
Dory: Efficient, Transparent arguments for
Generalised Inner Products and Polynomial

Commitments

Jonathan Lee∗

Microsoft Research, Nanotronics Imaging?

Abstract. This paper presents Dory, a transparent setup, public-coin
interactive argument for inner-pairing products between committed vec-
tors of elements of two source groups. For a product of vectors of length
n, proofs are 6 log n target group elements and O(1) additional elements.
Verifier work is dominated by an O(log n) multi-exponentiation in the
target group and O(1) pairings. Security is reduced to the standard SXDH
assumption in the standard model.
We apply Dory to build a multivariate polynomial commitment scheme
via the Fiat-Shamir transform. For a dense polynomial with n coeffi-
cients, Prover work to compute a commitment is dominated by a multi-
exponentiation in one source group of size n. Prover work to show that
a commitment to an evaluation is correct is O(n log 8/ log 25) in general
(O(n1/2) for univariate or multilinear polynomials); communication com-
plexity and Verifier work are both O(log n). These asymptotics previously
required trusted setup or concretely inefficient groups of unknown or-
der. Critically for applications, these arguments can be batched, saving
large factors on the Prover and improving Verifier asymptotics: to vali-
date ` polynomial evaluations for polynomials of size at most n requires
O(`+ log n) exponentiations and O(` log n) field operations.
Dory is also concretely efficient: Using one core and setting n = 220,
commitments are 192 bytes. Evaluation proofs are ∼ 18kB , requiring
∼ 3s to generate and ∼ 25ms to verify. For batches at n = 220, the
marginal cost per evaluation is < 1kB communication, ∼ 300ms for the
Prover and ∼ 1ms for the Verifier.

1 Introduction

Zero-knowledge succinct arguments of knowledge (zkSNARKs) for the satisfiabil-
ity of Rank-1 Constraint Systems (R1CS) are the subject of ongoing research.
A general strategy to construct zkSNARKS for R1CS is to partition the proof
into two phases. First, an information-theoretic argument reduces proving the
existence of a satisfying assignment to a consistency check on commitments to
evaluations of (possibly multi-variate) polynomials. Some computationally sound

∗ jlee@nanotronics.co
? Current Affiliation: Nanotronics Imaging; work done primarily at Microsoft Research

mailto:jlee@nanotronics.co

argument with sub-linear verification time is used to show these commitments to
evaluations are correct. These auxiliary arguments are variously inner-product ar-
guments, or the more restricted polynomial commitments, introduced by Kate [27]
and generalised to multivariate polynomials in [30].

Spartan [31] makes the independence of the information-theoretic argument
and these auxiliary arguments explicit, provides an extensive overview of the
history and details of prior works, and details key practical considerations relating
to the uniformity of the computation to verify. There are multiple approaches
in the literature to constructing these auxiliary arguments, and for each many
concrete constructions. Non-exhaustively, Bulletproofs [15] use inner-product
arguments and Hyrax [34] utilise polynomial commitments, both based on the
logarithmic communication complexity discrete log-based work (LCC-DLOG) of
Bootle et al. [13], which in turn uses ideas from [22]. Spartan [31] optimises this
approach further, and Halo [14] applies these on cycles of pairing friendly curves
to achieve recursive composition.

Ligero [3], Aurora [8], Virgo [35] and Fractal [18] use Interactive Oracle
Proofs based on Reed-Solomon codes (RS-IOP) to prove that a polynomial is
of bounded degree [6]. Supersonic and its follow on works [16,11] makes use of
groups of unknown order to construct Diophantine ARguments of Knowledge
(DARK-GUO) proofs for polynomial evaluations over fields. Other works rely on
some trusted setup, which allows the use of other commitment schemes. For
example PLONK [20] makes use of KZG [27] commitments directly, whilst [17]
uses sublinear-sized KZG commitments as a component in their GIPP argument
and polynomial commitment. In all cases these interactive arguments are then
compiled to non-interactive arguments in the random-oracle model.

This paper introduces a new transparent setup argument for generalised inner
products, inspired by Bootle et al. [13] but applying new techniques to achieve
a logarithmic V complexity. This argument can be applied to give polynomial
commitments for arbitrary numbers of variables, using two-tiered homomorphic
commitments of Groth [23] applied to matrix commitment strategy of [34], as in
Bünz et al. [17] for univariate and bivariate polynomials.

For transparent polynomial commitment schemes, there are four key opera-
tions: (1) P and V must generate public parameters; (2) P must commit to a
polynomial and transmit that commitment to V; (3, 4) P and V must compute,
transmit and verify a proof of evaluation of the polynomial. We give the best
achieved asymptotics of previous transparent polynomial commitment schemes,
grouped by overall approach, in Figure 1.

Unfortunately, implementations generally bundle their polynomial commit-
ment with differing polynomial IOPs for some language, so concrete comparisons
of the polynomial commitments in isolation are challenging. To allow for a
somewhat concrete discussion, we first note typical object sizes and operation
times for fast implementations of the required primitives at the 128-bit security
level in Figure 2. We note that blstrs is enhanced to apply torus-based pairing
compression [29] of GT for serialisation.

2

Transparent Communication Time
Setup? Complexity Complexity

Commit Eval Gen Commit Eval (P) Eval (V)

LCC-DLOG 3 n1/2 |G| log n |G| n1/2H n G n1/2 G n1/2 G

RS-IOP 3 1 |H| log2 n |H| 1 n log n H n log n H log2 n H

DARK-GUO 3 1 |GU | log n |GU | n log n GU n GU n log n GU log n GU

KZG [27,30] 7 1 |GT | log n |GT | n G1 n G1 n G1 r P

GIPP [17] 7 1 |GT | log n |GT | n1/2 G1 n G1 n1/2 P log n GT

This work 3 1 |GT | log n |GT | n1/2P n G1 n1/2P log n GT

Fig. 1: Asymptotic comparisons for dense polynomials of degree n, neglecting
Pippenger-type savings. We report the most expensive dominant operations
for the most efficient instantiations of each class. H denotes a hash function. G
denotes a group. G1, G2, GT denote the two source groups and the target group
of a pairing P . GU is a group of unknown order. These schemes all generalise
to multivariate polynomials of degree (d1, . . . , dr), setting n =

∏
i(di + 1)

Setting Implementation Size (bytes) Time (µs)

Group of Unknown Order ANTIC-QFB |GU | 832 27000
Hashing rust-crypto |H| 32 0.072
Group curve25519-dalek |G| 32 42
Group with Pairing blstrs |G1| 48 110

|G2| 96 270
|GT | 192 470
P – 600

Fig. 2: Micro-benchmarks on a single core (AMD Ryzen 5 3600). For groups
we give the serialised size in bytes of a group element, and the time taken to
multiply a random point by a 256-bit scalar. P denotes a pairing computation,
and |H| denotes hashing of a 512-bit message to a 256-bit digest.

1.1 Limitations of prior approaches

Unfortunately, each prior approach to transparent polynomial commitments have
substantial problems in practice. Concretely, only LCC-DLOG based-schemes
provide a linear-time Prover, which is key for large applications where n ∼
220-30. Unfortunately, these schemes require Ω(n1/2) computation by V to Eval a
committed polynomial, and have similarly sized commitments. This is because
they commit to a matrix with O(n) entries by committing to the rows and later
opening a commitment to some linear combination of the rows. Hyrax [34] and its
successors saturate this bound with small concrete constants. However for large
n these commitments remain quite large (� 10kB), and can be challenging in
applications applications where the polynomial commitment is used as a routine
and so many commitments must be sent.

RS-IOP-based schemes are built on Reed-Solomon based IOPPs, and would
have attractive concrete costs, even with their asymptotic slowness, if the concrete
constants were commensurate with the cost of hashing. Unfortunately the sound-
ness error of the underlying IOPP is quite large and the proven bounds are worse

3

still, requiring a number of repetitions linear in the security level. For example,
libiop [7] runs the underlying proof in Fractal [18] ∼ 500 times to achieve provable
128-bit security. This large additional multiplicative constant largely closes the
micro-benchmark gap with curve arithmetic, especially as multi-exponentiations
in groups permit log savings using Pippenger’s algorithm.

DARK-GUO-based schemes [16,11] are built around groups of unknown order,
which can be constructed transparently as class groups of quadratic number fields,
or analogously as Jacobians of higher genus curves [19]. They have a long history
of crpytographic use [26,28,12]. Unfortunately, general sub-exponential attacks
on the order are known [10]; fast attacks on a low-density sets of weak groups
are problematic for applications with transparent setup [19], which forces the
group operation to be materially slower than operations on curves, as is seen in
Figure 2. In the particular case of Supersonic [16,11], even with Pippenger-type
acceleration P must perform O(nλ) group operations, and generating parameters
takes O(nλ log n) group operations, which is unlikely to be efficient in practice.

Finally, if transparent setup is given up then Kate commitments [27] and their
multivariate generalisation [30] are available, generally requiring O(n) operations
in G1 for P , O(1) commitment sizes and a V time linear in the number of variables.
This is combined with ideas from LCC-DLOG in [17] to achieve sublinear Prover
computation for evaluation. Whilst performant, these systems have unprovable
knowledge-of-exponent type assumptions for their security, which is undesirable.

1.2 Review of LCC-DLOG techniques

Dory builds on the LCC-DLOG tradition, which construct inner-product argu-
ments [13,15,17] or reductions of Hadamard products to inner products [22] with
efficient Provers and sublinear communication from homomorphic commitments.

Explicitly for the inner product as a bilinear form, these provide arguments
for inner products between vectors of scalars and group elements or generalised
products between the source groups of a pairing, where either input may be
committed. Let these vectors have length n ′, WLOG a power of two (in most cases
for polynomial commitments n ′ = O(n1/2)). The key idea, which is inherited in
Dory, is to observe that for any vectors ~uL, ~uR, ~vL, ~vR, and any non-zero scalar a:

〈 ~uL|| ~uR, ~vL|| ~vR〉 = 〈a ~uL + ~uR, a−1 ~vL + ~vR〉 − a〈 ~uL, ~vR〉 − a−1〈 ~uR, ~vL〉.
So a claim about the inner product 〈~u,~v〉 of length n ′ can be reduced to some
claims about the inner products of vectors of length n ′/2. The Verifier uses the
homomorphic properties of the commitment scheme (WLOG of ~u) and some

Prover assistance to find commitments to these shorter vectors ~u ′ = a ~uL + ~uR,
a−1 ~vL + ~vR, and to a claim for a commitment to the product 〈~u ′, ~v ′〉, for some
Verifier challenge a. This procedure is applied recursively to obtain a claim about
vectors of length 1, for which some sigma protocol are used. Computational
soundness comes from rewinding the Prover, since ~u can be recovered from a few
samples of ~u ′ considered as a function of a.

The key problem is that when the commitment key used for ~u is unstructured,
the commitment to ~u ′ is made with some challenge-dependent commitment key.

4

This point is typically implicit, since the entire iterated reduction and final proof
is presented as a single protocol. In this case, what one sees is that the Verifier
has some final O(n ′) computation that must be performed, using the challenges
to convert the initial commitment key to a single curve point.

In [22], similar techniques are applied to a sequence of vectors with common
commitment keys, which allows the Verifier computation to be avoided, at the cost
of being only able to combine inner-products rather than compute them. In [13,15],
inner-product arguments are given, but with linear Verifier computation. These
are generalised to pairing groups in [17], where the key point (following [14]) is
that this Verifier computation can be expressed as the evaluation of a polynomial
whose coefficients are entries in the original commitment key. In this case they
structure the commitment key to allow this to be done by opening a Kate
commitment. To construct polynomial commitments, these works use the matrix
commitment idea of [22] in an essentially similar fashion as [34,17]. In its simplest

form, this represents a polynomial f (x) of degree n = n ′
2

by a matrix M s.t.:

f (x) = (1, x , x 2, . . . , x n′−1)M (1, x n′ , x 2n′ , . . . , x n−n′)T ,

which is possible as each entry of M is multiplied by a distinct power x i for
i ∈ {0, . . . , n − 1}. In [34], the Verifier keeps a homomorphic commitment to
each row of M , combines them by hand, and then engages in a

√
n-sized inner

product argument. In this case the
√

n lower bound is sharp, as either the initial
linear combination or the inner-product argument must be this large. In [17],
this outer combination is done with a multivariate Kate opening, using the
structure-preserving commitment scheme of Abe et al. [2].

1.3 Core techniques enabling a logarithmic verifier in Dory

Symmetry of messages and commitment keys: The structure-preserving
commitment scheme of [2] has a symmetry between the messages and the com-
mitment key; for some pairing group (G1,G2,GT) if the message is a vector
in G1 then the commitment key is a vector in G2 (and vice versa), with the
commitment itself in GT . So the Verifier is free to treat parts of a commitment
key as messages, and compute a commitment to them with a second commitment
key. Additionally, the commitment key and all Verifier challenges are public, so
we can hope to outsource computations on the commitment key to the Prover.
This is not possible in the no-pairing setting of [13,15,34], and is not exploited
in [17].
Structured Verifier computation: The computations that the Verifier has to
perform on the commitment key are highly structured; as observed in [14,17] that
this inner product can be thought of as a multivariate polynomial evaluation.
Equivalently, it is an inner product with a vector of scalars, which is a Kronecker
products of log n ′ vectors of length 2 (each built from one of the Verifier’s
challenges); this kind of vector occurs throughout Dory, and we say that a
vector with such a cauterisation has multiplicative structure. Given the first
challenge a, the Verifier must turn the commitment key ~Γ = (~ΓL|| ~ΓR) into

Γ ′ = (f (a) ~ΓL + g(a) ~ΓR), where f , g are cheap to compute; after this a can

5

be discarded. Plainly if the verified holds structure-preserving commitments
to ~ΓL, ~ΓR they can quickly compute a commitment to Γ ′. Once the remaining
challenges are known, the Verifier’s remaining computation with Γ ′ is a length
n ′/2 inner product. So we can hope to outsource this to the Prover. The key
point is that given structure-preserving commitments to the commitment key,
the Verifier can apply one (or a few) challenges to shrink the commitment key
and have the Prover do the linear work of computing the actual inner product.

Naively, this let us to use a log n ′-round protocol along the lines of [13,15,17]
as a black box to reduce computing a length n ′ inner product of committed
vectors to computing a length n ′/2 inner product on committed vectors derived
from the commitment keys of the commitments used in the length n ′ inner
product. If we recursively use this idea, we obtain an O(log2 n ′)-round protocol
for length n ′ inner products.

Alternately, we can start to run these inner product arguments in parallel, so
that the inner product arguments in parallel, so that after k rounds we would
have k + 1 claims about inner products of n ′2−k -length vectors. This allows
us to combine claims about vectors in the same group along the lines of the
‘collapsing’ observed in [14]. This makes each round somewhat more complex,
but the number of claims remains O(1), and so a logarithmic Verifier is feasible.

Structured public scalars: Finally, Dory must handle public vectors of scalars,
or for a polynomial commitment the point of evaluation. For general inner
products this seems hopeless, as even reading a full vector would be a linear
lower bound. However, for polynomial commitments the polynomial size vector of
scalars has multiplicative structure, as it is the evaluation of monomials for fixed
values of variables. Conveniently, inner products of vectors of this form can be
computed in only logarithmically many operations. For a small concrete example,
(1, x , y , xy , z , xz , yz , xyz) · (1, a, b, ab, c, ac, bc, abc) = (1 + ax)(1 + by)(1 + cz). So
any final inner product of public vectors with a challenge-derived vector can, in
the context of polynomial commitments, be computed in logarithmic time.

Public parameters: We note that for Dory, the public parameters contain
commitment keys for of every power-of-2 length less than n ′ in both G1 and G2,
and commitments to the left and right halves of each commitment key (using
the a commitment key of half the length). This use of public parameters with
structure but without trusted setup can be seen as analogous to the computational
commitments used in Spartan [31], as we perform some linear-size computation
once during setup to accelerate the online proof generation and verification.

Batching: Throughout, ideas similar of those of Bowe et al. [14] allow these argu-
ments to be batched for reduced verification time further (see §3.4,§4.4,§5.1,§6.2).
Ultimately the cost of evaluating each additional polynomial commitment is
reduced to O(1) group operations and O(log n) additional operations in F .

Application to Polynomial commitments: In §6, similarly to Hyrax [34, §6]
and Bünz et al. [17], we construct a polynomial commitment from a two-tiered
homomorphic commitment to matrices. Prior approaches here break knowledge
soundness (c.f. Definition 10). Ultimately, evaluation of a dense univariate or
multilinear polynomial with n coefficients is reduced to to two inner products

6

of size O(n1/2) (see §5), between public vectors of scalars with multiplicative
structure and vectors in G1,G2 respectively (see §4). Unlike prior works, these
two inner products are proved together, saving a further 2×.

2 Preliminaries

2.1 Notation

Vector, matrix and tensor indices will begin at 1. For any two vectors v1, v2

we denote their concatenation by (v1||v2). We use ⊗ to denote the Kronecker
product, sending an m × n matrix A and p × q matrix B to an mp × nq matrix
built up of appended copies of B multiplied by scalars in A. For any vector v
of even length we will denote the left and right halves of v by vL and vR; more
formally: vL = ((1, 0)⊗ In/2)v and vR = ((0, 1)⊗ In/2)v .

We write ←$ S for a uniformly random sample of S , with the understanding
that this encodes no additional structure; for example for groups G we assume that
samples gi ←$ G have unrelated logarithms, and V challenges are independent of
the transcript. Techniques to sample from curves are known [32,25,9,33].

We write all groups additively, and assume we are given some method to
sample Type III pairings [21] at a given security level. Then we are furnished
with a prime field F = Fp , three groups G1,G2,GT of order p, a bilinear map
e : G1×G2 → GT , and generators G1 ∈ G1, G2 ∈ G2 such that e(G1, G2) generates
GT . Concretely, classes of pairing-friendly curves (e.g. Barreto-Lynn-Scott [4] or
Barreto-Naehrig [5] curves) are believed to satisfy these properties.

We generally suppress the distinction between e and multiplication of F ,G1,G2

or GT by elements of F , writing all of these bilinear maps as multiplication; we will
also use 〈, 〉 to denote the generalised inner products given by 〈~a,~b〉 =

∑n
i=1 ~ai

~bi ,
with signatures: F n × F n → F , F n × Gn

{1,2,T} → G{1,2,T} or Gn
1 × Gn

2 → GT .

2.2 Computationally hard problems in Type III pairings

For Type III pairings there are no efficiently computable morphisms between
G1,G2, so the standard security assumption is Symmetric eXternal Diffie-Hellman:

Definition 1 (SXDH [2]). For (Fp ,G1,G2,GT , e, G1, G2) as above, the Deci-
sional Diffie-Hellman (DDH) assumption holds for (Fp ,G1, G1) and (Fp ,G2, G2)

A DDH instance in G1 can be mapped to one in GT by g → e(g , G2), so SXDH
implies that DDH holds in GT . In any group, DDH implies DLOG, and so:

Lemma 1. For (Fp ,G1,G2,GT , e, G1, G2) satisfying SXDH, n = poly(λ) and

G ∈ {G1,G2,GT}, given ~B
$← Gn no non-uniform polynomial-time adversary

can compute a non-trivial ~A ∈ F n such that 〈~A, ~B〉 = 0.

SXDH also implies the Double Pairing and reverse Double Pairing assumptions:

7

Lemma 2. For (Fp ,G1,G2,GT , e, G1, G2) as above, given A1, A2 ←$ G1 no non-
uniform polynomial-time adversary can compute non-trivial B1, B2 ∈ G2 such
that: A1B1 + A2B2 = 0. Similarly, given A1, A2 ←$ G2 no adversary can compute
non-trivial B1, B2 ∈ G1 such that B1A1 + B2A2 = 0.

Lemma 3. For (Fp ,G1,G2,GT , e, G1, G2) as above and n = poly(λ), given

~A
$← Gn

1 no non-uniform polynomial-time adversary can compute a non-trivial
~B ∈ Gn

2 such that: 〈~A, ~B〉 = 0. Similarly, given ~A ←$ Gn
2 , no adversary can

compute non-trivial ~B ∈ Gn
1 such that 〈~B , ~A〉 = 0.

2.3 Succinct interactive arguments of knowledge

We follow the presentation in [31]. Let P ,V be a pair of interactive PPT algorithms.
Fix an algorithm Gen and public parameters pp = Gen(λ), where λ a security
parameter such that O(2−λ) = negl(λ) is negligible. For a NP language L there
is a deterministic polynomial time SatL s.t. {∃w : SatL(x, w) = 1} ⇔ x ∈ L. We
denote the transcript of the interaction of two PPTs P,V with random tapes
zP , zV ∈ {0, 1}∗ on x by tr〈P(zP),V(zV)〉(x).

Definition 2. A public-coin succinct interactive argument of knowledge for an
NP language L is a protocol between P,V satisfying: properties:

– Completeness: If x ∈ L, for any witness w, x ∈ L and r ∈ {0, 1}∗,
P[〈P(pp, w),V(pp, r)〉(x) = 1|SatL(x, w) = 1] ≥ 1− negl(λ).

– Soundness: For x 6∈ L, any PPT Prover P∗, and for all r ∈ {0, 1}∗,
P[〈P∗(pp),V(pp, r)〉(x) = 1] ≤ negl(λ).

– Knowledge soundness: For any PPT adversary A, there exists a PPT
extractor E such that ∀x ∈ L,∀r ∈ {0, 1}∗, if P[〈A(pp),V(pp, r)〉(x) = 1] ≥
negl(λ), then P[SatL(x, EA(pp,x)) = 1] ≥ negl(λ).

– Succinctness: Communication between P and V is sublinear in |w |.

– Public coin: Each V message M $← C, for C some fixed set.

Definition 3. An interactive argument (Gen,P,V) for L is Honest-Verifier
Statistical Zero-Knowledge (HVSZK) if there exists a PPT algorithm S (x, z)
called the simulator, running in time polynomial in |x|, such that for every
x ∈ L, w ∈ Rx, and z ∈ {0, 1}∗, the statistical distance between the distributions
tr〈P(w),V(z)〉(x) and S (x, z) is negl(λ).

If we have a family of languages Lparams, we will often name a pair of interac-
tive PPT algorithms Func = (P,V), and suppress reference to the tapes and
prover witness, i.e. write that P ,V run Funcparams(x) successfully to mean that P
possesses some witness w for x ∈ Lparams and 〈P(pp, w),V(pp, r)〉(params,x) = 1.

Definition 4 (Witness-extended emulation [24,34]). An public coin in-
teractive argument (Gen,P,V) for L has witness-extended emulation if for all
deterministic polynomial time programs P∗ there exists an expected polynomial

8

time emulator E such that for all non-uniform polynomial time adversaries
A and all zV ∈ {0, 1}∗, the following probabilities differ by at most negl(λ):
P[A(t ,x) = 1|pp ← Gen(1λ) ∧ (x, zP)← A(pp) ∧ t ← tr〈P∗(zP),V(zV)〉(x)] and
P[A(t ,x) = 1 ∧ (Accept(t) = 1 ⇒ SatL(x, w) = 1)|pp ← Gen(1λ) ∧ (x, zP) ←
A(pp) ∧ (t , w)← EP

∗(zP)(x)].

Witness-extended emulation implies soundness and knowledge soundness. For a
(2µ+1)-move interactive protocol, a (w1, . . . , wµ)-tree of accepting transcripts is a
tree of depth µ in which: (1) the root is labelled with x and the initial P message;
(2) each node at depth i has wi children, labelled with distinct V challenges and
subsequent P message; (3) the concatenation of the labels on any path from the
root to a leaf of the tree is an accepting transcript for the protocol.

Definition 5 (Tree extractability (arguments)). A (2µ+ 1)-move interac-
tive protocol (P ,V) with Verifier message space C is (W , ε)-tree extractable if there
exists a PPT algorithm extracting a witness from (w1, . . . , wµ)-tree of accepting
transcripts with failure probability ≤ ε,

∏
i wi ≤W and maxi(wi) ≤ ε|C|.

Definition 6 (Tree extractability (reductions)). We say an interactive pro-
tocol reducing x ∈ L to x′ ∈ L′ is (W , ε)-tree extractable if the composition of
this argument with a final P message revealing a witness w ′ for x′ ∈ L′ is a
(W , ε)-tree extractable argument for L.

Lemma 4. Let (P,V) be a (W , ε)-tree extractable reduction from L to L′, and
(P ′,V ′) be a (W ′, ε′)-tree extractable argument for L′. Then the composition of
(P,V) and (P ′,V ′) is a (WW ′, ε+ W ε′)-tree extractable argument for L.

Proof. Let the first protocol be extractable from a (w1, . . . , wµ)-tree of accepting
transcripts and the second from a (w ′1, . . . , w ′µ′)-tree of accepting transcripts. We
ask for a (w1, . . . , wµ, w ′1, . . . , w ′µ′)-tree of accepting transcripts, which has size
bounded by WW ′. We run the PPT extractor for (P ,V) on the depth wµ subtree
rooted at the origin, and for each new witness w ′ for x′ ∈ L′ that it asks for we
run the PPT extractor for (P ′,V ′) on the depth wµ′ subtree rooted at this depth
µ point. We run the inner extractor at most W times, so taking a union bound
our overall failure probability is bounded by ε+ W ε′.

Lemma 5 ([13, Lemma 1][34, Lemma 13]). If W = poly(λ) and ε =
negl(λ), then any (W , ε)-tree extractable (P ,V) has witness-extended emulation.

We now state a lemma whose object is to obtain results similar to those provided
by the Schwartz-Zippel lemma without requiring random evaluation points.

Lemma 6. For V a finite vector space over F , if g ∈ V [X , X−1] is a formal
Laurent polynomial of degree d and order e, and g(x) = [0]V for d + e + 1 values
of x ∈ F then g ≡ [0]V .

Proof. V is finite so has a basis {v1, . . . , vk}. Each coefficient of g can be uniquely
represented by a linear combination of the vi , so there exist Laurent polynomials
fi ∈ F [X , X−1] of degree at most d and order at most e such that: g ≡

∑
i vi · fi .

9

At each of the given d + e + 1 values each of these fi vanish. So fi(X).X e is a
polynomial of degree ≤ d + e, vanishing at > d + e points. So each fi ≡ 0 by the
factor theorem and hence g ≡ [0]V

Remark 1. Suitable vector spaces V for the above lemma include any G a group
of order p, or any finite vector Gk of such a group, or Laurent polynomials in
another variable Y of bounded degree and order (as a finite dimensional sub-space
of the vector space Gk [Y , Y −1]).

2.4 Commitments

As in [31], we work with the definitions of polynomial commitments from Bünz
et al. [16], which allows interactive proofs for evaluations, rather than those of
Kate et al. [27]. A commitment scheme for some space of messages X is a tuple
of three protocols (Gen,Commit,Open):

– pp ← Gen(1λ): produces public parameters pp.

– (C,S) ← Commit(pp; x): takes as input some x ∈ X ; produces a public
commitment C and a secret opening hint S.

– b ← Open(pp; C, x ,S): verifies the opening of commitment C to x ∈ X with
the opening hint S; outputs b ∈ {0, 1}.

Our commitment schemes sample S uniformly from some space, so we can pass
it as a parameter, which gives a modified signature C ← Commit(pp ; S).

Definition 7. A tuple of three protocols (Gen,Commit,Open) is a commitment
scheme for X if for any PPT adversary A:

P

[
b0 = b1 = 1
∧x0 6= x1

∣∣∣∣ pp ← Gen(1λ) ∧ (C, x0, x1,S0,S1) = A(pp)∧
b0 ← Open(pp; C, x0,S0) ∧ b1 ← Open(pp; C, x1,S1)

]
≤ negl(λ).

Definition 8. A commitment scheme (Gen,Commit,Open) provides hiding com-
mitments if for all PPT adversaries A = (A0,A1):∣∣∣∣∣∣1− 2 · P

b = b̄

∣∣∣∣∣∣
pp ← Gen(1λ)∧

(x0, x1, st) = A0(pp) ∧ b
$← {0, 1}∧

(C,S)← Commit(pp; xb) ∧ b̄ ← A1(st , C)

∣∣∣∣∣∣ ≤ negl(λ)

If this holds for all algorithms, then the commitment is statistically hiding.

Pedersen and AFGHO Commitments: For messages X = F n and any
i ∈ {1, 2, T}, the Pedersen commitment scheme is defined by:

pp ← Gen(1λ) = (g
$← Gn

i , h
$← Gi)

(C,S)← Commit(pp; x) = {r $← F ; (〈x , g〉+ rh, r)}
Open(pp; C, x ,S) = (〈x , g〉+ r(h)

?
= C)

If DLOG in Gi is hard, then this is a hiding commitment scheme. Similarly, Abe
et. al. [2] define a structure preserving commitment to group elements. In this

10

case we have X = Gn
i for i ∈ {1, 2} and:

pp ← Gen(1λ) = (g
$← Gn

3−i , H1
$← G1, H2

$← G2)

(C,S)← Commit(pp ; x) = {r $← F ; (〈x , g〉+ r · e(H1, H2), r)}
Open(pp, C, x ,S) = (〈x , g〉+ S · e(H1, H2)

?
= C)

This is hiding as r · e(H1, H2) is uniformly random in GT . It is a commitment
conditional on SXDH; providing two distinct openings violates Lemma 3). This
commitment reduces to that of [2], since in that work an opening for a commitment
to a vector x ∈ Gn

1 would supply some R ∈ G1 such that C = 〈x , g〉+ e(R, H2).
Here, an opening provides r ∈ F such that R = rH1, which is strictly stronger.
Both the Pedersen and AFGHO commitments are additively homomorphic. Com-
mitments to matrices Composing the Pedersen and AFGHO commitments
yields a two-tiered homomorphic commitment [23] to matrices. Formally, we take
X = F n×m , and for Mij ∈ X we have:

pp ← Gen(1λ) = (Γ1
$← Gm

1 , H1
$← G1,Γ2

$← Gn
2 , H2

$← G2)

(C,S)← Commit(pp; Mij) =

rrows

$← F n ; rfin
$← F ; HT ← e(H1, H2) ;

Vi ← CommitPedersen((Γ1, H1) ; Mij , rrows,i) ;

C ← CommitAFGHO((Γ2, HT) ; ~V , rfin ;

(C , (rrows , rfin , ~V))

Open(pp; C, M ,S) =

(
C ?

=
∑

i Γ2i

(∑
j MijΓ1j + rrows,iH1

)
+rfin · e(H1, H2)

)

2.5 Polynomial commitments and evaluation from
vector-matrix-vector products

Let (GenF ,CommitF ,OpenF) be a commitment scheme for X = F with public
parameters ppF . We define polynomial commitments for multilinear polynomials,
following [31,16], which (contra Kate [27]) allow interactive evaluation proofs.

Definition 9. A tuple of protocols (Gen,Commit,Open,Eval) is an honest-verifier,
zero-knowledge, extractable polynomial commitment scheme for `-variable mul-
tilinear polynomials over F if (Gen,Commit,Open) is a commitment scheme for
`-variable multilinear polynomials over F , and Eval is an HVSZK interactive
argument of knowledge for:

REval(pp, ppF) =

〈(CG ,~x , Cv), (G ,SG , v ,Sv)〉

∣∣∣∣∣∣∣∣∣∣
G ∈ F [X1, . . . , X`]
∧G is multilinear
∧v ∈ F ∧G(~x) = v

∧Open(pp; CG , G ,SG) = 1
∧OpenF (ppF ; Cv , v ,Sv) = 1

 .

Note that we have modified the definition from [16] by requiring evaluations G(~x)
are committed, which is required for zkSNARK applications. We also define a
weaker knowledge soundness property useful for R1CS SNARKs as in [13,31]:

11

Definition 10. Random Evaluation Knowledge Soundness.
For pp ← Gen(1λ), ppF ← GenF (1λ), and commitment CG , the protocol:

V → P: ~x
$← F `

P: (Ce ,Se)← CommitF (ppF ; G(~x))
P → V: CF
P,V: Accept if Eval(pp, ppF ; CG ,~x , Cv) = 1.

is an argument of knowledge with witness-extended emulation for:

R(pp, ppF) =

{
〈CG , (G ,SG)〉

∣∣∣∣ ∃~x , v , Cv ,Sv s.t.
〈(CG ,~x , Cv), (G ,SG , v ,Sv)〉 ∈ REval(pp, ppF)

}
.

We say a scheme providing this property in place of knowledge soundness is
random evaluation extractable. We also note that prior polynomial commitment
schemes in [13,17] satisfy only this weaker property. In these works, the commit-
ment to a polynomial is a n1/2 length list of commitments to lists of scalars of
length n1/2 (resp. a structure-preserving commitment to a list of Kate commit-
ments to polynomials). However, for any particular point of evaluation ~x , P only
shows that know an opening of some ~x -dependent linear combination of these
commitments. So a Knowledge Soundness adversary may pick ~x , then produce
CG , without knowledge of openings of all rows (and hence without knowledge of
a G ,SG opening of CG). In the R1CS SNARK context of [13], this is mitigated
as the surrounding protocol enforces that ~x ← F ` after CG is made public.

Any polynomial f in variables X1, . . . , X` of degree d1, . . . , d` can be refor-

mulated as a multilinear polynomial in {Xi , X 2
i , . . .X 2dlog(di+1)e−1

i : i ∈ [`]}. For
example, the bivariate polynomial f (X1, X2) := 1 + X 2

1 X2 + X 7
1 can be written

as a 4-variable multilinear polynomial g(Y1, Y2, Y3, Y4) = 1 + Y2Y4 + Y1Y2Y3,
with f (x1, x2) ≡ g(x1, x 2

1 , x 4
1 , x2). Any multilinear polynomial g in r variables can

be written as a sum of monomials, so:

g(x1, ..., xr) =
∑

(i1,...,ir)∈{1,2}r

Ti1,...,ir

∏
j∈{1,...,r}

x
ij−1
j ,

where T is an order r tensor. In the given concrete example, T would be an
2 × 2 × 2 × 2 tensor Tijkl , with T1111 = T1212 = T2221 = 1 and Tijkl = 0
otherwise. Note that this sum is the contraction of T with the r vectors (1,~xi).
In general, for any n1 × . . . × nr tensor T and 0 ≤ k ≤ r we can rearrange T
into a (

∏
i<k ni)× (

∏
i≥k ni) matrix M , such that:

n1∑
i1=1

· · ·
nr∑

ir =1

Ti1...ir
(~vj)ij

= (⊗i<k ~vi)
T

M (⊗i≥k ~vi)

for all vectors ~vi ∈ F ni . Explicitly this is given by setting Mij := Ti1,...,ir
where:

i − 1 = (ik−1 − 1) + nk−1((ik−2 − 1) + nk−2(· · · ((i2 − 1) + n2(i1 − 1)))),

j − 1 = (ir − 1) + nr ((ir−1 − 1) + nr−1(· · · ((ik+1 − 1) + nk+1(ik − 1))))

We select k to make the matrix M approximately square. In our concrete example
k = 2 and Mij is a 4×4 matrix with M11 = M22 = M43 = 1 and Mij = 0 otherwise.

12

So the evaluation of f at some point x can be replaced with the evaluation of
a multilinear polynomial in r =

∑
idlog(di + 1)e, variables, which can in turn

be replaced by a vector-matrix-vector product with vectors of length at most

2m = 2dr/2e = O((
∏

i di)
1/2

2`/2). The vectors in this product have multiplicative

structure, being formed as Kronecker products of vectors (1, x 2j

i) for i ∈ {1, . . . , r},
j ∈ {0, . . . , dlog(di + 1)e − 1}. For univariate polynomials of degree d , m ≤
(3 + log d)/2, and for multilinear polynomials in ` variables m ≤ (` + 1)/2. In
the concrete example, we have:

f (x1, x2) ≡ g(x1, x 2
1 , x 4

1 , x2) = (1, x 2
1 , x1, x 3

1)T M (1, x2, x 4
1 , x 4

1 x2),

where the two vectors (1, x 2
1 , x1, x 3

1) = (1, x1) ⊗ (1, x 2
1) and (1, x2, x 4

1 , x 4
1 x2) =

(1, x 4
1)⊗ (1, x2) have multiplicative structure.

3 An inner-product argument with a logarithmic Verifier

We begin by showing the simplest form of Dory: an argument for inner products
between two vectors in ~v1 ∈ Gn

1 , ~v2 ∈ Gn
2 , committed with AFGHO commitments

with generators (Γ2, e(H1, H2)) ∈ Gn
2 × GT and (Γ1, e(H1, H2)) ∈ Gn

1 × GT .
We highlight the parts of protocols and calculations needed only for zero-

knowledge in blue. Formally, we define a language:

(C , D1, D2) ∈ Ln,Γ1,Γ2,H1,H2 ⊂ G3
T

⇔ ∃(~v1 ∈ Gn
1 , ~v2 ∈ Gn

2 , rC ∈ F , rD1 ∈ F , rD2 ∈ F) :

D1 = 〈~v1,Γ2〉+ rD1 · e(H1, H2), D2 = 〈Γ1, ~v2〉+ rD2 · e(H1, H2),

C = 〈~v1, ~v2〉+ rC · e(H1, H2)

For n even, and Γ ′{1,2} ∈ G2n/2

{1,2}, we will show (Section 3.2) an reduction from
membership in Ln,Γ1,Γ2,H1,H2 to membership in Ln/2,Γ ′1,Γ ′2,H1,H2

. In Section 3.1,
we give an argument of knowledge for L1,Γ1,Γ2,H1,H2 . In Section 3.4 we give
an argument reducing two claims of membership of Ln,Γ1,Γ2,H1,H2

to one. In
Section 3.3 we discuss concrete efficiency and optimisations for V.

3.1 Scalar-Product

We give a interactive argument of knowledge for L1,Γ1,Γ2,H1,H2
. This requires

showing the product of two elements v1 ∈ G1 and v2 ∈ G2 under AFGHO
commitments; the analogous argument for Pedersen commitments is folklore.
Since pairings are more expensive than multiplications in G1 or G2, we combine
the usual final three checks into a single pairing with a Verifier challenge.

Scalar-ProductΓ1,Γ2,H1,H2(C , D1, D2)
Precompute: HT = e(H1, H2), χ = e(Γ1,Γ2)
P witness: (v1, v2, rC , rD1

, rD2
) for (C , D1, D2) ∈ L1,Γ1,Γ2,H1,H2

P: rP1
, rP2

, rQ , rR ←$ F , d1 ←$ G1, d2 ←$ G2

13

P → V: P1 = e(d1,Γ2) + rP1
HT , P2 = e(Γ1, d2) + rP2

HT ,

Q = e(d1, v2) + e(v1, d2) + rQHT , R = e(d1, d2) + rRHT ,
V → P: c ←$ F

P → V: E1 ← d1 + cv1, E2 ← d2 + cv2,

r1 ← rP1
+ crD1

, r2 ← rP2
+ crD2

, r3 ← rR + crQ + c2rC

V: d ←$ F , accept if:
e(E1 + dΓ1, E2 + d−1Γ2) = χ+ R + cQ + c2C

+ dP2 + dcD2 + d−1P1 + d−1cD1

− (r3 + dr2 + d−1r1)HT

Theorem 1. For Γ1, H1
$← G1, Γ2, H2

$← G2, Scalar-Product is an HVSZK,
public-coin, succinct interactive argument of knowledge for L1,Γ1,Γ2,H1,H2

with
(9, 9/|F |)-tree extractability under SXDH.

Proof. Succinctness and the Public Coin property are immediate. The argument
is complete as for an honest P, V accepts:

e(E1 + dΓ1, E2 + d−1Γ2) = e(d1 + cv1, d2 + cv2)

+d · e(Γ1, d2 + cv2) + d−1 · e(d1 + cv1,Γ2) + e(Γ1,Γ2)

= χ+ c2 · e(v1, v2) + c[e(d1, v2) + e(v1, d2)] + e(d1, d2)

+d · e(Γ1, d2) + dc · e(Γ1, v2) + d−1 · e(d1,Γ2) + d−1c · e(v1,Γ2)

= χ+ R + cQ + c2C

+dP2 + dcD2 + d−1P1 + d−1cD1 − (r3 + dr2 + d−1r1)HT

HVSZK: Note that for an honest P, E1, E2, Q are uniformly random in GT

and r1, r2, r3
$← F . We split the final check into terms that are proportional to

d−1, d , 1:

P1 = e(E1,Γ2) + r1HT − cD1, P2 = e(Γ1, E2) + r2HT − cD2,

R = e(E1, E2) + r3HT − cQ − c2C

To construct a simulator: Sample Q , E1, E2
$← G3

T and compute the challenge c

from V’s coins. Then sample r1, r2, r3
$← F and compute P1, P2, R as above.

Tree extractability: We have µ = 2 with an empty final P message, and set
w1 = w2 = 3. So we have a tree of accepting transcripts for 3 values c, and for
each c there are 3 accepting values of d . We fail if any of these 9 d are 0, which
occurs with probability ≤ 9/|F |. Across all transcripts, P1, P2, Q , R, C , D1, D2

are constant, and E1, E2, r1, r2, r3 can be interpolated as quadratics in c.
For each c, the final check contains terms in d only of form d , 1, d−1, so is a

check of equality of Laurent polynomials of degree and order 1. This difference
vanishes for three distinct choices of d , so Lemma 6 implies the coefficients for
each degree must be separately equal. So for each of the three challenge c:

e(E1(c), E2(c)) + r3(c)HT = R + cQ + c2C (1)

14

e(E1(c),Γ2) + r1(c) · e(H1, H2) = P1 + cD1 (2)

e(Γ1, E2(c)) + r2(c) · e(H1, H2) = P2 + cD2 (3)

For i = 1, 2, we interpolate Ei(c) = di + cvi + c2Ui and ri = rPi + crDi + c2rUi .
Our first task is to show that Ui = [0]Gi

and rUi
= 0, i.e. that P is constrained

to send E1, E2, r1, r2 that depend only affinely on c. Equation 2 is an equality of
polynomials in GT [c] of degree 2 which holds at 3 points. Applying Lemma 6,
the coefficients are equal. Writing out the quadratic and linear coefficients gives:

e(U1,Γ2) + e(rU1
H1, H2) = 0, e(v1,Γ2) + rD1

HT = D1.

Since Γ2, H2
$← G2, Lemma 3 forces the first equation to be satisfied by U1 =

rU1
H1 = [0]G1

. We also have v1, rD1
satisfying our constraint on D1. Similar

considerations applied to Equation 3 imply that U2 = [0]G2 , rU2 = 0, and provide
a v2, rD2 satisfying the constraint on D2.

It remains to extract rC to satisfy the constraint on C . We interpolate
r3(c) = rR + crQ + c2rC , and substitute our linear expressions for E1, E2 into
Equation 1:

R + cQ + c2C = e(d1, d2) + rRHT + c(e(d1, v2) + e(v1, d2) + rQHT)

+c2(e(v1, v2) + rC HT)

This is an equality of quadratics in GT [c] holding at 3 distinct values, so
from Lemma 6 the c2 coefficients are equal. So C = e(v1, v2) + rC HT . Hence
(v1, v2, rD1

, rD2
, rC) is a witness for (C , D1, D2) ∈ L1,Γ1,Γ2,H1,H2

.

3.2 Dory-Reduce

We now show an interactive argument reducing membership of L2m ,Γ1,Γ2,H1,H2

to membership of L2m−1,Γ ′1,Γ ′2,H1,H2
. Informally, the simplest approach to this

(neglecting zero-knowledge) would be to start with the 3 claims:

D1 = 〈~v1,Γ2〉, D2 = 〈Γ1, ~v2〉, C = 〈~v1, ~v2〉,
and fold each in some LCC-DLOG-like [13,15,17] fashion with a V challenge α

into claims about 2m−1 length vectors ~v ′iα,Γiα:

D ′1 = 〈 ~v1α,Γ2α〉, D ′2 = 〈Γ1α, ~v2α〉, C ′ = 〈 ~v1α, ~v2α〉,
P ,V would separately compute commitments ∆1 = 〈 ~v1α,Γ ′2〉 and ∆2α = 〈Γ ′1, ~v2α〉
from α and precomputed data. We would then combine ~viα and Γiα for each i in
accordance with additional Verifier challenges. This produces a final C ′′ from
C ′, D ′1, D ′2, a final D ′′1 from D ′1 and ∆1, and a final D ′′2 from D ′2 and ∆2, with the
Prover sending additional cross-terms to support these combinations. However,
this approach requires sending at least 8 elements of GT (two for each claim to
fold and two for the final combining stage). Instead, in Dory-Reduce we effectively
swap the order of these two stages, which allows sending only 6 elements of GT .

15

Dory-Reducem,Γ1,Γ2,Γ ′1,Γ ′2,H1,H2
(C , D1, D2)

Precompute: HT = e(H1, H2), ∆1L = 〈Γ1L,Γ ′2〉, ∆1R = 〈Γ1R,Γ ′2〉,
∆2L = 〈Γ ′1,Γ2L〉, ∆2R = 〈Γ ′1,Γ2R〉, and χ = 〈Γ1,Γ2〉
P witness: (~v1, ~v2, rc , rD1 , rD2) for (C , D1, D2) ∈ L2m ,Γ1,Γ2,H1,H2

P: rD1L , rD1R , rD2L , rD2R ←$ F

P → V: D1L = 〈 ~v1L,Γ ′2〉+ rD1L
HT , D1R = 〈 ~v1R,Γ ′2〉+ rD1R

HT

D2L = 〈Γ ′1, ~v2L〉+ rD2L
HT , D2R = 〈Γ ′1, ~v2R〉+ rD2R

HT

V → P: β ←$ F

P(∗): ~v1 ← ~v1 + βΓ1, ~v2 ← ~v2 + β−1Γ2, rC ← rC + βrD2
+ β−1rD1

P: rC+ , rC− ←$ F

P → V: C+ = 〈 ~v1L, ~v2R〉+ rC+HT , C− = 〈 ~v1R, ~v2L〉+ rC−HT

V → P: α←$ F

P(∗∗): ~v1
′ ← α ~v1L + ~v1R, ~v2

′ ← α−1 ~v2L + ~v2R

r ′D1
← αrD1L + rD1R , r ′D2

← α−1rD2L + rD2R ,

r ′C ← rC + αrC+
+ α−1rC−

V(∗∗): C ′ ← C + χ+ βD2 + β−1D1 + αC+ + α−1C−

D ′1 ← αD1L + D1R + αβ∆1L + β∆1R

D ′2 ← α−1D2L + D2R + α−1β−1∆2L + β−1∆2R

V: Accept if (C ′, D ′1, D ′2) ∈ L2m−1,Γ ′1,Γ ′2,H1,H2

P witness: (~v1
′, ~v2

′, r ′C , r ′D1
, r ′D2

)

Theorem 2. For Γ ′1
$← G2m−1

1 , H1
$← G1, Γ ′2

$← G2m−1

2 , H2
$← G2, Dory-Reduce

is an an HVSZK, public-coin, succinct interactive argument of knowledge for
L2m ,Γ1,Γ2,H1,H2

with (9, 12/|F |)-tree extractability under SXDH.

To informally see why tree-extractability holds, we observe that the P witness
for (C , D ′1, D ′2) ∈ L2m−1,Γ ′1,Γ ′2,H1,H2

opens D ′1, D ′2 as binding commitments. V
computes these commitments with bivariate Laurent polynomials, and across a
tree of accepting transcripts P opens at enough points to allow an extractor to
open each coefficient of each polynomial.

Since these commitments are binding, coefficients equal to 0 must be opened by
~0, and coefficients ∆{1,2}{L,R} must be opened by Γ{1,2}{L,R}. So P is substantially

constrained in their witness ~v ′1, ~v ′2, The extractor also finds vectors opening
D{1,2}{L,R} (which will end up being ~v{1,2}{L,R}).

Substituting these into the product constraint on C ′ (as a function of α,β),
we again get an equality of bivariate Laurent polynomials at enough places to
force equality of coefficients. Each of C , D1, D2 can be computed from coefficients
of C ′, and these will turn out to be exactly the conditions on C , D1, D2 required
to have found a witness (v1, v2, . . .) for (C , D1, D2) ∈ L2m ,Γ1,Γ2,H1,H2

. Essentially
similar arguments are used throughout for tree-extractability.

Proof (Theorem 2). Succinctness and the Public Coin properties are immediate.
HVSZK holds as all messages from P to V are uniformly random elements of GT ,
so are trivially simulated. Completeness holds from substituting the definition

16

of P’s witness into the constraints of L2m−1,Γ ′1,Γ ′2,H1,H2
, and cancelling terms to

obtain the constraints of L2m ,Γ1,Γ2,H1,H2
.

Tree extractability: We have µ = 2, and set w1 = w2 = 3. So we have a tree of
accepting transcripts for 3 values β, and for each β 3 values of α. We fail if any
of these challenges are 0, which occurs with probability ≤ 12/|F |. For each leaf,
the Prover reveals the witness (~v1

′, ~v2
′, r ′C , r ′D1

, r ′D2
). Our witness extraction is

analogous to witness extraction of GIPA in [17] or of the improved inner product
argument in [15, Appendix B].

D1L, D1R are constant for all transcripts in the tree. We interpolate C+, C−
as a Laurent polynomials in GT [β,β−1] of degree 1 and order -1, and interpo-
late ~v1

′, ~v2
′, r ′D1

, r ′D2
, r ′C can as bivariate Laurent polynomials of degree 1 and

order -1 in variables α,β, with computable coefficients in G
n/2
1 ,G

n/2
2 , F , F and F

respectively. Since (C ′, D ′1, D ′2)(α,β) ∈ L2m−1,Γ ′1,Γ ′2,H1,H2
for each leaf:

D ′1 = αD1L + D1R + αβ〈Γ1L,Γ ′2〉+ β〈Γ1R,Γ ′2〉
= 〈~v1

′(α,β),Γ ′2〉+ r ′D1
(α,β) · e(H1, H2),

holds for all 9 (β,α) pairs. For each challenge value of β, we have two Laurent
polynomials in α of degree and order 1, equal at 3 values. So by Lemma 6 at
each of these three β we have an equality of Laurent polynomials. So overall, we
have a pair of Laurent polynomials in β of degree and order 1, whose coefficients
are in a finite dimensional subspace of G[α,α−1], with equality holding at 3
values of β. So applying Lemma 6 again, we have an equality of bivariate Laurent
polynomials, and so each coefficient must match.

So monomials with α−1 or β−1 factors have vanishing coefficients. Γ ′2
$← G2m−1

2

and H2
$← G2, so Lemma 3 implies that if we can compute ~v , r such that

〈~v ,Γ ′2〉+ r · e(H1, H2) = 0, then ~v = ~0 and r = 0. So ~v1
′, r ′D1

must be multilinear

in α,β. Similarly the αβ and β coefficients of ~v1
′(α,β) must be vectors with

inner products with Γ ′2 of 〈Γ1L,Γ ′2〉 and 〈Γ1R,Γ ′2〉 respectively, and so must be
Γ1L and Γ1R respectively (or else we violate Lemma 3).

We apply symmetric arguments to ~v2
′, r ′D2

. So the interpolation of ~v1
′(α,β)

and ~v2
′(α,β) provides vectors ~v1L, ~v1R, ~v2L, ~v2R such that:

~v1
′(α,β) = α ~v1L + ~v1R + β(αΓ1L + Γ1R)

~v2
′(α,β) = α−1 ~v2L + ~v2R + β−1(α−1Γ2L + Γ2R)

We interpolate r ′C (α,β) = rC +βrD2
+β−1rD1

+αfα(β)+α−1fα−1(β), for fα, fα−1

two Laurent polynomials of degree 1 and order -1. Then substituting into the
constraint of L2m−1,Γ ′1,Γ ′2,H1,H2

on C ′:

C ′ = C + χ+ βD2 + β−1D1 + αC+(β) + α−1C−(β)

= 〈~v1
′(α,β), ~v2

′(α,β)〉+ r ′C (α,β)HT

= (〈 ~v1L, ~v2L〉+ 〈 ~v1R, ~v2R〉+ rC HT) + χ

+ β(〈Γ1L, ~v2L〉+ 〈Γ1R, ~v2R〉+ rD2
HT) + β−1(〈 ~v1L,Γ2L〉+ 〈 ~v1L,Γ2L〉+ rD1

HT)

+ α(〈 ~v1L, ~v2R〉+ 〈Γ1L,Γ2R〉+ β〈Γ1L, ~v2R〉+ β−1〈 ~v1L,Γ2R〉+ fα(β)HT)

17

+ α−1(〈 ~v1R, ~v2L〉+ 〈Γ1R,Γ2L〉+ β〈Γ1R, ~v2L〉+ β−1〈 ~v1R,Γ2L〉+ fα−1(β)HT)

These are two bivariate Laurent series of degree 1 and order -1, equal at 3
values of α, for each of 3 values of β, and so applying Lemma 6 in two rounds we
conclude they are equal coefficient by coefficient. In particular comparing the
1,β,β−1 coefficients:

C = 〈 ~v1L, ~v2L〉+ 〈 ~v1R, ~v2R〉+ rC HT

D1 = 〈 ~v1L,Γ2L〉+ 〈 ~v1R,Γ2R〉+ rD1HT

D2 = 〈Γ1L, ~v2L〉+ 〈Γ1R, ~v2R〉+ rD2HT

and so ((~v1L|| ~v2L), (~v2L|| ~v2R), rC , rD1
, rD2

) is the desired witness.

Remark 2. No property of Dory-Reduce depends on the construction of Γ1,Γ2.
Instead we require only that the smaller commitment keys (Γ ′1||H1), (Γ ′2||H2) are
sampled randomly. In particular Γ1,Γ2 can depend on Γ ′1, Γ ′2 without affecting
the tree-extractability of Dory-Reduce.

3.3 Dory-Innerproduct

The full inner product argument applies Dory-Reduce iteratively to shrink an
inner-product to a product, and then applies Scalar-Product.

Dory-InnerproductΓ1,0,Γ2,0,H1,H2
(C , D1, D2)

Precompute: HT = e(H1, H2), for all j ∈ 0 . . .m − 1 compute
Γ1,j+1 = (Γ1,j)L, Γ2,j+1 = (Γ2,j)L, for all i ∈ 0 . . .m compute
χi = 〈Γ1,i ,Γ2,i〉, and for all i ∈ 0 . . .m − 1 compute:

∆1L,i = 〈(Γ1,i)L,Γ2,i+1〉 = ∆2L,i = 〈Γ1,i+1, (Γ2,i)L〉,
∆1R,i = 〈(Γ1,i)R,Γ2,i+1〉, ∆2R,i = 〈Γ1,i+1, (Γ2,i)R〉,

P witness: (~v1, ~v2, rC , rD1
, rD2

) for (C , D1, D2) ∈ L2m ,Γ1,0,Γ2,0,H1,H2

For j = 0 . . .m − 1:
P,V: (C , D1, D2)← Dory-Reducem−j ,Γ1,jΓ2,j ,Γ1,j+1,Γ2,j+1,H1,H2

(C , D1, D2)
P,V: Scalar-ProductΓ1,m ,Γ2,m ,H1,H2

(C , D1, D2)

Theorem 3. If Γi,0
$← G2m

i and Hi
$← Gi , then Dory-Innerproduct is an HVSZK,

public-coin, succinct interactive argument of knowledge for L2m ,Γ1,Γ2,H1,H2 with
(9m+1, 10.5 · 9m/|F |)-tree extractability under SXDH. If n = 2m = poly(λ) then
Dory-Innerproduct has witness extended emulation.

Proof. Since Γi,0
$← G2m

i , for any j ≥ 0 we have Γi,j
$← G2m−j

i as it is the first
2m−j elements of Γi,0. So for each round the requirements of Theorems 2 and 1
are satisfied. Succinctness, the Public Coin property, Completeness and HVSZK
follow from the same properties of the two sub-arguments.

Tree-extractability follows from Lemma 4 applied round by round. We have
m + 1 rounds each with W = 9, and the error bound ε is given by (9m+1 +
12(9m + 9m−1 + . . .))/|F | = 10.5 · 9m/|F |. When n = 2m = poly(λ), then
W = O(n log 9) = poly(λ) and ε = O(n log 9/|F |) = negl(λ). Witness extended
emulation follows from Lemma 5.

18

Concrete costs of Dory-Innerproduct P: In each call to Dory-Reduce, P sends
6 elements of GT to V. For the j -th call P performs 6 multi-pairings of size
2m−j−1, O(2m−j) operations in F , and O(1) operations in GT . For the call to
Scalar-Product, P computes O(1) pairings and exponentiations in GT . So the
overall cost to P is dominated by multi-pairings of total size 6× 2m , O(m) group
operations, and O(2m) field arithmetic.
V: Naively, in each invocation of Dory-Reduce V computes 10 exponentiations
in GT , 2 inversions and 2 multiplications in F , and O(1) additional operations
in GT and additions in F . In the invocation of Scalar-Product V computes 1
pairing, 7 exponentiations in GT , 1 inversion and 5 multiplications in F , and
O(1) additional operations in GT and additions in F .
Deferring V Computation: V’s computation depends only on the messages
from P and the 4m + 1 precomputed values. For each call to Dory-Reduce, V uses
the values ∆1L = ∆2L,∆1R,∆2R,χ, and in the final check V uses e(Γ1m ,Γ2m).
We will use superscripts on group elements and subscripts on the challenge
scalars to denote which call they came from. We assume that we precompute
∆j
{1,2}{L,R} as before, but instead of computing χi for i ∈ 0 . . .m, we compute:

χ =
∑m−1

j=0 〈Γ1j ,Γ2j 〉 and χfin = 〈Γ1m ,Γ2m〉. Collapsing the Dory-Reduce rounds,
we obtain the arguments for Scalar-Product:

C ← C + χ+ β0D0
2 + β−1

0 D0
1 +

m−1∑
j=0

(αj C j
+ + α−1

j C j
−)+

+

m−1∑
j=1

βj (α−1
j−1D j−1

2L + D j−1
2R + α−1

j−1β
−1
j−1∆

j−1
2L + β−1

j−1∆
j−1
2R)

+

m−1∑
j=1

β−1
j (αj−1D j−1

1L + D j−1
1R + αj−1βj−1∆

j−1
1L + βj−1∆

j−1
1R)

D1 ← αj−1Dm−1
1L + Dm−1

1R + αm−1βm−1∆
m−1
1L + βm−1∆

m−1
1R

D2 ← α−1
j−1Dm−1

2L + Dm−1
2R + α−1

m−1β
−1
m−1∆

m−1
2L + β−1

m−1∆
m−1
2R

which are substituted into the check in Scalar-Product. This reduces V’s group
operations to a multi-exponentiation in GT of size 9m +9, two exponentiations in
GT , and one pairing. Using Montgomery’s trick for batch inversions, we compute
the coefficients with one inversion and O(m) multiplications and additions in F .

3.4 Batching inner products

Suppose we have (C , D1, D2), (C ′, D ′1, D ′2) ∈ Ln,Γ1,Γ2,H1,H2
, and P possesses

witnesses (~v1, ~v2, rC , rD1
, rD2

) and (~v1
′, ~v2

′, r ′C , r ′D1
, r ′D2

) respectively. Then we
have the following two-to-one interactive argument:

Batch-InnerproductΓ1,Γ2
(C , D1, D2, C ′, D ′1, D ′2)

19

Precompute: HT = e(H1, H2) ∈ GT

P witness:(~v1, ~v2, rc , rD1
, rD2

) for (C , D1, D2) ∈ Ln,Γ1,Γ2,H1,H2
, and

(~v1
′, ~v2

′, r ′c , r ′D1
, r ′D2

) for (C ′, D ′1, D ′2) ∈ Ln,Γ1,Γ2,H1,H2

P: rX ←$ F

P → V: X = 〈~v1, ~v2
′〉+ 〈~v1

′, ~v2〉+ rX HT

V → P: γ ←$ F

P: ~v1
′′ ← γ ~v1 + ~v1

′, ~v2
′′ ← γ ~v2 + ~v2

′,

r ′′D1
← γrD1 + r ′D1

, r ′′D2
← γrD2 + r ′D2

, r ′′C ← γ2rC + γrX + r ′C
V: D ′′1 ← γD1 + D ′1, D ′′2 ← γD2 + D ′2, C ′′ ← γ2C + γX + C ′,
V: Accept if (C ′′, D ′′1 , D ′′2) ∈ Ln,Γ1,Γ2,H1,H2

P witness: (~v1
′′, ~v2

′′, r ′′C , r ′′D1
, r ′′D2

)

Theorem 4. If Γi
$← Gn

i , Hi
$← Gi , Batch-Innerproduct is an HVSZK, public-

coin, succinct interactive argument of knowledge for (Ln,Γ1,Γ2,H1,H2
)
2

with (3, 3/|F |)-
tree extractability under SXDH.

Proof. Succinctness, the Public Coin property, Completeness, Soundness and
HVSZK of this protocol are immediate.

To show tree extractability, we have µ = 1 and set w1 = 3. We are given

witnesses for 3 distinct challenges γ. For i ∈ {1, 2}, we interpolate ~v ′′i and r ′′Di
as

quadratics in γ. Then from Lemma 6, the contribution of the quadratic terms to
D ′′i = γDi + D ′i is identically zero, and so from Lemma 3 there are no quadratic

terms. Hence ~vi
′′(γ) = γ~vi + ~v ′i for some ~vi and ~v ′i , and r ′′Di

(γ) = γr + Di + r ′Di
,

compatible with the commitments Di , D ′i . Interpolating r ′′C (γ) = r ′C +γrX +γ2rC

and substituting in our affine ~vi :

γ2C + γX + C ′ = C ′′(γ) = 〈~v1
′′(γ), ~v2

′′(γ)〉+ r ′′C (γ)HT

= γ2(〈~v1, ~v2〉+ rC HT) + γ(〈~v1, ~v2
′〉+ 〈~v1

′, ~v2〉+ rX HT) + (〈~v1
′, ~v2

′〉+ r ′C HT).

Since this holds for 3 values of γ, Lemma 6 implies that the two polynomials
have identical coefficients, so C = 〈~v1, ~v2〉+ rC HT and C ′ = 〈~v1

′, ~v2
′〉+ r ′C HT

and we have extracted the required witnesses.

Concretely, in Batch-Innerproduct messages from P to V have size |GT |; P’s
computation is clearly dominated by an 2n-sized multi-pairing and V ’s computa-
tion is clearly O(1) exponentiations in GT .

4 Inner products with public vectors of scalars

In the previous section, we constructed Dory-Innerproduct, a succinct argument
of knowledge for generalised inner products between committed vectors in Gn

1

and Gn
2 . For a polynomial commitment scheme we also require the ability to

prove products of committed vectors with vectors of scalars with multiplicative
structure. However, this structure is not preserved when instances are batched,

20

so we will extend our arguments to allow for general vectors in F n . We define a
family of languages, parameterised by a pair of vectors ~s1, ~s2 ∈ F n :

(C , D1, D2, E1, E2) ∈ Ln,Γ1,Γ2,H1,H2
(~s1, ~s2) ⊂ G3

T × G1 × G2

⇔ ∃(~v1 ∈ Gn
1 , ~v2 ∈ Gn

2 , rC , rD1
, rD2

, rE1
, rE2

∈ F) :

D1 = 〈~v1,Γ2〉+ rD1
· e(H1, H2), D2 = 〈Γ1, ~v2〉+ rD2

· e(H1, H2),

E1 = 〈~v1, ~s2〉+ rE1
H1, E2 = 〈~s1, ~v2〉+ rE2

H2,

C = 〈~v1, ~v2〉+ rC · e(H1, H2),

We extend the arguments of the previous section to these languages. Note that
(C , D1, D2, E1, E2) ∈ Ln,Γ1,Γ2,H1,H2(~s1, ~s2) implies (C , D1, D2) ∈ Ln,Γ1,Γ2,H1,H2 .

4.1 General reduction with O(n) cost

There is a reduction from Ln,Γ1,Γ2,H1,H2
(~s1, ~s2) to Ln,Γ1,Γ2,H1,H2

, with O(n) cost
to P,V, where the ~si are essentially multiplied by some V-selected challenge in
Gi and added to the witness vectors.

Fold-Scalarsn,Γ1,Γ2,H1,H2(C , D1, D2, E1, E2, ~s1, ~s2)
Precompute: HT = e(H1, H2)
P witness: (~v1, ~v2, rC , rD1

rD2
, rE1

, rE2
) for

(C , D1, D2, E1, E2) ∈ Ln,Γ1,Γ2,H1,H2
(~s1, ~s2)

V → P: γ ←$ F

P(∗∗): ~v1
′ ← ~v1 + γ ~s1H1, ~v2

′ ← ~v2 + γ−1 ~s2H2,

r ′C ← rC + γrE2
+ γ−1rE1

V(∗∗): C ′ ← C + 〈~s1, ~s2〉HT + γ · e(H1, E2) + γ−1 · e(E1, H2),

D ′1 ← D1 + e(H1, 〈~s1, γΓ2〉), D ′2 ← D2 + e(γ−1〈Γ1, ~s2〉, H2)
V: Accept if (C ′, D ′1, D ′2) ∈ Ln,Γ1,Γ2,H1,H2

P witness: (~v1
′, ~v2

′, r ′C , rD1 , rD2)

Theorem 5. For Γi
$← Gn

i , Hi
$← Gi , Fold-Scalars is an HVSZK, public-

coin, succinct interactive argument of knowledge for Ln,Γ1,Γ2,H1,H2
(~s1, ~s2) with

(3, 3/|F |)-tree extractability under SXDH.

Proof. Completeness, Succinctness and Public-Coin are immediate. P messages
are independent and uniformly random, so zero-knowledge is straightforward.

To show tree-extractability, we have µ = 1 and w1 = 3. We have 3 challenges
of γ, and fail if any are 0, which occurs with probability at most 3/|F |. For

i ∈ {1, 2}, we interpolate ~v ′i and r ′i as degree 1 order 1 Laurent polynomials in γ.

Then from Lemma 6, the contribution of the γ−1 terms of ~v ′1 and r ′1 to D ′1 are
identically zero, and so from Lemma 3 there are no γ−1 terms. Similarly the γ

term of ~v ′1 must be H1 ~s1. Similarly there are no γ terms in ~v ′2 and r ′2, and the γ−1

term of ~v ′2 must be H2 ~s2. So we find some ~v1, ~v2 such that: ~v1
′(γ) = ~v1 + γ ~s1H1,

~v2
′(γ) = ~v2 + γ−1 ~s2H2. We interpolate r ′C (γ) = r ′C + γrE2 + γ−1rE1 , and get:

C ′(γ) =C + 〈~s1, ~s2〉HT + γ · e(H1, E2) + γ−1 · e(E1, H2)

21

=〈~v1
′(γ), ~v2

′(γ)〉+ r ′C (γ)HT

=〈~v1, ~v2〉+ (r ′C + 〈~s1, ~s2〉)HT

+γ · e(H1, 〈~s1, ~v2〉+ rE2H2) + γ−1 · e(〈~v1, ~s2〉+ rE1H1, H2).

Since this holds for 3 values of γ, the 1, γ, γ−1 Lemma 6 implies that the coefficients
must be equal, which immediately implies we have extracted the required witness.

4.2 Extending Dory-Reduce

We add E1β = 〈Γ1, ~s2〉, E2β = 〈~s1,Γ2〉 to P ’s first message. Prior to their second

message, P samples rE{1,2}{+,−}
$← F and adds

P → V: E1+ = 〈 ~v1L, ~s2R〉+ rE1+H1, E1− = 〈 ~v1R, ~s2L〉+ rE1−H1,

E2+ = 〈 ~s1L, ~v2R〉+ rE2+H2, E2− = 〈 ~s1R, ~v2L〉+ rE2−H2

to their second message. After P’s second message, P and V compute:

P: r ′E1
← rE1 + αrE1+ + α−1rE2− , r ′E2

← rE2 + αrE2+ + α−1rE2− .

V: E ′1 ← E1 + βE1β + αE1+ + α−1E2−,

E ′2 ← E2 + β−1E2β + αE2+ + α−1E2−,

P,V: ~s1
′ ← α ~s1L + ~s1R, ~s2

′ ← α−1 ~s2L + ~s2R

Theorem 6. For Γ ′2
$← Gm−1

2 , H2
$← G2, Γ1

$← Gm−1
2 , H1

$← G1, the extended
Dory-Reduce is an HVSZK, public-coin, succinct interactive argument of knowl-
edge for L2m ,Γ1,Γ2,H1,H2(~s1, ~s2) with (9, 12/|F |)-tree extractability under SXDH.

Proof. Succinctness and the Public Coin properties are immediate. Completeness
and HVSZK hold as in the proof of Theorem 2. (9, 12/|F |)-tree extractability is
implied by Theorem 2 as a witness for (C , D1, D2) ∈ Ln,Γ1,Γ2,H1,H2 suffices.

4.3 Extending Dory-Innerproduct

We use the extended Dory-Reduce, and apply Fold-Scalars at n = 1:

Dory-InnerproductΓ1,0,Γ2,0,H1,H2
(C , D1, D2, E1, E2, ~s1, ~s2)

Precompute: HT = e(H1, H2), for all i ∈ 0 . . .m − 1 compute:

Γ1,i+1 = (Γ1,i)L, Γ2,i+1 = (Γ2,i)L,

∆1L,i = 〈(Γ1,i)L,Γ2,i+1〉, ∆1R,i = 〈(Γ1,i)R,Γ2,i+1〉,
∆2L,i = 〈Γ1,i+1, (Γ2,i)L〉, ∆2R,i = 〈Γ1,i+1, (Γ2,i)R〉,

and for all i ∈ 0 . . .m compute χi = 〈Γ1i ,Γ2i〉.
P witness: (~v1, ~v2, rC , rD1

, rD2
, rE1

, rE2
) for

(C , D1, D2, E1, E2) ∈ L2m ,Γ1,0,Γ2,0,H1,H2
(~s1, ~s2)

For j = 0 . . .m − 1

22

P,V: (C , D1, D2, E1, E2, ~s1, ~s2)←
Dory-Reducem−j ,Γ1,jΓ2,j ,Γ1,j+1,Γ2,j+1,H1,H2

(C , D1, D2, E1, E2, ~s1, ~s2)
P,V: (C , D1, D2)← Fold-ScalarsΓ1,m ,Γ2,m ,H1,H2(C , D1, D2, E1, E2, ~s1, ~s2)
P,V: Scalar-ProductΓ1,m ,Γ2,m ,H1,H2(C , D1, D2)

Theorem 7. If Γ1,0
$← G2m

1 , Γ2,0
$← G2m

2 , H1
$← G1 and H2

$← G2, then the ex-
tended Dory-Innerproduct is an HVSZK, public-coin, succinct interactive argument
of knowledge for L2m ,Γ1,Γ2,H1,H2

(~s1, ~s2) with (9m+1, 10.5 · 9m/|F |)-tree extractabil-
ity under SXDH. If n = 2m = poly(λ) then the extended Dory-Innerproduct has
witness extended emulation.

Proof. Succinctness and the Public Coin properties are immediate. Completeness
and HVSZK hold as in the proof of Theorem 3. Tree-extractability and witness
extended emulation when n = poly(λ) is implied by Theorem 3 as a witness for
(C , D1, D2) ∈ Ln,Γ1,Γ2,H1,H2

suffices.

Concrete costs of the extended Dory-Innerproduct P sends 3 additional
elements of G1 and G2 in each invocation of Dory-Reduce. P also computes
exponentiations of total size 2×2m−j exponentiations in G1 and G2, and O(2m−j)
additional field arithmetic. So in total, P ’s work is: (6P +4G2 +4G1 +O(1)F)×n +
o(n) which is dominated by the 6n pairings, especially as multi-exponentiations
in G1,G2 can be accelerated with variants of Pippenger’s algorithm. The total
size of P ’s messages is: (6|GT |+ 3|G2|+ 3|G1|) log n + 4|GT |+ |G2|+ |G1|+ 5|F |.
As before, V defers computation to reduce their costs. To compute the C , E1, E2

passed to Fold-Scalars requires, respectively, a multi-exponentiation in GT of size
9m + 9, a multi-exponentiation in G1 of size 4m and a multi-exponentiation in G2

of size 4m. The computation of the final D1, D2 and verification of Fold-Scalars
and Scalar-Product require 3 additional pairings and O(1) exponentiations. Whilst
naively there are 5 pairings, 2 of them are pairings with H1 and 2 are pairings
with H2, which can be combined in the final check of Scalar-Product.
V must also compute the final ~s1, ~s2 used as arguments to Fold-Scalars. In

particular, these are the scalars: 〈~s1,⊗m−1
i=0 (αi , 1)〉, 〈~s2,⊗m−1

i=0 (α−1
i , 1)〉. For general

vectors ~s1, ~s2, these require O(n) operations in F . However, when the vectors ~si

themselves have multiplicative structure, we have the identity:

〈⊗m−1
i=0 (`i , ri),⊗m−1

i=0 (ai , 1)〉 =

m−1∏
i=0

(`iai + ri),

which allows the computation of the product in O(m) operations in F . Similarly, a
vector that can be written as a sum of ` vectors with multiplicative structure can
have this inner product computed in O(`m) operations in F (as in Section 4.4).

4.4 Extending Batch-Innerproduct

P samples rY1 , rY2

$← F , and we add:

23

P → V: Y1 = 〈~v1, ~s2
′〉+ 〈~v1

′, ~s2〉+ rY1
H1, Y2 = 〈~s1

′, ~v2〉+ 〈~s1, ~v2
′〉+ rY2

H2

to P’s first message. After receiving γ, P and V compute:

P: r ′′E1
← γ2rE1 + γrY1 + r ′E1

, r ′′E2
← γ2rE2 + γrY2 + r ′E2

V: E ′′1 ← γ2E1 + γY1 + E ′1, E ′′2 ← γ2E2 + γY2 + E ′2
P,V: ~s1

′′ ← γ ~s2 + ~s2
′, ~s2

′′ ← γ ~s1 + ~s1
′

Theorem 8. If Γ1
$← Gn

1 , Γ2
$← Gn

2 , H1
$← G1 and H2

$← G2, the extended
Batch-Innerproduct is an HVSZK, public-coin, succinct interactive argument of
knowledge for Ln,Γ1,Γ2,H1,H2

(~s1, ~s2)×Ln,Γ1,Γ2,H1,H2
(~s1
′, ~s2
′) with witness extended

emulation under SXDH.

Proof. Succinctness and the Public Coin properties are immediate. Completeness
and HVSZK hold following the proof of Theorem 4. Witness extended emulation
is implied by Theorem 4, as a witness for membership of (Ln,Γ1,Γ2,H1,H2

)
2

suffices.

P’s messages to V have size |GT |+ |G2|+ |G1|. As before, P’s computation
is dominated by a 2n-size multi-pairing and V’s group operations are O(1)
exponentiations. For general vectors ~s1, ~s2, V must perform O(n) operations in F .
However, if ~si , ~si

′ are some linear combination of `, `′ vectors with multiplicative
structure, then s ′′i is a linear combination of `+ `′ vectors with multiplicative
structure; this representation can be computed in O(m) operations in F .

5 Vector-Matrix-Vector products

Let n = 2m . Fix some commitment scheme for F and F n×n with public parameters
ppF , ppF n×n respectively, and define:

(CM , Cy , ~L, ~R) ∈ LVMV ,n,pp
Fn×n ,ppF

⊂ GT × G1 × F n × F n

⇔ ∃(M ∈ F n×n , y ∈ F ,SM ,Sy) : y = ~LT M ~R,

Open(ppF n×n , CM , M ,SM) = 1, Open(ppF , Cy , y ,Sy) = 1.

This is a stepping stone to polynomial commitments, in which ~L, ~R will have
multiplicative structure. For a batch of ` evaluations these vectors will be lin-
ear combinations of ` vectors with multiplicative structure. We require public
parameters ppVMV , generated by the public coin GenVMV :

Γ1,0,Γ1,fin , H1
$← G2m

1 × G1 × G1, Γ2,0,Γ2,fin , H2
$← G2m

2 × G2 × G2,

∀i ∈ 1, . . . , m : Γ1,i = (Γ1,i)L, Γ2,i = (Γ2,i)L,

∀i ∈ 0, . . . , m − 1 : ∆1L,i = 〈Γ1,i+1,Γ2,i+1〉, ∆2L,i = 〈Γ1,i+1,Γ2,i+1〉,
∀i ∈ 0, . . . , m − 1 : ∆1R,i = 〈(Γ1,i)R,Γ2,i+1〉, ∆2R,i = 〈Γ1,i+1, (Γ2,i)R〉,

24

χ =

m−1∑
j=0

〈Γ1,j ,Γ2,j 〉, χfin = 〈Γ1m ,Γ2m〉

HT = e(H1, H2) Υ = e(H1,Γ2,fin)

We fix Pedersen commitment parameters ppF = (Γ1,fin , H1), and parameters
ppF n×n = {Γ1,0, H1,Γ2,0, H2} for the matrix commitment from Section 2.4. Recall

that if Commit(pp, M) = (T , (~rrows, rfin, ~T ′)), then ~T ′ ∈ Gn
1 is a vector of Pedersen

commitments to the rows of M with generators (Γ1,0 ; H1), and T is a AFGHO

commitment to ~T ′ with generators (Γ2,0 ; H2). So T is a hiding commitment

to M . The alert reader may note that ~T ′ depends only on M and ~rrows; it is
retained in the opening hint by P to accelerate the evaluation proof.

The general strategy for an argument of knowledge for LVMV ,n,pp
Fn×n ,ppF

is

as follows. The commitment to y = ~LT M ~R is ycom = yΓ1,fin + ryH1. P can

compute the vector ~v = ~LT M , and by construction y = ~LT M ~R = 〈~v , ~R〉. Since

the commitment is linearly homomorphic: vcom := 〈~L, C ′〉 = CommitΓ1,0;H1
(~v ;

〈~L, ~rrows〉) is a hiding commitment to ~v with blind rv = 〈~L, ~rrows〉. Recall also

that T is a hiding commitment to ~T ′ ∈ Gn
1 . So to prove (T , ycom , ~L, ~R) ∈

LVMV ,n,pp
Fn×n ,ppF

, it suffices to prove knowledge of ~T ′ ∈ Gn
1 ,~v ∈ F n , rv , rfin, ry ∈

F such that: T = 〈~T ′,Γ2〉 + rfinHT , 〈~L, ~T ′〉 = 〈~v ,Γ1〉 + rv H1, and ycom =

〈~v , ~R〉Γ1,fin + ryH1

Eval-VMV-REppVMV
(T , ycom , ~L, ~R)

P witness: M , (~T ′, ~rrows, rfin), ry

P: ~v = ~LT M , rv = 〈~L, ~rrows〉, y = 〈~v , ~R〉, rC , rD2 , rE1 , rE2

$← F

P → V: C = e(〈~v , ~T ′〉,Γ2,fin) + rC HT , D2 = e(〈Γ1,~v〉,Γ2,fin) + rD2HT ,

E1 = 〈~L, C ′〉+ rE1
H1, E2 = yΓ2,fin + rE2

H2,

P,V: Σ-protocol showing P knows s ∈ F 3:
E2 = s1Γ2,fin + s2H2 ∧ yC = s1Γ1,fin + s3H1

P witness: s = (y , rE2
, ry)

P,V: Σ-protocol showing P knows t ∈ F 2:
e(E1,Γ2,fin)−D2 = e(H1, t1Γ2,fin + t2H2)
P witness: t = (rE1 + rv ,−rD2)

P,V: Dory-InnerproductΓ1,0,Γ2,0,H1,H2
(C , T , D2, E1, E2, L, ~R).

P witness: (~T ′,~vΓ2,fin , rC , rfin, rD2
, rE1

, rE2
)

Theorem 9. For ppVMV sampled as above, Eval-VMV-RE is an HVSZK, public-
coin, complete, succinct interactive argument of knowledge for LVMV . Assuming

SXDH: If for fixed T and tuples (~Li , ~Ri , y i
com) ∈ F n×F n×G1, ~Ri(~Li)T span F n×n

and P can pass Eval-VMV-RE(T , y i
com , ~Li , ~Ri) with non-negligible probability for

each i, then M , ~T ′, ~rrows, rfin and the set {r i
y}i can be extracted.

25

Remark 3. Note that we do not claim that Eval-VMV-RE with ~L, ~R sampled is
(O(n2), O(n2)/|F |)-tree extractable, as without the spanning condition on ~L, ~R
the transcript can be independent of at least one entry of M .

Proof. Completeness is straightforward from the definition of P’s witnesses.
Succinctness, the Public Coin property and HVSZK of Eval-VMV-RE follow
straightforwardly from the same properties for the two auxiliary Σ-protocols and
Dory-Innerproduct.

Recall that in GenVMV , Γ1,0,Γ2,0,Γ1,fin ,Γ2,fin , H1, H2 are all sampled, so on
SXDH finding a non-trivial linear relationship between them contradicts Lemma 3.

Given tuples (~Li , ~Ri , y i
com) such that P passes Eval-VMV-RE for some fixed T

with non-negligible probability, witness extract Dory-Innerproduct and the two
sigma proofs in Eval-VMV-RE. For each i , we have (suppressing i superscripts):

~v1 ∈ Gn
1 , ~v2 ∈ Gn

2 , S , yC ∈ G1, D2 ∈ G2, E1, E2 ∈ GT , y ∈ F .

s2, ry , t1, t2, rC , rD1 , rD2 , rE1 , rE2 ∈ F :

e(E1,Γ2,fin) = D2 + e(H1, t1Γ2,fin − t2H2) (4),

E2 = yΓ2,fin + s2H2 (5), yC = yΓ1,fin + ryH1 (6),

T = 〈~v1,Γ2,0〉+ rD1 · e(H1, H2) (7), D2 = 〈Γ1,0, ~v2〉+ rD2 · e(H1, H2) (8),

E1 = 〈~L, ~v1〉+ rE1
H1 (9), E2 = 〈~R, ~v2〉+ rE2

H2 (10)

Since T is a constant in (7), ~v1
i , r i

D1
must also be fixed for all i , as otherwise the

difference of some pair gives a non-trivial relationship between Γ2, H2, contradict-
ing Lemma 3. Then substituting (8, 9) into (4) we have for each i (suppressing i
superscripts):

e(〈~L, ~v1〉,Γ2,fin) = 〈Γ1,0, ~v2〉+ e(H1, (t1 − rE1
)Γ2,fin − (t2 − rD2

)H2) (11)

Then if ~v2
i is not a linear function of ~Li , there exists a linear combination of

these relationships eliminating ~Li from the left hand side (since ~v1 is a constant)
without eliminating ~v2 on the right. So we would obtain a non-trivial relationship
between Γ1,0, , H1, contradicting Lemma 3. From (5, 10) we have (suppressing

i superscripts): 〈~R, ~v2〉 = yΓ2,fin + (s2 − rE2
)H2, and so if y i and (s i

2 − r i
E2

) are

not bilinear in ~Li , ~Ri we obtain a non-trivial relationship between Γ2,fin , H2,

contradicting Lemma 3. In particular since ~Ri(~Li)T span F n×n we extract fixed

matrices M , B ∈ F n×n such that y i = (~Li)T M ~Ri and s i
2 − r i

E2
= (~Li)T B ~Ri for

all i . So ~v2
i = (~Li)T MΓ2,fin + (~Li)T BH2. Substituting into (11), we have for

each i (suppressing i superscripts):

e(〈~L, ~v1 −MΓ1,0〉+ (rE1 − t1)H1,Γ2,fin) = e(〈~LT B ,Γ1,0〉+ (rD2 − t2)H1, H2)

and so either we find a non-trivial pairing relationship between Γ2,fin , H2, contra-
dicting Lemma 3, or for all i and suppressing superscripts:

0 = 〈~L, ~v1 −MΓ1,0〉+ (rE1 − t1)H1(12), 0 = 〈~LT B ,Γ1,0〉+ (rD2 − t2)H1(13).

26

Similarly a non-trivial relationship between Γ1,0, H1 would violate Lemma 1. So

Equation 13 implies that (~Li)T B = 0 and r i
D2

= t i
2 for all i , so B = 0. From

Equation 12 the first we deduce that r i
E1
− t i

1 must be a linear function of ~Li and

independent of ~R, so we have some ~rrows ∈ F n such that r i
E1
− t i

1 = (~Li)T ~rrows,
which implies that ~v1 = MΓ1,0 + ~rrowsH1. Substituting into (7) we find T equals
〈MΓ1,0,Γ2,0〉+e(H1, rD2

H2+〈 ~rrows,Γ2,0〉), i.e. that T is a commitment to M with

opening hint (~rrows, rfin = rD2
, ~T ′ = ~v1). Substituting y = (~Li)T M ~Ri into (6), y i

C

is a commitment to the evaluation. So we have extracted a matrix M , evaluations
y i and opening hints ~T ′, ~rrows, rfin and r i

y consistent with the commitments.

We show a modified protocol for which tree extractability is achieved in
isolation, where P shows that T can be opened at a random point:

Eval-VMVppVMV
(T , ycom , ~L, ~R)

P witness: M , (~T ′, ~rrows, rfin), ry

V → P: u ←$ F

P,V: ~L′ = (1, u, u2, . . . un−1), ~R′ = (1, un , u2n , . . . , u(n−1)n)
P: ry′ ←$ F .

P → V: y ′com = ~L′MR′Γ1,fin + ry′H1

P,V: Eval-VMV-REppVMV
(T , ycom , ~L, ~R)∧Eval-VMV-REppVMV

(T , y ′com , ~L′, ~R′)

P witnesses: (M , (~T ′, ~rrows, rfin), ry) and (M , (~T ′, ~rrows, rfin), ry′)

Theorem 10. Eval-VMV is a HVSZK succinct interactive argument of knowledge
for LVMV with (O(n2+log 9,O(n2+log 9)/|F |)-tree extractability under SXDH.

Proof. All properties except tree extractability are immediate.
We take µ = 1 and set w1 = n2. Internal to each of the 2n2 calls to

Eval-VMV-RE, the two sigma proofs are each (2, 2/|F |)-tree extractable, and
Dory-Innerproduct is (O(n log 9),O(n log 9)/|F |)-tree extractable.

So it suffices to show that this O(n2+log 9)-sized tree of accepting transcripts

requires P to pass Eval-VMV-RE for T fixed and some collection of ~Li , ~Ri con-

taining ~L, ~R such that ~Ri(~Li)T span F n×n . Reading off the entries in ~R′(~L′)T

row-wise gives 1, u, u2, . . . , un2−1. Any linear dependence between these n2 vec-
tors would imply the existence of a non-zero polynomial of degree n2−1 vanishing
at n2 distinct u, which is impossible. Hence they span F n×n as required.

5.1 Batching

From Section 4.4, we can batch multiple invocations of Dory-Innerproduct and
so we similarly have an argument for a batches of Eval-VMV-RE or Eval-VMV.
We can further optimise these batch argument by observing that the Sigma
proofs in Eval-VMV-RE show knowledge of logarithms with respect to fixed bases
Γ2,fin , H2, Γ1,fin , H1. So as is standard we linearly combine these claims with
random challenges supplied by V and prove the combination, with negligible
alteration to soundness and extractability.

27

5.2 Concrete costs

For an n × n matrix M , the size of the public parameters is (n + 2)|G1|+ (n +
2)|G2|+ (3 log n + 4)|GT |, and running Gen requires sampling n + 2 elements of
G1, n + 2 elements of G2, 3n pairings and log n additions in GT .

To Commit a matrix M , P samples n + 1 elements of F , and performs n
multi-exponentiations of size n + 1 in G1, a multi-pairing of size n, and an
exponentiation and addition in GT . The n multi-exponentiations in G1 are over
fixed generators (Γ1,0||H1), so Pippenger-type optimisations save an asymptotic
factor 2 log n. Proving Eval-VMV-RE requires proving Dory-Innerproduct, three
multi-exponentiations in G1 of size n and O(1) additional exponentiations in
G1,G2,GT . The messages from P to V have size 5|F | + 2|G1| + 2|G2| + 3|GT |;
V’s computation is 5 exponentiations in |G2|, 3 exponentiations in |G1|, an
exponentiation in GT and 2 pairings. Beyond proving a batch of two instances
of Eval-VMV-RE, proving Eval-VMV requires P perform O(1) exponentiations in

G1. The messages from P to V have size |G1|. ~L′, ~R′ have multiplicative structure,
so V’s computation with them is O(log n) multiplications in F .

6 Dory-PC

We recall the discussion in Section 2.5. Concretely, the evaluation of any multi-
variate polynomial in X1 . . .X` of degrees d1, . . . , d` at ~x ∈ F ` can be replaced
by the evaluation of a multilinear polynomial in r =

∑
idlog(di + 1)e variables,

where the coefficients of the two polynomials are equal. Let m = dr/2e. Following
Section 2.5, we extract a 2m × 2m or 2m−1 × 2m matrix M . If m is odd we
replace M with (1, 0)⊗M , which is square. Then f (~x) = (1− z)~LT M ~R where

~L = ⊗m
i=1(1,~xi) and z = 0 for r even, ~L = (1, z)⊗

(
⊗m−1

i=1 (1,~xi)
)

and z
$← F for r

odd, and ~R = ⊗r
i=r−m+1(1,~xi). Note that the implicit extension to a polynomial

in 2m variables has no impact, as the additional variable is unconditionally
set to 0. So we have reduced polynomial evaluation to a vector-matrix-vector
product, where the vectors ~L, ~R have multiplicative structure. Dory-PC-RE uses
the commitment scheme of Section 2.4, and uses Eval-VMV-RE as Eval. Similarly
Dory-PC uses Eval-VMV as Eval.

Theorem 11. Dory-PC-RE is an honest-verifier, statistical zero-knowledge, ran-
dom evaluation extractable polynomial commitment scheme for r-variable mul-
tilinear polynomials. Dory-PC is an honest-verifier, statistical zero-knowledge,
extractable polynomial commitment scheme for r-variable multilinear polynomials.

Proof. All properties except extractability are immediate for both schemes. For
Dory-PC, Theorem 10 proves extractability. For Dory-PC-RE: Suppose some
2r+1 = 2n2 distinct ~x ∈ F r are sampled. If the outer products ~R~LT do not span
F n×n , there is some non-zero element of the dual whose inner product with these
is 0; this gives a some non-zero multilinear polynomial vanishing for all ~x . By
the Schwartz-Zippel lemma and a union bound, this has probability at most
|F |2r

.(r/|F |)−2r+1

= (r2/|F |)2r

= negl(λ). Theorem 9 then completes the proof.

28

Since the vectors ~L, ~R (and ~L′, ~R′ in Dory-PC) have multiplicative structure,
the remarks made in Section 4.3 apply; V’s use of these vectors are restricted to
computing inner products with vectors ⊗m−1

i=0 (αi , 1), ⊗m−1
i=0 (α−1

i , 1) which can be
computed in O(m) operations in F given x , αi ,α

−1
i .

6.1 Concrete costs of Dory-PC-RE

Let n =
∏

i(di + 1), and let |M | = O(n) be the number of non-zero entries in the
matrix M . In the worst case di = 4 and m = 3

2 log 5 log n + O(1). For multilinear

or univariate polynomials m = 1
2 log n + O(1).

Using the fact that the 2m × 2m matrix has at most |M | non-zero entries, P ’s
time to run Commit is dominated by |M | + 2m exponentiations in G1 and 2m

pairings. From Section 5.2, P ’s time to run Eval is dominated by O(2m) pairings.
The size of P → V messages is (6m +7)|GT |+(3m +3)(|G2|+ |G1|)+8|F |, and

V → P messages are O(m) sampled elements of F . V computes a 9m +O(1) sized
multi-exponentiation in GT and O(1) additional exponentiations and pairings.

6.2 Batching

Given a batch of ` polynomials with individual mi ≤ m, we can use the results
of Section 5.1 to batch. The P → V messages then have size (6m + 3`+ 5)|GT |+
(3m +2`+2)(|G2|+|G1|)+8|F |. P ’s main computation remains O(`×2m) pairings,
though the implied constant is reduced 3×. Deferring V ’s computations as before,
V’s performs an exponentiation in GT of size 9m + 3` + 6, exponentiations in
G1 and G2 of size 3m + 2`+ 2, and a multi-pairing of size 4. Unfortunately, the
computations with vectors ~L, ~R cannot be efficiently batched, and so V performs
an additional 2`m multiplications and additions in F .

As a corollary, the concrete costs of a batch of ` instances of Dory-PC is
given by the cost of a batch of 2` instances of Dory-PC-RE, with an additional `
elements of G1 added to the P to V messages.

7 Implementation

We implemented Dory to provide polynomial commitments for dense multilinear
polynomials, building on framework for non-interactive arguments and dense
multilinear polynomials in the Spartan library [31]. This took ∼ 3400 LOC.
Our implementation used the BLS12-381 curve as implemented in blstrs [1]. We
implemented fast algorithms for computing (multiple) multi-exponentiations and
torus based compression for serialisation of elements of GT in ∼ 1650 LOC.

The implementation was evaluated on a machine with an AMD Ryzen 5 3600
CPU at 3.6 GHz and 16GB RAM. All measurements were taken for a single core.
We compare with Spartan-PC, a discrete-log based random evaluation extractable
polynomial commitment scheme implemented in the Spartan library [31], which is
a highly optimised derivative of the commitment scheme in [34] using Curve25519
as implemented by curve25519-dalek for its curve arithmetic. Throughout, we

29

compare dense multilinear polynomials in m variables, i.e. with n = 2m random
coefficients. We report results for a variety of polynomial sizes in Figure 3.

 0.01

 0.1

 1

 10

 100

 1000

 10000

Prover Commit (s) Prover Evaluation (s)

1

10

100

212 216 220 224

Verifier Evaluation (ms)

Polynomial Degree

100

1000

10000

100000

212 216 220 224

|Commitment| (bytes)

Polynomial Degree

212 216 220 224

|Evaluation Proof| (bytes)

Polynomial Degree

Spartan-PC
Dory-PC-RE

Fig. 3: Measured performance of Dory-PC-RE for varying polynomial degree.

As can be seen, Dory is slower than the baseline for P in Commit by a
consistent factor ∼ 2.7, matching the relative speed of G1 arithmetic on the
implementations of Curve25519 and BLS12-381 as seen in Figure 2.

The time taken for P to prove an evaluation is similarly somewhat slower than
Spartan-PC. Naively scaling from microbenchmarks in Figure 2 would suggest
that Dory might be ∼ 45× slower asymptotically. As can be seen, this is essentially
true on small instances, but for n ∼ 220 the linear F arithmetic to evaluating
the polynomial becomes dominant for Spartan-PC; for n = 228 Dory is ∼ 30%
slower than Spartan-PC. Dory’s V clearly shows O(log n) complexity to verify
an evaluation, concretely taking ∼ (15 + 0.85 log n)ms. The V of Spartan-PC
scales like n1/2, and is concretely slower than Dory for n & 224.

In terms of communication complexity, Dory clearly shows a fixed 192-byte
commitment size, whilst Dory’ proofs are consistently larger than those of Spartan-
PC by a factor ∼ 24. This is this is the ratio between 6|GT | + 3(|G2| + |G1|)
in the BLS12-381 curve and 2|G1| in Curve25519, and so is the ratio between
the log n contributions to the proof size in the two systems. In applications, one
might expect to have ≈ 1 evaluation proof of each freshly committed polynomial;
in this context the point where a Dory evaluation proof becomes smaller than a
Spartan-PC commitment is n = 218.

Batching: Recall that Dory-PC effectively batches two evaluations of Dory-PC-
PE. We use the batched Dory-PC-RE argument to open multiple committed
polynomial evaluations. This naturally impacts the time taken for P to run Eval,
the resulting proof size, and V’s time taken to run Eval on the batch. We report
results for a variety of batch sizes in Figure 4.

30

 0.5

 1

 2

 1 4 16 64 256

Prover

s/
p

ro
of

Batch size

1

2

4

8

16

 1 4 16 64 256

|Proof|

kb
/p

ro
of

Batch size

1

2

4

8

16

 1 4 16 64 256

Verifier

m
s/

pr
oo

f

Batch size

Linear Fit
Dory

Fig. 4: Performance of Eval for batched Dory-PC-RE evaluations, n = 220.

As can be seen, the marginal costs to increase the batch size by one are small;
the marginal P time is ∼ 305ms, the marginal contribution to the proof size is
912 bytes, and the marginal V time is ∼ 1.1ms. For large batches, this provides
P a constant ∼ 11.5× saving over proving each evaluation separately; for proof
sizes and V large batches save a factor ∼ 2 log n.

References

1. blstrs. https://github.com/filecoin-project/blstrs/, 2020.
2. M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo.

Structure-preserving signatures and commitments to group elements. In T. Rabin,
editor, CRYPTO, 2010.

3. S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. Ligero: Lightweight
sublinear arguments without a trusted setup. In CCS, 2017.

4. P. S. L. M. Barreto, B. Lynn, and M. Scott. Constructing elliptic curves with
prescribed embedding degrees. In S. Cimato, G. Persiano, and C. Galdi, editors,
Security in Communication Networks, 2003.

5. P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order.
In B. Preneel and S. Tavares, editors, Selected Areas in Cryptography, 2006.

6. E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Fast Reed-Solomon
Interactive Oracle Proofs of Proximity. In ICALP, 2018.

7. E. Ben-Sasson, A. Chiesa, A. Kazorian, D. Ojha, A. Popovs, M. Riabzev,
N. Spooner, M. Virza, and N. Ward. libiop: a C++ library for IOP-based
zkSNARKs. https://github.com/relic-toolkit/relic.

8. E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward.
Aurora: Transparent succinct arguments for R1CS, 2019.

9. D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange. Elligator: Elliptic-curve
points indistinguishable from uniform random strings. In CCS, 2013.

10. J.-F. Biasse, M. J. Jacobson, Jr., and A. K. Silvester. Security estimates for
quadratic field based cryptosystems. In ACISP, 2010.

11. A. R. Block, J. Holmgren, A. Rosen, R. D. Rothblum, and P. Soni. Time- and
space-efficient arguments from groups of unknown order. Springer-Verlag, 2021.

12. D. Boneh, B. Bünz, and B. Fisch. A survey of two verifiable delay functions.
Cryptology ePrint Archive, Report 2018/712, 2018.

13. J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In EUROCRYPT,
2016.

14. S. Bowe, J. Grigg, and D. Hopwood. Recursive proof composition without a
trusted setup. Cryptology ePrint Archive, Report 2019/1021, 2019.

31

https://github.com/filecoin-project/blstrs/
https://github.com/relic-toolkit/relic

15. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell.
Bulletproofs: Short proofs for confidential transactions and more. In S&P, 2018.

16. B. Bünz, B. Fisch, and A. Szepieniec. Transparent snarks from dark compilers.
Cryptology ePrint Archive, Report 2019/1229, 2019.

17. B. Bünz, M. Maller, P. Mishra, N. Tyagi, and N. Vesely. Proofs for inner pairing
products and applications. Cryptology ePrint Archive, Report 2019/1177, 2019.

18. A. Chiesa, D. Ojha, and N. Spooner. Fractal: Post-quantum and transparent
recursive proofs from holography. Cryptology ePrint Archive, Report 2019/1076,
2019.

19. S. Dobson, S. D. Galbraith, and B. Smith. Trustless groups of unknown order with
hyperelliptic curves. Cryptology ePrint Archive, Report 2020/196, 2020.

20. A. Gabizon, Z. J. Williamson, and O. Ciobotaru. Plonk: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. 2019.

21. S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers.
Discrete Applied Mathematics, 156(16):3113 – 3121, 2008.

22. J. Groth. Linear algebra with sub-linear zero-knowledge arguments. In CRYPTO,
2009.

23. J. Groth. Efficient zero-knowledge arguments from two-tiered homomorphic
commitments. In D. H. Lee and X. Wang, editors, ASIACRYPT, 2011.

24. J. Groth and Y. Ishai. Sub-linear zero-knowledge argument for correctness of a
shuffle. In EUROCRYPT, 2008.

25. T. Icart. How to hash into elliptic curves. In CRYPTO, 2009.
26. M. J. Jacobson, Jr. and A. J. v. d. Poorten. Computational aspects of NUCOMP.

In ANTS, 2002.
27. A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to

polynomials and their applications. In ASIACRYPT, 2010.
28. H. Lipmaa. On diophantine complexity and statistical zero-knowledge arguments.

In ASIACRYPT, 2003.
29. M. Naehrig, P. S. L. M. Barreto, and P. Schwabe. On compressible pairings and

their computation. In S. Vaudenay, editor, AFRICACRYPT, 2008.
30. C. Papamanthou, E. Shi, and R. Tamassia. Signatures of correct computation. In

TCC, 2013.
31. S. Setty. Spartan: Efficient and general-purpose zksnarks without trusted setup. In

D. Micciancio and T. Ristenpart, editors, CRYPTO, 2020.
32. A. Shallue and C. E. van de Woestijne. Construction of rational points on elliptic

curves over finite fields. In ANTS, 2006.
33. M. Tibouchi. Elligator squared: Uniform points on elliptic curves of prime order as

uniform random strings. In FOCS, 2014.
34. R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish. Doubly-efficient

zkSNARKs without trusted setup. In S&P, 2018.
35. J. Zhang, T. Xie, Y. Zhang, and D. Song. Transparent polynomial delegation and

its applications to zero knowledge proof. In S&P, 2020.

32

	Dory: Efficient, Transparent arguments for Generalised Inner Products and Polynomial Commitments

