
The Cost of Adaptivity in Security Games on
Graphs

Chethan Kamath1?, Karen Klein2??, Krzysztof Pietrzak3? ? ?, and Michael
Walter4

1 Tel Aviv University, ckamath@protonmail.com
2 ETH Zurich, karen.h.klein@protonmail.com

3 IST Austria, pietrzak@ist.ac.at
4 Zama, Paris michael.walter@zama.ai

Abstract. The security of cryptographic primitives and protocols against
adversaries that are allowed to make adaptive choices (e.g., which parties
to corrupt or which queries to make) is notoriously difficult to estab-
lish. A broad theoretical framework was introduced by Jafargholi et al.
[Crypto’17] for this purpose. In this paper we initiate the study of lower
bounds on loss in adaptive security for certain cryptographic protocols
considered in the framework. We prove lower bounds that almost match
the upper bounds (proven using the framework) for proxy re-encryption,
prefix-constrained PRFs and generalized selective decryption, a security
game that captures the security of certain group messaging and broad-
cast encryption schemes. Those primitives have in common that their
security game involves an underlying graph that can be adaptively built
by the adversary.
Some of our lower bounds only apply to a restricted class of black-box
reductions which we term “oblivious” (the existing upper bounds are
of this restricted type), some apply to the broader but still restricted
class of non-rewinding reductions, while our lower bound for proxy re-
encryption applies to all black-box reductions. The fact that some of our
lower bounds seem to crucially rely on obliviousness or at least a non-
rewinding reduction hints to the exciting possibility that the existing
upper bounds can be improved by using more sophisticated reductions.
Our main conceptual contribution is a two-player multi-stage game called
the Builder-Pebbler Game. We can translate bounds on the winning
probabilities for various instantiations of this game into cryptographic
lower bounds for the above-mentioned primitives using oracle separation
techniques.

? Supported by Azrieli International Postdoctoral Fellowship. Most of the work was
done while the author was at Northeastern University and Charles University, funded
by the IARPA grant IARPA/2019-19-020700009 and project PRIMUS/17/SCI/9,
respectively.

?? Supported in part by ERC CoG grant 724307. Most of the work was done while the
author was at IST Austria funded by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (682815 -
TOCNeT).

? ? ? Funded by the European Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme (682815 - TOCNeT).

1 Introduction

Consider the following game played between a challenger C and an adversary
A using a symmetric-key encryption (SKE) scheme (Enc,Dec). The challenger
first samples, independently and uniformly at random, N keys k1, . . . , kN . These
correspond to users U1, . . . , UN respectively. The adversary A is now allowed to
adaptively make two types of queries:

1. Ask for an encryption of kj under the key ki to obtain Enc(ki, kj), or
2. Corrupt a user Ui to obtain the key ki.

At the end of the game, A challenges C on a user Ui∗ and is given either the real
key ki∗ or an independent, random key r. A wins this “real or random game”
if it correctly guesses which of the two it got. If no efficient A can win with
probability higher than 1/2 + ε we say the protocol is 2ε secure.

The above game can be thought of as the adversary A adaptively building a
“key-graph” G = (V, E), where the vertices V = {1, . . . , N} correspond to the
users and their keys, whereas the (directed) edges E correspond to the encryption
queries that A makes: a directed edge (i, j) is added to E if A requests the
encryption of kj under the key ki. Note that for i∗ to be a non-trivial challenge,
i∗ must be a sink and must not be reachable (in the graph-theoretic sense) from
any of the corrupted vertices — otherwise, A can simply decrypt the ciphertexts
along the path from any corrupted node to the challenge to learn ki∗ .

The above game is called generalised selective decryption (GSD) and it cap-
tures the security of protocols for multicast encryption [43] and continuous group
key agreements (CGKA) [2, 1]. We will use GSD in this introduction as the run-
ning example to convey our ideas. The main question regarding GSD is whether
the security of this game (given that the key-graph is acyclic) can be based on
the IND-CPA security of the underlying SKE.5 For this we need to prove a com-
putational soundness (i.e., security) theorem of the form: if the SKE is ε-secure
then the GSD game is ε′-secure for some ε′ that depends on ε. Ideally, the loss
of security should be kept to a polynomial, i.e., ε′ = ε · poly(N). Otherwise,
this requires to either set the security parameter of the underlying SKE very
large if one wants to maintain provable security guarantees, which will lead to
inefficiency. Or the provided security is only heuristic, leaving the possibility of
an attack against GSD which does not break the underlying SKE.

The simpler task of proving a soundness theorem in case the adversary is
selective, in the sense that it commits to its queries (and thus the key-graph
G) at the beginning of the GSD game, is relatively straightforward to achieve.
If the graph is known ahead of time, it is easy to construct a series of O(N2)
hybrids, each of which can be shown indistinguishable under the security of the

5 In case the key-graph contains cycles, one must additionally assume that the SKE is
key-dependent message (KDM) secure [7]. Such problems are of a different flavour
and we don’t deal with them. As mentioned before, the GSD game is typically used
to capture the security of protocols where the acyclicity is enforced by the protocol
rules.

2

SKE (see, e.g., [31]). The study of adaptive security of GSD, where the key-
graph is unknown at the beginning of the game and is only gradually revealed
during the query phase, was initiated in [43] and remains notoriously hard. In
particular, non-trivial results are only known in settings, where the adversary
is restricted to query (subgraphs of) specific key-graphs (which needs to be
enforced by the higher level protocol). The state of the art is represented by the
general Piecewise-Guessing framework [31, 38].

1.1 Our Results

The Piecewise-Guessing Framework has been successfully used to give improved
security guarantees against adaptive attacks for various applications [38, 20,
1, 2, 35], but there still are significant gaps to knows attacks. In this paper
we approach this question from the other “lower bounds” direction, and for
several applications show that this will not be possible, at least not when using
existing techniques. In particular, (in the full version [33] of this paper) we show
that there do not exist efficient non-rewinding black-box reductions – henceforth
called “straight-line” reductions for brevity – that prove security of

– certain forms of restricted GSD (including its public key variant) based on
the IND-CPA security of the underlying SKE (see Section 6),

– popular protocols for CGKA based on the IND-CPA security of the under-
lying public-key encryption (PKE) (see full version [33, Section 7]),

– the GGM construction for prefix-constrained PRFs based on the pseudoran-
domness of the underlying PRG (see Section 7)

– proxy re-encryption6 (PRE) schemes [8] based on the IND-CPA security of
the PKE and N -weak key privacy (see full version [33, Section 9])

with only polynomial loss in advantage. For PRE we can even rule out general
(i.e., rewinding) black-box reductions. For the theorem statements of the latter
three results, we refer to the corresponding sections, but we will discuss GSD in
a little more detail, so we provide an informal statement here.

Theorem 1 (Informally Stated, Corollary 1). Any straight-line reduction
proving security of unrestricted adaptive GSD based on the IND-CPA security
of the underlying SKE scheme loses at least a factor that is super-polynomial
(NΩ(logN)) in the number of users N .

For the proof we rely heavily on the adversary’s freedom to query arbitrary
directed acyclic graphs (DAG). (Actually, the graphs have some structure and
so certain conditions may be imposed on it but these restrictions are very weak.)

6 A proxy re-encryption scheme is a public-key encryption scheme that allows the
holder of a key pk to derive a re-encryption key for any other key pk′. This re-
encryption key lets anyone transform ciphertexts under pk into ciphertexts under
pk′ without having to know the underlying message.

7 Recall that a tree does not necessarily have to be rooted, so this includes any DAG
such that the corresponding undirected graph does not contain any cycles.

3

Application Underlying Graph Lower Bound Reduction Upper Bound

GSD

Path PN NΩ(log(N)) Oblivious NO(log(N))[19]

Rooted Binary In-Tree Bn NΩ(log(N)) Oblivious NO(log(N)) [43]

Tree7 NΩ(log(N)) Straight-line NO(log(N))[19]

Arbitrary DAG 2Ω(
√
N) Oblivious NO(N/ log(N))[31]

PRE
Path PN NΩ(log(N)) Oblivious NO(log(N))[20]

Binary Tree Bn NΩ(log(N)) Oblivious NO(log(N)) [20]

Arbitrary DAG 2Ω(N) Arbitrary NO(N/ log(N))[20]

GGM CPRF Tree nΩ(log(n)) Straight-line nO(log(n)) [21]

TreeKEM Regular Tree MΩ(log(log(M))) Straight-line QO(log(M)) [1]
Table 1: Summary of lower bounds on the loss in security established in our work.
N = 2n denotes the size of the graph. Therefore, in the case of GGM constrained PRF,
n denotes the length of the input string. For TreeKEM, M denotes the number of users
and Q refers to the number of queries allowed to the adversary.

In many applications however, the adversary is much more restricted in terms of
the graphs it can query, e.g. in protocols for multicast encryption like logical key
hierarchies (LKH) [51, 52, 13], and hence our bound does not apply. However,
for a certain sub-class of straight-line reductions, which we term “oblivious” (see
discussion below), we obtain results for such applications. These results show
that the upper bounds for GSD given in [31], which are oblivious, are essentially
tight and can only be improved by exploiting new non-oblivious techniques (and
similarly for the bounds for PRE given in [20]), as stated informally below.

Theorem 2 (Informally Stated, Corollaries 2 to 4 in Full Version [33]).
Any oblivious reduction proving security of adaptive GSD restricted to paths or

binary trees based on the IND-CPA security of the underlying SKE scheme loses
a factor that is super-polynomial (NΩ(logN)) in the number of users N ; for

unrestricted GSD the loss is sub-exponential (2Ω(
√
N)).

Our results for PRE have a similar flavor, but are even stronger, since in this
case the reduction is naturally more restricted. A summary of the results can be
found in Table 1.

The common thread to the applications we consider is that their security
game can be abstracted out by a two-player multi-stage game which we call
the “Builder-Pebbler Game”. We are unable to establish lower bounds for other
applications of the Piecewise-Guessing Framework (e.g., computational secret
sharing or garbling circuits) as their security model is not quite captured by the
Builder-Pebbler Game. The high level reason for this is that the graphs (e.g.,
the circuit to be garbled or the access structure) in these applications is fixed
ahead of the time and the adaptivity comes from other sources (e.g., choice of
garbling input or targeted user). Therefore we would require other combinatorial
abstractions to establish lower bounds for them. In fact, building on the high level
ideas introduced in this work, [34] showed lower bounds for adaptive security of
Yao’s garbling (see Section 1.2.2 for a comparison). We defer the discussion on the

4

Builder-Pebbler Game to the next section (Section 2.2) and explain informally
what we mean by oblivious reductions next, mostly from the perspective of GSD.
We will then argue that this comprises a natural class of reductions.

Oblivious reductions. Oblivious reductions are a certain class of black-box
reductions and our definition is motivated by the reductions in [31]. On a high
level, the behaviour of an oblivious reduction is “independent” of the adversary’s
behaviour throughout the simulation of the security game. To see what we mean
by this, let’s return to the example of GSD. A reduction (simulating some consec-
utive hybrids) can decide to answer an encryption query issued by the adversary
either with a consistent or an inconsistent ciphertext (let’s ignore the challenge
ciphertext for the moment). In particular, it has total control over the number of
inconsistencies in the final simulation (assuming it knows the number of queries
the adversary will make). However, as the key-graph is only gradually revealed
to the reduction, it doesn’t know where the edge (representing the encryption
query) will end up within the key-graph. We call a GSD reduction oblivious if
it does not make use of the partial graph structure it learns during the game
but rather sticks to some strategy that is independent of the history of the ad-
versary’s queries. There are several ways one could formalise this: for example,
one could require the reduction as initially “committing” to which queries it will
answer inconsistently. However, this does not mean that for all queries it has to
commit to its decision, but rather commit to some minimal description of the
edges it intends to respond inconsistently to. In order to capture as many re-
ductions as possible (while still being able to prove lower bounds), we ended up
defining them as reductions which commit to a minimal set of nodes which cov-
ers all inconsistent edges, i.e., a minimal vertex cover.8 For example in the case
of graphs of high indegree, clearly, guessing the set of sinks of inconsistent edges
gives a much more succinct representation. A formal definition of an oblivious
GSD reduction is given in the full version [33, Definition 21]; the corresponding
definition for PREs is given in the full version [33, Definition 34].

Why oblivious reductions? We note that oblivious reductions are a quite nat-
ural notion, since they can easily be defined uniformly for all adversaries. Not sur-
prisingly, they encompass some of the key reductions in the literature. Beside the
reductions proposed and analysed in [31] (and its follow-up works), partitioning-
based reductions, which have been successfully employed in a plethora of works
[15], also roughly behave in an oblivious manner.9 Moreover, oblivious reduc-
tions encompass the currently-known techniques for establishing upper bounds
for primitives with dynamic graph-based security games, like GSD, PRE, CPRFs

8 Technically, we do not require minimal vertex cover, but a weaker notion which we
call “non-trivial” vertex cover (see Definition 2).

9 On every signature query issued by the adversary, the reduction in [15] tosses a
(biased) random coin (independent of the history of the simulation) and depending
on its outcome decides whether or not to embed the (RSA) challenge in the signature.
The simulation is identical if these coin-tosses are all carried out together at the
beginning of the game.

5

etc.. Therefore, our results imply that in order to obtain better upper bounds
on the loss function Λ even in the more restricted settings, one needs to deviate
significantly from the current proof techniques (i.e., non-oblivious or rewinding
reductions for GSD and restricted PRE). Accordingly, our results on oblivious
reductions should not be viewed as separations, but rather as a guide towards
new avenues to finding better reductions by ruling out a large class of reductions
– such possibilities are discussed in the full version [33, Section 10].

1.2 Related Work

1.2.1 Adaptive Security The security of multi-party computation in the
context of adaptive corruption has been well studied. It is known that a pro-
tocol that is proven secure against static (i.e., non-adaptive) adversaries may
turn out insecure once the adversary is allowed adaptive corruption [12]. On the
other hand, in the (programmable) random oracle model it is possible to com-
pile a selective protocol into an adaptively-secure one through non-committing
encryption [41].

The notion of generalised selective decryption (GSD) was introduced by Pan-
jwani [43] to study adaptive corruption in restricted settings. His motivation was
to better understand the problem of selective decommitment [16] (which is also
known as selective opening in some works [5]) and the closely-related problem
of selective decryption. The problem was further studied by Fuchsbauer et al.
[19] who gave a quasi-polynomial reduction when the GSD game is restricted to
trees.

In parallel, the study of adaptive security in the setting of circuit garbling
was undertaken in the works of Bellare et al. [4], Hemenway et al. [29] and
Jafargholi and Wichs [32]. The latter two works are especially relevant since
they established a relationship between adaptive security and graph pebbling.
It is also worth noting that the study of adaptive security of garbled RAM was
carried out in [23, 22].

The above two series of works culminated in the Piecewise-Guessing Frame-
work of Jafargholi et al. [31] who managed to abstract out the ideas therein
and give even more fine-grained reductions. In addition to capturing the results
from [32, 19, 21], they applied the framework to obtain new results for adaptive
secret sharing. The framework was further applied to argue adaptive security
for attribute-based encryption schemes [38], proxy re-encryption schemes [20],
continuous group key-agreement [1, 2] and non-interactive zero-knowledge [35].

1.2.2 Limitations of Reductions The study of limitations of reductions
(see Footnote 13) was initiated in the seminal work of Impagliazzo and Rudich
[30]. They used oracle separations to rule out fully black-box reduction of key
agreement to symmetric-key primitives. This approach turned out quite useful
and has been further exploited to rule out fully black-box reduction of a variety
of cryptographic primitives from one another (e.g., [48, 50]). A fine-grained study
of the notion of reductions and separations was later carried out by Reingold et
al. [47].

6

In addition to ruling out reductions, the more fine-grained question of effi-
ciency of reduction of one primitive to another has also been studied [25, 24, 37].
This has been applied to the case of adaptive security as well. Perhaps the works
most relevant to ours is that of Lewko and Waters [40], who showed that the se-
curity of adaptively-secure hierarchical identity-based encryption must degrade
exponentially in the depth, and Fuchsbauer et al. [21], who showed that cer-
tain types of constrained PRFs must incur an exponential loss (in the size of
the input) in adaptive security. Note that this class of constrained PRFs does
not include the prefix-constrained PRF construction we consider in this work.
Both aforementioned works employ the more recent meta-reduction technique
[9, 26, 45], which is of different flavour from oracle separations.

Comparison with [34]. Building on the high level ideas in this paper, [34]
showed lower bounds on the adaptive security of Yao’s garbling scheme. As
pointed out in the introduction, the graph (i.e., the circuit) in Yao’s garbling
scheme is fixed ahead of time and the adaptivity comes from the choice of (gar-
bling) input. (The difficulty of the reduction comes from having to guess the bits
running over a subset of wires during evaluation of the circuit.) Therefore they
had to rely on a different combinatorial abstraction from Builder-Pebbler Game
(viz., a black-gray pebble game on the circuit) to establish their lower bound.
However, since the security game for Yao’s garbling consists of just two rounds,
[34] did not encounter some of the difficulties (to do with the multiple rounds
of interaction) we do and therefore were able to rule out arbitrary black-box
reductions. While both [34] and this work model choices made by a reduction
by putting pebbles on a graph structure, the analogy basically ends there. None
of the main ideas from [34] seem applicable in this setting and vice versa.

1.2.3 Graph Pebbling The notion of graph pebbing, first introduced in the
70’s to study programming languages, turned out quite useful in computational
complexity theory to study the relationship between space and time; in recent
years, pebbling has found applications in cryptography as well [17, 18, 3]. The
notion of node pebbling first appeared (albeit implicitly) in [46], whereas the
notion of reversible node pebbling was introduced by Bennett to study reversible
computation [6]. The notion of edge pebbling used in this work is defined in
[31]. The lower bound on the reversible node pebbling complexity of paths was
established by Chung et al. [14] and an alternative proof can be found in [39]. As
for the lower bound on the node pebbling complexity for binary trees, a proof
can be found in [49]. We refer the reader to the textbook by Savage [49] or the
excellent survey by Nordström [42] for more details on pebbling.

2 Technical Overview

figuration graph, cuts in pebbling configuration graphs, counting arguments On
a high level, our approach can be divided into two steps. In the first step (Sec-
tion 2.2), which is purely combinatorial, we analyse a two-player multi-stage

7

game which we call the Builder-Pebbler Game. In particular, we exploit ideas
from pebbling lower bounds to establish upper bounds for the success probabil-
ity of the Pebbler (who is one of two players). These upper bounds are then, in
the second step (Section 2.3), translated to lower bounds on the loss in security
of concrete cryptographic protocols using oracle separation techniques to yield
the results stated in Section 1.1. Before explaining the two steps, we provide a
summary of the overall approach so that the two steps, especially the motivation
behind some of the underlying definitions, can be better appreciated.

2.1 Our Approach

Our goal is to design adversaries that break the GSD game but where any
reduction (in a specified class) to the security of the underlying SKE scheme loses
a significant (super-polynomial) factor in the advantage. Since we are aiming to
rule out black-box reductions, we have the luxury of constructing inefficient
adversaries and SKE schemes. The output of our adversaries will solely depend
on the distribution of inconsistent edges in the final key-graph, which we will
denote as pebbles in the following. Clearly, in order to win the GSD game, our
adversaries need to output 0 if the final key-graph is entirely consistent (i.e.,
contains no pebbles), and 1 if the final key-graph is entirely consistent except for
the edges incident on the challenge key. Otherwise, we have complete freedom in
assigning output probabilities of 0 and 1 to the remaining pebbling configurations
of the final key-graph.

As we prove formally in Section 6, any reduction attempting to take advan-
tage of our adversaries must send its IND-CPA challenge as a response to a
query and exploit the fact that the real and the random challenge will lead to
different pebbling configurations of the key-graph. Its hope is that the output
distribution of the adversary differs significantly between the two configurations.
Note however, that when embedding the challenge in some edge (i, j) of the key-
graph, all edges incident to i will, with overwhelming probability, be inconsistent
independently of the challenge ciphertext, since the reduction does not know the
challenge secret key and thus is unlikely to be able to send consistent responses
to queries incident to i. In other words, the challenge can only be embedded into
an edge where the edges incident to the source are all pebbled. This naturally
leads to studying configurations that are related by valid moves in the reversible
edge-pebbling game: a pebble on an edge may only be added or removed if all
edges incident to the source are pebbled.

We may now define the configuration graph of our key-graph G: The vertices
of the configuration graph PG, as the name suggests, consist of all possible
pebbling configurations of G. Therefore it is the power set of the edges of G =
(V, E). An edge is present from a vertex Pi to another vertex Pj if Pj can
be obtained from Pi using a valid pebbling move. The edges represent pairs
of configurations, where the reduction may embed its IND-CPA challenge, in
other words, a hybrid (from the reduction’s point of view). Since we consider
reversible pebbling games, the edges in our configuration graphs are undirected.
Therefore one can think of PG as a subgraph of the Boolean hypercube on 2|E|

8

0100

0101

0110

0111 1100

1101

1110

1111

0000

0001

0010

0011 1000

1001

1010

1011

Fig. 1: Configuration graph for paths of length four, C4 =
([5], {(1, 2), (2, 3), (3, 4), (4, 5)}). It is a subgraph of the Boolean hypercube of
dimension four (the missing edges are dotted). The labels of the vertices encode
the pebbling status of the corresponding edge and therefore represents a pebbling
configuration: e.g., the vertex labelled 0000 is completely unpebbled (configu-
ration P = ∅) whereas the vertex labelled 1000 has a pebble only on the first
edge (1, 2) (configuration P = {(1, 2)}). An edge exists between a configuration
Pi and Pj if Pj can be obtained from Pi via one valid pebbling move. The
special vertices for PC4 are Pstart = 0000 and Ptarget = 0001 (both boxed). A
cut for this configuration graph consists of the set of (red) vertices that lie on
the ‘bottom’ half of the graph: {0000, 0010, 1010, 1011, 0011, 1000, 0110, 1110}.
The set of edges from the top half to the bottom half form cut set:
{(1111, 1110), (1111, 1011), (1100, 1110), (1100, 1000), (0111, 0110), (0100, 0110)}.

vertices. Assuming that G has a single sink vertex T , PG has two special vertices
denoted Pstart = ∅ and Ptarget which consist of the pebbling configuration where
all incoming edges to T carry a pebble. A path from Pstart to Ptarget corresponds
to a pebbling sequence in the reversible edge-pebbling game. Any such path can
be used for a hybrid argument to prove upper bounds for the loss in security,
which is what prior works did [43, 31]. In this work we are interested in ruling
out the possibility of using any of the paths (or multiple at once) to improve on
these results.

Pebbling lower bounds: Barriers to better cryptographic upper bounds.
In our approach, we will show that in any sequence of hybrids there exist “bot-
tleneck” configurations related to pebbling lower bounds. These bottleneck con-
figurations define a cut for the configuration graph PG. Looking ahead, our
adversaries will concentrate all their advantage on these cuts and we will show
that it is hard for any reduction to guess the pebbled edges of the corresponding
pebbling configurations.

From pebbling lower bounds to cryptographic lower bounds via Builder-
Pebbler Game. The immediate idea would be to translate pebbling lower

9

bounds directly to cryptographic lower bounds. But pebbling lower bounds ap-
ply to fixed graphs. Therefore we are missing a component that captures the
dynamic nature of the security games, like that of GSD, which involves (the ad-
versary) choosing a graph G randomly from a class of graphs G. To remedy this,
we introduce a two-player multi-stage game that we call the Builder-Pebbler
Game and then show that pebbling lower bounds can be used to upper bound
the probability of success of the Pebbler (Step I: Section 2.2), one of the players.
Then we will use oracle separation techniques to translate these upper bounds
into cryptographic lower bounds (Step II: Section 2.3).

2.2 Step I: Combinatorial Upper Bounds

We start off with an informal description of the Builder-Pebbler Game, a two-
player game that will abstract out the combinatorial aspect of establishing lower
bounds for cryptographic protocols that are modelled by multi-user games where
the adversary adaptively builds a graph structure among the set of users, as in
GSD (formal definition in Section 4). The game is played between a Pebbler and
a Builder, and intuitively, Pebblers play the role of reduction algorithms whereas
Builders correspond to adversaries in security games.

Builder-Pebbler Game. For a parameter N ∈ N, the Builder-Pebbler Game
is played between a Builder and a Pebbler in rounds. The game starts with an
empty DAG G = (V = [1, N] , E = ∅) and an empty pebbling configuration
P, and in each round the following happens: the Builder first picks an edge
e ∈ [1, N]

2 \ E and adds it to the DAG and the Pebbler then decides whether or
not to place a pebble on e. This way the Builder and the Pebbler will construct
a graph G and a pebbling configuration P on this graph. The Builder can stop
the game at any point by choosing a sink in G as the challenge. This results in
a challenge DAG G∗ = (V∗, E∗), the subgraph of G that is induced by all nodes
from which the challenge is reachable. The Pebbler wins if it ends up with a
pebbling configuration P that is in a designated subset of all configurations. This
winning set is determined by the graph G. Otherwise, the Builder is declared the
winner. In case the strategies are randomised, we call the probability with which
the Builder (resp., the Pebbler) wins the game as Builder’s (resp., Pebbler’s)
advantage, and denote it by β = β(N) (resp., π = π(N)). We also consider
restricted games where the Builder is restricted to query graphs G that are
subgraphs of some family of graphs G. In summary, one can think of the game
as the Builder building a graph and the Pebbler placing pebbles on this graph
with the aim of getting into a winning configuration and the Builder preventing
this from happening.10

10 This is reminiscent of Maker-Breaker games [28], a class of positional games (which
includes Shannon Switching Game, Tic-Tac-Toe and Hex) which are played between
a Maker, who is trying to end up with a (winning) position and a Breaker, whose goal
is to prevent the Maker from getting into such (winning) positions. One fundamental
difference between Maker-Breaker Games and the Builder-Pebbler Game is that

10

Defining winning configurations via cuts of the configuration graph.
Although the Builder-Pebbler Game is meaningful for any notion of winning
configuration, we are interested in a particular definition that is essential in es-
tablishing our cryptographic lower bounds: we will set the winning configurations
as the ones that belong to bottleneck configurations in the configuration graph
of G. The goal is to prove that it will be difficult for Pebblers to get into such
configurations. In some cases we can do so directly, but in others the Pebbler
may be able to achieve this by “flooding” the graph with many pebbles. Our
solution is to “artificially” restrict the Pebbler to placing very few pebbles by
requiring it to leave the part of the query graph that is not in the challenge
graph entirely unpebbled, i.e., if at the end of the game there is a pebble on an
edge that is not rooted in the challenge graph, the Pebbler loses. Note that this
does not trivialize our task of finding a suitable Builder, because for our appli-
cation to cryptographic lower bounds to work, the Builder’s querying strategy
(including the challenge) needs to be independent of the pebbles placed by the
Pebbler. (We call such Builders also oblivious, see below.) Of course, care must
be taken that this behaviour cannot be exploited by the reduction. Intuitively,
the reason this works is that in all our applications, if the reduction were to
embed the challenge outside of the challenge graph, our adversaries will almost
always interpret it to be a pebble, no matter if the challenge was real or random.

Combinatorial Upper Bounds in the Builder-Pebbler Game. We bound
the advantage of Pebblers from above against Builders with varying degree of
freedom, i.e., Builders that are restricted to querying certain classes of graphs.
The upper bounds in Theorems 3 to 5 are (almost) tight since a random Pebbler
yields (almost) matching lower bounds.

Theorem 3 (Informally Stated, Theorems 6 and 8 in Full Version [33]).
Any oblivious11 Pebbler in the Builder-Pebbler Game restricted to paths or

binary trees has advantage at most inverse quasi-polynomial (N−Ω(logN)) in
N , the size of the graph.

Theorem 4 (Informally Stated, Theorem 9 in Full Version [33]). Any
oblivious Pebbler in the unrestricted Builder-Pebbler Game has advantage at

most inverse sub-exponential (2−Ω(
√
N)) in N , the size of the graph.

Theorem 5 (Informally Stated, Theorem 6). Any Pebbler in the Builder-
Pebbler Game restricted to trees has advantage at most inverse quasi-polynomial
(N−Ω(logN)) in N , the size of the graph.

in Maker-Breaker games one usually considers optimal (deterministic) strategies,
whereas we consider randomised strategies for the Builder-Pebbler Game. (Another
way of looking at this is that our “board” is dynamic.) Another difference is the
asymmetry in the nature of moves.

11 The notion of obliviousness for Pebblers is naturally derived from the one for reduc-
tions, see discussion above and Definition 9.

11

Remark 1 (On Builder Obliviousness). It is worth mentioning that all our
Builder strategies are also oblivious, where oblivious is defined different for
Builders than for Pebblers: it means that the query strategy is independent
of the Pebbler’s responses (see Section 4.1).12 The reason we restrict ourselves
to such Builders is mostly for our convenience: looking ahead, it means that we
can ensure that the reductions in our cryptographic applications cannot exploit
the querying behaviour of the adversary to gain a larger advantage, rather they
must rely solely on the final output bit.

2.3 Step II: From Combinatorial Upper Bounds to Cryptographic
Lower Bounds

For translating upper bounds established in Step I into loss in security of concrete
cryptographic protocols, we adapt ideas from oracle separations.

Ruling out tight black-box reductions. Oracle separations are used to rule
out the reduction13 of a primitive Q (e.g., PKE) to another primitive P (e.g.,
SKE). Our case is slightly different since it involves a primitive P (e.g., SKE)
that is used in a graph-based “multi-instance” setting QP (e.g., GSD with SKE).
In this setting, we are interested in the more fine-grained question of bounding
Λ, the loss in security incurred by any efficient black-box reduction R that breaks
P when given black-box access to an adversary that breaks QP (i.e., from P to
QP). This means we must show that for every R, there exists

– an instance P (not necessarily efficiently-implementable) of P and
– an adversary AQ (not necessarily efficient) that breaks QP

such that the loss in security incurred by R in breaking P is at least Λ.14 To this
end, we establish a tight coupling between the security game for QP and the
Builder-Pebbler Game (e.g., Lemma 2). If QP involves a graph family G then
the Builder-Pebbler Game will be played on G (or sometimes another family

12 One could think of the Builder playing the role of “nature” (who also adopts a
strategy that is oblivious of the opposing player) in Papadimitrou’s Games Against
Nature [44].

13 The usage of the word ‘reduction’ here and in Section 1.2.2 is in a constructive
sense [47]: a primitive Q is reduced to another primitive P if (i) there is an efficient
construction C that takes an implementation P of P and gives an implementation
Q of Q and (ii) there is an efficient security reduction R which takes an adversary
AQ that breaks Q and constructs an adversary AP that breaks P. For example, the
most common type of reduction used in cryptography is a fully black-box reduction
where both R and C are black-box in that they only have black-box access to P and
AQ, respectively. In the rest of the paper, ‘reduction’ is used to refer to a security
reduction as in (ii).

14 This is obtained by simply negating the definition of a black-box reduction: there
exists an efficient reduction R such that for every (not necessarily efficient) imple-
mentation P of P and for every (not necessarily efficient) adversary AQ that breaks
QP the loss in security is at most Λ.

12

related to G) and the winning condition is determined by the cut for G. The
coupling is established using a Builder strategy B and a related adversary AQ
such that

– every reduction R can be translated to a Pebbler strategy P against B on G,
and

– if R has a security loss of at most Λ then B’s advantage against P is at least
1/Λ (up to negligible additive factors).

If G is a class for which we derived an upper bound of π for Pebbler strategies
(in Step I) then any reduction R such that 1/Λ > π cannot exist. Put differently,
an upper bound on the success probability of the Pebbler in the Builder-Pebbler
Game translates to a lower bound on the loss in security for the reduction R.
In the remainder of the section, we explain how the coupling works in a bit
more detail using GSD on binary trees as the running example. To keep the
exposition simple, we will brush a lot of issues (e.g., dealing with ‘flooding’
reductions) under the rug and refer the readers to Section 6 for a more formal
treatment.

Example: GSD on Binary Trees. Let’s consider the case where P is SKE
and QP is the GSD game played on G = Bn, the class of binary trees of depth
n. Intuitively, the GSD adversary AQ “simulates” the oblivious Builder B used
to derive Theorem 3. That is, it

1. chooses a binary tree Bn ∈ Bn uniformly at random,
2. queries, in a random order, each edge (u, v) ∈ E(Bn) to obtain the corre-

sponding ciphertext Enc(ku, kv) from the reduction R and
3. challenges the sole sink T at the end of the game.

For it to be a valid adversary, AQ must distinguish the extreme games, i.e., the
real game where all the ciphertexts are real and the random game where the
ciphertexts incoming to T are both random. To this end, it looks at the cipher-
texts it obtained and extracts a pebbling configuration P from it (as described
in Section 2.1). Note that the extreme hybrids corresponds to Pstart = ∅ (real)
and Ptarget such that both the edges incoming to T carry a pebble (random). AQ
distinguishes these by concentrating all its advantage in the cut in the configu-
ration graph of Bn defined in Section 2.1: i.e., it outputs 0 if P is on one side of
the cut and 1 otherwise. To help AQ faithfully distinguish real ciphertexts from
random ones so that it can infer the exact pebbling configuration P, we fix P to
be an ideal implementation (Enc,Dec) of SKE:

– Enc is a random expanding function that implements encryption and
– Dec is the decryption function defined to be “consistent” with Enc.15

15 Since most of our ideal functionalities are implemented using random oracles, it is
possible using standard tricks [30] to switch the order of the quantifiers and establish
the stronger statement that there exists a single oracle P and adversary AQ which
work for all reductions.

13

Since Enc is injective with overwhelming probability, given a ciphertext AQ can
brute force Enc to determine (exactly) whether or not the ciphertext correspond-
ing to an edge is real. By carrying this out for all the edges, it can extract a
unique pebbling configuration corresponding to R’s simulation. Since AQ con-
centrates its advantage in the cut, for R to have any chance of winning, its own
challenge c∗ must be ‘embedded at the cut’ so that – depending on whether or
not c∗ is real – P switches from one side of the cut to the other. Since this is the
only way R can exploit AQ, we may infer that a reduction with loss in security
at most Λ ends up in the cut with probability at least 1/Λ. However, thanks to
the fidelity of the extraction, this also means that the natural Pebbler strategy
P that underlies R, which simply places a pebble whenever R fakes, wins against
B in the Builder-Pebbler Game on Bn with an advantage at least π = 1/Λ (for-
mally, Lemma 1). If particular, if Λ is significantly less than quasi-polynomial
in N = 2n, it would imply the existence of a Pebbler that is successful with a
probability greater than inverse quasi-polynomial, a contradiction to Theorem 3.
Since Theorem 3 only holds for oblivious Pebblers, the bound on Λ only holds
for oblivious GSD reductions.

3 Preliminaries

We use the notation [N] = {1, . . . , N} and [N]0 = {0} ∪ [N]. For a string
x = x0, . . . , xn−1 ∈ {0, 1}n, for 0 ≤ a ≤ b < n, we use x[a, b] to denote the
substring xa, . . . , xb.

3.1 Graph Theory

Let N ∈ N and G = (V, E) define a directed acyclic graph (DAG) with vertex
set V = [N], edge set E ⊂ [N]× [N], and a set of sinks T . For a subset S ⊆ [N]
of nodes, let in(S) denote the set of ingoing edges and parents(S) denote the
set of parent nodes of nodes in S. For a set of n edges P = {(vi, wi)}ni=1,
let V(P) :=

⋃n
i=1{vi, wi} denote the set of nodes that have an incident edge

in P. The edge set P is called disjoint, if they do not share a node, i.e. if
|V(P)| = |

⋃n
i=1{vi, wi}| = 2n. We denote by E(G) (resp., V (G)) the edges E

(resp., vertices V) of G. By Bn, we denote a binary tree of depth n – the binary
tree is perfect if it has all 2n+1− 1 vertices. We assume the standard indexing of
the vertices in Bn by associating them with binary strings in {0, 1}≤n determined
by their position in the tree: i.e., the root has index ε and the left (resp., right)
child of a vertex with index i is i‖0 (resp., i‖1).

Definition 1 (cuts, cut-sets, frontiers). Let G = (V, E) be an undirected
graph. A cut S of G is a subset of the nodes V. For two nodes v1, v2 ∈ V an s-t-
cut that separates v1 and v2 is a cut S such that v1 ∈ S and v2 /∈ S. The cut-set
of a cut S is the set of edges with one endpoint in S and the other outside of S.
We call the frontier of a cut S the set of all nodes in S that have an incident
edge in the cut-set of S.

14

Definition 2 (Vertex Covers). Let G = (V, E) be a directed or undirected
graph and P ⊆ E be a subset of edges. A vertex cover of P is a subset S of [N]
such that for each edge (i, j) ∈ P either the source i or the sink j lies in S. We
define a non-trivial vertex cover to be a vertex cover S such that S ⊆ V(P). We
denote the size of a minimal vertex cover of P by

VC(P) := min{|S| : S ⊆ [N] covers P}.

3.2 Graph Pebbling

A pebbling configuration on the graph G is a set P ⊆ E defining the subset of
pebbled edges. Let |P| denote the number of pebbles in the configuration and
V(P) the set of nodes involved in the pebbling. We define the complexity of
a pebbling configuration P as the size of a minimal vertex cover of P. For a
pebbling sequence P = (P0, . . . ,P`), we define VC(P) := maxi∈[L]0 VC(Pi).

Let Pstart denote the unique configuration with |Pstart| = VC(Pstart) = 0, i.e.,
Pstart = ∅, and Ptarget = in(T) = {(i, T) ∈ E} denote the configuration where
only all the edges incident on some sink T ∈ T are pebbled. We will consider
sequences of pebbling configurations P = (Pstart, . . . ,Ptarget) where subsequent
configurations have to follow certain pebbling rules.

Reversible Pebbling. We consider the pebbling game from [31].

Definition 3 (Edge-Pebbling). An edge pebbling of a DAG G = (V, E) with
unique sink T is a pebbling sequence P = (P0, . . . ,P`) with P0 = Pstart and
P` = Ptarget, such that for all i ∈ [`] there is a unique (u, v) ∈ E such that:

– Pi = Pi−1 ∪ {(u, v)} or Pi = Pi−1 \ {(u, v)},
– in(u) ⊆ Pi−1.

Definition 4 (Configuration Graph). Let G = (V, E) be some graph. We
define the associated configuration graph PG as the graph that has as its vertex
set all 2|E| possible pebbling configurations of G. The edge set will contain an edge
between two vertices, if the transisition between the two vertices is an allowed
pebbling move according to the pebbling game rules.

Note that the configuration graph depends on the pebbling game. If we con-
sider reversible pebbling as in Definition 3, the configuration graph is undirected.

4 The Builder-Pebbler Game

In this work, we consider security games for multi-user schemes where an adver-
sary can adaptively do the following actions:

– query for information between pairs of users,
– corrupt users and gain secret information associated to these users,
– issue a distinguishing challenge query associated to a target user of its choice,

15

– guess a bit b ∈ {0, 1}.

We consider such games as games on graphs, where users represent the nodes
of the graph and edges are defined by the adversary’s pairwise queries. If the
pairwise information depends asymmetrically on the two users, then this is rep-
resented by the direction of the corresponding edge and after the game one can
extract a directed graph structure from the transcript of the game. Here, we only
consider the case of directed acyclic graphs, i.e., where the adversary is forbidden
to query cycles. Furthermore, to avoid trivial winning strategies, the adversary
must not query a challenge on a node which is reachable from a corrupt node.

To prove a scheme secure under such an adaptive game based on standard
assumptions (e.g., the security of some involved primitive), a common approach
is to construct a reduction that has black-box access to an adversary against
the scheme and tries to use the advantage of this adversary to break the basic
assumption. To this aim, the reduction has to simulate the game to the adversary
and at the same time embed some challenge c on the basic assumption into
its answers so that the adversary’s output varies depending on this embedded
challenge. Hence, the reduction might not answer all queries correctly but rather
“fakes” some of the edges; such wrong answers will be represented as pebbled
edges in the graph. However, if the reduction answers all queries connected to
the challenge node independent of the challenge user’s secrets, then the edge
queries do not help the adversary to distinguish its challenge and its advantage
in this game can be at most the advantage it has in an alternative security game
where no edge queries are possible. Indistinguishability in such a weaker scenario
usually follows trivially by some basic assumption.

Thus, we are interested in games that can be abstracted by the following
two-player game.

Definition 5 (N- and (N,G)-Builder-Pebbler Game). For a parameter
N ∈ N, the N -Builder-Pebbler Game is played between two players, called Builder
and Pebbler, in at most N · (N − 1)/2 rounds. The game starts with an empty
DAG G = ([1, N] , E = ∅) and an empty set P = ∅. In each round:

1. the Builder first picks an edge e ∈ [1, N]
2 \ E and adds it to G (i.e., E :=

E ∪{e}); the Builder is restricted to only query edges that do not form cycles;
and

2. the Pebbler then either places a pebble on e (i.e., P := P ∪ {e}) or not (i.e.,
P remains the same).

The Builder can stop the game at any point by choosing a sink in G as the
challenge. This results in a challenge DAG G∗ = (V∗, E∗), the subgraph of G
that is induced by all nodes from which the challenge is reachable.
In an (N,G)-Builder-Pebbler Game, the Builder is restricted to building graphs
(isomorphic to subgraphs of) G ∈ G for a class of graphs G.

Definition 6 (Winning Condition and Advantage for (N,G)-Builder-
Pebbler Game). Consider an (N,G)-Builder-Pebbler Game and let G =

16

(V, E), G∗ = (V∗, E∗) and P be as in Definition 5. We model the winning con-
dition for the game through a function X that maps a graph to a collection of
subsets of its own edges. We say that the Pebbler wins the (N,G)-Builder-Pebbler
Game under winning condition X if the following two conditions are satisfied:

1. only edges rooted in V∗ are pebbled, i.e. P ⊆ {(u, v) ∈ E | u ∈ V∗}
2. the pebbling induced on G∗ satisfies the winning condition, i.e., P|G∗ ∈

X(G∗).

Otherwise, the Builder is declared the winner. In case the strategies are ran-
domised, we call the probability (over the randomness of the strategies) with
which the Builder (resp., Pebbler) wins the game the Builder’s (resp., Pebbler’s)
advantage, and denote it by β = β(N) (resp., π = π(N)). Since there are no
draws, we have β + π = 1.

Remark 2. The corresponding definitions for the N -Builder-Pebbler Game can
be obtained by simply ignoring the restriction to G.

In our setting we will be interested in functions X that output sets of vertices
that represent the frontier of a cut in the configuration graph of the input.

Definition 7 (Cut Function). For a family G = (V, E) of graphs, a function
X : G 7→ 2E is called a cut function if X(G) is the frontier of an s-t-cut of the
configuration graph PG that separates Pstart from Ptarget for any input G ∈ G.
For a cut function X defined on G and G /∈ G, we set X(G) = ∅.

4.1 Player Strategies

Builder strategies. As motivated in Remark 1, we will be dealing in this
paper mostly with a class of Builders who play independently of the Pebbler’s
strategy.16

Definition 8 (Oblivious Builders). We say that a Builder’s strategy in the
(N,G)-Builder-Pebbler Game is oblivious if its choice of graph G ∈ G and order
of edge queries are independent of (i.e., oblivious to) the Pebbler’s strategy.

This restriction on the Builder serves two main purposes.

1. Firstly, it ensures that the Builder-Pebbler Game is not trivial for the cut
functions we are interested in: otherwise, it is easy to come up with Builder
strategies in which any Pebbler has advantage 0.

2. Moreover, non-oblivious Builder strategies are less interesting in our setting
since they could potentially allow reductions to exploit the query behaviour
of the adversary built on top of a non-oblivious Builder to gain advantage
in the security game.

16 The exact definition of the strategy will depend on the graph and the application.

17

Pebbler strategies. Ideally, we would like to establish lower bounds that
hold against all Pebblers. Since this is not always possible, we consider Builder-
Pebbler Games where the Pebbler strategy is restricted to oblivious strategies.

Definition 9 (Oblivious Pebbler). We say that a Pebbler’s strategy is obliv-
ious if it fixes a subset of vertices S ⊆ [1, N] at the beginning of the game, and
at the end of the game S is always a non-trivial vertex cover of the pebbling P.

Note that the notion of obliviousness differs from that in Definition 8. Defi-
nition 9 is motivated by oblivious reductions used in [31] (see Section 1.1) and
the goal is to capture prior knowledge that a Pebbler may have about the graph
structure that a Builder builds during the query phase. This is captured in Def-
inition 9 by requiring the Pebbler to commit to a non-trivial vertex cover of
the pebbling configuration. This allows compressing of pebbling configurations
based on the graph structure: e.g., if the Pebbler knows that the graph contains
nodes with high degree and it aims to pebble all (or some) of the incident edges
of such a node, it may guess this node ahead of time and then adjust its query
responses assuming the guess is correct. In the known upper bounds for the ap-
plications we consider, this is used to compress the amount of information that
needs to be guessed ahead of time. The fact that the vertex cover is required
to be non-trivial ensures that this restriction is also non-trivial: otherwise, the
Pebbler may simply output the entire set [1, N]. On the other hand, using a
minimal vertex cover seems too strong, since we do not actually require it to
prove our bounds.

Remark 3. Note that restricting the Builder strategy does not weaken our re-
sults: we are constructing lower bounds for reductions and an oblivious Builder
gives rise to oblivious adversaries. In contrast restricting to oblivious does weaken
the result. However, looking ahead, these restrictions allow us to prove much
stronger bounds compared to an unrestricted Pebbler.

5 Combinatorial Upper Bounds

In this section we show upper bounds for Pebblers in the Builder-Pebbler Game
by constructing Builders (potentially in a restricted Builder-Pebbler Game) and
then showing that no Pebbler can have a good advantage against such a Builder.
In the following, we show a bound that holds for arbitrary Pebblers. In the full
version of this paper, we also provide bounds for oblivious Pebblers [33, Section
5.1] and so-called node Pebblers [33, Section 5.2], i.e. Pebblers that may only
pebble all or none of the edges incident on any node.

5.1 Unrestricted Pebblers

In this section we prove a first combinatorial upper bound for unrestricted – i.e.,
non-oblivious – Pebblers in the Builder-Pebbler Game. While our upper bound
on the advantage of unrestricted Pebblers is significantly weaker than the result
for oblivious Pebblers in the full version of this paper [33, Section 5.1], it is still
non-trivial.

18

Generalized Pebbling Characteristics of Paths. Let k ∈ [N] be arbitrary.
We prove that any pebbling sequence on a path of length N must contain a
pebbling configuration such that blog(dN/ke)c + 1 of the dN/ke subpaths of
length ≤ k contain at least one pebble respectively. For k = 1 this result is
well-known, for a proof we refer to the full version [33, Section 5.1.1]. Assume,
for contradiction, that there exists a k > 1 and a valid pebbling strategy P
for paths of length N such that the claim was false. Then this strategy implies
a pebbling strategy P ′ of complexity less than blog(dN/ke)c + 1 for paths of
length dN/ke as follows: For each pebbling configuration P in P , define P ′ in
P ′ to contain a pebble on the ith edge if the ith subpath of P contains a pebble.
Cancelling redundant steps in P ′, i.e., configurations that equal the preceding
configuration in the sequence, implies a valid pebbling sequence of complexity
less than blog(dN/ke)c+ 1 for paths of length dN/ke – a contradiction.

We will use the following definition of k-cuts for paths matching this gener-
alized pebbling lower bound.

Definition 10 (k-good pebbling configurations, k-cuts and k-cut func-
tion for paths). For k ∈ N we call a pebbling configuration P for a path
C = CN on N nodes k-good if blog(dN/ke − 1)c of the dN/ke − 1 non-source
subpaths of C of length (≤)k contain at least one pebble respectively17, and there
exists a valid pebbling sequence P = (Pstart, . . . ,P) such that in all configu-
rations in P at most blog(dN/ke − 1)c of the subpaths simultaneously carry a
pebble. We define a k-cut set X in the configuration graph PC as the set of all
edges consisting of a k-good pebbling configuration and a configuration which can
be obtained from this good configuration by adding one pebble (following the peb-
bling rules) in a previously unpebbled subpath. The k-cut function XC,k is defined
as in Definition 7 as the frontier of this cut.

The Upper Bound. The Builder strategy is to query a (polynomial-sized)
subgraph of an exponential-sized tree of outdegree δout ≥ 2, so that in order to
pebble any edge in the final challenge path the Pebbler has to guess one out of
many source nodes at the same depth in the tree.

Theorem 6 (Combinatorial Upper Bound for Unrestricted Pebblers).
Let G be the family of directed trees on N = 2n nodes (with n ∈ N). Then

there exists a Builder strategy querying a challenge path G∗ ∈ C√N , such that
the advantage of any Pebbler against this Builder in the (N,G)-Builder-Pebbler
Game with the winning condition XC√N ,1

defined as in Definition 10 is at most

π ≤ 1/N log(N)/8.

Let G2 ⊂ G be the subset of graphs in G of bounded outdegree δout = 2. Then
there exists a Builder strategy querying a challenge path G∗ ∈ C√N , such that the
advantage of any Pebbler against Builder in the (N,G2)-Builder-Pebbler Game

17 For technical reasons, we exclude the first subpath of length k in C.

19

with the winning condition XC√N ,k
for k = log(N)/4 defined as in Definition 10

is at most

π ≤ 1/N log(N)/8−log(log(N))/4.

Proof. We define a Builder strategy B for graph family Gδout of outdegree bounded
by δout as follows: First, B chooses a source node in [N] uniformly at random. It
then proceeds in D = N/δ2kout rounds (where k is the ‘overlap parameter’ and will
be specified later), increasing the current graph’s depth by 1 in each round. In
each round R ≤ 2k and each round R 6≡ 1 mod k, for all sinks at depth R−1 in
the current graph B queries δout outgoing edges respectively. Note, after the first
2k rounds, B’s queries form a δout-regular tree directed from root to leaves, with
δ2kout sinks at depth 2k. For all rounds such that R > 2k and R ≡ 1 mod k, the
Builder B first chooses an integer i ∈ [δkout] and then only queries edges outgoing
from the ith batch of δkout sinks at depth R − 1. Finally, B chooses the target
node uniformly at random from the δ2kout sinks at depth D = N/δ2kout.

First note that B’s queries involve less than D · δ2kout = N nodes and the
challenge graph forms a path of length D. To win the game, the Pebbler needs
to place at least one pebble on blog(dD/ke−1)c of the disjoint subpaths of length
k in the challenge path respectively. But whenever it wants to place a pebble
in a subpath starting from depth i · k with i ≥ 1, the Pebbler has to at least
guess which of the δkout sources of edges at depth i ·k will end up in the challenge
graph. Since this choice is made uniformly at random by the Builder B only
after all queries at depth (i+ 1) · k were made, the advantage of the Pebbler to
correctly pebble an edge in the subpath sourced at depth i · k is at most 1/δkout.
Since this bound holds also conditioned on the event that previous guesses were
done correctly, and to win the game, the Pebbler has to pebble blog(dD/ke−1)c
subpaths of the challenge path, we obtain

π ≤ 1/δ
k·blog(dD/ke−1)c
out . (1)

Now, for the graph family G of unbounded outdegree, we set δout = N1/4 and

k = 1 to obtain D =
√
N and hence π ≤ 1/N1/4 log(

√
N) = 1/N log(N)/8. For

δout = 2, on the other hand, we set k = log(N)/4 to obtain D =
√
N and

π ≤ 1/N1/4(log(
√
N)−log(log(N)/4)) = 1/N log(N)/8−log log(N)/4. ut

6 Cryptographic Lower Bound I: Generalised Selective
Decryption

The generalized selective decryption game (GSD) was informally introduced in
Section 1; we refer to the full version [33, Section 6.1] for a formal definition. In
the following we interpret the combinatorial upper bound from 5.1 for GSD. In
the full version, we establish analogous lower bounds for public-key GSD, where
PKE is used instead of SKE as the underlying primitive; these can be used as
a basis for the lower bound on the continuous group key agreement protocol
TreeKEM [33, Section 5.1].

20

6.1 Lower Bounds for GSD

In many applications one considers games where the adversary’s queries are
restricted to certain graph structures, e.g., paths, “in-trees” (i.e. rooted trees
directed from the leaves to the root), or low-depth graphs. These restrictions
depend on the protocol under consideration and often allow to construct stronger
reductions.

Interesting upper bounds are known for specific settings for (oblivious) black-
box reductions R proving adaptive GSD security based on IND-CPA security
(short, GSD reductions). Our results now allow us to prove lower bounds on Λ
for GSD with various restrictions (which cover similar settings as known upper
bounds). Note that our lower bounds are stronger and more widely applicable
the more restrictions they can handle.

Definition 11 (Black-Box and Straight-Line GSD Reduction). R is a
black-box GSD reduction if for every SKE SKE = (Enc,Dec) and every adversary
A that wins the GSD game played on SKE, R breaks SKE. Moreover, if A is an
(ε, t) GSD adversary and R (ε′, t′)-breaks SKE (where ε′ and t′ are functions of
ε and t) then the loss in security is defined to be (t′ε)/(tε′). A black-box GSD
reduction R is straight-line if it, additionally, does not rewind A.

The following definition mirrors the obliviousness of Pebblers in the context
of the Builder-Pebbler Game (cf. Definition 9).

Definition 12 (Oblivious GSD Reduction). A straight-line GSD reduction
R (Definition 11) is oblivious if it commits to a non-trivial vertex cover of all
inconsistent edges at the beginning of the game.

In all our bounds we require the reduction to assign keys to nodes at the
beginning of the game.

Definition 13 (Key-Committing GSD Reduction). A black-box GSD re-
duction R is key-commiting if it commits to an assignment of keys to all nodes
at the beginning of the game.

This is due to the fact that Pebblers in the Builder-Pebbler Game commit to
whether an edge is pebbled or not as soon as they respond to the query. Without
this requirement, this is not true for reductions in the GSD game, since they
could potentially respond to a query and decide later if that edge is consistent
or inconsistent by choosing the key for the target accordingly (as long as this
node does not have an outgoing edge). However, this requirement should not be
seen as a very limiting restriction, but we introduce it for ease of exposition, since
there are several “work arounds” to this issue. 1) One could use an adversary
that “fingerprints” the keys by querying the encryption of some message under
each key before starting the rest of the query phase. This would entail adding the
corresponding oracle to the GSD game, which seems reasonable in many (but
not all) applications, since the keys are often not created for their own sake,
but to encrypt messages. 2) In case the adversary is not too restricted (which

21

is application dependent), there is a generic fix where the adversary abuses the
encrypt oracle to achieve this fingerprinting by introducing a new node and
querying the edges from every other node to this new node. This introduces
only a slight loss in the number N of nodes.

Both of these approaches work, but would make the proof more complicated:
recall that the challenge node must be a sink, so neither of the two fixes can
be applied to it. We can still fix all other nodes (which is sufficient), thereby
giving away the challenge node right at the start of the game. But this can
only increase the reduction’s advantage by a factor N , since it could also simply
guess the challenge node. Since we are only interested in super-polynomial losses
in this work, this would not affect the results. But for the sake of clarity we
refrain from applying this workaround and simply keep this mild condition on
the GSD reductions. In the full version [33], we see that some protocols are based
on a public key version of GSD rather than the secret key version we consider
here. In such cases the public keys are known to the adversary and commit the
reduction to the corresponding secret keys and thus no assumption or extra fix
are required.

We now give a general lemma that allows to turn lower bounds for the
Builder-Pebbler Game into lower bounds for the GSD game.

Lemma 1 (Coupling Lemma for GSD). Let G be a family of DAGs and
X a cut function. Let B be an oblivious Builder in the (N,G)-Builder-Pebbler
Game with winning condition X. Then there exists

1. an ideal SKE scheme Π = (Enc,Dec)
2. a GSD adversary A in PSPACE

such that for any key-committing straight-line reduction R there exists a Pebbler
P such that the advantage 1/Λ of R is at most the advantage π of P against B
(up to an additive term poly(N)/2Ω(N)). Moreover, if R is oblivious then so is
P.

Proof. We first construct Π = (Enc,Dec): We will pick Enc to be a random
expanding function (which is injective with overwhelming probability). More
precisely, assuming (for simplicity) the key k, the message m and the randomness
r are all λ-bit long, Enc(k,m; r) maps to a random ciphertext of length, say, 6λ
with λ = Θ(N). Dec is simulated accordingly to be always consistent with Enc.

We now define a map φ from GSD adversaries and reductions to Builder-
Pebbler GameBuilders and Pebblers:

– The number N of nodes in the Builder-Pebbler Game corresponds to the
number N of keys in the GSD game.

– An encryption query (encrypt, vi, vj) maps to an edge query (i, j) in the
Builder-Pebbler Game.

– A response to a query (encrypt, vi, vj) is mapped to “no pebble” if it consists
of a valid encryption of kj under the key ki, and to “pebble” otherwise. (Note
that this is always well-defined for key-committing GSD reductions.)

– A corruption query (corrupt, vi) is ignored in the Builder-Pebbler Game.

22

– The challenge query (challenge, vt) is mapped to the challenge node t.

Let A ∈ PSPACE be the following preimage of B under φ: A performs the same
encryption queries as B and selects its GSD challenge node as the challenge node
chosen by B. It then corrupts all nodes not in the challenge graph Gt. If there is
an inconsistency (i.e. a pebble) in G\Gt, A aborts and outputs 0. Finally, it uses
its computational power to decrypt all the received ciphertexts and determines
the resulting pebbling configuration P on Gt. If P is in the cut defined by the
frontier X(Gt), A outputs 0, otherwise it outputs 1. Clearly, A wins the GSD
game against Π with probability 1. We will now show that the advantage of R
in using the GSD-adversary A to break the IND-CPA security of Π is at most
the advantage of P = φ(R) against B (up to a negligible additive term).

Note that since Enc is a random function, the GSD game is entirely indepen-
dent of the challenge bit b until the tuple (k,mb, r) such that c∗ = Enc(k,mb; r)
(where c∗ is the challenge ciphertext) is queried to Enc. Since R is PPT, the
probability of R doing this is at most poly(N)/2Ω(N). Accordingly, to gain a
larger advantage, R must send c∗ to A as response to some edge query. Since
B = φ(A) is oblivious, the behaviour of A does not depend on c∗ (and thus not
on b) during the entire query phase. This means that the statistical distance of
A induced by b = 0 and b = 1 is∑

(Pi,Pj)∈PGt

pi,j |Pr [A(Pi)→ 1]− Pr [A(Pj)→ 1]|

where pi,j is the probability that the query phase results in the configuration Pi
or Pj depending on c∗. More formally, for an edge (Pi,Pj) in the configuration

graph PGt

, let Pcij be the “configuration” that is equal to Pi if c∗ represents a
consistent encryption edge (i.e. is not a pebble) and equal to Pj if c is inconsistent
(i.e. a pebble). Then we define pi,j as the probability of the query phase resulting
in Pcij . Clearly, we have |Pr [A(P1)→ 1] − Pr [A(P2)→ 1]| = 0 for any edge
(P1,P2) where P1 /∈ X(Gt) and 1 otherwise. The statistical distance of A induced
by b is thus bounded by the probability of the querying phase ending up in a
configuration in X(Gt) (if c∗ is considered not a pebble for this argument).
This is exactly the advantage of Pebbler P = φ(R) in the Builder-Pebbler Game
against B. By data processing inequality, this also means that the advantage of
R is bounded from above by the same quantity.

For the final statement of the lemma, note that φ maps oblivious GSD re-
ductions to oblivious Pebblers. ut

The following lower bound on GSD now easily follows from Lemma 1 and
Theorem 6; for stronger lower bounds for oblivious reductions we refer to the
full version [33, Corollaries 2 to 4].

Corollary 1 (Lower bound for GSD on Trees, Straight-Line Reduc-
tions). Let N be the number of users in the GSD game. Any key-committing
straight-line reduction proving adaptive GSD-security restricted to trees based

23

k∅

k0

k00

k000 k001

k01

k010 k011

k1

k10

k100 k101

k11

k110 k111k010

Fig. 2: Illustration of the GGM PRF. Every left child kx‖0 of a node kx is defined as the
first half of PRG(kx), the right child kx‖1 as the second half. The thick node (shaded
in green) corresponds to FGGM (k∅, 010).

on the IND-CPA security of the underlying encryption scheme loses at least a
factor

Λ ≥ N log(N)/8.

Even if the adversary is restricted to querying graphs with outdegree 2, the re-
duction loses at least a factor

Λ ≥ N log(N)/8−log(log(N))/4.

7 Cryptographic Lower Bound II: Constrained PRF

In this section we use our combinatorial results for the Builder-Pebbler Game to
prove that the constrained pseudorandom function (CPRF) [10, 11, 36] based on
the GGM PRF [27] cannot be proven adaptively-secure based on the security of
the underlying pseudorandom generator (PRG) using a straight-line reduction.
Our lower bound almost matches the best-known upper bound by Fuchsbauer
et al. [21].

7.1 Definition, Construction and Security Assumption

The following definitions are essentially taken from [31].

Definition 14 (GGM PRF). Given a PRG : {0, 1}λ → {0, 1}2λ, the PRF
FGGM : {0, 1}λ × {0, 1}∗ → {0, 1}λ is defined as

FGGM (k, x) = kx where k∅ = k and ∀z ∈ {0, 1}∗ : kz‖0‖kz‖1 = PRG(kz).

A graphical representation of the GGM construction is depicted in Figure 2.
Next, we give the definitions for CPRFs that are tailored to prefix-constrained

PRFs.

24

Definition 15 (Prefix-constrained PRF). For n ∈ N, a function F : K ×
{0, 1}n → Y is a prefix-constrained PRF if there are algorithms F.Constrain :
K × {0, 1}≤n → Kpre and F.Eval : Kpre × {0, 1}n → Y which for all k ∈ K,
x ∈ {0, 1}≤n and kx ← F.Constrain(k, x) satisfy

F.Eval(kx, x
′) =

{
F(k, x′) if x is a prefix of x′

⊥ otherwise.

That is, F.Constrain(k, x) outputs a key kx that allows evaluation of F(k, ·) on
all inputs that have x as a prefix. We can derive a prefix-constrained PRF from
the GGM construction by setting K = {0, 1}λ, Y = {0, 1}λ, and for a random
k ← K and x ∈ {0, 1}l with l ≤ n defining FGGM .Constrain(k, x) = (k1x, k

2
x) :=

(x,FGGM (k, x)) and

FGGM .Eval(kx, x
′) :=

{
FGGM (k2x, z) if x′ = x||z for some z ∈ {0, 1}n−l

⊥ otherwise.

The security for prefix-constrained PRFs is argued using the following game.

Definition 16. The game is played between a challenger G (which is either GL
or GR) and an adversary A using F. The challenger G picks a random key k ← K,
and initialises a set X = ∅. A can make at most q = q(n) queries, which is either:

– Constrain queries, (constrain, x): G returns F.Constrain(k, x), and adds x
to X .

– One challenge query (challenge, x∗): Here the answer differs between GL
and GR: GL answers with F.Eval(k, x∗) (real output), whereas GR answers
with random r ← Y (fake, random output) – for the task to be non-trivial,
no element in X must be a prefix of x∗. G adds x∗ to X .

Definition 17. A prefix-constrained PRF F is (s, ε, q)-adaptive-secure if GL and
GR are (s, ε)-indistinguishable.

7.2 Lower Bound for the GGM CPRF

To prove a lower bound for GGM, we use the combinatorial upper bound from
Section 5.1 for non-oblivious Pebblers, restricted to the class of graphs with
outdegree 2. The main challenge here is that – in contrast to our Builder from
Section 5.1 – the constrain queries of an adversary in the security game for
prefix-constrained PRFs correspond to paths in an exponentially large binary
tree (see Figure 3). But it’s not only that the adversary has to follow a certain
query pattern, but more importantly for each query (which corresponds to a
path of up to n edges) it only receives a single evaluation (and this evaluation
allows A to efficiently compute any evaluations for the entire subtree below it).
While A might be able to use its unrestricted computational power to distinguish
whether the answer to its query lies in the image of the PRG (for an appropri-
ately chosen PRG), it is impossible to extract a pebbling configuration on the

25

entire path given just the single evaluation. This is why we follow a different
approach and instead of choosing a PRG with sparse output range construct
a PRG from two random permutations, which allows A to invert the function
and compare whether two queries were computed from the same seed. Similar
to the Builder strategy in Section 5.1, our adversary A makes bunches of queries
forming complete binary subtrees, threaded along the challenge path. However,
these queries are now paths of length n such that their prefixes cover the bi-
nary subtrees, respectively. Accordingly, we then map these bunches of queries
to a pebbling strategy on the corresponding binary subtrees, instead of map-
ping single edges to a pebble or no pebble, as we did in previous applications.
Fortunately, the combinatorial bound from Section 5.1 still holds for Builders
revealing such bunches of queries at once.

Lemma 2 (Coupling Lemma for GGM CPRF). Let G be the family of
trees of depth D, size N = poly(D), indegree 1, outdegree 2 and a single source;
i.e. G denotes the set of poly(D)-sized subtrees of the binary tree of depth D
which include the root, where edges are directed from the root to the leaves.
Furthermore, let B and XCD,k for k = log(D)/2 be the Builder and the cut from
Theorem 6. Then there exists

1. an information-theoretically secure length-doubling PRG scheme PRG
2. a CPRF adversary A in PSPACE

such that for any straight-line reduction R that proves CPRF security of the
GGM construction for input length D+1 based on the security of the underlying
PRG scheme there exists a Pebbler P such that the advantage 1/Λ of R is at most
the advantage of P against B (up to a negligible additive term poly(D)/2Ω(D)).

To prove this lemma, we will use the following construction of an information-
theoretically secure PRG scheme.

Lemma 3. Let π0, π1 : {0, 1}λ → {0, 1}λ be two random permutations. Then
PRG : {0, 1}λ → {0, 1}2λ defined by PRG(x) := (π0(x), π1(x)) is a poly(λ)/2λ/2-
secure length-doubling PRG.

Proof. Since random permutations are indistinguishable from random functions
using only polynomially many queries, we may consider the PRG as a concatena-
tion of two poly(λ)/2λ/2-secure PRFs by a hybrid argument. Again by hybrid
argument, the concatenation of two secure PRFs yields a PRF from {0, 1}λ to
{0, 1}2λ. The lemma follows, since length extending PRFs are PRGs.

Having a construction of a PRG in place, we are now ready to prove Lemma 2.

Proof (Proof of Lemma 2). We pick the PRG from Lemma 3 for λ = Θ(D).
Analogously to the proof of Lemma 1 we define a map φ between the CPRF

game and the Builder-Pebbler Game:

– For a constrain query by adversary A, (constrain, x), we make a case dis-
tinction on the length l of x:

26

• if l = D + 1, the Builder B extends the current tree in the natural way,
ignoring k-sized blocks of trailing zeros in x and adding random nodes as
needed. More formally, write x = x1||x2||x3 ∈ {0, 1}l1×{0, 1}l2×{0}l3×
{0, 1} with l1, l2, l3 ≥ 0 and k|l3, where x1 is the longest prefix of x that
has been queried so far. For each prefix x′ of x with length between l1+1
and l1 + l2, B chooses a uniformly random node (that is not associated
to any prefix yet) and associates it to x′. Writing x2 = (x21, x

2
2, . . .), it

then queries the edges between the nodes associated with x1 and x1||x21,
between x1||x21 and x1||x21||x22, etc.

• if l ≤ D, B ignores the query.
– For the challenge query (challenge, x∗), proceed as for constrain queries to

extend the tree. Choose the node associated to x∗ as the challenge T .
– Pebbles are determined in the following way. Recall that the Builder from

Theorem 6 always extends the tree in chunks of entire subtrees (and the
queries comprising such a chunk can be sent at the same time). So we may
restrict the definition of φ to preimages of such Builders. To determine which
edges in such a subtree are pebbled, consider the responses yi corresponding
to the queries xi in such a chunk. For each yi invert π0 repeatedly to obtain
the seed associated to the i-th leaf in the subtree. Then for every node,
bottom-up, if
• the children are associated with seeds s0, s1, resp., check if π−10 (s0) =
π−11 (s1). If this is true, associate the node with this computed seed.
Otherwise, consider both outgoing edges from this node as pebbled and
set the seed of this node to ⊥.

• only the left (right) child is associated with a seed s, set the seed of this
node to π−10 (s) (π−11 (s), resp.).

• neither of the children is associated with a seed, set the seed of the
current node to ⊥.

For the root of the subtree, which already has a seed s (or ⊥) associated to
it, check if s is consistent with its children; if not, update to ⊥ and pebble
both outgoing edges.

Let A be the preimage under φ of B from Theorem 6 as follows: A first
queries CPRF evaluations for {0, 1}2k||0D−2k+1 in reverse order (i.e. starting
from 12k||0D−2k+1)18 – this is in analogy to the first 2k rounds of B (see Figure 3).
Then it proceeds in [D/k− 2] rounds, where in round j ∈ [D/k− 2] it first sam-
ples x∗j ∈ {0, 1}k and then makes 22k queries x∗1|| . . . ||x∗j ||{0, 1}2k||0D−(j+2)k+1

in reverse order, starting with x∗1|| . . . ||x∗j ||12k||0D−(j+2)k+1. Next, A samples a

challenge x∗ = (x∗1, . . . , x
∗
D, 1) in x∗1|| . . . ||x∗D/k−2||{0, 1}

2k||1 uniformly at ran-

dom. Furthermore, it makes constrain queries for all prefixes (x∗1, . . . , x
∗
j−1, x̄j)

18 This is for technical reasons: We defined the mapping φ to ignore k-blocks of trailing
zeros in order to associate queries x||0D−2k+1 to (non-disjoint) paths of length 2k. To
this aim φ prolongs the longest already existing subpath associated to some prefix x′

of x. If A now starts querying the string 0D+1, this query would simply be ignored.
On the other hand, if there was a preceding query 02k−1||1||0D−2k+1, then the query
0D+1 is mapped to an edge extending the path associated with the prefix 02k−1.

27

1

2

3

4

5

6

Fig. 3: A schematic diagram showing the adversarial query strategy for GGM CPRF
in Lemma 2. The outer (gray) triangle represents the perfect binary tree of depth
D = 7k + 1 representing the GGM PRF. The internal (blue) triangles represent
perfect binary trees of depth 2k with the j-th triangle representing the 22k queries
x∗1|| . . . ||x∗j ||{0, 1}2k||0D−(j+2)k+1. The challenge x∗ is highlighted (in red) with the la-
bel j indicating the string x∗j .

for j ∈ [D]. If the answers to the prefixes are not consistent with the previous
CPRF queries, then A aborts and outputs 0. Otherwise, A uses its unrestricted
computational power to compute the mapping φ from the reduction’s answers
to its queries to a pebbling configuration on the subtree. Note that due to the
previous check, there must not be any pebbles on edges rooted at nodes outside
the challenge path. A now considers the pebbling configuration induced on the
challenge path. If this pebbling configuration lies in the cut defined by XCD,k,
the adversary A outputs 0, otherwise 1.

Clearly, A wins the CPRF game with probability 1. Now, let R be an arbi-
trary straight-line reduction. First, note that the probability that R queries PRG
on the challenge seed is negligibly small (poly(D)/2Ω(D)). Assuming this does
not happen, R can only gain a bigger advantage if it embeds its PRG challenge
when interacting with A and manages to hit a pebbling configuration in the cut,
i.e. such that depending on the challenge being real or random the pebbling con-
figuration which A extracts lies either in the cut set or not. Note that choosing
a value in the tree at random instead of applying PRG to the correct output is
equivalent (w.r.t. A’s behavior) to responding to the respective queries inconsis-
tently and will thus yield a pebble with overwhelming probability. Furthermore,
the consistency check after the constrain queries ensures that R may only place
pebbles on edges rooted in the challenge graph and can only embed its challenge
in the challenge graph. Similar to the proof in Lemma 1, one can see that R

28

maps (under φ) to a Pebbler in the Builder-Pebbler Game which has at least
the same advantage of achieving such a configuration.

ut
Using the above lemma, the following corollary now easily follows from The-

orem 6.

Corollary 2 (Lower Bound for GGM). Let n be the input length of the
GGM CPRF scheme. Then any straight-line reduction proving cPRF security of
the GGM construction based on the security of the underlying PRG scheme loses
at least a factor Λ ≥ n(log(n)−log log(n))/2.

References

[1] J. Alwen, M. Capretto, M. Cueto, C. Kamath, K. Klein, I. Markov,
G. Pascual-Perez, K. Pietrzak, M. Walter, and M. Yeo. Keep the dirt:
Tainted TreeKEM, adaptively and actively secure continuous group key
agreement. Cryptology ePrint Archive, Report 2019/1489, 2019. https:

//eprint.iacr.org/2019/1489.
[2] J. Alwen, S. Coretti, Y. Dodis, and Y. Tselekounis. Security analysis and

improvements for the IETF MLS standard for group messaging. In D. Mic-
ciancio and T. Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of
LNCS, pages 248–277. Springer, Heidelberg, Aug. 2020.

[3] J. Alwen and V. Serbinenko. High parallel complexity graphs and memory-
hard functions. In R. A. Servedio and R. Rubinfeld, editors, 47th ACM
STOC, pages 595–603. ACM Press, June 2015.

[4] M. Bellare, V. T. Hoang, and P. Rogaway. Adaptively secure garbling with
applications to one-time programs and secure outsourcing. In X. Wang and
K. Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 134–153.
Springer, Heidelberg, Dec. 2012.

[5] M. Bellare, D. Hofheinz, and S. Yilek. Possibility and impossibility results
for encryption and commitment secure under selective opening. In A. Joux,
editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 1–35. Springer,
Heidelberg, Apr. 2009.

[6] C. H. Bennett. Time/space trade-offs for reversible computation. SIAM
Journal on Computing, 18(4):766–776, 1989.

[7] J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the
presence of key-dependent messages. In K. Nyberg and H. M. Heys, editors,
SAC 2002, volume 2595 of LNCS, pages 62–75. Springer, Heidelberg, Aug.
2003.

[8] M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic
proxy cryptography. In K. Nyberg, editor, EUROCRYPT’98, volume 1403
of LNCS, pages 127–144. Springer, Heidelberg, May / June 1998.

https://eprint.iacr.org/2019/1489
https://eprint.iacr.org/2019/1489

[9] D. Boneh and R. Venkatesan. Breaking RSA may not be equivalent to
factoring. In K. Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS,
pages 59–71. Springer, Heidelberg, May / June 1998.

[10] D. Boneh and B. Waters. Constrained pseudorandom functions and their
applications. In K. Sako and P. Sarkar, editors, ASIACRYPT 2013, Part II,
volume 8270 of LNCS, pages 280–300. Springer, Heidelberg, Dec. 2013.

[11] E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudoran-
dom functions. In H. Krawczyk, editor, PKC 2014, volume 8383 of LNCS,
pages 501–519. Springer, Heidelberg, Mar. 2014.

[12] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-
party computation. In 28th ACM STOC, pages 639–648. ACM Press, May
1996.

[13] R. Canetti, J. A. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas.
Multicast security: A taxonomy and some efficient constructions. In IEEE
INFOCOM’99, pages 708–716, New York, NY, USA, Mar. 21–25, 1999.

[14] F. Chung, P. Diaconis, and R. Graham. Combinatorics for the east model.
Advances in Applied Mathematics, 27(1):192–206, 2001.

[15] J.-S. Coron. On the exact security of full domain hash. In M. Bellare,
editor, CRYPTO 2000, volume 1880 of LNCS, pages 229–235. Springer,
Heidelberg, Aug. 2000.

[16] C. Dwork, M. Naor, O. Reingold, and L. J. Stockmeyer. Magic functions.
In 40th FOCS, pages 523–534. IEEE Computer Society Press, Oct. 1999.

[17] C. Dwork, M. Naor, and H. Wee. Pebbling and proofs of work. In V. Shoup,
editor, CRYPTO 2005, volume 3621 of LNCS, pages 37–54. Springer, Hei-
delberg, Aug. 2005.

[18] S. Dziembowski, T. Kazana, and D. Wichs. One-time computable self-
erasing functions. In Y. Ishai, editor, TCC 2011, volume 6597 of LNCS,
pages 125–143. Springer, Heidelberg, Mar. 2011.

[19] G. Fuchsbauer, Z. Jafargholi, and K. Pietrzak. A quasipolynomial reduction
for generalized selective decryption on trees. In R. Gennaro and M. J. B.
Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages
601–620. Springer, Heidelberg, Aug. 2015.

[20] G. Fuchsbauer, C. Kamath, K. Klein, and K. Pietrzak. Adaptively secure
proxy re-encryption. In D. Lin and K. Sako, editors, PKC 2019, Part II,
volume 11443 of LNCS, pages 317–346. Springer, Heidelberg, Apr. 2019.

[21] G. Fuchsbauer, M. Konstantinov, K. Pietrzak, and V. Rao. Adaptive se-
curity of constrained PRFs. In P. Sarkar and T. Iwata, editors, ASI-
ACRYPT 2014, Part II, volume 8874 of LNCS, pages 82–101. Springer,
Heidelberg, Dec. 2014.

[22] S. Garg, R. Ostrovsky, and A. Srinivasan. Adaptive garbled RAM from
laconic oblivious transfer. In H. Shacham and A. Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages 515–544. Springer,
Heidelberg, Aug. 2018.

[23] S. Garg and A. Srinivasan. Adaptively secure garbling with near opti-
mal online complexity. In J. B. Nielsen and V. Rijmen, editors, EURO-
CRYPT 2018, Part II, volume 10821 of LNCS, pages 535–565. Springer,
Heidelberg, Apr. / May 2018.

30

[24] R. Gennaro, Y. Gertner, J. Katz, and L. Trevisan. Bounds on the efficiency
of generic cryptographic constructions. SIAM J. Comput., 35(1):217–246,
2005.

[25] R. Gennaro and L. Trevisan. Lower bounds on the efficiency of generic
cryptographic constructions. In 41st FOCS, pages 305–313. IEEE Computer
Society Press, Nov. 2000.

[26] C. Gentry and D. Wichs. Separating succinct non-interactive arguments
from all falsifiable assumptions. In L. Fortnow and S. P. Vadhan, editors,
43rd ACM STOC, pages 99–108. ACM Press, June 2011.

[27] O. Goldreich, S. Goldwasser, and S. Micali. On the cryptographic appli-
cations of random functions. In G. R. Blakley and D. Chaum, editors,
CRYPTO’84, volume 196 of LNCS, pages 276–288. Springer, Heidelberg,
Aug. 1984.

[28] D. Hefetz, M. Krivelevich, M. Stojakovic, and T. Szabó. Positional Games.
Birkhäuser Basel, 2014.

[29] B. Hemenway, Z. Jafargholi, R. Ostrovsky, A. Scafuro, and D. Wichs. Adap-
tively secure garbled circuits from one-way functions. In M. Robshaw and
J. Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages
149–178. Springer, Heidelberg, Aug. 2016.

[30] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-
way permutations. In 21st ACM STOC, pages 44–61. ACM Press, May
1989.

[31] Z. Jafargholi, C. Kamath, K. Klein, I. Komargodski, K. Pietrzak, and
D. Wichs. Be adaptive, avoid overcommitting. In J. Katz and H. Shacham,
editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 133–163.
Springer, Heidelberg, Aug. 2017.

[32] Z. Jafargholi and D. Wichs. Adaptive security of Yao’s garbled circuits.
In M. Hirt and A. D. Smith, editors, TCC 2016-B, Part I, volume 9985 of
LNCS, pages 433–458. Springer, Heidelberg, Oct. / Nov. 2016.

[33] C. Kamath, K. Klein, K. Pietrzak, and M. Walter. The cost of adaptivity
in security games on graphs. Cryptology ePrint Archive, Report 2021/059,
2021. https://eprint.iacr.org/2021/059.

[34] C. Kamath, K. Klein, K. Pietrzak, and D. Wichs. Limits on the adaptive
security of yao’s garbling. In T. Malkin and C. Peikert, editors, Advances in
Cryptology - CRYPTO 2021 - 41st Annual International Cryptology Con-
ference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings,
Part II, volume 12826 of Lecture Notes in Computer Science, pages 486–515.
Springer, 2021.

[35] S. Katsumata, R. Nishimaki, S. Yamada, and T. Yamakawa. Compact
NIZKs from standard assumptions on bilinear maps. In A. Canteaut and
Y. Ishai, editors, EUROCRYPT 2020, Part III, volume 12107 of LNCS,
pages 379–409. Springer, Heidelberg, May 2020.

[36] A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias. Dele-
gatable pseudorandom functions and applications. In A.-R. Sadeghi, V. D.
Gligor, and M. Yung, editors, ACM CCS 2013, pages 669–684. ACM Press,
Nov. 2013.

31

https://eprint.iacr.org/2021/059

[37] J. H. Kim, D. R. Simon, and P. Tetali. Limits on the efficiency of one-way
permutation-based hash functions. In 40th FOCS, pages 535–542. IEEE
Computer Society Press, Oct. 1999.

[38] L. Kowalczyk and H. Wee. Compact adaptively secure ABE for NC1 from
k-Lin. In Y. Ishai and V. Rijmen, editors, EUROCRYPT 2019, Part I,
volume 11476 of LNCS, pages 3–33. Springer, Heidelberg, May 2019.

[39] R. Královič. Time and Space Complexity of Reversible Pebbling, pages 292–
303. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[40] A. B. Lewko and B. Waters. Why proving HIBE systems secure is difficult.
In P. Q. Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume 8441
of LNCS, pages 58–76. Springer, Heidelberg, May 2014.

[41] J. B. Nielsen. Separating random oracle proofs from complexity theo-
retic proofs: The non-committing encryption case. In M. Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 111–126. Springer, Heidel-
berg, Aug. 2002.

[42] J. Nordström. New Wine into Old Wineskins: A Survey of SomePebbling
Classics with Supplemental Results. 2015.

[43] S. Panjwani. Tackling adaptive corruptions in multicast encryption pro-
tocols. In S. P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages
21–40. Springer, Heidelberg, Feb. 2007.

[44] C. H. Papadimitriou. Games against nature. Journal of Computer and
System Sciences, 31(2):288 – 301, 1985.

[45] R. Pass. Unprovable security of perfect NIZK and non-interactive non-
malleable commitments. In A. Sahai, editor, TCC 2013, volume 7785 of
LNCS, pages 334–354. Springer, Heidelberg, Mar. 2013.

[46] M. S. Paterson and C. E. Hewitt. Record of the project mac conference
on concurrent systems and parallel computation. chapter Comparative
Schematology, pages 119–127. ACM, New York, NY, USA, 1970.

[47] O. Reingold, L. Trevisan, and S. P. Vadhan. Notions of reducibility between
cryptographic primitives. In M. Naor, editor, TCC 2004, volume 2951 of
LNCS, pages 1–20. Springer, Heidelberg, Feb. 2004.

[48] S. Rudich. Limits on the Provable Consequences of One-way Functions.
PhD thesis, EECS Department, University of California, Berkeley, Dec 1988.

[49] J. E. Savage. Models of computation - exploring the power of computing.
Addison-Wesley, 1998.

[50] D. R. Simon. Finding collisions on a one-way street: Can secure hash
functions be based on general assumptions? In K. Nyberg, editor, EURO-
CRYPT’98, volume 1403 of LNCS, pages 334–345. Springer, Heidelberg,
May / June 1998.

[51] D. M. Wallner, E. J. Harder, and R. C. Agee. Key management for
multicast: Issues and architectures. Internet Draft, Sept. 1998. http:

//www.ietf.org/ID.html.
[52] C. K. Wong, M. G. Gouda, and S. S. Lam. Secure group communications

using key graphs. IEEE/ACM Trans. Netw., 8(1):16–30, 2000.

32

http://www.ietf.org/ID.html
http://www.ietf.org/ID.html

	The Cost of Adaptivity in Security Games on Graphs
	References

