); then, for every polynomial-time algorithm A, it holds that:

Pr[(α
$←− I0(1λ);x

$←− SD(α); y ← Eval(α, x), x′
$←− A(α, y) : Eval(α, x′) = y] ≤ ν(λ).

(1)
Or, when sampling an image directly using the range sampler:

Pr[(α
$←− I0(1λ); y

$←− SR(α);x′
$←− A(α, y) : Eval(α, x′) = y] ≤ ν(λ). (2)

Additionally, it is required that, for any α
$←− I0(1λ), the distribution sampled

by SR should be close the distribution sampled by Eval(SD(α)). In this context we
require the two distributions be computationally indistinguishable. We note that
this requirement implies that the two hardness requirements given in equations 1
and 2 are equivalent. The issue of closeness of the sampling distributions is

discussed further at the end of this section. If fα is injective for all α
$←− I0(1λ),

we say that our collection describes an injective trapdoor function family, or
iTDFs (in which case Inv(td, ·) inverts any images to its sole pre-image). If

additionally Dα and Rα coincide than for any α
$←− I0(1λ), the resulting primitive

is a trapdoor permutation. If for any α
$←− I(1λ), SD = {0, 1}poly(λ), that is,

every poly-bit string describes a valid domain element, we say the function is
full domain. Otherwise we say the domain is partial.

Definition 2 (Hard-Core Predicate). h is a hard-core predicate for fα if
its value is hard to predict for a random domain element x, given only α and
fα(x). That is, if for any PPT adversary A there exists a negligible function ν
such that

Pr[(α
$←− I0(1λ);x

$←− SD(α); y
$←− Eval(α, x), h(x)← A(α, y)] ≤ 1/2 + ν(λ).
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Enhancements. Goldreich [19] suggested the notion of enhanced TDPs, which
can be used for cases where sampling is required to be available in a way that
does not expose the pre-image. We recall the notion of enhanced injective TDF
proposed in [6] that extends the definition proposed by Goldreich to the case of
injective TDF (where the domain and range are not necessarily equal).

Definition 3 (Enhanced injective TDF [19]). let {fα : Dα → Rα} be a
collection of injective TDFs, and let SD be the domain sampler associated with
it. We say that the collection is enhanced if there exists a range sampler SR that
returns a random sample out of Rα, and such that, for every polynomial-time
algorithm A, it holds that

Prob
[

(α
$←− I0(1λ); y

$←− SR(α; r);x′
$←− A(α, r) : Eval(α, x′) = y

]
≤ ν(λ).

Definition 4 (Enhanced Hard-Core Predicate [21]). let {fα : Dα → Rα}
be an enhanced collection of injective TDFs with domain sampler SD and range
sampler SR. We say that the predicate h is an enhanced hard-core predicate of
fα if it is computable in PPT time and for any PPT adversary A there exists a
negligible function ν such that

Pr[(α, td)
$←− Gen(1λ); r

$←− {0, 1}λ; y ← SR(α; r);x ← Inv(td, y);A(α, r) =
h(α, x)] ≤ 1/2 + ν(λ)

or equivalently, if the following two distribution ensembles are computationally
indistinguishable:

{(α, r, h(α, Inv(td, SR(α, rwα, td)
$←− Gen(1λ), r

$←− {0, 1}?}
{(α, r, u) : α

$←− I0(1λ), r
$←− {0, 1}?, u $←− {0, 1}}

Additional Properties. We define multiple notions of certifiability for trap-
door functions, where each requires the existence of a general prover and verifier
protocol for the function family. Let fα : {Dα → Dα} be a trapdoor permuta-
tion family, given by (Gen, S,Eval, Inv) (where S = SR = SD), we now define the
following properties.

Efficiently recognizable domain: that is, there exists a polynomial-time al-
gorithm RD which, for any index α and any string x ∈ {0, 1}∗, accepts on
(α, x) if and only if x ∈ Dα. In other words, Dα is defined as the set of all
strings x such that RD(α, x) accepts.

Efficiently sampleable domain: that is, there exists a PPT algorithm SDR
that on input α outputs a pair of (x, r) such that Eval(α, x) = S(α; r) where
x is sampled uniformly in Dα.

Efficiently sampleable range: that is, for any index α and r
$←− {0, 1}λ,

S(α; r) samples uniformly in Dα.

We stress that these properties should hold with respect to any α, including
ones that were not generated by running Gen(1λ). We also note that despite
the similarities between the notions of doubly enhancement and efficiently sam-
pleable domain, these two are incomparable. The notion of efficiently sampleable
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domain just requires the existence of a sampling algorithm that samples uni-
formly in Dα even for a maliciously chosen α, and it puts no requirements of
one-wayness. Note that any trapdoor permutation family with full domain triv-
ially enjoys all the properties listed above (one example is given by the candidate
trapdoor permutation proposed in [38]). We show how to obtain a secure 2-party
computation that relies on injective enhanced trapdoor permutations that have
efficiently sampleable range and domain in a black-box way (note that we put
no requirements on the certifiability of the injectivity). We finally recall that
previous works required the existence of the same samplers even in the case of
certifiable TDPs.

3.2 Commit-and-Open Protocols

In [15] the authors provide the definition of 3-round commit-and-open protocols.
In this the prover (committer) has two inputs m0,m1 ∈M and a bit b ∈ {0, 1}
(we denote with M the message space of the commitment scheme). Informally,
the message mb is fixed in the first round of the protocol, and the message m1−b
can be decided in the last round where the messages (m0,m1) are revealed to
the verifier (receiver). More formally, a commit-and-open protocol is a tuple of
PPT algorithms Πc&o := (P := (P0,P1),V := (V0,V1)) specified as follows. The
algorithm P0 takes as input mb and outputs a string γ ∈ {0, 1}? and auxiliary

state information α ∈ {0, 1}?. The algorithm V0 outputs a random string β
$←− B

(where B represents the message space of the valid second rounds for Πc&o). The
algorithm P1 takes as input (α, β, γ,m1−d) and outputs a string δ ∈ {0, 1}?. The
deterministic algorithm V1 takes a transcript (γ, β, (δ,m0,m1)) and outputs a
bit. Following [15], we denote with < P(m0,m1, b),V(1λ) > an execution of P
where P uses (m0,m1, b) as input, and denote with T := (γ, β, (δ,m0,m1)) the
transcript obtained in this execution. We say that P satisfies completeness if
honestly generated transcripts are always accepting (i.e., V1 outputs 1).

Definition 5 (Secure commit-and-open protocol. [15]). We say that a 3-
round protocol Πc&o is secure if it enjoys completeness and satisfies the following
properties.

Existence of Committing Branch: for every PPT malicious prover P? :=
(P?0,P

?
1) there exists a negligible function ν such that

Pr[V1(T ) = 1 and V1(T ′) = 1 and m0 6= m′0 and m1 6= m′1 : (γ, α)
$←− P?0,

β, β′
$←− V0, (δ,m0,m1)

$←− P?1(α, β), (δ′,m′0,m
′
1)

$←− P?1(α, β′)] ≤ ν(λ)

where T := (γ, β, (δ,m0,m1)) and T ′ := (γ, β′, (δ′,m′0,m
′
1)), and where the

probability is taken over the random coin tosses of P and V.
Committing Branch Indistinguishability: for all PPT malicious verifier V?,

and for all messages m0,m1 ∈ M, we have that the following are indistin-
guishable
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{T : T
$←−< P (m0,m1, 0),V?(1λ) >}λ∈N

{T : T
$←−< P (m0,m1, 1),V?(1λ) >}λ∈N

The authors of [15] show that one of the protocols proposed in [35] that
relies on statistically binding and computationally hiding commitment (and it
is black-box in the use of the underlying primitives) satisfies the above defini-
tion. Since statistically binding and computationally hiding commitments can
be constructed using one-to-one one way-functions in a black-box manner then
there exists a secure commit-and-open protocol that uses the underlying one-
way function is a black-box way. We refer to [15] for more discussion on the
notion of commit-and-open and for its black-box instantiation from one-to-one
one-way-functions.

3.3 Oblivious Transfer and 2-PC

Here we follow [35]. Oblivious Transfer (OT) is a two-party functionality FOT , in
which a sender S holds a pair of strings (l0, l1), and a receiver R holds a bit b, and
wants to obtain the string lb. The security requirement for the FOT functionality
is that any malicious receiver does not learn anything about the string l1−b and
any malicious sender does not learn which string has been transferred. This
security requirement is formalized via the ideal/real world paradigm. In the
ideal world, the functionality is implemented by a trusted party that takes the
inputs from S and R and provides the output to R and is therefore secure by
definition. A real world protocolΠ securely realizes the ideal FOT functionalities,
if the following two conditions hold. (a) Security against a malicious receiver: the
output of any malicious receiver R? running one execution of Π with an honest
sender S can be simulated by a PPT simulator Sim that has only access to
the ideal world functionality FOT and oracle access to R?. (b) Security against
a malicious sender. The joint view of the output of any malicious sender S?

running one execution of Π with R and the output of R can be simulated by
a PPT simulator Sim that has only access to the ideal world functionality FOT
and oracle access to S?. We also consider the weaker definition of OT introduced
in [35] which is referred as one-sided simulatable OT. In this we do not demand
the existence of a simulator against a malicious sender, but we only require that
a malicious sender cannot distinguish whether the honest receiver is playing with
bit 0 or 1. That is, we require that for any PPT malicious sender S? the view
of S? executing Π with the receiver R playing with bit 0 is computationally
indistinguishable from the view of S? where R is playing with the bit 1. Finally,
we consider the FmOT functionality where the sender S and the receiver R run m
executions of OT in parallel.

Definition 6 ([35]). Let FOT be the Oblivious Transfer functionality as de-
scribed previously. We say that a protocol Π securely computes FOT with one-
sided simulation if the following holds:
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1. For every non-uniform PPT adversary R? controlling the receiver in the real
model, there exists a non-uniform PPT adversary Sim for the ideal model
such that: {REALΠ,R?(z)(1λ)}z∈{0,1}λ ≈ IDEALFOT ,Sim(z)(1

λ)}z∈{0,1}λ ,

where REALΠ,R?(z)(1
λ) denotes the distribution of the output of the adver-

sary R? (controlling the receiver) after a real execution of protocol Π, where
the sender S has inputs l0, l1 and the receiver has input b. IDEALf,Sim(z)(1

λ)
denotes the analogous distribution in an ideal execution with a trusted party
that computes FOT for the parties and hands the output to the receiver.

2. For every non-uniform PPT adversary S? controlling the sender it holds
that:
{ViewRΠ,S?(z)(l0, l1, 0)}z∈{0,1}? ≈ {ViewRΠ,S?(z)(l0, l1, 1)}z∈{0,1}?
where ViewRΠ,S?(z) denotes the view of adversary S? after a real execution of
protocol Π with the honest receiver R.

Definition 7 ([35]). A protocol Π securely realizes FOT with fully simulata-
bility if Π is one-sided simulatable and additionally for every non-uniform PPT
adversary S? controlling the sender in the real model, there exists a non-uniform
PPT adversary Sim for the ideal world such that

{REALΠ,S?(z)(1λ, b)}z∈{0,1}λ ≈ IDEALFOT ,Sim(z)(1
λ, b)}z∈{0,1}λ

where REALΠ,S?(z)(1
λ, b) denotes the distribution of the output of the adversary

S? (controlling the sender) and the output of the honest receiver, after a real
execution of protocol Π, where the receiver has input b. IDEALFOT ,Sim(z)(1

λ, b)
denotes the analogous distribution but in an ideal execution with a trusted party
that computes FOT for the parties and hands the output to the honest receiver.

In this work we also consider the notion of parallel OT, which is the same as the
previous definition, except that the sender has multiple pairs of inputs and the
receiver has multiple bits.

Secure Two-Party Computation [35] Let F (x1, x2) be a two-party func-
tionality run between parties P1 holding input x1 and P2 holding input x2. In
the ideal world, Pi with (i ∈ {1, 2}) sends its input xi to the F and obtains
only y = F (x1, x2). We say that a protocol Π securely realizes F if the view of
any malicious P ?i executing Π with an honest Pj with i 6= j combined with the
output of Pj (if any) can be simulated by a PPT simulator that has only access
to F and has oracle access to P ?i .

4 Dual Witness Encryption (DWE)

A Dual Witness Encryption scheme for the languages L0, L1 with L0, L1 ⊆
{0, 1}? is equipped with two PPT algorithms: Enc and Dec. Enc takes as input
x ∈ {0, 1}λ, a message m ∈ {0, 1}λ and outputs ct ∈ {0, 1}poly(λ). Dec takes
as input x ∈ {0, 1}λ,w ∈ {0, 1}λ, ct ∈ {0, 1}poly(λ) and outputs a message m ∈
{0, 1}λ ∪ {⊥}.
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Definition 8. A Dual Witness Encryption scheme PK-IBS = (Gen,Enc,Dec)
for the languages (L0, L1) is secure if it enjoys the following properties.

Completeness: Pr[m← Dec(x,w,Enc(x,m)) = 1 : (x,w) ∈ RL1
] ≥ 1− ν(λ).

Hiding: For any adversary A and for any x ∈ L0 the following holds:

Pr[b
$←− {0, 1}; (m0,m1)← A(x) ∧ b← A(aux,Enc(x,mb))] < ν(λ)

4.1 DWE for the languages of DH and QR Tuples.

In this section we show how to construct a DWE for the languages of DH and
and QR tuples. We do not need these constructions to build our OT and 2PC
protocols, we only want to show that our primitive can be instantiated also with
respect to other languages. The two constructions rely on similar ideas, hence,
we provide the details only for the construction for DH tuples. Our constructions
are based on the sigma-protocol for the language of the DH and QR tuples and
on some observations made in [11, 5] on these sigma protocols. Following [11],
we recall the well-known Sigma protocol ΣDH = (P,V) for the language L0 :=
{(g, h, U, V ) : ∃α s.t. U = gα and V = hα}. On common input T = (g, h, U, V ),
and honest prover’s private input α such that U = gα and V = hα, the following
steps are executed. We denote the size of the group G by q.

– P picks r ∈ Zq at random and computes and sends A := gr, B := hr to V;
– V chooses a random challenge c ∈ {0, 1} and sends it to P;
– P computes and sends z = r + α · c to V;
– V accepts if and only if gz = A · U c and hz = B · V c.

In [11] the authors observe that the above protocol has the following interesting
property. There exists a PPT algorithm ChallExt that on input a first round
a = (A,B) of ΣDH , a non-DH tuple T and γ such that h = gγ , outputs the only
valid second round c ∈ {0, 1} (if any exists) such that there is some z that would
make the verifier to (mistakenly) accept the transcript (a, c, z) with respect to
the instance T . The algorithm ChallExt works as follows. Let T = (g, h,X,W )
be a non-DH tuple such that X = gα, W = hβ , α 6= β and h = gγ . Upon input
(T = (g, h,X,W ), a, γ), algorithm ChallExt parses a as (A,B), and if Aγ = B
then it outputs 0, else it outputs 1. Note that when the first round of ΣDH

corresponds to a DH tuple, (i.e., Aγ = B) and T is not a DH tuple, then the
only c that would make true the conditions gz = A ·U c and hz = B ·V c is c = 0.
Instead, if (g, h,A,B) does not represent a DH tuple (i.e., Aγ 6= B) then there
exists z such that gz = A·U c and hz = B ·V c if and only if c = 1. In what follows,
we make use of this special property of ΣDH , and we refer to ChallExt as the
bad-challenge extractor. The same holds true for the classical Sigma protocol for
QR [25] (along the lines of the full version of [5, Sec. 6.2]). The above observation,
together with the fact that ΣDH is SHVZK immediately yields to a DWE for
the languages (L0, L1) where L1 = {0, 1}? − L0, and where the NP-relation
associated to L1 is RL1

:= {(g, h,X,W ), γ : h = gγ and W 6= Xγ}.
In more detail, the encryption algorithm works by running the SHVZK sim-

ulator for ΣDH on input T ∈ L0 ∪ L1 and the message to be encrypted m ∈
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{0, 1}. The output of the SHVZK algorithm corresponds to (A := gz−αm, B :=
hz−βm, z). The output of our encryption algorithm then corresponds to (A,B).

If T ∈ L1 (i.e., it is a non-DH tuple), then we can run the bad-challenge
extractor ChallExt to reconstruct m in polynomial-time (note that the tuple
(g, h,A,B) is DH only if m = 0). In the case when T is a DH tuple, then, by the
completeness and the SHVZK properties of ΣDH , (A,B) encodes no information
on the message m. Indeed, it is alway possible to find a valid z that makes the
transcript (A,B),m, z accepting for any m ∈ {0, 1}. For sake of completeness
we now provide the formal description of our protocol, that we denote with
(EncNDH,DecNDH).

- Let m ∈ {0, 1} be the message to be encrypted. The encryption algorithm
EncNDH takes as input the tuple T = (g, h,X,W ) and the message m ∈ {0, 1}
and does the following steps.

1. Sample z ∈ Zq and compute A← gz

Xm , B ←
hz

Wm

2. Output A,B.

- The algorithm DecNDH takes as input T ∈ L1, the ciphertext (A,B) and the
witness γ such that (T, γ) ∈ RL1

, and outputs ChallExt(T,A,B, γ).

Theorem 3. (EncNDH,DecNDH) is a secure black-box DWE scheme with mes-
sage space {0, 1} for the languages (L0, L1) defined above, where the relation
associated to L1 is RL1

.

DWE for all NP languages. If we do not care about the decryption algorithm
being efficient (PPT), then the above approach can be extended to any NP
language L that admits a sigma-protocol Σ. Indeed, if the instance used during
the encryption is x /∈ L, then the special soundness of Σ guarantees that for any
first round of Σ there exists at most one challenge that would make the verifier
to accept. This means that the first output of the SHVZK simulator of Σ on
input x and the message m ∈ {0, 1} encodes m. Hence, an unbounded decryptor
can easily compute it. On the other hand, when x ∈ L, then the first round of
Σ (hence, the first output of the SHVZK simulator) information theoretically
hides the message m (due to the completeness and the SHVZK properties of Σ).

5 Black-Box DWE for Trapdoor Permutations

A function fα : Dα → Dα is an ε-permutation if at most an ε fraction of the
points in Dα have more than one pre-image (under fα). More formally, we have
the following.

Definition 9. Let fα : {Dα → Dα}. The collision set of fα, denoted with C(fα),
is {x1 ∈ Dα : ∃x2 ∈ Dα s.t. x1 6= x2 and Eval(α, x1) = Eval(α, x2)}. Let
ε ∈ [0, 1], we call fα an ε-permutation if |C(fα)| ≤ ε|Dα|.
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We say that fα is an almost permutation if it is an ε(n)-permutation where
ε is a negligible function and n = |Dα|. Let fα : {Dα → Dα} be a collection
of trapdoor permutations with efficiently sampleable range and domain accom-
panied by the algorithms (Gen, S,Eval, Inv). We then define L as the language
of trapdoor functions with efficiently sampleable range and domain that that
have a collision set greater (or equal) than half of the entire domain. More for-
mally, L0 = {α : |C(fα)| ≥ 2−1|Dα|}. We also define L1 as the set trapdoor
function in the range of the generation algorithm Gen (i.e., L1 = {α : (α, td)←
Gen(1λ; r), r ∈ {0, 1}λ}) We provide a DWE scheme for the languages (L0, L1).
Informally, this encryption scheme maintains the hiding of the encrypted mes-
sage if the collision set of fα is sufficiently large (i.e., fα is a lot non-injective).
Instead, if the function is generated using Gen(1λ), then any message can be
decrypted using the corresponding trapdoor (which is also an output of Gen and
thus can be obtained from the randomness r, which represents the witness).

5.1 Our Constructions

We start by constructing a dual witness encryption scheme (Encf1,Dec
f
1) for one-

bit messages for the language (L0, L1) described above. Let fα be a trapdoor
permutation with efficiently sampleable range accompanied by the algorithms
(Gen, S,Eval, Inv) with domain (and range) of size 2λ.

- Let m ∈ {0, 1} be the message to be encrypted, α ∈ L1, and n := 2λ2.
The encryption algorithm Encf1 takes as input (α,m) and does the following
steps.
1. Compute a random secret sharing of m such that m = m1 ⊕ · · · ⊕mn.

2. For i← 1, . . . , n pick xi
$←− S(α) and compute yi ← fα(xi).

11

3. For i ← 1, . . . , n parse xi as x1i || . . . ||xλi , pick ji
$←− {1, . . . , λ} and com-

pute ci ← mi ⊕ xjii .
4. Output ct←

(
ji, yi, ci)i∈[n].

- The algorithm Decf1 takes as input α, r and a ciphertext cti, and executes
the following steps.
1. Compute (α, td)← Gen(1λ; r).
2. Parse ct as

(
ji, yi, ci

)
i∈[n].

3. For i = 1, . . . , n compute xi ← Inv(α, td, yi), parse xi as x1i || . . . ||xni and

compute mi ← ci ⊕ xjii .
4. Compute and output m← m1 ⊕ · · · ⊕mn.

Theorem 4. (Encf1,Dec
f
1) is a secure black-box DWE scheme for the languages

(L0, L1) with message space {0, 1}.

We refer to the full version for the formal proof of the theorem. We note that
to obtain a DWE secure scheme (Encf ,Decf) for messages of length κ ∈ N we
can just run κ parallel executions of (Encf1,Dec

f
1).

11 To not overburden the notation we use fα instead of Eval(α, ·) as the evaluation
algorithm hereafter in the paper.



22 Choudhuri et al.

DWE for or Statements For our OT constructions we use as a main tool a
DWE for the languages (L2f

0 , L
2f
1 ) where L2f

0 := {α0, α1 : |C(fα0
)| ≥ 2−1|Dα0

| or
|C(fα1)| ≥ 2−1|Dα1 |} and L2f

1 = {α0, α1 : (α0, td0)← Gen(1λ; r0) and (α1, td1)←
Gen(1λ; r1), r0, r1 ∈ {0, 1}λ}. (we recall that we denote with C(fα) the collision
set of the function indexed by α). Informally, we require the semantic security of
the encryption scheme to hold if at least one of the functions used as a part of the
public-key has a collision set of sub-exponential size. Our scheme (Enc2f ,Dec2f)
works as follows.

- The encryption algorithm Enc2f on input x := (α0, α1) and the message to
be encrypted m ∈ {0, 1}κ does the following steps.
1. Run Encf on input α0 and m thus obtaining ct0.
2. Run Encf on input α1 and ct thus obtaining ct1 and output ct1

- The decryption algorithm Dec2f on input x := (α0, α1), the witness w :=
(r0, r1) and the ciphertext ct1, executes the following steps.
1. Compute (α0, td0)← Gen(1λ; r0) and (α1, td1)← Gen(1λ; r1).
2. Run Decf on input α1, r1, ct1 and td1 thus obtaining ct0.
3. Run Decf on input α0, r0 ct0 and td0 thus obtaining m and output m.

Theorem 5. (Enc2f ,Dec2f) is a black-box DWE scheme for the languages (L2f
0 , L

2f
1 )

with message space {0, 1}κ.

The proof in this case follow via standard hybrid arguments.

6 Almost Secure OT Protocol

In this section we show how to obtain a protocol ΠOT = (SOT , ROT ) that
securely realizes FOT with one-sided simulation against any weak adversarial
sender S?OT . Informally, we show that if the malicious sender S?OT samples the
trapdoor permutations used in the protocol in some particular ways then ΠOT
is secure, otherwise we give no security guarantees. At a very high level our
protocol works like the four-round one-side simulatable OT protocol proposed
in [35]. As highlighted in the Introduction, in the ORS protocol the sender sends
a trapdoor permutation f in the second round which is used by the receiver
to compute the third round. In case that f is non-injective then a malicious
sender, by just inspecting the third round sent by the receiver, could extract the
receiver’s input. In our protocol we try to avoid this attack by modifying the
ORS protocol in two aspects: 1) the sender sends two trapdoor functions12 in the
first round and 2) the receiver samples a random bit to decide which function to
use to run ORS and which function to use to run DWE scheme Π. Π is a DWE
scheme that guarantees security if the trapdoor function used for the encryption
has a lot of collisions, and it is used by the receiver to encrypt the third round
of ORS. Unfortunately we cannot prove that this OT protocol is (in general)
secure, but we can prove that it is secure if one of the following cases occurs.

12 We need to send two pairs of functions, but for now we omit this since it is a technical
detail that will be helpful in the security proof.
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1. The malicious sender uses functions that are almost permutation. This comes
with no surprise since in this case an execution ofΠOT looks like an execution
of the ORS protocol.

2. The malicious sender uses functions that have a lot of collisions (exponen-
tially many). In this case the security of the DWE scheme kicks in protecting
all the information that are related to the ORS protocol that depends on
the TDPs (i.e., the information that could leak the receiver’s bit when the
functions sampled by the sender are non-injective).

Despite this limitation, in Section 7 we show that the security enjoyed by
ΠOT is (surprisingly) enough to obtain a secure OT protocol. We now provide
a more detailed description of ΠOT and prove formally its weak security in the
case of malicious sender. Moreover, we show that ΠOT is secure against any PPT
adversarial receiver under the standard simulation base security notion.

To construct ΠOT we make use the following tools.

1. A commit-and-open protocol Πc&o := (P0,P1,V0,V1).
2. An enhanced trapdoor permutation with efficiently sampleable range and

domain F := (Gen, S, SDR, f, f
−1)13 with hard-core predicate h and domain

(and range) of size 2λ.
3. The DWE scheme (Enc2f ,Dec2f) for the languages (L2f

0 , L
2f
1 ) described in

Sec. 5.

We now give an informal description of our protocol and refer to Fig. 2 for
the formal description.

Let b ∈ {0, 1} be the input of ROT and l0, l1 ∈ {0, 1} be the input of SOT .

In the first round ROT runs P0 on input a string r1−b
$←− {0, 1}λ thus

obtaining the first round of the commit-and-open protocol Πc&o.
In the second round SOT picks a pair of random strings and samples four

trapdoor permutations. That is, SOT picks R0
$←− {0, 1}λ, R1

$←− {0, 1}λ, and

for all i, j ∈ {0, 1} samples ρi,j
$←− {0, 1}λ, computes (fi,j , f

−1
i,j )

$←− Gen(1λ, ρi,j).
Then SOT runs V0 thus obtaining γ and sends {fi,j}i,j∈{0,1} , β, R0, R1 to ROT .

In the third round ROT chooses a bit d and computes (z′, r′)
$←− SDR(fd,b)

and rb ← r′ ⊕ Rb. Then ROT computes the third round δ of Πc&o to open the
commitment to the messages r1−b (that is fixed in the first round) and rb by
running P1 on input α, β, γ and rb. In the end, ROT encrypts the opening of
Πc&o using the DWE scheme on input (f1−d,0, f1−d,1) and the message δ||r0||r1
thus obtaining c and sends (c, d) to SOT .

In the fourth round SOT decrypts c using the witness ρ1−d,0 and ρ1−d,1,
thus obtaining the opening information of Πc&o represented by δ, r0 and r1.
Then SOT checks if (δ, r0, r1) represents a valid opening for Πc&o by running

13 For convenience, we drop (Eval(α, ·), Inv(α, ·)) from the notation, and write f(·),
f−1(·) to denote algorithms Eval(fα, ·), Inv(fα, td, ·) respectively, when fα and td

are clear from the context. We also use the function fα instead of the index α as
input of the algorithm S and SDR.
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V1. If it is not, then SOT stops and outputs ⊥, otherwise she computes ω0 ←
f−1d,0 (S(fd,0, r0 ⊕ R0)) and ω1 ← f−1d,1 (S(fd,1, r1 ⊕ R1)). Then for j = 0, 1, SOT
encrypts the input lj via one-time pad using as a key the output of the hard-core
predicate of fd,j on input ωj thus obtaining Wj . SOT then sends (W0,W1) to
ROT and stops.

In the output phase, ROT computes and outputs lb = W 1
b ⊕ h(fd,b, z

′
1).

In Fig. 2 we propose a formal description of the protocol.

Theorem 6. If F is family of enhanced trapdoor permutations then for ev-
ery non-uniform PPT adversary R? controlling the receiver in the real model,
there exists a non-uniform PPT adversary Sim for the ideal model such that
{REALΠOT ,R?OT (z)(1

λ)}z∈{0,1}λ ≈ IDEALFOT ,Sim(z)(1
λ)}z∈{0,1}λ .14

We refer to the full version for the formal proof of the theorem.

Theorem 7. For every non-uniform PPT adversary S?OT controlling the sender,
if one of the following holds with overwhelming probability

1. f0,0 and f0,1 and f1,0 and f1,1 are almost permutations or
2. (f0,0, f0,1) ∈ L2f

0 and (f1,0, f1,1) ∈ L2f
0 .

then {ViewROT
ΠOT ,S?OT (z)(l0, l1, 0)}z∈{0,1}? ≈ {ViewROT

ΠOT ,S?OT (z)(l0, l1, 1)}z∈{0,1}?

We refer the reader to the full version for the formal proof of the theorem. In
the full version we also prove the following lemma that will be helpful hereafter.
Before stating the lemma, we introduce some additional notations. We say that
a value y ∈ Y is good if there exists and is unique a value x such that fα(x) = y.
We now denote with Eg

i the event in which a randomly sampled element from
the range of fi is good and prove this additional lemma.

Lemma 1. For every non-uniform PPT adversary S?OT controlling the sender,
if one of the following holds with overwhelming probability

1. Prob
[
Eg
i,j
]
≥ 1− ν(λ) ∀i, j ∈ {0, 1} or

2. Prob
[
Eg

0,0
]
< 2−1 or Prob

[
Eg

0,1
]
< 2−1 and Prob

[
Eg

1,0
]
< 2−1 or

Prob
[
Eg

1,1
]
< 2−1

then {ViewROT
ΠOT ,S?OT (z)(l0, l1, 0)}z∈{0,1}? ≈ {ViewROT

ΠOT ,S?OT (z)(l0, l1, 1)}z∈{0,1}?

7 Secure OT from almost secure OT

In Theorem 7 we have showed that ΠOT = (SOT , ROT ) guarantees that the
input of the receiver is protected only in the case that at least one of the following
properties holds:

1. f0,0 and f0,1 and f1,0 and f1,1 are almost permutations or

14 We refer to Sec. 3.3 for a formal definition of REALΠOT ,R
?
OT (z) and IDEALFOT ,Sim(z)
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ROT (b) SOT (l0, l1)

r1−b
$←− {0, 1}λ

(γ, α)
$←− P0(r1−b)

γ
−−−−−−−−−−−−−−−−−−→

∀i, j ∈ {0, 1}, ρi,j
$←− {0, 1}λ

(f0,0, f
−1
0,0 )

$←− Gen(1λ, ρ0,0)

(f0,1, f
−1
0,1 )

$←− Gen(1λ, ρ0,1)

(f1,0, f
−1
1,0 )

$←− Gen(1λ, ρ1,0)

(f1,1, f
−1
1,1 )

$←− Gen(1λ, ρ1,1)

β
$←− V0(1λ)

R0
$←− {0, 1}λ, R1

$←− {0, 1}λ
{fi,j}i,j∈{0,1} , β, R0, R1

←−−−−−−−−−−−−−−−−−−−−
d

$←− {0, 1}
(z′, r′)

$←− SDR(fd,b),
rb ← r′ ⊕Rb
δ

$←− P(α, β, γ, rb)
x := (f1−d,0, f1−d,1)

c
$←− Enc2f(x, δ||r0||r1)

c, d
−−−−−−−−−−−−−−−−−−→

x := (f1−d,0, f1−d,1)
w := (ρ1−d,0, ρ1−d,1)

δ||r0||r1 ← Dec2f(x,w, c)
if V2(γ, β, δ, r0||r1) = 0 then

stop and output ⊥
else continue as follows
ω0 ← f−1

d,0 (S(fd,0, r0 ⊕R0))

ω1 ← f−1
d,1 (S(fd,1, r1 ⊕R1))

W0 = l0 ⊕ h(fd,0, ω0)
W1 = l1 ⊕ h(fd,1, ω1)

W0,W1

←−−−−−−−−−−−−−−−−−−
Output lb = Wb ⊕ h(fd,b, z

′)

Fig. 2: Description of ΠOT .
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2. (f0,0, f0,1) ∈ L2f
0 and (f1,0, f1,1) ∈ L2f

0 .

Moreover, Theorem 6 guarantees ΠOT is secure against malicious receivers. In
this section we show that the above property is sufficient to obtain a one-sided
simulatable OT by means of a compiler that takes as input ΠOT and outputs
a one-sided simulatable OT. Our compiler is inspired by the work of [27]. In
this the authors show how to combine k OTs (that we call OT candidates) to
obtain an OT protocol that is secure against malicious sender even if k − 1 of
the OT candidates are insecure against malicious senders15. At a very high level
the construction proposed in [27] works as follows. First Harnik et al. show a
construction that works for k = 2 and then propose a generic compiler that
transforms (1, 2)-combiner into a (1, k)-combiner. The (1, 2)-combiner works as
follows. Consider two OT candidates Π0

OT and Π1
OT . Let b be the input of the

receiver and (l0, l1) be the input of the sender.

1. The sender chooses a random bit r
2. The receiver chooses random bits b0, b1 such that b = b0 ⊕ b1.
3. The parties run Π0

OT where the receiver uses b0 as input and the sender uses
the pair (r, r⊕ l0⊕ l1). The parties also run Π1

OT where the receiver uses b1
as input and sender uses (r ⊕ l0, r ⊕ l1)

4. The receiver output corresponds to the XOR of his outputs in both execu-
tions.

To extend the above construction to the case where k > 2, Harnik et al.
consider k OT candidates and organize them as leaves of a binary tree, and
applies the construction proposed above to every internal node (in a bottom up
fashion). Now, by the properties of the combiner, for every node that securely
implements OT, its ancestor must also securely implement OT. The output of
the whole tree must therefore also securely implement OT since the root is
an ancestor to all leaves. If the running time of the above (1, 2)-combiner for
malicious sender is m times that of its candidates, then the running time of
the whole construction is mΩ(log k). Thus, in order for the running time to be
polynomial, m must be a constant (which it is actually the case if we use the
(1, 2)-combiner showed in this section). We now denote with ΠOT = (SOT , ROT )
the protocol obtained by combining 4λ2 parallel executions of ΠOT as described
above, we prove that ΠOT is secure with one-sided simulation accordingly to
Def. 6.

In our formal description we assume, without loss of generality, that the
sender’s (receiver’s) algorithm of ΠOT to compute its first message takes as
input the security parameter, the input and a message (if any), and returns an
auxiliary input and the first message to be sent. To compute the message for the
round i, the sender’s (receiver’s) algorithm takes as input the auxiliary input
and all the messages that have been send and received up to that round, and

15 To prove our theorem we do not need a fully secure combiner. That is, we only need
a combiner that guarantees security in the case that one execution of ΠOT is secure
against malicious senders and all the executions of ΠOT are secure against malicious
receivers.
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returns the message to be send. We propose a formal description of ΠOT in
Fig. 3. To prove that ΠOT is secure we cannot just rely on the security of the

Common input: Security parameters: λ := 2κ for some k ∈ N, n := 4λ2

Input to ROT : b ∈ {0, 1}. Input to SOT : l0 ∈ {0, 1}, l1 ∈ {0, 1}.

ROT → SOT
1. Run GB on input (b, 1, log(n)) thus obtaining b1, . . . , bn.
2. For i = 1, . . . , n run ROT on input 1λ and bi thus obtaining (auxir, ot

i
1).

3. Send ot11, . . . , ot
n
1 to SOT

SOT → ROT
1. Run GL on input (l0, l1, i, log(n)) thus obtaining (l10, l

1
1), . . . , (ln0 , l

n
1 ).

2. For i = 1, . . . , n run SOT on input 1λ, oti1, (auxis, l
i
0, l

i
1) thus obtaining

oti2.
3. Send ot12, . . . , ot

n
2 to ROT .

ROT → SOT
1. For i = 1, . . . , n run ROT on input (oti1, ot

i
2, aux

i
r) thus obtaining oti3.

2. Send ot13, . . . , ot
n
3 to SOT

SOT → ROT
1. For i = 1, . . . , n run ΠOT on input (oti1, ot

i
2, ot

i
3, aux

i
s) thus obtaining

oti4.
2. Send ot14, . . . , ot

n
4 to ROT .

Output Phase of ROT

1. For i = 1, . . . , n run ROT on input (oti1, ot
i
2, ot

i
3, ot

i
4) and auxir thus obtaining

libi .
2. Output l1b1 ⊕ · · · ⊕ l

n
bn

GB(b, i, n)

Pick r
$←− {0, 1}, compute b0 ← b⊕ r and set b1 ← r.

If i = n then return (b0, b1) else return GB(b0, i+ 1, n), GB(b1, i+ 1, n).

GL((l0, l1), i, n)

Pick r
$←− {0, 1}, compute l0,0 ← r, l0,1 ← r⊕l0⊕l1, l1,0 ← r⊕l0, l1,1 ← r⊕l1.

If i = n then return (l0,0, l0,1), (l1,0, l1,1)
else return GL((l0,0, l0,1), i+ 1, n), GL((l1,0, l1,1), i+ 1, n).

Fig. 3: Formal description of ΠOT

combiner since a malicious sender could sample the trapdoor functions in such
a way that the security of all the OT executions is compromised. We show that
this can happen only with negligible probability. We denote with Πi

OT the i-th



28 Choudhuri et al.

execution of ΠOT in a run of ΠOT . To denote the messages of Πi
OT we extend

the notation used in the description of ΠOT by writing mi (or mi) if m is a
symbol used in the description of ΠOT (e.g., in the second round of Πi

OT the
sender sends f i0,0, . . . f

i
1,1, β

i, Ri0, R
i
1). At a high level the proof works in this way.

If by contradiction all the OT executions are insecure this implies that in any
of the OT executions the malicious sender sends the TDPs (f i0,0, f

i
0,1, f

i
1,0, f

i
1,1)

such that for all pi ∈ {0, 1}
1. if the instance (f ipi,0, f

i
pi,1) is used to run the DWE scheme then hiding of

the DWE would not hold and
2. if (f i1−pi,0, f

i
1−pi,1) are used to run the remaining computation of Πi

OT then

Πi
OT would be insecure (i.e., (f i1−pi,0, f

i
1−pi,1) might not be injective).

This means that any OT executions Πi
OT has a pair of TDPs (f id′,0, f

i
d′,1)

with d′ ∈ {0, 1} that are not injective and that have a collision set smaller
than 2−1|Dα|. However, we note that if di = d′i in a sufficiently large number

of executions then we have that the there is an execution j where rj0 ⊕ R
j
0 and

rj1 ⊕ R
j
1 are such that yj0 ← S(f jdj ,0, r

j
0 ⊕ R

j
0) and yj1 ← S(f jdj ,1, r

j
1 ⊕ R

j
1) have

exactly one pre-image each with overwhelming probability. This would allow us
to apply the lemma 1 and state that Πi

OT is secure. Then we can simply rely on
the security of the combiner to claim that ΠOT is secure. To argue that such a
value j exists we use the fact that the receiver picks di randomly in {0, 1} for
all i ∈ {1, . . . , 4λ2}.
Theorem 8. If enhanced permutations with efficiently sampleable range and
domain exist, then ΠOT securely realizes the oblivious transfer functionality FOT
with one-sided simulation with black-box use of the underlying primitive.

We refer to the full version for the proof of the theorem. The protocol ΠOT
described in this section restricts the sender to use two bits as input (bit-OT).
In some applications (as the one that we are going to consider in this work)
it is crucial that the sender input is represented by strings l0 ∈ {0, 1}κ, l1 ∈
{0, 1}κ with κ ∈ N (string-OT). The work of Brassard et al. [4] proposes a
way to construct an information theoretically secure string OT protocol from an
information theoretically secure bit OT protocol. The idea proposed in [4] is to
use run κ bit-OT executions in such a way that that regardless of the choices of
the input bits of malicious receivers in these executions, he can only obtain one
of the two inputs. We show how to use the technique proposed in [4] to transform
our bit-OT protocol ΠOT into a string-OT protocol Πκ

OT := (SκOT , R
κ
OT ). We

refer the reader to the full version for the formal description of the protocol and
its proof. We note that Πκ

OT can be easily run in parallel polynomialy many
times.

8 Black-Box Round Optimal 2PC.

In [35, Sec. 3.2] the authors show how to obtain a fully simulatable OT protocol
using in a black-box way: (parallel) one-sided simulatable OTs and one-to-one
one-way functions. Using this result we can state the following theorem.
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Theorem 9. If enhanced trapdoor permutations with efficiently sampleable range
and domain exist, then there exists a 4-round protocol OT that securely realizes
the oblivious transfer functionality FmOT with black-box use of the underlying
primitive.

An immediate corollary from the above result, in conjunction with the work of
[28] building a non-interactive secure two-party protocol in the OT-hybrid model
is the following.

Corollary 2. If enhanced trapdoor permutations with efficiently sampleable range/
domain and one-to-one OWFs exist, then there exists a round optimal protocol
that securely realizes any 2-party functionality with BB use of the primitives.
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8. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: 20th ACM STOC. pp. 11–19. ACM Press (May 1988).
https://doi.org/10.1145/62212.62214

9. Choudhuri, A.R., Ciampi, M., Goyal, V., Jain, A., Ostrovsky, R.: Round optimal
secure multiparty computation from minimal assumptions. In: Pass, R., Pietrzak,
K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 291–319. Springer, Heidelberg
(Nov 2020). https://doi.org/10.1007/978-3-030-64378-2 11

10. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Round-optimal secure two-
party computation from trapdoor permutations. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017, Part I. LNCS, vol. 10677, pp. 678–710. Springer, Heidelberg (Nov 2017).
https://doi.org/10.1007/978-3-319-70500-2 23

11. Ciampi, M., Parisella, R., Venturi, D.: On adaptive security of delayed-input
sigma protocols and fiat-shamir NIZKs. In: Galdi, C., Kolesnikov, V. (eds.)
SCN 20. LNCS, vol. 12238, pp. 670–690. Springer, Heidelberg (Sep 2020).
https://doi.org/10.1007/978-3-030-57990-6 33

12. Damg̊ard, I., Nielsen, J.B., Polychroniadou, A., Raskin, M.: On the communication
required for unconditionally secure multiplication. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 459–488. Springer, Heidelberg (Aug
2016). https://doi.org/10.1007/978-3-662-53008-5 16

13. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO’82. pp. 205–210.
Plenum Press, New York, USA (1982)

https://doi.org/10.1007/3-540-48071-4_31
https://doi.org/10.1145/62212.62213
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1109/18.556673
https://doi.org/10.1109/18.556673
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1007/978-3-030-03807-6_18
https://doi.org/10.1007/978-3-030-03807-6_18
https://doi.org/10.1007/978-3-540-78524-8_28
https://doi.org/10.1145/62212.62214
https://doi.org/10.1007/978-3-030-64378-2_11
https://doi.org/10.1007/978-3-319-70500-2_23
https://doi.org/10.1007/978-3-030-57990-6_33
https://doi.org/10.1007/978-3-662-53008-5_16


Oblivious Transfer from Trapdoor Permutations in Minimal Rounds 31

14. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowl-
edge proofs based on a single random string (extended abstract). In:
31st FOCS. pp. 308–317. IEEE Computer Society Press (Oct 1990).
https://doi.org/10.1109/FSCS.1990.89549

15. Friolo, D., Masny, D., Venturi, D.: A black-box construction of fully-simulatable,
round-optimal oblivious transfer from strongly uniform key agreement. TCC 2019
(2019), https://eprint.iacr.org/2018/473

16. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round
complexity of secure computation. In: Fischlin, M., Coron, J.S. (eds.) EURO-
CRYPT 2016, Part II. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (May
2016). https://doi.org/10.1007/978-3-662-49896-5 16

17. Garg, S., Ostrovsky, R., Visconti, I., Wadia, A.: Resettable statistical zero knowl-
edge. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 494–511. Springer,
Heidelberg (Mar 2012). https://doi.org/10.1007/978-3-642-28914-9 28

18. Goldberg, S., Reyzin, L., Sagga, O., Baldimtsi, F.: Efficient noninteractive cer-
tification of RSA moduli and beyond. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019, Part III. LNCS, vol. 11923, pp. 700–727. Springer, Heidelberg (Dec
2019). https://doi.org/10.1007/978-3-030-34618-8 24

19. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge, UK (2004)

20. Goldreich, O.: Computational complexity: a conceptual perspective. SIGACT News
39(3), 35–39 (2008). https://doi.org/10.1145/1412700.1412710, https://doi.org/
10.1145/1412700.1412710

21. Goldreich, O.: Basing non-interactive zero-knowledge on (enhanced) trapdoor per-
mutations: The state of the art (2011)

22. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge
proof systems. Journal of Cryptology 7(1), 1–32 (Dec 1994).
https://doi.org/10.1007/BF00195207

23. Goldreich, O., Rothblum, R.D.: Enhancements of trapdoor permutations. Jour-
nal of Cryptology 26(3), 484–512 (Jul 2013). https://doi.org/10.1007/s00145-012-
9131-8

24. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: 17th ACM STOC. pp. 291–304. ACM Press
(May 1985). https://doi.org/10.1145/22145.22178

25. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of
interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989).
https://doi.org/10.1137/0218012, https://doi.org/10.1137/0218012

26. Haitner, I.: Implementing oblivious transfer using collection of dense trapdoor per-
mutations. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 394–409. Springer,
Heidelberg (Feb 2004). https://doi.org/10.1007/978-3-540-24638-1 22

27. Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust combin-
ers for oblivious transfer and other primitives. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 96–113. Springer, Heidelberg (May 2005).
https://doi.org/10.1007/11426639 6

28. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Ef-
ficient non-interactive secure computation. In: Paterson, K.G. (ed.) EURO-
CRYPT 2011. LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (May 2011).
https://doi.org/10.1007/978-3-642-20465-4 23

29. Kakvi, S.A., Kiltz, E., May, A.: Certifying RSA. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 404–414. Springer, Heidelberg (Dec 2012).
https://doi.org/10.1007/978-3-642-34961-4 25

https://doi.org/10.1109/FSCS.1990.89549
https://eprint.iacr.org/2018/473
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-642-28914-9_28
https://doi.org/10.1007/978-3-030-34618-8_24
https://doi.org/10.1145/1412700.1412710
https://doi.org/10.1145/1412700.1412710
https://doi.org/10.1145/1412700.1412710
https://doi.org/10.1007/BF00195207
https://doi.org/10.1007/s00145-012-9131-8
https://doi.org/10.1007/s00145-012-9131-8
https://doi.org/10.1145/22145.22178
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1007/978-3-540-24638-1_22
https://doi.org/10.1007/11426639_6
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-642-34961-4_25


32 Choudhuri et al.

30. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Hei-
delberg (Aug 2004). https://doi.org/10.1007/978-3-540-28628-8 21

31. Kilian, J.: Founding cryptography on oblivious transfer. In: 20th ACM STOC. pp.
20–31. ACM Press (May 1988). https://doi.org/10.1145/62212.62215

32. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (ex-
tended abstract). In: 24th ACM STOC. pp. 723–732. ACM Press (May 1992).
https://doi.org/10.1145/129712.129782

33. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computa-
tion. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 171–189. Springer,
Heidelberg (Aug 2001). https://doi.org/10.1007/3-540-44647-8 10

34. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Kosaraju, S.R. (ed.)
12th SODA. pp. 448–457. ACM-SIAM (Jan 2001)

35. Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-
party computation. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015,
Part II. LNCS, vol. 9216, pp. 339–358. Springer, Heidelberg (Aug 2015).
https://doi.org/10.1007/978-3-662-48000-7 17

36. Ostrovsky, R., Venkatesan, R., Yung, M.: Fair games against an all-powerful ad-
versary. In: Cai, J. (ed.) Advances In Computational Complexity Theory, Proceed-
ings of a DIMACS Workshop, New Jersey, USA, December 3-7, 1990. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, vol. 13, pp.
155–169. DIMACS/AMS (1990). https://doi.org/10.1090/dimacs/013/09, https:
//doi.org/10.1090/dimacs/013/09

37. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (Aug 2008). https://doi.org/10.1007/978-3-540-
85174-5 31

38. Rabin, M.O.: Digital signatures and public key functions as intractable as factoriza-
tion. Technical Report MIT/LCS/TR-212, Massachusetts Institute of Technology
(Jan 1979)

39. Rothblum, R.: A taxonomy of enhanced trapdoor permutations. Electronic Col-
loquium on Computational Complexity (ECCC) 17, 145 (2010), http://eccc.
hpi-web.de/report/2010/145

40. Yao, A.C.C.: Protocols for secure computations (extended abstract). In:
23rd FOCS. pp. 160–164. IEEE Computer Society Press (Nov 1982).
https://doi.org/10.1109/SFCS.1982.38

41. Yao, A.C.C.: How to generate and exchange secrets (extended abstract).
In: 27th FOCS. pp. 162–167. IEEE Computer Society Press (Oct 1986).
https://doi.org/10.1109/SFCS.1986.25

https://doi.org/10.1007/978-3-540-28628-8_21
https://doi.org/10.1145/62212.62215
https://doi.org/10.1145/129712.129782
https://doi.org/10.1007/3-540-44647-8_10
https://doi.org/10.1007/978-3-662-48000-7_17
https://doi.org/10.1090/dimacs/013/09
https://doi.org/10.1090/dimacs/013/09
https://doi.org/10.1090/dimacs/013/09
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
http://eccc.hpi-web.de/report/2010/145
http://eccc.hpi-web.de/report/2010/145
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1986.25

	Oblivious Transfer from Trapdoor Permutations in Minimal Rounds

