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Abstract. Time-lock puzzles are a mechanism for sending messages “to
the future”, by allowing a sender to quickly generate a puzzle with an
underlying message that remains hidden until a receiver spends a mod-
erately large amount of time solving it. We introduce and construct a
variant of a time-lock puzzle which is non-malleable, which roughly guar-
antees that it is impossible to “maul” a puzzle into one for a related
message without solving it.
Using non-malleable time-lock puzzles, we achieve the following applica-
tions:
– The first fair non-interactive multi-party protocols for coin flipping

and auctions in the plain model without setup.
– Practically efficient fair multi-party protocols for coin flipping and

auctions proven secure in the (auxiliary-input) random oracle model.
As a key step towards proving the security of our protocols, we intro-
duce the notion of functional non-malleability, which protects against
tampering attacks that affect a specific function of the related messages.
To support an unbounded number of participants in our protocols, our
time-lock puzzles satisfy functional non-malleability in the fully concur-
rent setting. We additionally show that standard (non-functional) non-
malleability is impossible to achieve in the concurrent setting (even in
the random oracle model).

1 Introduction

Time-lock puzzles (TLPs), introduced by Rivest, Shamir, and Wagner [45], are
a cryptographic mechanism for committing to a message, where a sender can
(quickly) generate a puzzle with a solution that remains hidden until the re-
ceiver spends a moderately large amount of time solving it (even in the presence
of parallel processors). Rivest et al. [45] gave a very efficient construction of TLPs
where security relies on the repeated squaring assumption. This assumption pos-
tulates, roughly, that it is impossible to significantly speed up repeated modular
exponentiations in a group of unknown order, even when using many parallel
processors. This construction and assumption have proven extremely useful in
various (and sometimes unexpected) applications [9, 33, 44, 50, 19, 36, 15], some
of which have already been implemented and deployed in existing systems.



Non-malleability. In a Man-In-the-Middle (MIM) attack, an eavesdropper
tries to actively maul intermediate messages to compromise the integrity of the
underlying values. To address such attacks, Dolev, Dwork and Naor [18] intro-
duced the general concept of non-malleability in the context of cryptographic
commitments. Roughly speaking, non-malleable commitments are an extension
of plain cryptographic commitments (that guarantee binding and hiding) with
the additional property that no adversary can maul a commitment for a given
value into a commitment to a “related” value. As this is a fundamental concept
with many applications, there has been a tremendous amount of research on this
topic [1, 41, 40, 35, 39, 31, 43, 49, 22, 32, 23, 24, 11, 12, 29, 33, 30, 27].

Non-malleable TLPs and applications. To date, non-malleability has not
been considered in the context of TLPs (or other timed primitives).3 Indeed,
the construction of TLPs of [45] is malleable.4 This fact actually has negative
consequences in various settings where TLPs could be useful. For instance, con-
sider a scenario where n parties perform an auction by posting bids on a public
bulletin board. To implement this fairly, a natural approach is to use a commit-
and-reveal style protocol, where each party commits to its bid on the board, and
once all bids are posted each party publishes its opening. Clearly, one has to use
non-malleable commitments to guarantee that bids are independent (otherwise,
a malicious party can potentially bid for the maximal other bid plus 1). However,
non-malleability is not enough since there is a fairness issue: a malicious party
may refuse to open after seeing all other bids and so other parties will never
know what the unopened bid was.

Using non-malleable TLPs to “commit” to the bids solves this problem. In-
deed, the puzzle of a party who refuses to reveal its bid can be recovered after
some moderately large amount of time by all honest parties. This style of proto-
col can also be used for fair multi-party collective coin flipping where n parties
wish to agree on a common unbiased coin. There, each party encodes a random
bit via a TLP and all parties will eventually agree on the parity of those bits.5

This gives a highly desirable collective coin flipping protocol with an important
property that we refer to as optimistic efficiency : when all parties are honest
and publish their “openings” immediately after seeing all puzzles, the proto-
col terminates and all parties agree on an unbiased bit. As we will see, no other
known protocol for this (highly important) task has this property. Even ignoring

3 The concurrent works of [28, 3, 4] consider similar notions of non-malleability for
time-lock puzzles. See Section 1.3 for a detailed comparison.

4 The puzzle of [45] for a message s and difficulty T is a tuple (g,N, T, s⊕g2
T

mod N),
where N is an RSA group modulus and g is a random element from ZN . The puzzle
is trivially malleable since the message is one-time padded.

5 In the context of coin flipping, if a malicious party aborts prematurely, this can
bias the output [13] causing the fairness issue mentioned above. Boneh and Naor [9]
used timed primitives and interaction to circumvent the issue in the two-party case,
but we care about the multi-party case and prefer to avoid interaction as much as
possible.
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optimistic efficiency, such a protocol yields a fully non-interactive coin flipping
protocol where each participant solves all published puzzles.

1.1 Our Results

To present our results, we start with a high level definition of a non-malleable
TLP. Recall that for some secret s and difficulty t, a time-lock puzzle enables
sampling a puzzle z which can be solved in time t to recover s, but guarantees
that s remains hidden to any adversary running in time less than t.

For non-malleability, we require that any man-in-the-middle (MIM) attacker
A that receives a puzzle z “on the left” cannot output a different puzzle z̃ “on
the right” to a related value. Formally, we consider the (inefficient) distribu-
tion mimA(t, s) that samples a puzzle z to s, gets z̃ ← A(z), and outputs the
value s̃ computed by solving z̃. However, if z = z̃, then s̃ = ⊥ (since simply
forwarding the commitment does not count as a valid mauling attack). Then,
non-malleability requires that for any solution s and MIM attacker with depth
much less than t (so it cannot break hiding), the distribution for a value s given
by mimA(t, s) is indistinguishable from the distribution mimA(t, 0) for an unre-
lated value, 0. We emphasize that indistinguishability should hold even against
arbitrary polynomial time or even unbounded distinguishers that, in particular,
can solve the TLP. We also consider the natural extension to the bounded con-
current setting [42], where the MIM attacker A receives nleft concurrent puzzles
on the left and attempts to generate nright puzzles on the right to related values.
In this setting, the distinguisher receives the solutions to all nright puzzles. We
refer to this as (nleft, nright)-concurrency.

We next give our main results. First, we present our results on non-malleable
time-lock puzzles, and we discuss the various notions of non-malleability that
we consider in this setting. Next, we show how to additionally satisfy a strong
public verifiability property using a specific time-lock puzzle based on repeated
squaring. Finally, we discuss the applications of our constructions for fair multi-
party protocols.

Non-malleable time-lock puzzles. We give two different constructions of
non-malleable TLPs. We emphasize that, as explained above, this primitive is not
only natural on its own right, but also has important applications to the design
of secure protocols for various basic tasks. Our first construction is practically
efficient, relies on the existence of any given TLP [45, 6], and is proven secure
in the (auxiliary-input) random oracle model [47].

Theorem 1.1 (Informal; See Theorem 4.2 and Corollary 4.3). For ev-
ery nleft, nright, L ∈ poly(λ), assuming that there is a TLP (supporting 1-bit
messages) that is secure for attackers of size 23nright·L · poly(λ), there exists an
(nleft, nright)-concurrent non-malleable TLP supporting messages of length L. The
scheme is proven secure in the auxiliary-input random oracle model.

In terms of security, our reduction is depth preserving : if the given TLP is
secure against attackers of depth T (λ)/α(λ), where α(·) is a fixed polynomial
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independent of T denoting the advantage of an attacker, then the resulting non-
malleable TLP is secure against attackers of depth T (λ)/α′(λ) for a related fixed
polynomial α′(·). In particular, the dependence on T in hardness is preserved.
Additionally, note that if nright · L ∈ O(log λ), then the underlying TLP only
needs to be polynomially secure.

Instantiating the TLP with the construction of [45], our scheme is extremely
efficient: encoding a message requires a single invocation of a random oracle and
few (modular) exponentiations. Additionally, our construction is very simple to
describe: to generate a puzzle for a solution s with randomness r, we sample a
puzzle for (s, r) using randomness which itself depends (via the random oracle)
on s and r.6 Nevertheless, the proof of security turns out to be somewhat tricky
and non-trivial; see Section 2 for details.

We prove that our scheme is non-malleable against all polynomial-size at-
tackers that cannot solve the puzzles (and this is inherent as the latter ones
can easily maul any puzzle). We even allow the attacker’s description to depend
arbitrarily on the random oracle. We formalize this notion by showing that our
TLP is non-malleable in the auxiliary-input random oracle model, a model that
was introduced by Unruh [47] (see also [14]) in order to capture preprocessing
attacks, where a non-uniform attacker obtains an advice string that depends
arbitrarily on the random oracle. Thus, in a sense, our construction does not
require any form of attacker-independent setup.

Our second construction is proven secure in the plain model (without any
form of setup) and is based on the non-malleable code for bounded polynomial
depth tampering functions due to [15]. This construction relies on a variety
of assumptions (including keyless hash functions and non-interactive witness
indistinguishable proofs) and is less practically efficient. While the main technical
ideas for the construction and proof are given in [15], the threat model they
consider is weaker than what we require for non-malleable TLPs; for example,
they only consider plain (non-concurrent) non-malleability and do not require
security against re-randomization attacks (mauling a code word for m into a
different code word for m). We show how to extend their construction to our
setting, and prove the following theorem.

Theorem 1.2 (Informal). Assume a time-lock puzzle, a keyless multi-collision
resistant hash function, a non-interactive witness indistinguishable proof for NP,
and injective one-way functions, all sub-exponentially secure. Then, there exists
a bounded concurrent non-malleable time-lock puzzle secure against polynomial
size adversaries.

We emphasize that both of our constructions only achieve bounded concur-
rency, where the number of instances the attacker participates in is a priori

6 We note that our construction is conceptually similar to the Fujisaki-Okamoto (FO)
transformation [21] used to generically transform any CPA-secure public-key encryp-
tion scheme into a CCA-secure one using a random oracle. However, since our setting
and required guarantees are different, the actual proof turns out to be much more
delicate and challenging.
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bounded (and the scheme may depend on this bound). We show that the stronger
notion of full concurrency, which does not place such limitations and is achiev-
able in all other standard settings of non-malleability, is actually impossible to
achieve for TLPs. Therefore, our result is best possible in this sense.

Theorem 1.3 (Informal). There is no fully concurrent non-malleable TLP
(even in the random oracle model).

In a nutshell, the impossibility from Theorem 1.3 is proven by the following
generic MIM attack. Given a puzzle z, if the number of “sessions” the attacker
can participate in is at least as large as |z|, they can essentially generate |z|
puzzles encoding the bits of z. Since the distinguisher of the MIM game (which
is now given those bits) can run in arbitrary polynomial time, it can simply
solve the original puzzle and recover the original solution in full. We emphasize
that this attack only requires a polynomial-time distinguisher. This attack is
circumvented in the bounded concurrency setting (Theorem 1.1) by setting the
length of the puzzle to be longer than the concurrency bound. Specifically, to
support n concurrent puzzles on the right, we can set the message length to L ·n,
which is what results in exponential security loss 2L·n as discussed above.

Functional non-malleability. We note that the attack on fully concurrent
non-malleable time-lock puzzles crucially relies on the fact that the distinguisher
in the MIM game can solve the underlying puzzles. However, it is easy to see
that if the distinguisher is restricted to bounded depth, this attack fails. One
could define a weaker notion of non-malleability where the MIM distinguisher is
depth-bounded, but this results in a weaker security guarantee. In particular, we
show in the full version of the paper that there exists a natural TLP construction
that satisfies this (weaker) definition yet has a valid mauling attack.7

In light of this observation, we introduce a new definition of non-malleability
that generalizes the standard definition considered in Theorem 1.1. We call the
notion functional non-malleability and, as the name suggests, the security notion
is parameterized by a class of functions F . Denote by L the bit-length of the
messages we want to support and by n the number of sessions that the MIM
attacker participates in on the right. We think of f ∈ F as some bounded depth
function of the form f : ({0, 1}L)n → {0, 1}m, which is the target function of
the input messages that the MIM adversary is trying to bias. Specifically, the
distinguisher of the MIM game now receives the output of the function f when
applied to the values underlying the puzzles given by the MIM adversary. When
F includes all identity functions (which are bounded depth and have output
length m = n ·L), functional non-malleability implies the standard definition of
concurrent non-malleability (as the distinguisher just gets all the messages from
the n mauled puzzles).

Naturally, it makes sense to ask what guarantees can we get if we a priori
restrict f , say in its output length, without limiting the number of sessions n.

7 As we discuss in the Section 1.3, concurrent works allow the distinguisher to be
bounded depth.
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This turns out to particularly useful when the application at hand only requires
non-malleability against a specific form of tampering functions (this indeed will
be the case for us below). Concretely, let Fm be the class of all functions whose
output length is at most m bits and which can be computed in depth polynomial
in the security parameter λ and in log(n · L) (using the notation given above).
Then, we have the following result.

Theorem 1.4 (Informal; See Theorem 4.2). Assuming that there exists
a TLP, then for every m ∈ poly(λ) there exists a fully concurrent functional
non-malleable TLP for the class of functions Fm. The scheme is proven secure
in the auxiliary-input random oracle model assuming the given TLP is secure
for all attackers of size at most 23m · poly(λ).

The above construction is depth preserving in the same way as the con-
struction from Theorem 1.1. Further, note that as long as m ∈ O(log λ), we
only require standard polynomial hardness from the given TLP. We remark that
Theorem 1.4 will turn out to be instrumental for our applications we discuss
below. We also believe that the abstraction of functional non-malleability is im-
portant on its own right and view it as an independent contribution. We also
show how to achieve fully concurrent functional non-malleability for our plain
model construction.

Publicly verifiable time-lock puzzles. In addition to non-malleability, we
construct TLPs that also have a public verifiability property: after a party solves
the puzzle, they can publish the underlying solution together with a proof which
can be later used by anyone to quickly verify the correctness of the solution. We
emphasize that this must hold even if the solver determines that the puzzle has
no valid solution. We believe this primitive is of independent interest.

We build our non-malleable, publicly verifiable TLP assuming a very weak
form of (partially) trusted setup. The setup of our TLP consists of a set of many
public parameters where we only assume that at least one of them was generated
honestly. We call this model the All-But-One-string (ABO-string) model.8 We
design this to fit into our multi-party protocol application (see Theorem 1.7
below) in such a way where the parties themselves will generate this setup in the
puzzle generation phase. Indeed, as we discuss below, publicly verifiable TLPs
in the ABO-string model will imply coin flipping without setup.

Theorem 1.5 (Informal). Assuming the repeated squaring assumption, there
exists a publicly verifiable non-malleable TLP in the ABO-string model. The
construction is proven secure in the auxiliary-input random oracle model.

Our construction is depth preserving and has security which depends on the
message length. In particular, the security of the resulting TLP is the same as

8 Our ABO-string model is a variant of the multi-string model of Groth and Ostro-
vsky [25], where it is assumed that a majority of the public parameters are honestly
generated.

6



in the constructions in Theorem 1.1 and Theorem 1.4, depending on the type of
non-malleability desired for the resulting TLP.

To construct our publicly verifiable TLP, we use a strong trapdoor VDF which
is why our construction is not generic from any time-lock puzzle. Somewhat
surprisingly, we need to leverage specific properties of the trapdoor VDF of
Pietrzak’s [44] using the group of signed quadratic residues QR+

N where N is a
product of safe primes.9 For an overview of our construction, see Section 2.2.

Fair multi-party auctions and coin flipping. As we mentioned above, an
appealing application of non-malleable TLPs is for tasks such as fair multi-
party auctions or coin flipping. Our protocols (for both tasks) are extremely
efficient and consist of just two phases: first each party “commits” to their
bid/randomness using some puzzle, and then after all puzzles are made public,
each party publishes its solution. If some party refuses to open their puzzle, a
force-opening phase is performed. Alternatively, we can instantiate our protocols
in the fully non-interactive setting where all parties solve every other puzzle.

In what follows, we focus on the task of fair multi-party coin flipping, which is
a core building block in recent proof-of-stake blockchain designs; see below. The
application to auctions follows in a similar manner. It is convenient to consider
our protocol in a setting where there is a public bulletin board. Any party can
publish a puzzle to the bulletin board during the commit phase and then publish
its solution after some pre-specified amount of time has elapsed.

Relying only our concurrent, functional non-malleable (not necessarily pub-
licly verifiable) TLP constructions, all of our protocols (both non-interactive and
two-phase) satisfy fairness, informally defined as follows:

• Fairness: No malicious adversary (controlling all but one party) can bias the
output of the protocol, even by aborting early. Namely, as long as there is at
least one honest participating party, the output will be a (nearly) uniformly
random value.

Our two-phase “commit-and-reveal” style protocols have the additional efficiency
guarantee:

• Optimistic Efficiency: If all participating parties are honest, then the pro-
tocol terminates within two message rounds (without the need to wait the
pre-specified amount of time for the second phase), and all parties can effi-
ciently verify the output of the protocol.

Using our construction of a publicly verifiable non-malleable TLP, we satisfy the
following public verifiability property:

• Public Verifiability: In the case that any participating party is dishonest
and does not publish their solution, any party can break the puzzle in a mod-
erate amount of time and provide a publicly verifiable proof of the solution.

9 For this, we assume that sampling uniformly random safe primes can be done effi-
ciently; this is a pretty common assumption, see [48] for more details.
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We even require that an honest party can prove that a published puzzle has
no valid solution.

We focus on two main results from the above discussion, although we get
a variety of different protocols depending on what TLP we start with and how
we instantiate the protocol. First, we construct fully non-interactive protocols
in the plain model without any setup.

Theorem 1.6 (Informal; see Theorem 5.3). Assume a time-lock puzzle, a
keyless multi-collision resistant hash function, a non-interactive witness indis-
tinguishable proof for NP, and injective one-way functions, all sub-exponentially
secure. Then, there exist fully non-interactive, fair multi-party coin flipping and
auction protocols. The protocols support an unbounded number of participants
and require no setup.

Next, we achieve efficient, publicly verifiable two-phase protocols in the aux-
iliary input random oracle model.

Theorem 1.7 (Informal; See Theorem 5.1). Assuming the repeated squar-
ing assumption, there exist two-phase fair multi-party coin flipping and auction
protocols that satisfy optimistic efficiency and public verifiability. The protocols
support an unbounded number of participants and require no trusted setup. Se-
curity is proven in the auxiliary-input random oracle.

The differences between the protocols achieved in these two theorems is that
the first is non-interactive and has no setup, while the second is two rounds and
is in the random oracle model, yet leverages this to achieve public verifiability
and better concrete efficiency. We emphasize that both of the protocols support
polynomial-length outputs, relying on sub-exponential security of the underlying
time-lock puzzle.

We also emphasize that our protocols support an a priori unbounded number
of participants. This may seems strange in light of our impossibility from Theo-
rem 1.3. We bypass this lower bound (as mentioned above) by observing that for
most natural applications (including coin flipping and auctions), the notion of
functional non-malleability from Theorem 1.4 suffices. The key insight is that we
only need indistinguishability with respect to specific depth-bounded functions
with a priori bounded output lengths (e.g., parity for coin flipping, or taking the
maximum for auctions). Since the output length in both cases is known, we can
actually support full concurrency which translates into having an unbounded
number of participants.

For auctions, we note that our protocols are the first multi-party protocols
under any assumption that satisfy fairness against malicious adversaries and
requires no adversary-independent setup—using the timed commitments of [9]
works only in the two-party setting and additionally relies on trusted setup,
and using the homomorphic time-lock puzzles of [36] does not satisfy fairness in
the presence of malicious adversaries. For coin flipping, our two-round protocol
is the first multi-party protocol that is fair against malicious adversaries while
satisfying optimistic efficiency. Next, we provide a more in depth comparison of
our non-interactive coin flipping protocol with existing solutions.
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Simulation-based fairness. As mentioned above, we show that our proto-
cols are fair in the sense that no malicious adversary can bias the output of the
protocol. This suffices for applications which only use the output of the protocol.
To capture applications that additionally depend on the protocol transcript, we
show that our protocol satisfies simulation security with full fairness in the pro-
grammable random oracle model. This guarantees that the protocol execution
in the presence of a malicious adversary (even one aborting early) can be simu-
lated to a uniformly random output in an ideal model where every honest party
receives the output (regardless of whether any malicious party aborts early).

Non-interactive coin flipping. We emphasize that our non-interactive coin
flipping protocol of Theorem 1.6 is the first such protocol without any form of
setup in the plain model. Specifically, we mean that there is no common random
string or any assumed common function. Still, our practically efficient protocol of
Theorem 1.7 as a non-interactive protocol still enjoys some benefits over existing
schemes.

In the non-interactive setting, Boneh et al. [7] proposed a VDF-based pro-
tocol. Specifically, each party publishes a random string ri and then the agreed
upon coin is defined by running a VDF on the seed H(r1‖ . . . ‖rn), where H is
a random oracle. As the VDF must be evaluated to obtain the output, this type
of protocol does not satisfy optimistic efficiency. Nevertheless, the VDF-based
protocol has the advantage that only a single slow computation needs to be com-
puted, whereas our non-interactive protocol requires n such computations for n
participants (which can be done in parallel). Malavolta and Thyagarajan [36] ad-
dress this inefficiency in the context of time-lock puzzles (which do allow for the
option of optimistic efficiency) by constructing homomorphic time-lock puzzles,
where many separate puzzles can be combined into a single puzzle to be solved.
However, their TLP scheme is malleable and so cannot be directly used to obtain
a fair protocol against malicious adversaries.10 In the two-phase setting, how-
ever, our publicly verifiable protocol has the property that only a single honest
party needs to solve each puzzle, and this computation can easily be delegated
to an external server.

The VDF-based scheme of [7] can be based on repeated squaring in a group
of unknown order based on the publicly verifiable proofs of [50, 44]. In this set-
ting, the protocols can either be instantiated using RSA groups that require
attacker-independent trusted setup, or based on class groups that rely only on
a common random string. As we do in this work, the common random string
can be implemented in the ABO-string model using a random oracle (which the
attacker may depend on arbitrarily). Therefore, when restricting our attention
to protocols without attacker-independent setup, the previous VDF-based pro-
tocols are based on less standard assumptions on class groups, whereas we give

10 It is possible to make this protocol maliciously secure using concurrent non-malleable
zero-knowledge proofs [2, 38, 34, 32], proving that each party acted honestly, but this
(1) makes the construction significantly less efficient, and (2) requires either trusted
setup and additional hardness assumptions, or additional rounds of interaction.
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a protocol that can be instantiated from more standard assumptions on RSA
groups with better concrete efficiency.

Privacy. Let us remark that the protocols that we described guarantee fairness
but not privacy. The latter, however, can be obtained in specific applications by
composing our protocols with existing privacy-preserving tools such as Anon-
ize [26].

1.2 Related Work

Timed commitments. Boneh and Naor [9] introduced timed commitments,
which can be viewed as a publicly verifiable and interactive TLP. They addi-
tionally require that the puzzle (which is an interactive commitment) convinces
the receiver that if they brute-force the solution, they will succeed. Because of
this additional property, their commitment scheme is interactive and relies on a
less standard assumption called the generalized Blum-Blum-Shub assumption.
Their scheme is additionally malleable.

Fair coin flipping in blockchains. Generating unbiased bits is one of the
largest bottlenecks in modern proof-of-stake crypto-currency designs [5, 16, 17].
Recall that in a proof-of-stake blockchains, the idea is, very roughly speaking,
to enforce “one vote per unit of stake”. This is usually implemented by choosing
random small committees at every epoch and letting that committee decide on
the next block. The main question is how to obtain “pure” randomness so that
the chosen committee is really “random”.

One option is to use the hash of an old-enough block as the randomness.
Unfortunately, it is known that the hash of a block is not completely unbiased:
an attacker can essentially fully control about logarithmically many of its bits.
In existing systems, this is mitigated by “blowing up” parameters to compensate
for the (small yet meaningful) advantage the attacker has, making those systems
much less efficient. Using a mechanism that generates unbiased bits, we could
make proof-of-stake crypto-currencies much more efficient.

1.3 Concurrent Work

Several related papers [4, 3, 28] have been developed concurrently and indepen-
dently to this work.11 The works of Baum et al. [4, 3] formalize and construct
various (publicly verifiable) time-based primitives, including TLPs, under the
Universal Composability (UC) framework [10]. Katz et al. [28] (among other re-
sults, less related to ours) introduce and construct non-malleable non-interactive

11 We emphasize that only Section 1.3, Appendix A, and the separation regarding the
different notions of non-malleability (given in the full version) were added based on
these works. All other definitions and results that appear are completely independent
of these works.
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timed commitments. While the notions that are introduced and studied are re-
lated, the results are all incomparable as each paper has a somewhat different
motivation which leads to different definitions and results.

Comparison with [28]. Let us start by comparing definitions. Katz et al.
consider a CCA-style definition adapted to the depth-bounded setting. In the
classical setting of unbounded polynomial-time attackers, CCA security defini-
tions are usually stronger than “only” non-malleability, but this is not generally
true in the depth-bounded setting.

In more detail, they consider a depth-bounded version of CCA security, where
the attacker (who is also the distinguisher) is bounded to run in time less than the
hardness of the timed primitive. We, on the other hand, allow the distinguisher of
the MIM game to be unbounded (while only the attacker is bounded). We believe
this is an important distinction and we provide more insights into the differences
between the bounded and unbounded distinguisher settings in the full version.
Specifically, we show that non-malleability with a depth-bounded distinguisher
is (essentially) equivalent to our definition of functional non-malleability with
output length 1. We also give a construction separating the definitions of non-
malleability with an unbounded vs. depth-bounded distinguisher, showing that
non-malleability in the bounded distinguisher setting gives a strictly weaker
security guarantee.

Regarding the primitives constructed, recall that timed commitments [9] (ig-
noring non-malleability for now) allow one to commit to a message m in such a
way that the commitment hides m up to some time T , yet the verifier can be
sure that it can be force opened to some value after roughly T time. In contrast,
plain TLPs are not necessarily guaranteed to contain valid messages. In this con-
text, our notion of publicly-verifiable TLPs is in between these two notions: we
treat puzzles without a solution as invalid (say encoding ⊥) but we additionally
provide a way to publicly verify that this is the case after it has been solved.
Nevertheless, we note that the construction of Katz et al. does not imply a TLP
since their commitment procedure takes T time (while TLP generation should
take time essentially independent of T ).

Additionally, their constructions achieve non-malleability through the use
of NIZKs following the Naor-Yung [37] paradigm for CCA-secure encryption.
Known (even interactive) zero-knowledge proofs for correctness of time-lock puz-
zles are quite expensive (see, e.g., Boneh-Naor [9] which requires parallel repe-
tition). Using generic NIZKs (even in the random oracle model) would be even
worse.

Regarding assumptions, their construction is proven secure in the algebraic
group model [20] and relies on trusted setup, while ours is proven secure in
the (auxiliary-input) random oracle model and hence requires no trusted setup
independent of the adversary. Both constructions rely on repeated squaring as
the source of depth-hardness, and theirs additionally makes use of NIZKs (which
require setup).
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Comparison with [4, 3]. Baum et al consider a UC-style definition, which is
generally stronger than non-malleability. In this setting, the environment takes
the place of the distinguisher in the MIM game. Their definition is closer to
ours as the environment may run for an arbitrary polynomial number of rounds
and thus does not restrict the depth of the distinguisher. In terms of modeling,
the construction of a UC-secure TLP in [4] relies on a programmable random
oracle, whereas our construction relies on a non-programmable (auxiliary-input)
random oracle. In fact, they prove that their notion of UC security cannot be
achieved in the non-programmable random oracle model.

In a follow-up work [3], they show that their time-lock puzzle construction
satisfies a notion of public verifiability. However, they achieve public verifiability
only for honestly generated puzzles, that is, one can prove that a puzzle has a
solution s, but cannot prove that a puzzle has no solution. In our terminology,
we refer to this as one-sided public verifiability In contrast, our construction
achieves full verifiability. This property is crucial for our efficient coin flipping
protocol since it allows only one honest party to (attempt to) solve any invalid
puzzle. With only one-sided public verifiability, every participant would need to
solve all invalid puzzles, and the output of the coin-flip can only be efficiently
verified (in time less than T ) in the case that all puzzles are honestly generated.

1.4 Paper Organization

In Section 2, we give an overview of our techniques. Next, we give preliminaries
in Section 3. In Section 4, we give our construction of functional non-malleable
time-lock puzzles in the random oracle model. In Section 5, we give our con-
struction of fair multi-party coin flipping. In Appendix A we discuss the various
notions of non-malleability for TLPs introduced in this and related works. Ad-
ditional results are provided in the full version, including our non-malleable
TLP construction in the plain model, an impossibility result for unbounded con-
currency, our publicly verifiable TLP construction, our simulation-secure coin
flipping protocol, and a separation between unbounded and depth-bounded non-
malleability.

2 Technical Overview

In Section 2.1, we give an overview of our non-malleable time-lock puzzle con-
struction (in the random oracle model) and its proof of security. Then in Sec-
tion 2.2, we overview our construction of publicly verifiable (and non-malleable)
time-lock puzzles from repeated squaring. Finally in Section 2.3, we discuss how
our non-malleable time-lock puzzle constructions can be used for fair multi-party
coin flipping with various desirable properties.

We start by recalling the definition of TLPs, as necessary to give an overview
of our techniques. A TLP consists of two algorithms (Gen,Sol). Gen is a proba-
bilistic procedure that takes as input an embedded solution s and a time param-
eter t, and outputs a puzzle z. Sol is a deterministic procedure that on input a
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puzzle z for time bound t, outputs a solution in depth (or parallel time) roughly
t. We note that TLPs can be thought of as a fine-grained analogue to commit-
ments where “hardness” of the puzzle means that the puzzles are hiding against
distinguishers of depth less than t. On the other hand, hiding can be broken in
depth t (using Sol). Additionally, we require that Sol always finds the correct
underlying solution s for a puzzle z. This corresponds to perfect binding in the
language of commitments.

2.1 Non-Malleability for Time-Lock Puzzles

In this section, we overview our non-malleable time-lock puzzle construction in
the random oracle model (for the plain model construction, we refer the reader
to the overview in [15], as the main ideas are the same). Our construction relies
on any time-lock puzzle TLP and a common random oracle O. We now describe
our non-malleable TLP, which we denote nmTLP. In order to generate a puzzle
for a solution s that can be broken in time t, nmTLP.Gen uses randomness r and
feeds s‖r into the random oracle to get a string rtlp. It then uses TLP.Gen to
create a puzzle with difficulty t for s‖r using randomness rtlp. That is,

nmTLP.Gen(t, s; r) := TLP.Gen(t, s‖r;O(s‖r)).

Note that in order to solve the puzzle output by nmTLP.Gen, it suffices to just
solve the puzzle generated using TLP.Gen, which takes time t. In other words,
nmTLP.Sol(t, z) simply computes s‖r = TLP.Sol(t, z) and outputs s. In fact, the
solver can even check to make sure that the solutions s is valid by checking that
s = TLP.Gen(t, s; r).

We note that our construction is conceptually similar to the Fujisaki-Okamoto
(FO) transformation [21] for transforming CPA-secure encryption to CCA-secure
encryption using a random oracle. However, as we will see below, our proof is
substantially different. In particular, the FO transformation achieves unbounded
CCA security, which we show is impossible in our setting!

Hardness. To show the hardness of nmTLP relative to a random oracle, we
rely on the hardness of TLP in the plain model, against attackers of depth much
less than t. At a high level, we show that breaking the hardness of nmTLP
requires either guessing the randomness r used to generate the randomness rtlp =
O(s||r) for the underlying puzzle, or directly breaking the hardness of TLP, both
of which are infeasible for bounded attackers. To formalize this, we consider
any depth-bounded distinguisher DO, who receives as input a nmTLP puzzle z
corresponding to solution s0 or s1 and distinguishes the two cases with non-
negligible probability. By construction, z actually corresponds to a TLP puzzle
for s0||r0 or s1||r1, so we would like to use D to construct a distinguisher against
the hardness of TLP.

We first note that if D never makes a query to O containing the randomness
rb underlying z, then we can simulate O by lazily sampling it in the plain model,
and hence use D as a distinguisher for the hardness of TLP. If D does make a
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query containing rb, then with overwhelming probability it must have received
a puzzle corresponding to sb||rb (since in this case, r1−b is independent of D
and its input z). Moreover, all of its queries up until that point have uniformly
random answers independent of z, so we can simulate them as well, up until
receiving this query. Therefore, in both cases, we can carry out this attack in
the plain model and rely on the hardness of TLP.

Non-malleability. To show non-malleability of nmTLP, we want to argue that
any depth-bounded man-in-the-middle (MIM) attacker A cannot maul a puzzle
z for s (received on the left) to a puzzle z̃ (output on the right) for a related value
s̃ 6= s. At a high level, whenever A changes the underlying value s to s̃, then
the output of the random oracle on s̃ is now uniformly random and independent
of z. Indeed, we show that for any fixed puzzle z̃ and a value s̃, a randomly
generated puzzle for s̃ will not be equal to z̃ with high probability (otherwise
we show how to break the hardness of TLP). So, intuitively, the only way to
generate a valid puzzle z̃ for s̃ is to “know” the underlying value s̃, but hardness
intuitively implies that no depth-bounded adversary can “know” s.

We formalize this intuition by a hybrid argument to show that the MIM
distribution s̃← mimA(t, s) is indistinguishable from mimA(t, 0). At a high level,
we first replace the inefficient distribution mimA(t, s) by a low-depth circuit B.
At this point, we want to use the hiding property to indistinguishably swap the
puzzle to 0, so the hybrid is now unrelated to s. We describe the key ideas for
these hybrids below.

For the first hybrid, the key insight is that we can compute mimA(t, s) in low
depth using an algorithm B by simply looking at the oracle queries made by A.
In this sense, we are relying on the extractability property of random oracles to
say that A must know any valid value s̃ it generates a puzzle for. Specifically,
let z̃ be the output of A. For every query (si‖ri) that A makes to O, B outputs
si if z̃ = nmTLP(t, si‖ri;O(si‖ri)). If there are no such queries, B outputs ⊥.
B requires depth comparable to the depth of A since all of these checks can be
done in parallel. Furthermore, the output of B is indistinguishable from the true
output given the above observation that A cannot output a valid puzzle for a
value it doesn’t query.

For the next hybrid, we would like to indistinguishably replace the underlying
puzzle for s with a puzzle for 0, which would suffice to show non-malleability.
Because B is low-depth, it seems that we should be able to use the hiding property
of nmTLP to say that the output of B does not depend on the underlying value
s. Specifically, we want to conclude that if the output of B (who outputs many
bits) is statistically far when the underlying value is s versus 0, then there exists
a distinguisher (who outputs a single bit) that can distinguish puzzles for s
and 0. Towards this claim, we show how to “flatten” any (possibly unbounded)
distinguisher D who distinguishes between the output of B in the case where
the underlying value is s versus 0. Specifically, we encode the truth table of D
as a low-depth distinguishing circuit of size roughly 2|s| to make this reduction
go through. As a result, we need to rely on a sub-exponentially security of the
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underlying TLP when |s| = λ. Namely, the underlying TLP cannot be broken
by sub-exponential sized circuits with depth much less than t. However, when
|s| ∈ O(log λ), we only need to rely on polynomial security of the underlying
TLP.

Impossibility of fully concurrent non-malleability. Ideally, we would like
to achieve fully concurrent non-malleability, meaning that any MIM attacker that
receives any polynomial n number of puzzles on the left cannot maul them to n
puzzles for related values. However, we show that this is impossible to achieve.

Consider an arbitrary TLP for a polynomial time bound t. We construct a
MIM attacker A that receives only a single puzzle z on the left with solution s
where the length of z is L. Then, A can split z into L bits and output a puzzle
on the right for each bit of the puzzle z. Then, the values underlying the puzzles
output by A when viewed together yield z, which is related to the value s! More
formally, there exists a polynomial time distinguisher that solves the puzzle z in
polynomial time t and can distinguish A’s output in the case when it receives a
puzzle for s or an unrelated value, say 0.

This implies that for any n which is greater than the size of a puzzle, the
TLP cannot be non-malleable against MIM attackers who output at most n
puzzles on the right. At a high level, the impossibility follows from the fact that
hardness does not hold against arbitrary polynomial-time distinguishers (which
usually is the case for hiding of standard commitments).

Despite this impossibility, we show that we actually can achieve concurrent
non-malleability against a specific class of distinguishers in the non-malleability
game. We refer to this notion as concurrent functional non-malleability.

Achieving concurrent functional non-malleability. In many applications,
we only need a form of non-malleability to hold with respect to certain classes
of functions. For example, in our application to coin flipping, we only need that
a puzzle z with solution s cannot be mauled to a set of puzzles z̃1, . . . , z̃n with
underlying values s̃1, . . . , s̃n such that

⊕
i∈[n] s̃i “depends on” s. With this in

mind, we define a concurrent functional non-malleability with respect to a class
of functions F . We say that a TLP satisfies functional non-malleability for a
class F if the output of f(mimA(t, s)) is indistinguishable from f(mimA(t, 0))
for any f ∈ F , which also naturally generalizes to the concurrent setting. We
note that functional non-malleability for a class F actually implies standard non-
malleability whenever the class F contains the identity function, so functional
non-malleability generalizes the standard notion of non-malleability.

Going back to the proof of standard (non-concurrent) non-malleability for
our construction nmTLP, we observe that the security we need for the underly-
ing time-lock puzzle we use depends on 2|s| where |s| is the size of the puzzle
solutions. Specifically, given any distinguisher in the non-malleability that had
input of size |s|, we were able to construct a distinguisher for hardness of size
2|s|. In fact, this exact same proof works in the context of concurrent functional
non-malleability for functions f that have low depth and bounded output length
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m. We require f to be low depth so the reduction constitutes a valid attack
against hardness, and then we only require security proportional to 2m!

We briefly discuss how our nmTLP construction works for concurrent func-
tional non-malleability for the class Fm of function with low depth and output
length m. Specifically, for every m, we define a scheme nmTLPm assuming that
TLP is secure against attackers of size roughly 2m. Because TLP requires security
against 2m size attackers, our construction nmTLPm also only achieves security
against 2m size attackers. As such, our nmTLP.Gen algorithm needs to use at
least Ω(m + λ) bits of randomness (otherwise an attacker could cycle through
all choices of randomness to break security). Recall that nmTLPm.Gen with ran-
domness r outputs a puzzle using TLP.Gen with solution s‖r. As a result, if we
want to support solutions of size |s| in nmTLPm, we need our underlying TLP
to support solutions of size O(|s|+m+λ). By correctness, this implies that our
schemes outputs puzzles of size roughly O(|s|+m+ λ).

Bounded concurrent non-malleability. Our construction of time-lock puz-
zles for concurrent functional non-malleability can also be seen as a construction
for bounded concurrent (plain) non-malleability. Specifically, consider the case
where the MIM attacker outputs at most n puzzles on the right. We can think of
this as functional non-malleability where the low depth function is simply iden-
tity on n · |s| bits. From the above discussion, this implies a protocol assuming
a TLP with security against size 2n·|s| attackers, with puzzles of size roughly
O(n · |s|+ λ).

Security in the auxiliary-input random oracle model. Finally, we note
that the most of our constructions and formal proofs are in the auxiliary-input
random oracle model (AI-ROM) introduced by Unruh [47]. In this model, the
non-uniform attacker is allowed to depend arbitrarily on the random oracle,
so there is no attacker-independent non-uniform advice. At a high level, we
use the result from [47] to conclude that the view of any bounded-size MIM
attacker A with oracle access to O (where A may depend arbitrarily on O) is
indistinguishable the view of A with access to a “lazily sampled” oracle P that is
fixed at a set of points F (which depend on A). Formally, in the non-malleability
analysis, we switch to an intermediate hybrid where the MIM attacker has access
to a partially fixed, lazily sampled oracle P. Then, because the MIM attacker A
must maul honestly generated puzzles that have high entropy, we show that it
is necessary for A to query the oracle P outside the fixed set of points F . From
this, we carefully show that a similar analysis follows as discussed above for the
ROM.

2.2 Publicly Verifiable Time-Lock Puzzles

We observe that the non-malleable time-lock puzzle construction nmTLP we de-
scribed above has a very natural—yet incomplete—public verifiability property.
Solving a puzzle yields both the solution s and the randomness r use to generate
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that puzzle. As such, anyone who solves a valid puzzle can send the opening
r to another party, and convince them that s is the unique valid solution to
the puzzle. However, we emphasize that this only works for valid puzzles and
solutions.

Consider the following problematic scenario for our nmTLP construction.
Suppose a party “commits” to a value via a puzzle z and refuses to open the
commitment. As we said before, if z is a valid puzzle, any party can solve the
puzzle, get the solution s and an opening r that proves that s is the unique solu-
tion. What if the puzzle corresponds to no solution? We refer to this scenario by
saying that the puzzle corresponds to the solution ⊥. In this case (by definition),
there is no solution s and opening r for any such that z = Gen(t, s; r). Anyone
who solve the invalid puzzle—which requires a lot of computational power—will
be able to conclude that the puzzle is malformed, but they will not be able to
convince anyone else that this is the case. Ideally, we would have a time-lock
puzzle where Sol additionally outputs a publicly verifiable proof π that the so-
lution it computes is correct, even if the solution may be ⊥! We refer to such
a time-lock puzzle as a publicly verifiable time-lock puzzle. We next discuss the
definition and our construction of publicly verifiable time-lock puzzles.

Defining public verifiability. More formally, a publicly verifiable time-lock
puzzle consists of algorithms (Gen,Sol,Verify). As with normal time-lock puzzles,
Gen(t, s) outputs a puzzle z. The algorithm Sol(t, z) outputs the solution s as
well as a proof π that it computed s correctly. Finally Verify(t, z, (s, π)) checks
that s is indeed the correct solution for the puzzle z (corresponding to Sol(t, z)),
using the proof π. In addition to (Gen,Sol) being a valid time-lock puzzle, we
require that Sol and Verify constitute a sound non-interactive argument. In fact,
we require a very strong notion of soundness. We need it to be the case that
even for maliciously chosen puzzles that have no solution, the time-lock puzzle
is still sound—even against the adversary that generated the malformed puzzle.
In other words, we require that no attacker can compute a puzzle z, a value
s′, and a proof π′ such that Verify(t, z, (s′, π′)) accepts yet s′ is not the value s
computed by Sol(t, z), which may be ⊥.

Ideally, we would want a publicly verifiable time-lock puzzle that requires no
setup. We instead consider a weak form of setup which we refer to as the All-
But-One-string (ABO-string) model. In this model, Sol and Verify additionally
take as input a string mcrs = (crs1, . . . , crsn) ∈ ({0, 1}λ)n, and we require that
soundness holds as long as one of the values of crsi is sampled uniformly (without
necessarily knowing which one); this is why we refer to it as the all-but-one string
model. We note that in multi-party protocols, the ABO-string model is realistic
as each participant i ∈ [n] can post a value for crsi. Then, we require soundness
to hold as long as one participant is honest, which is a reasonable assumption in
this multi-party setting.

Constructing publicly verifiable time-lock puzzles. Our construction of
a publicly verifiable time-lock puzzle follows the blueprint of Rivest, Shamir, and
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Wagner [45] for constructing time-lock puzzles from repeated squaring. Namely,
we use the output of a sequential function (repeated squaring in a suitable group)
essentially as one-time pad to mask the value underlying the time-lock puzzle. As
in [45], we require that the sequential function has a trapdoor so that puzzles can
be generated efficiently. Unlike [45], we additionally require that the sequential
function is publicly verifiable to enable publicly verifiability for the time-lock
puzzle. Finally, we apply the non-malleability transformation described above
to achieve full public verifiability. In what follows, we describe each of these
steps in more detail.

For the underlying sequential function, we use what we call a strong trapdoor
verifiable delay function (VDF). A VDF (introduced by Boneh et al. [7]) is
a publicly verifiable sequential function that can be computed in time t but
not much faster, even with lots of parallelism. A trapdoor VDF (formalized by
Wesolowski [50]) additionally has a trapdoor for quick evaluation. We require
a trapdoor VDF in the ABO-string model that satisfies additional properties
required by our application. While the properties we define—and achieve—are
heavily tailored towards our application, we believe some of the techniques may
be of independent interest. More specifically, a strong trapdoor VDF comes
with a Sample algorithm to generate inputs for an evaluation algorithm Eval.
We emphasize that, even in the ABO-string model, Sample is independent of
any form of setup. Previous definitions of VDFs require the proof to be sound
with probability over an honestly sampled input. In contrast, we require that
the proof is sound for any maliciously chosen input that is in the support of
the Sample algorithm. We note that this property is satisfied by a variant of
Pietrzak’s VDF [44] based on repeated squaring. At a high level, this is because
Pietrzak’s VDF is sound (at least in the random oracle model) for any group of
unknown order where no adversary can find a group of low order (see e.g.[8] for
further discussion), so by using any RSA group with no low order elements (as
in [44]), the proof is sound even if the group is maliciously chosen (yet still a valid
RSA group), which gives the strong property we need. We note that the proof of
soundness for our strong trapdoor VDF in the ABO-string and auxiliary-input
random oracle model follows by a similar argument to that of [44] in the (plain)
random oracle model after applying Unruh’s result [47].

Next, we construct what we refer to as a one-sided publicly verifiable time-
lock puzzle in the ABO-string model by using the strong trapdoor VDF in the
RSW-style construction described above. By one-sided, we mean that complete-
ness and soundness hold only for puzzles in the support of Gen (again, we em-
phasize that this is in contrast to a randomly sampled puzzle). Then, our full
construction applies our non-malleability transformation to a one-sided publicly
verifiable time-lock puzzle. We already argued that the non-malleability trans-
formation provides a form of public verifiability for puzzles z in the support of
Gen. Namely, anyone can prove to another party that a valid puzzle z has a solu-
tion s, but the proof may not be sound when trying to prove that a puzzle has no
solution. However, we next show that if the underlying puzzle satisfies one-sided
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public verifiability, then the resulting (non-malleable) publicly verifiable TLP is
sound for any z ∈ {0, 1}∗ (possibly not in the support of Gen).

Proof of full public verifiability. Let (Gen,Sol,Verify) be the TLP result-
ing from applying our non-malleability transformation to a one-sided PV TLP
(Gentlp,Soltlp,Verifytlp). Consider any puzzle z ∈ {0, 1}∗. If z is in the support of
Gen, we want to ensure that no one can prove that s′ = ⊥ is a valid solution. At
the same time, if z is not in the support of Gen, we want to ensure that no one
can prove that s′ 6= ⊥ is a valid solution.

When we run Sol(t, z), we first run Soltlp(t, z) and get a solution stlp = ŝ‖r̂
with a proof πtlp. If r̂ is a valid opening for the proposed solution ŝ, then Sol can
simply output the solution s = ŝ and the proof π = r̂. If r̂ is not a valid opening
for ŝ, Sol must output ⊥ and a proof π that this is the case. We set π = (stlp, πtlp),
which intuitively gives anyone else a way to “shortcut” the computation of Soltlp.

Now suppose that an adversary tries to falsely convince you that a puzzle z
with no solution has a solution s′ 6= ⊥ using a proof π′ = r′. To do so, it must
be the case that r′ is a valid opening for s′ with respect to Gen. But if that were
the case, then z would have a solution, in contradiction.

On the other hand, suppose that an adversary tries to falsely convince you
that a puzzle z with solution s has no solution, i.e. s′ = ⊥, using a proof π′ =
(s′tlp, π

′
tlp). Since z has a solution, it means that z is in the support of Gentlp. By

one-sided public verifiability, this means that π′tlp is a valid proof that s′tlp = ŝ‖r̂
is the correct solution to z with respect to Gentlp. So if r̂ is not a valid opening
for ŝ with respect to Gen, we know the adversary must be lying. In other words,
the only way the adversary can cheat is by cheating in the underlying one-sided
PV TLP on a puzzle z in the support of Gentlp.

Discussion of our non-malleable PV TLP. We note that the publicly ver-
ifiable time-lock puzzle we described above can be made to satisfy the same
non-malleability guarantees as we discuss in Section 2.1 (as we construct it us-
ing the same transformation but with a specific underlying time-lock puzzle).
Thus, assuming the repeated squaring assumption, we get a publicly verifiable
time-lock puzzle that satisfies concurrent function non-malleability for any class
of low depth functions Fm with output length m. Our construction is in the
ABO-string model, and we prove security in the auxiliary-input random oracle
model (which is needed for soundness of the strong trapdoor VDF in the ABO-
string model in addition to the non-malleability transformation). This model is
reasonable for our practical applications to multi-party protocols, as we will see
below. Due to the fact that this is a non-black box construction, we note that it
does not apply to our non-malleable TLP construction in the plain model.

We also note that our explicit repeated squaring assumption states that re-
peated squaring in RSA groups for n-bit integers cannot be sped up even by
adversaries of size roughly 2m. The repeated squaring assumption is closely re-
lated to the assumption on factoring (which has recently been formalized in
different generic models by the works of [46, 28]). The current best known algo-
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rithms for factoring run in time at least 2n
1/3

. In the case where m ∈ O(log λ),
for example, we only require that polynomial-size attackers cannot speed up re-
peated squaring, which is a relatively mild assumption. In the case where m is
larger, say m = λ, then we need to choose n to be at least λ3 (based on known
algorithms for factoring). This gives an example of the various trade-offs we get
for the security and efficiency of our construction depending on the class of low
depth functions Fm that we want non-malleability for.

2.3 Fair Multi-Party Protocols

We will focus on coin flipping for concreteness, and note that for auctions the
ideas are similar. We give a protocol in auxiliary-input random oracle model, and
one in the plain model, depending on which non-malleable TLP construction we
use to instantiate it (which result in different guarantees). Here, we describe our
random oracle protocol, which captures the main ideas and various properties
we can achieve.

At a high level, the coin flipping protocol is very simple. Each party chooses
a random bit and publishes a time-lock puzzle that encodes the chosen bit.
After all puzzles are published, each party opens their puzzle by revealing the
bit that they used as well as the randomness used to generate the puzzle. Any
puzzle that is not opened can be “solved” after a moderately large amount of
time t. Once all puzzles have been opened, the agreed upon bit (i.e., the output
of the protocol) is the XOR of all revealed bits. The above protocol template
is appealing because it naturally satisfies optimistic efficiency: if all parties are
honest and open their puzzles, the protocol terminates immediately. When using
time-lock puzzles which are both non-malleable (as discussed in Section 2.1) and
publicly verifiable (as discussed in Section 2.2), we achieve the following highly
desirable properties:

• Fairness: No malicious party can bias the output of the protocol.
This crucially relies on non-malleability for the underlying time-lock puzzle.
For a protocol with n participants, we need the time-lock puzzle to satisfy
n-concurrent non-malleability. This guarantees that as long as one party is
honest, the output of the protocol will be (at least statistically close to) a
uniformly random bit.

• Unbounded participants: Anyone can participate in the protocol.
This property might come as a surprise since we show fully concurrent non-
malleability is impossible to achieve. However, we emphasize that our time-
lock puzzle achieves fully concurrent functional non-malleability for the XOR
function. This allows us to deal with any a priori unbounded number of par-
ticipants, which is important in many decentralized and distributed settings.

• Public verifiability: Only one party needs to solve each unopened puzzle,
and can provide a publicly verifiable proof that it solved it correctly.
This follows immediately by the public verifiability property we achieve for
the underlying time-lock puzzle. Without this property, any unopened puz-
zles may need to be solved by every party that want to know the output of
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the protocol, which is prohibitively expensive. However, public verifiability
instead opens up the application to any party, not even involved in the pro-
tocol. Furthermore, this work can even be delegated to an external server
since trust is guaranteed by the attached proof.

We note that our non-malleable and publicly verifiable time-lock puzzle is de-
fined in the All-But-One-string (ABO-string) model, which is required for public
verifiability. To implement this model, we have each participant i publish a fresh
random string crsi ← {0, 1}λ in addition to its puzzle zi. Then, whenever some
party tries to solve (or verify) a puzzle, it puts all of the random strings together
as a multi-common random string mcrs = (crs1, . . . , crsn) from all n participants,
and uses this for the publicly verifiable proof. As long as a single party is honest
and publishes a random string crsi independent of all other participants, then
the publicly verifiable proof system will be sound.

Simulation-based fairness. Finally, we discuss how fairness in the above
protocol can be strengthened to a simulation-style definition. Consider running
our protocol to get a value s, where s is the XOR of bits underlying the adver-
sary’s and honest players’ time-lock puzzles. In our simulation-secure protocol,
we will set the output to O(s) where O is a programmable random oracle. This
enables a simulator running in polynomial time to solve the adversary’s puzzles
and program O(s) to the desired output value. It then suffices to show that the
adversary A does not detect this change in the oracle, meaning that A does
not query s before publishing its time-lock puzzles. We observe that if A does
indeed query s, it implies an adversary against the game-based fairness of our
protocol, that runs A to get s and outputs a TLP to s along with A’s puzzles,
thus biasing the output to s⊕ s = 0. We note that this shows that game-based
fairness for a standard commit-and-reveal style protocol (with TLPs instead of
commitments) can be generically transformed into a simulation-secure protocol
by feeding the output into a programmable random oracle.

3 Preliminaries

We first define time-lock puzzles without any additional properties.

Definition 3.1. Let B : N → N. A B-hard time-lock puzzle (TLP) is a tuple
(Gen,Sol) with the following syntax:

• z ← Gen(1λ, t, s): A PPT algorithm that on input a security parameter λ ∈
N, a difficulty parameter t ∈ N, and a solution s ∈ {0, 1}λ, outputs a puzzle
z ∈ {0, 1}∗.

• s = Sol(1λ, t, z): A deterministic algorithm that on input a security parame-
ter λ ∈ N, a difficulty parameter t ∈ N, and a puzzle z ∈ {0, 1}∗, outputs a
solution s ∈ ({0, 1}λ ∪{⊥}).

We require (Gen,Sol) to satisfy the following properties.
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• Correctness: For every λ, t ∈ N, solution s ∈ {0, 1}λ, and
z ∈ Supp

(
Gen(1λ, t, s)

)
, it holds that Sol(1λ, t, z) = s.

• Efficiency: There exist a polynomial p such that for all λ, t ∈ N, Sol(1λ, t, ·)
is computable in time t · p(λ, log t).

• B-Hardness: There exists a positive polynomial function α such that for all
functions T and non-uniform distinguishers A = {Aλ}λ∈N satisfying α(λ) ≤
T (λ) ∈ B(λ)·poly(λ), size(Aλ) ∈ B(λ)·poly(λ), and depth(Aλ) ≤ T (λ)/α(λ)
for all λ ∈ N, there exists a negligible function negl such that for all λ ∈ N,
and s, s′ ∈ {0, 1}λ,∣∣Pr

[
Aλ(Gen(1λ, T (λ), s)) = 1

]
− Pr

[
Aλ(Gen(1λ, T (λ), s′)) = 1

]∣∣ ≤ negl(λ),

where the probabilities are over the randomness of Gen and Aλ.

When B(λ) ∈ poly(λ), we say that the TLP is polynomially-hard.

In the above definition, we assume for simplicity that the solutions s are λ-
bits long. We can naturally generalize this to consider the case where solutions
have some specified length L(λ). We emphasize that the notion of B-hardness
above suffices to capture both polynomial security and sub-exponential security,
as it captures hardness against adversaries of size B(λ), up to polynomial factors.

Non-malleable time-lock puzzles. To formalize non-malleability in the con-
text of time-lock puzzles, we introduce a Man-In-the-Middle (MIM) adversary.
Because time-lock puzzles are designed to be broken in some depth t, we restrict
our MIM adversary to have at most depth t/α(λ) for a function α denoting
the advantage of the adversary. Furthermore, we allow for concurrent MIM ad-
versaries that possibly interact with many senders and receivers at the same
time.

Definition 3.2 (MIM Adversaries). Let nL, nR, Bnm, α, T : N→ N. An (nL,
nR, Bnm, α, T )-Man-In-the-Middle (MIM) adversary is a non-uniform algorithm
A = {Aλ}λ∈N satisfying depth(Aλ) ≤ T (λ)/α(λ) and size(Aλ) ∈ Bnm(λ)·poly(λ)
for all λ ∈ N that receives nL(λ) puzzles on the left and outputs nR(λ) puzzles
on the right.

We next define the MIM distribution, which corresponds to the values un-
derlying the puzzles output by the MIM adversary. To capture adversaries that
simply forward one of the puzzles on the left to a receiver on the right, we set
the value for any forwarded puzzle to be ⊥.

Definition 3.3 (MIM Distribution). Let nL, nR, Bnm, α, T : N→ N. Let A =
{Aλ}λ∈N be an (nL, nR, Bnm, α, T )-MIM adversary. For any λ ∈ N and ~s =

(s1, . . . , snL(λ)) ∈ ({0, 1}λ)nL(λ), we define the distribution

(s̃1, . . . , s̃nR(λ))← mimA(1λ, T (λ), ~s)
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as follows. Aλ receives puzzles zi ← Gen(1λ, T (λ), si) for all i ∈ [nL(λ)] and
outputs puzzles (z̃1, . . . , z̃nR(λ)). Then for each i ∈ [nR(λ)], we define

s̃i =

{
⊥ if there exists a j ∈ [nL(λ]) such that z̃i = zj ,

Sol(1λ, T (λ), z̃i) otherwise.

Intuitively, a time-lock puzzle is non-malleable if the MIM distribution of a
bounded depth attacker does not depend on the solutions underlying the puzzles
it receives on the left. We formalize this definition below.

Definition 3.4 (Concurrent Non-malleable). Let nL, nR, Bnm : N→ N. A
time-lock puzzle is (nL, nR)-concurrent non-malleable against adversaries of size
Bnm if there exists a positive polynomial α such that for every function T with
α(λ) ≤ T (λ) ∈ Bnm(λ)·poly(λ) for all λ ∈ N, and every (nL, nR, Bnm, α, T )-MIM
adversary A = {Aλ}λ∈N, the following holds.

For any distinguisher D, there exists a negligible function negl such that for
all λ ∈ N and ~s = (s1, . . . , snL(λ)) ∈ ({0, 1}λ)nL(λ),∣∣∣Pr

[
D(mimA(1λ, T (λ), ~s)) = 1

]
− Pr

[
D(mimA(1λ, T (λ), (0λ)nL(λ))) = 1

]∣∣∣
≤ negl(λ).

When Bnm(λ) = 1, we say the TLP is (nL, nR)-concurrent non-malleable. When
this only holds against non-uniform PPT distinguishers D, we say that the time-
lock puzzle is computationally (nL, nR)-concurrent non-malleable.

Relation to non-malleable commitments. When defining non-malleability
for TLPs, a natural attempt is to view TLPs as commitments, and give a def-
inition analogous to non-malleable commitments. This is usually formalized as
either non-malleability with respect to commitment, or non-malleability with
respect to extraction. The former notion requires that no man-in-the-middle
adversary can maul a commitment z to s into a commitment z̃ whose unique
underlying value is related to s, whereas the latter notion requires that E(z̃) is
unrelated to s, where E is a given extractor. When E has the guarantee that it
outputs the committed value on valid commitments and ⊥ on invalid ones, these
notions are equivalent. However, when considering extractors that may output
arbitrary values when given invalid commitments, these notions are incompara-
ble in general. In the context of time-lock puzzles, we observe that Sol is the
natural extractor for Gen, and moreover that non-malleability should capture
adversaries that maul a puzzle into one that solves to a related value. Therefore,
our definition above is analogous to non-malleability with respect to extraction,
where Sol is the extractor.

Next, we consider standard variants for the definition of non-malleable above.

Definition 3.5. We say the a TLP satisfies the following non-malleability prop-
erties when Definition 3.4 holds against (nL, nR, Bnm, α, T )-MIM adversaries for
the following settings of nL and nR:
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– fully concurrent non-malleable if the definition holds against any nL, nR ∈
poly(λ),

– one-many non-malleable if the definition holds for any nR(λ) ∈ poly(λ) and
nL = 1,

– n-concurrent non-malleable if the definition holds for nL = nR = n,
– one-n non-malleable for nL(λ) = 1 and nR = n,
– and simply non-malleable (not concurrent) for nL(λ) = nR(λ) = 1.

4 Non-Malleable Time-Lock Puzzles

We start by defining the notion of functional non-malleability for time-lock puz-
zles. Then, we give the transformation from any time-lock puzzle to one that
satisfies concurrent functional non-malleability for depth bounded functions, in
the auxiliary input random oracle model, and discuss how this result implies a
time-lock puzzle satisfying bounded concurrent (standard) non-malleability.

Functional non-malleability. In the following definition, we focus on the
case of unbounded concurrency, but note that can be defined for restricted cases
as in Definition 3.5.

Definition 4.1 (Concurrent Functional Non-malleable). Let Bnm, L : N→
N, and (Gen,Sol) be a time-lock puzzle for messages of length L(λ). Let F be a
class of functions of the form f : ({0, 1}L(λ))∗ → {0, 1}∗. We say that (Gen,Sol)
is concurrent functional non-malleable for F against Bnm-size adversaries if for
any function f ∈ F and polynomial n, there exists a polynomial α such that
for every function T with α(λ) ≤ T (λ) ∈ Bnm(λ) · poly(λ) for all λ ∈ N, every
(n, n,Bnm, α, T )-MIM adversary A = {Aλ}λ∈N, the following holds.

For any distinguisher D, there exists a negligible function negl such that for
all λ ∈ N and ~s = (s1, . . . , sn(λ)) ∈ ({0, 1}L(λ))n(λ),∣∣∣Pr

[
~̃s← mimA(1λ, T (λ), ~s) : D(f(~̃s)) = 1

]
−Pr

[
~̃s← mimA(1λ, T (λ), (0L(λ))n(λ)) : D(f(~̃s)) = 1

]∣∣∣ ≤ negl(λ).

When Bnm(λ) = 1, we say the TLP is concurrent functional non-malleable for
F . When the above only holds against non-uniform PPT distinguishers D, we
say the TLP is computationally functional non-malleable for F .

We note that functional non-malleability for a class F that contains the

identity function id implies standard non-malleability as D(id(~̃s)) = D(~̃s).

4.1 Non-Malleable Time-Lock Puzzle Construction

In this section, we give our construction of a fully concurrent functional non-
malleable time-lock puzzle for functions with bounded depth and output length.
We rely on the following building blocks and parameters.
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– A function m denoting the output length for our function non-malleability.
We require m(λ) ∈ poly(λ). Throughout this section, where λ is clear from
context, we let m = m(λ).

– A Btlp-hard time-lock puzzle TLP = (Gentlp,Soltlp) for Btlp(λ) = 23m. We
let λtlp = λtlp(λ) ∈ poly(λ,m) be the bits of randomness needed for TLP on
security parameter λ, for solutions of length 2m+ 2λ.

– A class of functions Fm of the form f : ({0, 1}λ)∗ → {0, 1}m(λ). We assume
that there exists a polynomial d such that for every polynomial n, every
function f ∈ Fm can be computed in depth d(λ, log n(λ)) and polynomial
size on inputs of length at most λ · n(λ).

– A random oracle O ∈ RF
λtlp

2λ+2m, where O on input (s, r) ∈ {0, 1}λ+(2m+λ)

outputs a random value r′ ∈ {0, 1}λtlp .

Our construction nmTLPm = (Gen,Sol) in the random oracle model:

– z = GenO(1λ, t, s; r):
1. Get r′ = O(s, r).
2. Output z = Gentlp(1

λ, t, (s||r); r′).
– s = SolO(1λ, t, z):

1. Compute s′ = Soltlp(1
λ, t, z) and parse s′ = s||r.

2. If z = GenO(1λ, t, s; r), output s.
3. If not, output ⊥.

Theorem 4.2 (Fully Concurrent Functional Non-Malleable TLPs). Let
m(λ) ∈ poly(λ), Bhard(λ) = 2m(λ), and Btlp(λ) = 23m(λ). Assuming TLP is a
Btlp-hard time-lock puzzle, then nmTLPm is a Bhard-hard fully concurrent func-
tional non-malleable time-lock puzzle in the AI-ROM for the class of functions
Fm.

We observe the following corollaries to the above theorem:

– If m(λ) ∈ O(log(λ)) then we can simply assume a polynomially-hard TLP.
– For anym(λ) ∈ poly(λ), our theorem follows by assuming a sub-exponentially

secure TLP. Specifically, it suffices that there exists a constant γ ∈ (0, 1) such
that Btlp(λ) = 2λ

γ

, and we can instantiate this with λtlp = (λ + 3m(λ))1/γ

bits of randomness.

We also observe that the above theorem can be used to get n-bounded con-
currency for any polynomial n, simply by setting the output length m of the
functions in Fm to λ·n(λ). Specifically, let fid be the identity function with input
and output length λ ·n(λ). Since fid ∈ Fλ·n(λ), a fully concurrent functional non-
malleable TLP for Fλ·n(λ) implies an n-concurrent non-malleable TLP, which
gives the following corollary.

Corollary 4.3 (n-Concurrent Non-Malleable TLPs). Let n(λ) ∈ poly(λ),
Bhard(λ) = 2λ·n(λ), and Btlp(λ) = 23λ·n(λ). Assuming TLP is a Btlp-hard time-lock
puzzle, then nmTLPλ·n(λ) is a Bhard-hard n-concurrent non-malleable time-lock
puzzle in the AI-ROM.

The proof of Theorem 4.2 is deferred to the full version.
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5 Applications to Multi-Party Coin Flipping and
Auctions

In this section, we discuss our fair multi-party protocols. We focus on the case
of multi-party coin flipping and address auctions in Remark 5.4 below. We note
that this section focuses on game-based fairness, and the extension to simulation
security is given in the full version.

Our multi-party coin flipping protocol is based generically on any time-lock
puzzle. Fairness follows when the time-lock puzzle satisfies concurrent functional
non-malleability for the XOR function f⊕. Specifically, in order to produce L
bits of randomness, we need concurrent functional non-malleability for the func-
tion f⊕ : ({0, 1}L)∗ → {0, 1}L that on input (r1, . . . , rn) outputs

⊕
ri 6=⊥ ri. Our

protocol satisfies various additional properties, depending on the time-lock puz-
zle:

– Given a publicly verifiable time-lock puzzle, the resulting protocol is publicly
verifiable. In this setting, our protocol can either be made interactive, or non-
interactive.

– If the time-lock puzzle is not publicly verifiable, the resulting protocol is
non-interactive, and does not achieve public verifiability.

In what follows, we present our results in the public verifiability setting, and
discuss differences with the non-publicly verifiable setting when relevant.

We describe our protocol in a public bulletin board model, where any party
may “publish” a message that all other parties will see within some fixed time.
Our protocol consists four phases: a commit phase, open phase, force open phase,
and output phase. The commit and open phases consist of a single synchronous
round of communication where all participating parties publish a message on
the bulletin board. The force open phase can be computed by any party, and
only needs to be computed by a single (honest) party if the underlying time-lock
puzzle is publicly verifiable. Once all puzzles have been opened (or force opened),
any party can run the output phase to get the output of the protocol. In the non-
interactive version of the protocol, the open phase is omitted and every party
runs the force open phase themselves, and uses the resulting values to compute
the output of the protocol locally. When we refer to an honest participant,
we mean a party that runs the protocol as specified, independent of all other
participants.

For any L : N → N, let (Gen,Sol,Verify) be a publicly verifiable time-lock
puzzle (in the ABO string model) with message length L(λ) that satisfies con-
current functional non-malleability for the function f⊕ (which has output length
L(λ)). We additionally let α(λ) be the advantage of any attacker guaranteed by
the functional non-malleability of the time-lock puzzle. The protocol takes as
common input a security parameter λ and a polynomial time bound t = T (λ)
that satisfies the following requirements. First, we require that the commit phase
takes time less than T (λ)/α(λ) such that functional non-malleability (and hence
hardness) are preserved during the protocol. At the same time, the commit phase
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needs to be long enough so that all participants can generate and publish their
puzzles.

– Commit phase: Each participant i samples si ← {0, 1}L(λ) and ri, crsi ←
{0, 1}λ, computes zi = Gen(1λ, t, si; ri), and publishes zi and crsi. Let mcrs =
(crs1, . . . , crsn). Any puzzle that is a copy of a previously posted puzzle is
ignored.

– Open phase: Each participant i that published in the commit phase pub-
lishes the solution si and with an opening ri.

– Force open phase: For each puzzle zj , if either (a) there is no published
solution sj and opening rj or (b) if zj 6= Gen(1λ, t, sj ; rj), compute and
publish (sj , πj)← Sol(1λ,mcrs, t, zj) (where sj might be ⊥).

– Output phase: If for every puzzle zj and solution sj , either (a) there is a
published opening rj such that zj = Gen(1λ, t, sj ; rj) or (b) a published proof
πj such that Verify(1λ,mcrs, t, zj , (sj , πj)) = 1, then output s =

⊕
sj 6=⊥ sj .

We note that the protocol above does not assume an a priori bound on the
number of participants. Furthermore, there is no external setup needed by the
protocol. All participants, however, do publish a random string crsi ← {0, 1}λ
that can be used to implement the ABO-string model for (Gen,Sol,Verify).

Theorem 5.1. Let L(λ) ∈ poly(λ). Assume the existence of a publicly verifiable
time-lock puzzle for L(λ) bit messages in the ABO-string model that satisfies
concurrent function non-malleability for f⊕ with L(λ) bit output. Then, there
exists a multi-party coin flipping protocol that outputs L(λ) bits and satisfies
optimistic efficiency, fairness, and public verifiability. The protocol supports an
unbounded number of participants and requires no adversary-independent trusted
setup.

We obtain the following result by using our publicly verifiable non-malleable
TLP construction (given in the full version) with the above theorem.

Corollary 5.2. Let B,L : N → N where B(λ) = 23L(λ). Assuming the B-
repeated squaring assumption for RSWGen, there exists a multi-party coin flip-
ping protocol that outputs L(λ) bits and satisfies optimistic efficiency, fairness,
and public verifiability. The protocol supports an unbounded number of partici-
pants and requires no adversary-independent trusted setup. Security is proven in
the auxiliary-input random oracle model.

Finally, we note that if we instead start with our non-malleable time-lock
puzzle in the plain model (which is not publicly verifiable) the non-interactive
variant of our protocol gives non-interactive coin flipping in the plain model. In
particular, we obtain the following theorem based on our plain model construc-
tion (given in the full version).

Theorem 5.3. Let L : N→ N and S(λ) = 2λ+L(λ). Assume a time-lock puzzle,
a keyless multi-collision resistant hash function, a non-interactive witness indis-
tinguishable proof for NP, and injective one-way functions, all sub-exponentially
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secure, where in particular the time-lock puzzle is secure against polynomial-depth
adversaries of size S. Then, there exist fully non-interactive fair multi-party coin
flipping protocol that outputs L(λ) bits, where fairness holds against non-uniform
polynomial time distinguishers. The protocol supports an unbounded number of
participants and requires no setup.

We note that if we only consider protocols that output L(λ) ∈ O(log λ) bits,
then fairness against polynomial time distinguishers implies statistical fairness.
This is because if there is an unbounded distinguisher for O(log λ) bits, we can
construct a polynomial time distinguisher that simply hard codes the truth table
of the unbounded distinguisher.

We remark how we can adapt our protocol to deal with auctions.

Remark 5.4 (Multi-Party Auctions). For our application to auctions, we con-
sider a standard second-price, sealed-bid auction, in which the auctioned item
is assigned to the highest bidder who pays the second highest bid for the item.
We assume some form of authenticated channels so we can know the bidders’
identities in order to distribute the auctioned items. We leave these as external
implementation details for the protocol. The main protocol proceeds as follows.

In the commit phase, each participant computes a time-lock puzzle to their
bid. The open and force open phases are identical to the case of coin flipping.
Then in the output phase, we need to determine the identity of the highest
bidder and the value of the second highest bid.

The function that computes the output consists of finding the top two values
in a set. This can be computed in low depth (doing a tree of comparisons in
parallel) and has output length log n + logM where n is the number of par-
ticipants and M is a bound on the largest valid bid. Thus, using our publicly
verifiable time-lock puzzle that satisfies concurrent functional non-malleability
for this function, the resulting protocol is secure assuming n ·M · poly(λ) secu-
rity for the repeated squaring assumption. Assuming n and M are polynomially
bounded, we only need polynomial security assumptions.

The proof of Theorem 5.1 is deferred to the full version.
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A Discussion of Non-Malleable Definitions

We briefly discuss the different notions of non-malleability studied in this work.
Specifically, we compare standard non-malleability (Definition 3.4), non- mal-
leability against depth-bounded distinguishers, and functional non-malleability
(Definition 4.1). In section 1.3, we also discuss the definitions considered in the
concurrent works of [28, 3, 4].

Common to all of our definitions, there is a depth-bounded man-in-the-middle
(MIM) attacker, which we call A, that on input a puzzle z with solution s tries
to output a different puzzle z̃ to a related value s̃. Here, A is depth-bounded
relative to the difficulty of the puzzle, so it should not be able to solve the puz-
zle. The definitions vary in what it means for s̃ to be “related” to s. For our
standard notion of non-malleability, we require that no unbounded distinguisher
D on input s̃ can tell if it came from the experiment starting with s or the
all-zero string. In the definition of non-malleability against depth-bounded dis-
tinguishers, D is restricted to be depth-bounded in the same way as A. In the
case of functional non-malleability, the (unbounded) distinguisher D receives in-
stead as input f(s̃) where f is a low-depth function. We parameterize functional
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Fig. 1. Relationship between notions of non-malleability. An arrow from A to B indi-
cates that any construction satisfying A also satisfies B. Here, m is the message length,
n is the concurrency, and F` is class of depth-bounded functions with `-bit output.

non-malleability by an output length m. When m = |s|, this captures plain
non-malleability by considering f to be the identity function. When m = 1, this
captures depth-bounded distinguisher non-malleability as f essentially plays the
role of the depth-bounded distinguisher D. In Theorem 4.2, we show how to con-
struct a time-lock puzzle satisfying functional non-malleability for any output
length m assuming a time-lock puzzle that is 2m · poly(λ) secure.

When considering concurrent non-malleability, the MIM attacker A receives
possibly multiple puzzles z1, . . . , znL that have solutions s1, . . . , snL as input and
tries to output multiple puzzles z̃1, . . . , z̃nR (different from its inputs) correspond-
ing to s̃1, . . . , s̃nR . In the most general form, we can consider some distinguisher
D that receives as input f(s̃1, . . . , s̃nR) and tries to tell if it came from the ex-
periment starting with s1, . . . , snL or with nL all-zero strings. We show in the
full version that if the MIM attacker can encode a time-lock puzzle into the
value f(s̃1, . . . , s̃nR) (where f may be the identity), then the construction can-
not be secure against an unbounded distinguisher. In particular, if the function’s
output length m is greater than the output length of the time-lock puzzle, the
scheme may not be secure. On the other hand, our construction of Theorem 4.2
works for functional non-malleability even in the fully concurrent setting, as the
output length of f is bounded. So, as long as the output length of the function
f is sufficiently small, we can support unbounded concurrency.

Finally, our separation in the full version gives a construction that satisfies
plain (non-concurrent) non-malleability against depth-bounded distinguishers
yet does not satisfy non-malleability against unbounded distinguishers. We re-
mark that in the setting where the message length for the puzzle is 1 bit, these
notions are equivalent by simply considering the depth-bounded distinguisher
that outputs the bit it gets as input. Moreover, it can be shown that they are
equivalent as long as the message length is in O(log λ). Therefore, this separation
necessarily relies on the fact that the message length for the puzzle is in ω(log λ).

We summarize the various relationships between the definitions in Figure 1.
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