
Grafting Key Trees:
Efficient Key Management for Overlapping

Groups

Joël Alwen1, Benedikt Auerbach2[0000−0002−7553−6606], Mirza Ahad
Baig2[0000−0003−3650−7893], Miguel Cueto Noval2, Karen Klein3, Guillermo

Pascual-Perez2[0000−0001−8630−415X], Krzysztof Pietrzak2, and Michael
Walter4[0000−0003−3186−2482] ?

1 AWS Wickr
alwenjo@amazon.com

2 IST Austria, Klosterneuburg, Austria
{bauerbac, mbaig, mcuetono, gpascual, pietrzak}@ist.ac.at

3 ETH Zurich, Switzerland
karen.h.klein@protonmail.com

4 Zama, Paris
michael.walter@zama.ai

Abstract. Key trees are often the best solution in terms of transmission
cost and storage requirements for managing keys in a setting where a
group needs to share a secret key, while being able to efficiently rotate the
key material of users (in order to recover from a potential compromise,
or to add or remove users). Applications include multicast encryption
protocols like LKH (Logical Key Hierarchies) or group messaging like
the current IETF proposal TreeKEM.
A key tree is a (typically balanced) binary tree, where each node is
identified with a key: leaf nodes hold users’ secret keys while the root is
the shared group key. For a group of size N , each user just holds log(N)
keys (the keys on the path from its leaf to the root) and its entire key
material can be rotated by broadcasting 2 log(N) ciphertexts (encrypting
each fresh key on the path under the keys of its parents).
In this work we consider the natural setting where we have many groups
with partially overlapping sets of users, and ask if we can find solutions
where the cost of rotating a key is better than in the trivial one where
we have a separate key tree for each group.

? Benedikt Auerbach, Mirza Ahad Baig, and Krzysztof Pietrzak have received funding
from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (682815 - TOCNeT); Karen Klein was
supported in part by ERC CoG grant 724307 and conducted part of this work at IST
Austria, funded by the ERC under the European Union’s Horizon 2020 research and
innovation programme (682815 - TOCNeT); Guillermo Pascual-Perez was funded by
the European Union’s Horizon 2020 research and innovation programme under the
Marie Sk lodowska-Curie Grant Agreement No.665385; Michael Walter conducted
part of this work at IST Austria, funded by the ERC under the European Union’s
Horizon 2020 research and innovation programme (682815 - TOCNeT).

We show that in an asymptotic setting (where the number m of groups
is fixed while the number N of users grows) there exist more general key
graphs whose cost converges to the cost of a single group, thus saving a
factor linear in the number of groups over the trivial solution.
As our asymptotic “solution” converges very slowly and performs poorly
on concrete examples, we propose an algorithm that uses a natural
heuristic to compute a key graph for any given group structure. Our
algorithm combines two greedy algorithms, and is thus very efficient: it
first converts the group structure into a “lattice graph”, which is then
turned into a key graph by repeatedly applying the algorithm for con-
structing a Huffman code.
To better understand how far our proposal is from an optimal solution,
we prove lower bounds on the update cost of continuous group-key agree-
ment and multicast encryption in a symbolic model admitting (asymmet-
ric) encryption, pseudorandom generators, and secret sharing as building
blocks.

1 Introduction

Key trees. In various group communication settings, including multicast encryp-
tion [15, 16, 7] or group messaging protocols [4, 8], the most efficient constructions
use a binary tree structure to manage keys. The general idea is to consider a
balanced binary tree with edges directed from leaves to the root. One then iden-
tifies each node v with a key kv (of a symmetric encryption scheme for multicast
encryption and a public-key encryption scheme for group messaging). Each edge
(u, v) corresponds to a ciphertext Encku(kv) and each leaf node v with a user
uv. A user uv will know the (secret) key kv, and from the ciphertexts can then
retrieve all the keys on the path from its leaf to the root ε. The root key kε is
thus known to all users, and can be used for secure communication to or among
the group members.

What makes this tree structure so appealing is the fact that in a group of
size N , the key material of a user u can be completely rotated by replacing only
the keys on the path from u to ε, which in a balanced tree has length at most
d = dlog(N)e. Moreover, as the nodes in a tree all have indegree two, one only
needs to compute two fresh ciphertexts for each new key (in practice just one as
the new keys can be derived via a hash-chain).

These aspects are important as the number of keys a user requires basically
defines the communication and computational efficiency of a key rotation, which
is the main operation performed to add or remove users, or for a user to update
their keys in order to recover from a potential compromise.

Groups. In this work we consider an extension of this setting to multiple groups.
We are given a base set [N] = {1, . . . , N} of users with a set system S =
{S1, . . . , Sk} (each Si ⊆ [N]), and we ask for a key managing structure such
that for any set Si ∈ S, the users in Si share a group key. This is a natural and
well motivated setting; consider for example a university, where one might want
to have a shared key for all students attending particular lectures.

2

A trivial solution to this problem is to simply use a different key-tree for
every group Si, in this work we explore more efficient solutions.

Key-graphs beyond trees. For a set system S as above, instead of using disjoint
trees, any directed acyclic graph (DAG) G = (V, E) with the following properties
is sufficient to maintain group keys:

1. Every user i ∈ [N] corresponds to a source vi (a node of indegree 0).
2. Every group Si ∈ S corresponds to a sink vSi

(a node of outdegree 0).
3. For every Si ∈ S and j ∈ [N], there is a directed path from vj to vSi if and

only if j ∈ Si.
4. The indegree of any node is at most 2.

The first three properties ensure that any user j ∈ [N] can learn the keys as-
sociated with the nodes of groups they are in. The last property is not really
necessary, but it is without loss of generality in the sense that any graph can be
turned into a graph with at most as large update cost (as we show in Section 3),
and where every node other than the leaves has indegree at most 2. We call this
a key-derivation graph for S.

Update cost. If we rotate the keys of a user i we need to replace all keys that
can be reached from vi, which we denote by D(vi), and encrypt each new key
under the keys of its co-path. We thus define the update cost of a user i ∈ [N]
as
∑
v∈D(vi)

(indeg(v) − 1), which with item 4 above roughly simplifies to the

number of vi’s descendants |D(vi)|. The update cost Upd(G) of a DAG G is the
sum over the update cost of all its leaves, which is proportional to the average
update cost of users.

Towards constructing more efficient key-derivation schemes when we have
multiple overlapping groups, we thus address the problem of determining how
small the update cost of a key-derivation for a given set system S = {S1, . . . , Sk}
over [N] can be, and how to find graphs which achieve, or at least come close
to, this minimum.

Our contributions. We look at this problem from two perspectives. To get an
insight on how much can be saved compared to the trivial solution, we first adapt
a qualitative, asymptotic perspective, where we assume a fixed set system, but
the number of users N goes to infinity while the relative size of the sets and
intersections remains the same. We prove a lower bound on the update cost in
this setting and give an algorithm computing graphs matching this bound.

As this solution turns out to be far from optimal for certain concrete set
systems, we then also look at a quantitative non-asymptotic setting, where we
consider concrete bounds and care about things like additive constants. We pro-
pose an algorithm that seems better equipped to handle such systems and prove
upper and lower bounds on the update costs of graphs generated by it. Finally,
we prove lower bounds on the update cost of any continuous group-key agree-
ment scheme and multicast encryption scheme in a symbolic model.

3

1.1 The asymptotic setting

Given a set system S = (S1, . . . , Sk) over some base set [n], we let S(N) denote
the system with base set [N] we get by considering each element in S with mul-
tiplicity N/n. E.g. if S = ({1, 2}, {2, 3}) then S(6) = ({1, 2, 4, 5}, {2, 3, 5, 6}).5
Thus, as the number of users N grows the relative sizes of the groups and their
intersections remain fixed.

Let si := |Si|/n denote the relative size of Si and s =
∑m
i=1 si be the average

number of groups users are in. We assume wlog. that each user is in at least one
group, implying s ≥ 1. Let Opt(S) denote the update cost of the best key-graph
for a set system S and Triv(S) the update cost of the Trivial algorithm (which
makes a key-tree for every Si ∈ S). We will show that (the hidden constants in
the big-Oh notation all depend on k, the number of groups).

Opt(S(N)) = N log(N) +Θ(N) (1)

Triv(S(N)) = s ·N log(N)−Θ(N) (2)

thus
Triv(S(N))

Opt(S(N))
= s− o(1) (3)

As s is the average number of groups users are in, this shows that

asymptotically (for a fixed set system S but with increasing number N
of users) the update cost of an optimal key-derivation graph depends
only on N (but not on S). In this regime, the gain we get by using more
cleverly chosen key-derivation graphs (as opposed to using a key-tree for
every group) can be up to linear in s, the number of groups an average
user is in, but not, say, the number of groups |S|.

While we do not know how to efficiently find the best key graph for a given set
system S, in Section 4 we define a family Gao(S(N)) which is asymptotically
optimal, i.e., matches Equation 1. Intuitively, it first partitions the universe of
users [N] into the sets of users that are members of exactly the same groups. More
precisely, for I ⊆ [k] let PI be the set of users that are members of the groups
specified by I. Then, the asymptotically optimal algorithm builds a balanced
binary tree for every PI , and in a second step connects the roots of these trees
to the appropriate group keys by another layer of binary trees. For an illustration
of the trivial and asymptotically optimal algorithms see Figure 1.

1.2 The non-asymptotic setting

Asymptotics can kick in slowly. The asymptotic setting gives a good idea about
the efficiency we can expect once the number of users N is large compared to the
number k = |S| of groups. Nevertheless, it should be noted that this asymptotic
effect can kick in only slowly: assume the artificial example where for some small

5 S(N) is only well defined if N/n is an integer, we ignore this technicality as we will
be interested in the case N →∞.

4

S1

S2 S3

Group system S = (S1, S2, S3) Trivial solution

S1

S2 S3

Asymptotically optimal solution

S1 S2 S3

Algorithm 1

S1

S2 S3

Fig. 1. Key graphs for group systems. Top left; Venn diagram of the considered group
system. Top right; trivial key graph using one balanced binary tree per group. Bottom
left; Asymptotically optimal key graph using one balanced binary tree per partition PI .
Bottom right; asymptotically optimal key graph obtained using Algorithm 1. In the
depictions of key trees the horizontal thick lines indicates the users’ personal keys.

base set [n] we have a set system S = {S1, . . . , Sk} with k = 2n−1 groups where
for every non-empty subset of users we have a group. Then each user is in 2n−1

groups and thus needs at least that many keys, and so the Θ(1) term in the
asymptotic update cost log(N) +Θ(1) of a single user is also at least 2n−1. For

the log(N) term to dominate we need log(N) � 2n−1, or N � 22
n−1

, so the
number of users needs to grow doubly exponential in the base set [n].

Moving on to the non-asymptotic setting, consider a group system S for a
fixed set of users [N]. The discussion above indicates that for S the asymptotic
update cost per user of log(N) could be very far off the truth unless N becomes
fairly large compared to the number of groups. This leaves the possibility that
for concrete group systems where N is not huge relative to S, already the trivial
key-graph performs fairly well in practice. This, however, turns out to not be
the case.

First, let us observe that the gap in update cost can never be larger than
log(N), for any S over [N]

Triv(S) ≤ log(N) ·Opt(S) (4)

5

To see this we observe that the update cost for every user i ∈ [N] is at most a
factor log(N) larger in the trivial solution: a user i that is in si = |{S ∈ S : i ∈
S}| groups has an update cost of at least si in any key graph, in particular in
Opt(S), and at most

∑
S∈S,i∈S log(|S|) ≤ si · log(N) in the trivial key graph.

In Section 4.2 we will show that this is not merely a theoretical gap by giving
an example of a natural system S for which the update costs of both the trivial
and the asymptotically optimal algorithms match the gap of log(N).

A greedy algorithm based on Huffman codes. The discussion above indicates that
for set systems mapping groups that we might encounter in practice, one should
not simply use an asymptotically optimal solution, but aim for a solution that
is optimal, or at least close to optimal, for all instances.

Algorithm 1 that we propose in Section 5 is an algorithm for computing
a key-graph given a set system S. In a first step, the algorithm computes a
“Boolean-lattice graph” for S, and in a second iteratively runs the algorithm to
compute Huffman Codes to compute the key graph. As the algorithm is basically
a composition of greedy algorithms, it is very efficient. We leave it as an open
question whether it really is optimal, and if not, whether there’s an efficient
(polynomial time) algorithm to compute Opt(S) and find the corresponding key
graph for a given S in general.6

We present Algorithm 1 in Section 5 and discuss its connection to Boolean
lattices. Then, we derive concrete lower and upper bounds on its update cost,
that can serve as a good estimate on how much it saves compared to the trivial
algorithm and the asymptotically optimal algorithm of Section 1.1. We further
show that Algorithm 1 and a class of algorithms generalizing the approach taken
are optimal in the asymptotic setting. While the same is true for the algorithm
discussed in Section 1.1, Algorithm 1 seems better suited for practical applica-
tions as key-derivation graphs constructed by it reflect the hierarchical structure
inherent to such systems. An example of a key graph generated by it is in Fig-
ure 1.

Our analysis concerns static group systems, but in the full version of this
work [3] we show how known techniques that allow adding and removing users
from groups in the settings of continuous group-key agreement and multicast
encryption for a single group, can be adapted to key-derivation graphs generated
by the greedy algorithm.

Lower bounds. To get a feeling for how close to optimal our approach is, we prove
a lower bound on the average update cost for arbitrary schemes for continuous
group-key agreement (in Section 6) and multicast encryption (in the full version
of this work [3]) that are based only on simple primitives such as encryption,
pseudorandom generators, and secret sharing in a symbolic security model. This
closely follows ideas from Micciancio and Panjwani [14], who considered such
a symbolic model to analyze the worst-case update cost of multicast encryp-
tion schemes. We improve on their results by considering the setting of multiple

6 The question whether a polynomial time algorithm for computing Opt(S) exists can
be naturally asked in various ways. We discuss it in more detail in Section 7.

6

potentially overlapping groups and proving a lower bound on the average com-
munication complexity.

Our bound essentially shows that on average the cost of a user in any CGKA
scheme or multicast encryption scheme for group system S1, . . . , Sk constructed
from the considered primitives satisfies

Upd(G) ≥ 1

N
·
∑
∅6=I⊆[k]

|PI | · log(|PI |) ,

where PI ⊆ [N] is the set of users exactly in the groups specified by index
set I ⊆ [k]. We consider it an interesting open question to either improve on this
bound or to construct an algorithm matching it.

1.3 Related Work

In the setting of a single group, key graphs have been used to construct se-
cure multicast encryption, e.g. [15, 16, 7], and continuous group-key agreement
(CGKA), e.g. [4, 8]. In the setting of multiple groups, the approach to use bi-
nary trees for every set of users that are members of exactly the same groups
similarly to the asymptotically optimal algorithm, has been suggested in [13, 17].
However, the trees are then combined in a way that induces an overhead that is
linear in the number of trees.

In [9], Cremers et al. consider the post-compromise security guarantees of
CGKA protocols for multiple groups. They show that in certain update scenar-
ios, protocols based on pairwise channels have better healing properties than
protocols based on key trees, as updates in a single group also benefit all sub-
groups of it. We stress that these issues do not arise in our approach, as updates
in our setting are global and thus affect all groups the updating user is a member
of.

The symbolic security model was first introduced by Dolev and Yao [10]
and used by Micciancio and Panjwani [14] to prove worst case bounds on the
update cost of multicast encryption schemes for a single group. In the context
of CGKA schemes it was recently used by Bienstock et al. [6], who analyze the
communication cost of concurrent updates in CGKA schemes for a single group.

2 Preliminaries

2.1 Notation

Throughout the paper log denotes the logarithm with respect to base 2.

Graph notation. Let G = (V, E) be a directed acyclic graph (DAG). To node v ∈
V we associate the sets A(v) = {v′ ∈ V | ∃ path from v′ to v} of ancestors of v,
and D(v) = {v′ ∈ V | ∃ path from v to v′} of descendants of v. Here, we allow
paths of length 0 and hence v ∈ A(v) and v ∈ D(v). Let G′ = (V ′,G′) be a
subgraph of G and v ∈ V ′. We denote the set of parents of v by P(v). The set of
co-parents CP(v,G′) ⊆ V of v with respect to G′ in G is the set of vertices that
are parents of v in G but not in G′.

7

Probability distributions. Let X be a random variable with outcomes x1, . . . , x`
with probability p1, . . . , p`. Then we denote by E[X] its expectation and by

H(X) = −
∑`
i=1 pi log(pi) its Shannon entropy.

2.2 Huffman Codes

Given a collection v1, · · · , v` of disconnected leaves of weight w1, . . . , w` ∈ N a
Huffman Tree is constructed as follows. From the set {v1, . . . , v`} two nodes vi1 ,
vi2 with the smallest weights are picked. Then a node v and edges (vi1 , v), (vi2 , v)
are added to the graph. v’s weight is set to wi1 +wi2 and the set of nodes to be
considered updated to {v1, . . . , v`} ∪ {v} \ {vi1 , vi2}. This step is repeated until
all leaves are collected under a single root.

Since all nodes have indegree 2 the Huffman tree defines a prefix-free binary
code for (v1, . . . , v`). We will make use of the following property of Huffman
Codes.

Lemma 1 (Optimality of Huffman Codes [11]). Consider a Huffman tree T
over leaves v1, . . . , v` of weight w1, . . . , w` ∈ N. Let w =

∑`
i=1 wi and let UT

denote the probability distribution that picks leaf vi with probability wi/w pro-
portional to its weight. Then, if len(UT) denotes the random variable measuring
the length of the path from a leaf picked according to UT to the root, we have
that the average length of such paths is bounded by

H(UT) ≤ E[len(UT)] ≤ H(UT) + 1 .

3 Key-derivation Graphs for Multiple Groups

In this section we discuss key-derivation graphs for systems consisting of multiple
groups. In Section 3.1 we briefly recall two applications of such graphs; contin-
uous group-key agreement and multicast encryption. In Section 3.2 we formally
define key-derivation graphs, discuss how key material in a graph is refreshed,
and define its update cost.

3.1 Continuous Group-key Agreement and Multicast Encryption

Continuous group-key agreement. Continuous group-key agreement (CGKA)
schemes [1] are an important building block in the construction of secure asyn-
chronous group messaging schemes. As the name indicates, the goal of a CGKA
scheme is to establish a common key that is to be used to secure the communi-
cation between members of a group. As groups can typically be long-lived, users
need to also be able to frequently update the key material known to them, to on
one hand, recover from a potential compromise and, on the other hand, ensure
forward-secrecy of messages sent in the past.

In this work we are interested in the more general setting in which users n ∈
[N] want to agree on keys for a system of groups S1, . . . , Sk ⊆ 2[N]. After

8

the groups have been established in a setup phase user n can use the proce-
dure Upd(n) to produce an update message that rotates the key material known
to them, thus eliminating any keys that may have leaked during a compromise.
This update message is broadcast to the other users using the untrusted delivery
server. Given their own secret keys, users are then able to retrieve the refreshed
keys that should be known to them. A natural goal to aim for is to minimize the
communication cost incurred by such update messages.

Naturally, one would like to additionally support dynamic operations, i.e.,
allow users to add and remove other users from groups in the system. While in
this work we focus on the update costs of schemes for a system of static groups,
in the full version of this work [3] we show that the known techniques of blanking
and unmerged leaves used in the MLS protocol [4] can be adapted to schemes
obtained from our approach.

Efficient CGKA protocols [4, 8] (in the single group setting) establish a key-
derivation graph in the setup phase that, in turn, allows user to update at a cost
that is logarithmic in the number of group members.7 In Section 3.2 we formally
define key-derivation graphs and discuss how the updating process works.

Multicast encryption. The goal of a multicast encryption scheme [15, 16, 7] is
to establish a key for a group of users to enable them to decrypt ciphertexts
broadcast to the group. Every user holds a personal long-term key, but opposed
to CGKA there also exists a central authority that has access to all secret key
material. After a setup phase, the central authority is able to add and remove
users from the group by refreshing key material and broadcasting messages to the
group. The central goal in the construction of multicast schemes is to minimize
the communication complexity incurred by such operations. Typically, multicast
encryption schemes also rely on key-derivation graphs.

As in the case of CGKA, we are interested in the more general setting of a
system of potentially overlapping groups of users.

3.2 Key-derivation Graphs

We now discuss key-derivation graphs. In our exposition we will focus on graphs
for continuous group-key agreement. At the end of the section we discuss the
differences to graphs for multicast encryption.

Consider a set of parties [N] and a collection S ⊆ 2[N] of subgroups of
[N]. A key-derivation graph (kdg) for [N] and S organizes key pairs in a way
that allows the members of a particular subgroup to agree on a key, and fur-
ther enables parties to refresh the key material known to them. Every node v
in the graph is associated to a key pair (pkv, skv) of a public-key encryption
scheme (KGen,Enc,Dec), and edges (v, v′) indicate that parties with access to

7 In order to ensure authenticity of update messages and to prevent the server from
sending users inconsistent update messages these protocols employ additional tech-
niques. We leave the question how to adapt these to key-derivation graphs for mul-
tiple groups to future work (See Section 7).

9

skv also posses skv′ . The personal keys of users correspond to sources and every
group is represented by a node that holds the corresponding secret group key.
We formalize the structural requirements on the graph in the multi-group setting
as follows.

Definition 1. Let N ∈ N, S ⊆ 2[N], and G = (V, E) a DAG. We say that G is
a key-derivation graph for universe of elements [N] and groups S if

1. For every n ∈ [N] there exists a source vn ∈ V and for every S ∈ S there
exists a node vS ∈ V. We further require that vn 6= v′n for n 6= n′.

2. For n ∈ [N] and S ∈ S we have vS ∈ D(vn) exactly if n ∈ S.

In the definition above node vn correspond to user n’s personal key, and nodes vS
to group keys. The second property encodes correctness and security, intuitively
saying that n is able to derive the group key of S exactly if n ∈ S.

Updates. Let G be a key-derivation graph for [N] and S. If party n wants to
perform an update she has to refresh all key-material corresponding the sub-
graph D(vn) known to her and communicate the change to the other parties.
To this end she picks a spanning tree Tn = (V ′, E ′) of D(vn), as well as a ran-
dom seed ∆vn . Then starting from the source vn, if v′ is the ith child of node
v she defines the seed of v′ as ∆v′ = H(∆v, i), where H is a hash function. ∆v′

is then used to derive a new key-pair (pkv′ , skv′) ← KGen(∆v′) for v′. Finally,
for every v ∈ V ′ and every co-parent v′ ∈ CP(v, Tn), n computes the cipher-
text cv,v′ = Enc(pkv′ , ∆v). The set of all ciphertexts together with the set of new
public keys forms the update message. Finally, n deletes all seeds ∆v.

We now show that the construction preserves correctness, i.e., users n′ 6= n
are able to deduce all new secret keys in D(vn′) from the update message and
thus in particular the group keys of all groups they are a member of. To this
end, let v ∈ D(vn) ∩ D(vn′). Then there exists a path (vn′ = v1, . . . , v` = v) in
D(vn′). Let i be maximal with vi /∈ D(vn) (Note that such i must exist as vn′ is a
source). By maximality of i the node vi must be a coparent of vi+1 with respect
to D(vn). Thus, the update message contains an encryption of ∆vi+1 to pkvi .
As skvi was not replaced by the update and is known to n′ the user can recover
∆vi+1 and in turn skvi+1 . Now, n′ can recover the remaining ∆vi+2 , . . . ,∆v` and
the corresponding secret keys as the seeds were either derived by hashing or, in
the case that vj+1 is a coparent of vj with respect to D(vn), encrypted to the
new key pkvj , the secret key of which was already recovered by n′.

Update cost. Using the size of ciphertexts as a unit, the update cost of n is given
by Upd(n) =

∑
v∈Tn |CP(v, Tn)| =

∑
v∈Tn(|P(v)| − 1). Note that this quantity

is independent of the particular choice of spanning tree Tn. In this work we
are interested in minimizing the average update cost, assuming that every user
updates with the same probability. We define the total update cost Upd(G) =∑
n∈[N] Upd(n) of G. Note that Upd(G)/N is the average update cost of a user,

and we can thus focus on trying to minimize Upd(G), which will allow for easier
exposition. The following lemma shows that we can restrict our view to graphs

10

in which every non-source has indegree 2. Note, that for graphs G with this
property we have |CP(v, Tn)| = 1 for every n, Tn, and v ∈ Tn that is not a source
and thus in this case we can compute the update cost as

Upd(G) =
∑
n∈[N]

(|Tn| − 1) =
∑
n∈[N]

(|D(n)| − 1) =
∑
n∈[N]

|D(n)| −N . (5)

Lemma 2. Let n ∈ N, S ⊆ 2[N], and G a key-derivation graph for [N] and S.
Then there exists a key-derivation graph G′ for [N] and S satisfying Upd(G′) ≤
Upd(G) such that for every non-source v ∈ V ′ we have indeg(v) = 2.

Due to space constraints we defer the proof to the full version of this work [3].

Key-derivation graphs for multicast encryption. Opposed to kdgs for CGKA
key-derivation graphs for multicast encryption rely on symmetric encryption.
Let (E,D) be a symmetric encryption scheme. Every node v in a kdg G for
[N] and S is associated to a key kv, and an edge (v, v′) indicates that a party
with access to kv knows kv′ . We require structural requirements on G that are
analogous to Definition 1. Updates with respect to leaf vn, which for multicast
encryption are computed by the central authority, and their update cost, are
defined analogous to the setting of CGKA as well.

While the main goal of multicast encryption is not to recover from compro-
mise of keys by updating, but instead to allow the central authority to dynam-
ically change the structure of the groups S1, . . . , Sk, the notion of an update
with respect to a leaf vn still turns out to be useful. Assume that the central
authority performed an update for vn starting with seed ∆. We can distinguish
two cases. If ∆ is not known to the owner n of leaf vn then n lost access to
all keys corresponding to D(vn). Thus, by updating, the central authority can
remove a party from all groups they are a member of. Assume on the other hand
that the leaf was previously unpopulated and that ∆ can be derived from n’s
long term key. Then n gained access to all group keys that can be reached from
vn. In the full version of this work [3] we discuss how updates can be used as the
basic building block of implementing more fine grained operations, i.e., adding
or removing a user from particular group Si. The efficiency of these operations
is significantly determined by the update cost as defined in this section.

3.3 Security

The main focus of this work is to investigate the communication complexity of
key-derivation graphs for group systems. We do not give formal security proofs in
this work. The structural requirements on kdgs and definition of update proce-
dures are chosen with the goal of the resulting CGKA to achieve post-compromise
forward-secrecy (PCFS) [2] roughly corresponding to post-compromise security
(PCS) and forward-secrecy (FS) simultaneously. In the following paragraphs we
provide an intuition on the security properties of kdgs. For ease of exposition we
will discuss PCS and FS separately instead of PCFS.

11

Note that CGKA schemes constructed from kdgs employ further mechanisms
to ensure authenticity and prevent a malicious sever to send users inconsistent
update messages. We consider the construction of such mechanisms as well as a
formal security analysis of kdgs to be important open questions for future work.

Preserving the graph invariant. We first discuss how updates preserve the in-
variant, that users n know exactly the secret keys corresponding to D(vn), which
by Condition 2 of Definition 1 implies that n will never be able to derive a group
key for some group they are not a member of. Note that if n is the updating
user then they will only replace keys in D(vn). If n receives an update message,
on the other hand, then they will only be able to recover a key skv if either the
corresponding seed ∆v was encrypted to a key known to n or if ∆v was derived
by hashing from a seed ∆v′ recoverable by n. By iteratively applying this argu-
ment to ∆v′ we obtain that there must exist some ∆v′′ that was encrypted to a
key known to n such that v′′ has a path to v. Thus, it must hold that v ∈ D(vn).
(Note that the one-wayness of the used hash function ensures that seeds derived
by hashing can only be recovered from each other in the correct direction.)

Post-compromise security. The goal of PCS is to allow users whose secret state
has been exposed to recover from this exposure by performing an update. Using
the example of a single compromised user we now discuss how kdgs for group
systems achieve this property. Assume that an adversary knows exactly the
secret state of user n, i.e., all keys skv for v ∈ D(vn), and that n then performs
an update. Then the adversary is not able to deduce any of the replaced keys:
Note that the initial random seed ∆vn is not encrypted to any key and thus
cannot be leaked to the adversary. Thus, all other seeds ∆v can only be derived
by the adversary if ∆v itself, or a seed from which ∆v was derived by iterated
hashing was encrypted to a key known to the adversary. However, the adversary
only knows the keys corresponding to D(vn) before the update, and those keys
were replaced by freshly sampled ones before computing the ciphertexts. Thus,
seeds are encrypted to either “old” keys not known to the adversary or new keys,
and so after the update all keys are secure again.

Forward secrecy. Forward secrecy requires that compromising a user’s secret
state does not allow the adversary to recover previous group keys. In key-
derivation graphs old keys get deleted over time providing a limited form of
forward-secrecy. Concretely, if a user n is corrupted all group keys before their
last update remain secure. This holds, since seeds that were generated before
this point in time and can be used to recover group keys were encrypted to keys
no longer in n’s memory. Note however, that group keys generated in between
n’s last update and the time of n’s corruption might leak to the adversary. For
example, a seed from which such keys can be derived might have been encrypted
to the key skvn , which remained unchanged until the corruption.

Improved forward secrecy using supergroups. CGKA constructions relying on
kdgs like TreeKEM [5] rely on an additional mechanism to improve their forward-
secrecy guarantees. Instead of directly using group keys skvS to communicate

12

within the group these keys are used to derive a so called application secret K
that serves as the symmetric key for group communication. Whenever an update
occurs, the new application secret of S is computed as H2(skvS ,K) the output
of a hash function on input of the new group key and the previous application
secret. Then, the old application secret is deleted from memory. The effect of this
is that when a user’s state leaks (including the current application secret Kt), no
old application secret Ki can be recomputed from old update messages, unless
Ki−1 was already known to the adversary by former corruptions. In short, users
gain the advantage of forward secrecy not only by issuing but also by processing
updates of other users in S.

In the setting of a group system S we can further improve on this: Consider
some group S ∈ S and let S1, . . . , S` be the maximal (with respect to inclusion)
groups in S that contain S. We denote the application secrets for S and the Si
by KS and KSi

respectively. Now, whenever a member of any of the Si issues an
update the application secret of S is updated to KS ← H2(skvS ,KS1

, . . . ,KS`
).8

Note that for every i since S ⊆ Si all members of S do indeed have access to KSi

and thus are able to compute KS , and that an update by users in S implies that
all Si are updated as well. The effect of this modification is that even updates
by users outside of S —more precisely in any of the sets Si \ S— imply forward
secrecy of users in S. Note that this is in particular helpful in the case where
|S| � |Si| and updates in the large group occur much more frequently than in
the small group, for example in the case of two members of a large group having
a private conversation.

3.4 The Trivial Algorithm

To construct a key-derivation graph for a single group S the parties n ∈ S are
typically arranged as the leaves of a balanced binary tree T . The tree’s root
serves as the group key. In this case the length of paths from leaf to root is at
most dlog(|S|)e and in turn Upd(T) ≤ |S| · dlog(|S|)e. On the other hand, T
defines a prefix-free binary code for the set S. Thus, by Shannon’s source coding
theorem the average length of paths from leaf to root is at least log(|S|) which
implies Upd(T) ≥ |S| · log(|S|).

An algorithm for multiple groups. A trivial approach to construct a key deriva-
tion graph for parties [N] and group system S = {S1, . . . , Sk} is to simply apply
the method described above to all Si in parallel. That is, for i ∈ [k] construct a
balanced binary tree Ti with |Si| leaves such that for n ∈ [N] the node vn is a
leaf of exactly the trees Ti with n ∈ Si. Let G denote the resulting graph. The
conditions of Definition 1 clearly hold and we can bound the total update cost
of G by ∑

i∈[k]

|Si| · log(|Si|) ≤ Upd(G) ≤
∑
i∈[k]

|Si| · dlog(|Si|)e .

8 Regarding PCFS it might even be advantageous to include KS′ for all S′ ⊇ S.

13

Further, the update cost of a single user n ∈ [N] is bounded by Upd(n) ≤∑
i:n∈Si

dlog(|Si|)e.

4 Key-derivation Graphs in the Asymptotic Setting

In this section we investigate the update cost of key-derivation graphs for mul-
tiple groups in an asymptotic setting. More precisely, for a system consisting
of a fixed number of groups, we consider the setting in which the number of
users tends to infinity while the relative size of the groups stays constant. In
Section 4.1 we first compute the asymptotically optimal update cost of key-
derivation graphs and then show that the trivial algorithm does not achieve it.
We then present an algorithm achieving the optimal update cost. In Section 4.2
we show that both approaches can perform badly for concrete group systems.

4.1 Key-derivation Graphs in the Asymptotic Setting

We investigate the update cost of key derivation graphs in an asymptotic setting.
That is, we consider N parties that form a subgroup system S = {S1, . . . , Sk}
and fix values pI ∈ [0, 1] for I ⊆ [k] that indicate the fraction of users that are
members of exactly the groups specified by I.

More precisely, let k ∈ N≥2 be fixed and let {pI}I⊆[k] be such that
∑
I⊆[k] pI =

1. For N ∈ N let S(N) = {S1(N), . . . , Sk(N)} ⊆ 2[N] be a subgroup system that
satisfies |PI(N)| = N · pI for all I, where PI(N) =

⋂
i∈I Si(N) \

⋃
j∈[k]\I Sj(N)

is the set of users exactly in the groups specified by I.9 Throughout this section
we assume that p∅ = 0, i.e., every user is in at least one group, and that at least
two groups are non-empty. We are interested in the update cost of key-derivation
graphs for S(N) when N tends to infinity.

Lower bound in the asymptotic setting. We first compute a lower bound on the
update cost of kdgs in the asymptotic setting. The bound follows from the follow-
ing combinatorial result on concrete graphs, that will also turn out to be useful
for our symbolic lower lower bound of Section 6. Recall that for graphs G′ ⊆ G
and a vertex v the set CP(v,G′) is the set of co-parents of v with respect to G′ in
G. Due to space constraints, we defer its proof to the full version of this work [3].

Lemma 3. Let M ∈ N be fixed, S1, . . . , Sk ⊆ [M], and let G = (V, E) be a DAG
such that there exist pairwise disjoint sets of sources Vn, n ∈ [M], and nodes vSi

,
i ∈ {1, . . . , k} such that

n ∈ Si ⇒ ∃vn ∈ Vn such that there is a path from vn to vSi .

Further let Tn be a spanning forest of D(Vn) =
⋃
vn∈Vn

D(vn). Then

M · E
[∑
v∈Tn

|CP(v, Tn)|
]
≥

∑
∅6=I⊆[k]

|PI | · log(|PI |) ,

9 S(N) is only well defined if N · pI is an integer for all I, we ignore this technicality
as we are interested in the case N →∞.

14

where the expectation is to be understood with respect to the uniform distribution
on [N].

Note that Lemma 3 in the case |Vn| = 1 for all n can be seen as a lower bound
on the total update cost of key-derivation graphs as defined in Section 3 since
M · E[

∑
v∈Tn |CP(v, Tn)|] =

∑
v∈Tn |CP(v, Tn)|.

Turning to the asymptotic setting we have∑
I⊆[k]

N · pI · log(N · pI) = N ·
∑
I⊆[k]

pI log(N) +N ·
∑
I⊆[k]

pI log(pI)

= N log(N) +N ·
∑
I⊆[k]

log(pI) = N log(N) +Θ(N) ,

where we used that
∑
I pI = 1. As we will show below, there exist key-derivation

graphs matching this bound. We conclude that the optimal update cost in the
asymptotic setting only depends on the overall number of users but not the
particular set system:

Opt(S(N)) = N log(N) +Θ(N) .

Note, however, that the term Θ(N) hides a constant (with respect to N), that
can be exponential in k.

Asymptotic update cost of the trivial algorithm. The trivial algorithm constructs
a separate balanced binary tree for every group Si(N). For i ∈ [k] let si be such

that N · si = |Si(N)| and further let s =
∑k
i=1 si be the average number of

groups a user are member of. Then, we can bound the update cost Triv(S(N))
of the trivial algorithm in the asymptotic setting as follows, showing that is does
not match the optimal cost.

Claim. For I ⊆ [k] let pI ∈ [0, 1] be such that
∑
I⊆[k] pI = 1 and p∅ = 0. Let

S(N) be the corresponding group system and si, s as defined above. Then

Triv(S(N)) = s ·N log(N) +Θ(N) .

Due to space constraints we defer the proof of this claim to the full version of
this work [3].

An asymptotically optimal graph. We will sketch how to construct an asymptot-
ically optimal key graph Gao(N) for a given set system S over [n]. In a first step,
for every I with PI(N) 6= ∅, the algorithm constructs a balanced binary tree
with root vI using as leafs the elements of PI(N). Then, in a second step, for
every group Si(N) it builds a balanced binary tree with root vSi

using as leafs
the nodes {vI | I : i ∈ I}. An illustration of the algorithm’s working principle is
in Figure 1. Correctness of the construction follows by inspection.

To bound the update cost Upd(Goa(N)) we split it in two parts; the first
accounts for the contribution of the nodes generated during the first step, the

15

1 2 3 4 5 Σ

S1 S2 S3 S4 S5

Cost: 7 7 5 5 3 27

Trivial solution

1 2 3 4 5 Σ

S1 S2 S3 S4 S5

Optimal solution

4 4 3 2 1 14

Fig. 2. Illustration of Triv(S↑
N) (left) and Opt(S↑

N) for N = 5. For each user, the
update cost (i.e., the indegree 2 nodes reachable) is indicated.

second for the contribution of the second step. As
∑
I pI = 1, the first part

contributes at most
∑
I⊆[k] pI ·N · log(N ·pI) ≤ N · logN , while the contribution

of the second part for every single user is constant as {vI} is independent of N ,
implying that with respect to the total update cost it is Θ(N). Thus, overall we
get Upd(Goa(N)) ≤ N · logN +Θ(N), matching the optimal update cost.

4.2 Update Cost for Concrete Group Systems

Now consider a concrete group system S = {S1, . . . , Sk} for a fixed set of
users [N]. As already discussed in Section 1.2, it is possible that the number k of
groups can be as large as 2N−1. Thus, for concrete group systems the asymptotic
update cost per user of log(N) (that contains hidden constants dependent on k)
derived in Section 4.1 could be very far off the truth unless N becomes fairly
large compared to the number of groups. This leaves the possibility that in the
case where N is not huge relative to k, already the trivial key-graph performs
fairly well in practice. In this section we show that this is not the case by giving
an example where not only the trivial key-graph (which has a balanced tree for
every set), but also our asymptotically optimal Goa, perform poorly.

Recall that by Equation 4 the update costs of the trivial and optimal solutions
always satisfy Triv(S) ≤ log(N) ·Opt(S). The above argument seems very loose,
but we show an example where we indeed have a gap of ≈ log(N)− 1 and thus
almost match this seemingly loose log(N) bound. Define the “hierarchical” set

system S↑N over [N] as

S↑N := {S1, . . . , SN} where Si = {i, i+ 1, . . . , N} .

Note that while S↑N is defined for all N , it is not asymptotic in the sense discussed
in Section 4.1, as the number of groups grows with the number of users N .
Further, for this group system the key derivation graphs output by the trivial
and asymptotically optimal algorithms coincide, as for every PI with PI 6= ∅
we have |PI | = 1. As the optimal solution for S is just a path, as illustrated in

16

Figure 2, we obtain update costs of Triv(S↑N) =
∑N
i=1 i log(i) ≈ N2

2 log(N) and

Opt(S↑N) =
∑N
i=1 i = N(N+1)

2 ≈ N2

2 .

Thus Triv(S↑N)/Opt(S↑N) ≈ log(N) matching the (4) bound. An interesting
observation is the fact that an optimal solution can have much larger depth
than the trivial one: for S↑N the depth of the optimal solution is N , while in
the trivial solution it is just log(N). The discussion above indicates that neither
the trivial nor the asymptotically optimal algorithm are well-equipped to handle
certain group systems. In the following section we propose an algorithm that is
not only asymptotically optimal, but also generates key-derivation graphs better
reflecting the hierarchical nature of group systems, and, in particular, recovers
the optimal solution for the example above.

5 A Greedy Algorithm Based on Huffman Codes

In this section we propose an algorithm to compute key-derivation graphs for
group systems. Its formal description is in Section 5.1. In Section 5.2 we compute
bounds on its total update cost and compare it to the trivial algorithm and the
asymptotically optimal algorithm of Section 4.1 . Finally, in Section 5.3 we show
that the algorithm, as well as a class generalizing it, are asymptotically optimal.

5.1 Algorithm Description

We now describe Algorithm 1 that, on input parties [N] and a set of groups S ⊆
2[N], constructs a key-derivation graph. Its formal description is in Figure 3.

Conceptually, the algorithm proceeds in two phases. The first phase (lines 1
to 11) determines the macro structure of the key-derivation graph. For reasons
explained below we will refer to the graph generated in this phase as the lattice
graph. In the second phase (lines 12 to 20), sources for the individual users are
added at the correct position in the lattice graph, which afterwards is binarized
to reduce the update size.

More precisely, at the beginning of the first phase the algorithm initializes
a graph G = (V, E) consisting of isolated nodes vS′ with S′ ∈ S that, looking
ahead, will represent the group keys. Every node vS′ is associated to a set S(vS′)
that is initialized to group S′. The algorithm then determines nodes v1, v2 such
that the intersection of their associated sets is maximal and adds a node v3 as
well as the edges (v3, v1), (v3, v2) to the graph. The associated set of v3 is set to
S(v1) ∩ S(v2) and the associated sets of v1 and v2 are updated to S(v1) \ S(v3)
and S(v2) \ S(v3) respectively. This step is repeated until the associated sets of
all nodes are pairwise disjoint.

Let Glat = (Vlat, Elat) denote the resulting lattice graph. In the second phase,
for every node v ∈ Vlat for all n ∈ S(v), a source vn representing user n together
with edge (vn, v

′) is added to the graph. Finally, for every node v with indeg(v) ≥
3, a Huffman tree from the parents to the node is built. Here, the weight of a
source is 1, and the weight of non-sources is given as the number of sources below
it.

17

Input: (N,S)

1 : G = (V, E)← (∅, ∅)
2 : for S′ ∈ S
3 : V ← V ∪ {vS′}
4 : S(vS′)← S′

5 : while the sets associated to V are not disjoint

6 : v1, v2 ← arg max
v1,v2∈V

(|S(v1) ∩ S(v2)|)

7 : add the node v3

8 : S(v3)← S(v1) ∩ S(v2)

9 : S(v1)← S(v1) \ S(v3)

10 : S(v2)← S(v2) \ S(v3)

11 : add the edges (v3, v1), (v3, v2)

12 : for v ∈ V
13 : for n ∈ S(v)

14 : add the node vn

15 : add the edge (vn, v)

16 : S(v)← S(v) \ {n}
17 : compute the weight of each node as the number of sources below it

18 : for every node with indegree > 1

19 : build a Huffman tree from the parents to the node

20 : return G

Fig. 3. Algorithm 1

Properties of the lattice graph. We now derive several properties of the lat-
tice graph, which will be used to prove correctness and compute bounds on
the total update cost of the generated key-derivation graph. Thus, let Glat =
(Vlat, Elat) be the lattice graph generated on input of [N] and set of k groups S =
{S1, . . . , Sk} ⊆ 2[N]. For index set I ′ ⊆ [k] we denoted by

PI′ :=
⋂
i∈I′

Si \
⋃

j∈[k]\I′
Sj ,

the set of parties that are members of exactly the groups specified by I. Further,
for v ∈ Vlat we define

I(v) := {i ∈ [k] | exists path from v to vSi
} ,

the index set of group nodes that can be reached from v. Finally, for a collec-
tion V ′ ⊆ V of nodes we generalize the notation for associated sets to S(V ′) :=
∪v∈V′S(v). We obtain the following.

18

Lemma 4. Let N, k ∈ N, S = {S1, . . . , Sk} ⊆ 2[N], and let Glat = (Vlat, Elat) be
the lattice graph generated on input ([N],S). Then the following holds.

1. Let v, v′ ∈ Vlat be such that I(v) = I(v′). Then v = v′.
2. I(v) 6= ∅ for all v ∈ Vlat.
3. For every v ∈ Vlat and every i ∈ I(v) there is exactly one path from v to vSi

.
4. Consider the ancestor graph A(v) for v ∈ Vlat. Then⋃

v′∈A(v)

S(v′) ⊆
⋂

i∈I(v)

Si .

If |I(v)| = 1 then the equation holds with equality, i.e.,
⋃
v′∈A(vS) S(v′) = S

for all S ∈ S.
5. Consider some v ∈ Vlat. Then we have S(v) = PI(v) .

Due to space constraints, we defer the proof to the full version of this work [3].
We briefly discuss how Lemma 4 allows us to interpret the lattice graph as a
subgraph of the Boolean lattice with respect to the power set of [k], i.e., the
graph GB = (VB , EB) with VB = {vI | I ⊆ [k]} and edges EB = {(vI , vI′) |
I, I ′ ⊆ [k] : I ′ ⊆ I)}. Indeed, Properties 1 and 2 allow us to map every v ∈ Vlat
to a unique index set I ⊆ [k]. Since the existence of an edge (v, v′) ∈ Elat implies
that I(v) ⊇ I(v′) all edges adhere to the structure of GB . Summing up, the
map G → GB ; v 7→ vI(v) is an injective graph homomorphism. This allows us to
identify nodes of the lattice graph with nodes of GB and sometimes write vI′ for
a unique node v ∈ Vlat with I(v) = I ′ ∈ P([k]). By Property 5 the associated set
of v is PI , the set of users exactly in the groups specified by I. Figure 4 depicts
an example execution of Algorithm 1.

Correctness. We show that key-derivation graph G output by Algorithm 1 satis-
fies the correctness properties of Definition 1. Note that the first property holds
by construction.

To see that the second property holds as well, consider the lattice graph. By
Lemma 4, Property 4 for every group S′ ∈ S the associated sets of the ancestors
of vS′ form a partition of S′. In the second phase of the algorithm a source
vn is added for every user and connected to corresponding node in the lattice
graph. Thus, after this step the set of users with a path to vS′ is exactly S′.
As this property remains unaffected by the binarization step of line 19 the final
key-derivation graph is indeed correct.

5.2 Total Update Cost

In this section we analyze the total update cost Upd(G) =
∑
n∈[N] Upd(n) of key-

derivation graphs G generated by Algorithm 1. To this end, we will split Upd(G)
into the contribution made by the constituting Huffman trees T . Tree T has a
single root and all non-sources in T have indegree 2. Let L(T) denote the set
of leaves of T . As argued in Lemma 2, the update cost of a leaf u with respect
to T corresponds to the length len(u) of its path to the root. Note, however,

19

S1

S2 S3

Group system S = (S1, S2, S3) Lattice graph Glat

v{1} v{2} v{3}

v{1,2} v{1,3}

v{1,2,3}

Key-derivation graph G

vS1

vS2 vS3

Resulting group trees

vS1

vS2 vS3

Fig. 4. Working principle of the algorithm. Top left; Venn diagram of the considered
group system. Top right; resulting lattice graph after the first phase. Node vI has asso-
ciated set S(vI) = PI , the set of users in exactly the groups indicated by I. Nodes and
edges of the Boolean lattice that are not part of Glat are depicted in gray. Bottom left;
final key derivation graph. Bottom right; resulting trees corresponding to groups S1,
S2, S3. Note that components of the same color are shared among different trees.

that leaves of T may represent more than one user in the key-derivation graph.
Indeed, by construction of the algorithm, the weight wu of u counts the number
of leaves in G below u. Thus, the contribution of Huffman tree T towards the
total update cost of G is given by Upd(T) =

∑
u∈L(T) wulen(u). If UT is the

probability distribution that picks u ∈ L(T) with probability proportional to its
weight wu, we can express the update cost of T in terms of the expected length
from leaves to the root as

Upd(T) = E[len(UT)] ·
∑

u∈L(T)

wu . (6)

We first consider Algorithm 1 for the simplest case of two subgroups and compare
it to the trivial algorithm.

Example 1. Let N ∈ N and let S consist of two subgroups S1, S2 of sizes N1 and
N2 respectively. Further assume that |S1 ∩ S2| = K. Consider the key derivation
graphs generated by the trivial algorithm and Algorithm 1, which in both cases
decompose into several Huffman trees. The trivial algorithm essentially generates

20

K

S1

N1

T ′
1

K

S2

N2

T ′
2

S1

N1

T1

K

T1,2

S2

N2

T2

Fig. 5. Key-derivation graphs of the trivial algorithm (left) and Algorithm 1 (right)
for two subgroups. Users that are members of both subgroups are marked in thick.

two trees T ′1 and T ′2 , the first containing all members of S1, the other all members
of S2. Algorithm 1 first collects the K parties that are members of both groups
in a tree T1,2. The remaining (N1 −K) members of S1 and the root of T1,2 are
collected in a tree T1, the remaining (N2 −K) members of S2 and the root of
T1,2 in a tree T2 (See Figure 5).

By Equation 6 we have

Upd(Gtriv) = Upd(T ′1) + Upd(T ′2) = N1 E[len(UT ′1)] +N2 E[len(UT ′2)]

and

Upd(Ga1) = Upd(T1) + Upd(T2) + Upd(T1,2)

= N1 E[len(UT1)] +N2 E[len(UT2)] +K E[len(UT1,2)] .

By optimality of Huffman codes (Lemma 1) we have that

H(UT) ≤ E[len(UT)] ≤ H(UT) + 1

for T ∈ {T ′1 , T ′2 , T1, T2, T1,2}, where H(UT) is the Shannon entropy of UT . For T ′1 ,
T ′2 , and T1,2 the leaves are distributed uniformly and we have H(T ′1) = log(N1),
H(T ′2) = log(N2), H(T1,2) = log(K). Let i ∈ {1, 2} and consider Ti. Then
the first Ni − K leaves have probability 1/Ni and the last leaf K/Ni. Thus
H(UTi) = (Ni − K)/Ni log(Ni) + K/Ni log(Ni/K) = log(Ni) − K/Ni log(K).
Summing up we obtain

Upd(Gtriv)−Upd(Ga1)

≥N1 log(N1) +N2 logN2 −N1(log(N1)−K/N1 log(K) + 1)

−N2(log(N2)−K/N2 log(K) + 1)−K(log(K) + 1)

=K(log(K)− 1)− (N1 +N2) .

Note that for K ≥ 2 the first term is non-negative (For K = 1 it is easy to see
that Algorithm 1 performs better than the trivial algorithm.).

Before turning to arbitrary group systems, we derive a generalized statement
on the update cost Upd(T) contributed by Huffman trees as defined above. Its
proof is in the full version of this work [3].

21

Lemma 5. Let T be a Huffman tree over leaves v1, . . . , v` of weight w1, . . . , w` ∈
N. Let w =

∑`
i=1 wi. Then T ’s update cost is bounded by

w log(w)−
∑̀
i=1

wi log(wi) ≤ Upd(T) ≤ w(log(w) + 1)−
∑̀
i=1

wi log(wi) .

Regarding general systems of subgroups we obtain the following result. Due to
space constraints, we defer the proof to the full version of this work [3].

Theorem 1. Let N ∈ N, S1, . . . , Sk ⊆ [N], and G the key-derivation graph
output by Algorithm 1. Let Glat = (Vlat, Elat) be the corresponding lattice graph.
Then

k∑
i=1

|Si| · log(|Si|)−
∑

v∈Vlat : |I(v)|≥2

∣∣∣ ⋃
v′∈A(v)

PI(v′)

∣∣∣ · log
(∣∣∣ ⋃

v′∈A(v)

PI(v′)

∣∣∣) (7)

≤Upd(G) ≤
k∑
i=1

|Si| · (log(|Si|) + 1)

−
∑

v∈Vlat : |I(v)|≥2

∣∣∣ ⋃
v′∈A(v)

PI(v′)

∣∣∣ · (log
(∣∣∣ ⋃

v′∈A(v)

PI(v′)

∣∣∣)− 1
)
, (8)

where A(v) denotes the set of ancestors of v in Glat, I(v) denotes the set {i ∈
[k] : ∃ path from v to vSi}, and for I ′ ⊆ [N] the set PI′ :=

⋂
i∈I′ Si \

⋃
j∈[k]\I′ Sj

indicates the users exactly in the subgroups corresponding to I ′.

The bounds of Theorem 1 depend on the structure of the lattice graph generated
by the algorithm. Using Properties 4 and 5 of Lemma 4 to bound |S(A(v′))| it
is possible to obtain a weaker bound on Upd(G) that only depends on [N] and
S.

We conclude the section by comparing the update cost of Algorithm 1 to that
of the trivial algorithm and the asymptotically optimal algorithm of Section 4.1.

Comparison to the trivial algorithm. Note that the terms
∑k
i=1 |Si| · log(|Si|)

and
∑k
i=1 |Si| · (log(|Si|) + 1) in Theorem 1 match the bounds on the update

cost of the trivial algorithm derived in Section 3.4. Thus the second term of∑
v∈Vlat : |I(v)|≥2

∣∣∣ ⋃
v′∈A(v)

PI(v′)

∣∣∣ · (log
(∣∣∣ ⋃

v′∈A(v)

PI(v′)

∣∣∣)− 1
)

provides a good estimate on how much Algorithm 1 saves compared to the trivial
one. For the group system depicted in Figure 4, for example, this would amount
to |S1 ∩ S2| · log(|S1 ∩ S2|) + |S1 ∩ S3 \ S2| · log(|S1 ∩ S3 \ S2|) + |S1 ∩ S2 \ S3| ·
log(|S1 ∩ S2 ∩ S3|). Due to the “rounding error” of +1 in

∑k
i=1 |Si|·(log(|Si|)+1),

Theorem 1 unfortunately does not allow us to conclude that the update cost of
Algorithm 1 always improves on the one of the trivial algorithm. In the full
version of this work [3], we provide an alternative analysis of Upd(G) that di-
rectly compares the two algorithms and gives conditions that imply Algorithm 1
outperforming the trivial one.

22

Comparison to the asymptotically optimal algorithm of Section 4.1. The algo-
rithm of Section 4.1 in a first step constructs a binary tree for every non-empty
partition PI′ and then, in a second step, builds a binary tree for every group using
the roots of the “partition trees” as leafs. We can interpret this as an algorithm
that, similarly to Algorithm 1, in the first phase chooses a lattice graph Glat,
concretely the graph that connects every node vI′ directly with edges to all cor-
responding group nodes {v{i} | i ∈ I ′}, and in the second phase builds Huffman
trees for every lattice node.10

Thus, by Lemma 5, we can lower bound the update cost of key graphs Gasopt
generated by it by Upd(Gasopt) ≥

∑k
i=1

(
|Si|·log(|Si|)−

∑
I′⊆[N]:i∈I′∧|I′|≥2 |PI′ |·

log(|PI′ |)
)

+
∑
I′⊆[N]:|I′|≥2 |PI′ | · log(|PI′ |), which, taking into account that every

I ′ with |I ′| = ` corresponds to exactly ` groups, simplifies to

Upd(Gasopt) ≥
k∑
i=1

|Si| · log(|Si|)−
∑

I′⊆[N]:|I′|≥2

(|I ′| − 1) |PI′ | · log(|PI′ |) . (9)

For a comparison to Algorithm 1, consider a key derivation graph Ga1 output
by it. We now compute a lower bound on Upd(Gasopt) − Upd(Ga1). Let G′lat be
the lattice graph of Ga1 and vI′ ∈ G′lat such that |I ′| ≥ 2. Every non-sink in G′lat
has outdegree 2 and vI′ is connected to all v{i} with i ∈ I ′ by exactly one path.
Thus, the subgraph of G′lat induced by these paths is a binary tree with root vI′

and |I ′| leafs, and thus consists of exactly 2 |I ′| − 1 nodes, |I ′| of which have an
index set of size 1. This implies that there exists |I ′| − 1 many nodes vI′′ in G′lat
with |I ′′| ≥ 2 such that vI′ ∈ A(vI′′).

Using f as shorthand for the function f : N 7→ N log(N) and pI′ = |PI′ |, we
now can distribute the expressions |PI′ | · log(|PI′ |) of Equation 9 on the negative
summands of Equation 8 and obtain

Upd(Gasopt)−Upd(Ga1) ≥
∑

v∈V′lat : |I(v)|≥2

(f
(∑
v′∈A(v)

pI(v′)
)
−
∑

v′∈A(v)

f(pI(v′))−1) .

Since f grows super-linearly, the terms f(
∑
v′∈A(v) pI(v′)) −

∑
v′∈A(v) f(pI(v′))

are non-negative, and can even be of orderN as for example f(2N/2)−2f(N/2) =
N . While, again due to the terms −1, we are unfortunately not able to conclude
that Algorithm 1 is always more efficient, this shows that it still can save sub-
stantially in terms of update cost, in particular if the pI′ are large.

In this section we were considering the total update cost of key-derivation
graphs generated by Algorithm 1, which relates to the average update cost of
parties. As we have shown, this metric will typically improve compared to the
trivial algorithm. However, it might still be possible, that the update cost of

10 Formally, the algorithm as described in Section 4.1 collects all users that are only
in group Si in a tree before computing the tree for Si, while in the lattice-graph
variant these users are directly included in the tree for Si. Note, however, that the
latter approach can only improve the total update cost.

23

particular, fixed users increases. In the full version of this work [3] we show that
while this may indeed happen, the increase is essentially bounded by a small
constant.

5.3 Asymptotic Optimality of Boolean-lattice based Graphs

As discussed in Section 5.1, we can interpret our algorithm as follows. On input
([N],S = {S1, . . . , Sk}), in the first phase the algorithm picks a subgraph of the
Boolean lattice GB = (VB , EB) with respect to the power set of [k], where

VB = {vI | I ⊆ [k]} and EB = {(vI , vI′) | I, I ′ ⊆ [k] : I ′ ⊆ I)} .

We refer to this subgraph as the lattice graph. In the second phase, for I ⊆ [k],
a source for every party in PI , i.e., the set of parties belonging exactly to the
groups specified by I, is added and connected to node vI . Each node in the
graph is assigned a weight; sources have weight 1 and the weight of all other
nodes is the sum of the weights of their parents. Finally, for every vI a Huffman
tree to its parents according to the weight distribution is built, resulting in the
key-derivation graph.

In this section we consider key-derivation graphs for general choices of the
lattice graph, i.e., key derivation graphs G obtained by executing the second
phase of the algorithm as described above with respect to a lattice-graph Glat =
(Vlat, Elat) ⊆ GB .11 We say G is the key-derivation graph associated to Glat, [N]
and S. The following theorem shows that the update cost of every lattice-based
key derivation graphs, and in particular graphs generated by Algorithm 1, is
optimal in the asymptotic setting of Section 4. Due to space constraints, we
defer its proof to the full version of this work [3].

Theorem 2. Let k ∈ N be fixed, and for I ⊆ [k] let pI ∈ [0, 1] be such that∑
I⊆[k] pI = 1 and p∅ = 0. For N ∈ N let S(N) be the subgroup system associated

to the pI .
Let Glat = (Vlat, Elat) be a subgraph of the Boolean-lattice graph with respect

to [k] satisfying that vI ∈ Vlat for all I with pI > 0, and let G(N) be the key-
derivation graph associated to Glat and S(N). Then

Upd(G(N))
N→∞−−−−→

∑
I⊆[k]

|N · pI | · log(|N · pI |) +Θ(N) = N log(N) +Θ(N) .

6 Lower Bound on the Update Cost of CGKA

In this section we prove a lower bound on the average update cost of continuous
group-key agreement schemes for multiple groups. As an intermediate step we
will further prove a bound on the update cost of key-derivation graphs. To this

11 Naturally, one would require that the resulting key-derivation graph satisfies cor-
rectness. However, this is not necessary for our analysis of its update cost.

24

aim, we follow the approach of Micciancio and Panjwani [14], who analyzed the
worst-case communication complexity of multicast key distribution in a symbolic
security model, where cryptographic primitives are considered as abstract data
types. We will first recall their security model, adapt it to CGKA, and then prove
how to extend their results to our setting. In the full version of this work [3],
using a similar approach, we prove a lower bound for multicast encryption.

6.1 Symbolic Model

We first define a symbolic model in the style of Dolev and Yao [10] for CGKA
schemes. It follows the approach of Micciancio and Panjwani [14], but as it
admits the uses of public-key encryption also includes elements of the model of
Bienstock et al. [6], who analyze the communication cost of concurrent updates
in CGKA schemes.

Building blocks. We restrict the analysis to schemes that are constructed from
the following three primitives. Note that our construction is a special case of the
constructions analyzed in this section.

– Public-key Encryption: Let (KGen,Enc,Dec) denote a public-key encryption
scheme, where
• KGen on input of secret key sk returns the corresponding public key pk.
• Enc takes as input a public key pk and a message m, and outputs a

ciphertext c← Enc(pk,m).
• Dec takes as input a secret key sk and a ciphertext c, and outputs a mes-

sage m = Dec(sk, c). We assume perfect correctness: Dec(sk,Enc(pk,m))
= m for all sk, pk = KGen(sk), and messages m.

– Pseudorandom generator: The algorithm G takes as input a secret key sk
and expands it to a sequence of keys G0(sk), . . . ,G`(sk).

– Secret sharing: Let S,R denote the sharing and recovering procedures of a
secret sharing scheme: For some access structure Γ ⊆ 2[h], the algorithm S
takes as input a message m and outputs a set of shares S1(m), . . . ,Sh(m)
such that for any I ∈ Γ it holds R(I, {Si(m)}i∈I) = m, but for any I 6⊆ Γ
the message m cannot be recovered from {Si(m)}i∈I .
We consider the following data types that can be derived from other objects

according to the following rules.

Data type Grammar rules

Message m ← sk, pk,Enc(pk,m), S1(m), . . . , Sh(m)
Public key pk ← KGen(sk)
Secret key sk ← R,G0(sk), . . . ,G`(sk)

To describe the information that can be recovered from a set of messages M ,
the entailment relation is defined by the following rules:

m ∈M ⇒ M ` m
M ` sk ⇒ M ` G0(sk), . . . ,Gl(sk)

M ` Enc(pk,m), sk : pk = KGen(sk) ⇒ M ` m
∃I ∈ Γ : ∀i ∈ I : M ` Si(m) ⇒ M ` m

25

By restricting to these relations we essentially assume secure encryption and
secret sharing schemes. Examples and further comments (in the setting of mul-
ticast encryption) can be found in [14, Section 3.2]. The set of messages which
can be recovered from M using relation ` is denoted by Rec(M).

Continuous group-key agreement. We now define continuous group-key agree-
ment protocols in the symbolic model. We consider the case of CGKA for a
static system of users [N] and groups S1, . . . , Sk ⊆ [N]. Note that a lower bound
for schemes in this setting in particular also excludes schemes which allow dy-
namic operations, i.e., adding and removing users from groups.

A CGKA scheme for [N] and S1, . . . , Sk specifies two procedures:

– Initially, Setup assigns each user n ∈ [N] a personal set SK0
n of secret keys.

Furthermore, Setup generates a set msgs(0) of so-called rekey messages to
establish for every group Sj a group secret key sk0Sj

. We require that the
initial sets of personal keys consist of uniformly random keys, and that for
all n′ 6= n and sk ∈ SK0

n we have sk /∈ Rec(SK0
n′ ,msgs(0)).

– In round t, the algorithm Update takes as input a user identity n ∈ [N],
establishes new sets SKtn′ for all users n′, and outputs some rekey mes-
sages msgs(t) to establish for every group Sj an epoch t group key sktSj

. We
do not require the new sets and group keys to be distinct from the ones of
round t − 1. We denote the set of new uniformly random keys that were
generated during the update procedure by the updating party by Ftn.

Note that the only party generating new keys during update t is the updating
party n. For ease of notation we define Ftn′ = ∅ for all n′ 6= n, and set F0

n′ = ∅
for all n′.

For correctness, we require that, (a) at all times members of a group are
able to derive the current group key from their set of personal keys and the sent
messages, and (b) if some user updated in round t, then all users are able to
derive their new set of personal keys from their old one, the sent messages, and
in the case of the updating party the new keys generated during the update. The
latter condition accounts for the fact that changes to a user’s set of personal keys
need to be communicated to them.

More precisely, for (a) we require that for any subgroup structure and any
sequence of updating users (n1, . . . , nt), for all j ∈ [k] each member n of subgroup
Sj can recover sktSj

:

sktSj
∈ Rec

(
SKtn ∪

⋃
ι∈[t]0

msgs(ι)
)
.

For (b) we require that for any subgroup structure and any sequence of
updating users (n1, . . . , nt), we have for all n that

SKtn ⊆ Rec
(
SKt−1n ∪ Ftn ∪

⋃
ι∈[t]0

msgs(ι)
)
.

26

For security, we assume the minimal requirement of post-compromise secu-
rity (PCS), which essentially says that users can recover from compromise, which
leaks their state and the keys generated during the time period of being com-
promised, by updating. Note that a lower bound in this setting in particular
excludes protocols achieving stronger security notions desired in practice, like
post compromise forward security [2].

More precisely, we formalize PCS as the condition that no group key can be
recovered from members outside the group, and/or members’ personal keys and
the keys generated by them before their last update. To this end, for round t
and user n ∈ [N], let tup(t, n) denote the round in which n performed their last
update, where we set tup(t, n) = 0 if no such update occurred. I.e., we require
that for any group system, any update pattern, in every round t we have that

sktSj
/∈ Rec

(⋃
n∈[N]\Sj ,

t′∈[t]0

(SKt
′

n∪Ft
′

n)∪
⋃
n∈Sj

⋃
t′∈[tup(t,n)−1]0

(SKt
′

n∪Ft
′

n)∪
⋃

t′∈[t]0

msgs(t′)
)
.

Note that in the definition above, excluding all sets of personal secret keys since
a user’s last update is necessary even in the case that another user’s update
might have replaced them before round t, as otherwise SKtn and in turn sktSj

could trivially be recovered by the two correctness conditions.
Our goal is to derive a lower bound on the communication complexity of

CGKA schemes achieving PCS, i.e., the number of messages |∪t′∈[t]0msgs(t′)|
sent by the protocol.

Key Graphs. The execution of any CGKA scheme can be reflected by a graph
structure representing recoverability of the keys involved (cf. [14]). To define this
graph, we first need to recall the definition of useful keys and messages.

A secret key sk is called useless at time t if it can be recovered from old key
material, i.e., if

sk ∈ Rec
(⋃
n∈[N]

⋃
t′∈[tup(t,n)−1]0

(SKt
′

n ∪ Ft
′

n) ∪
⋃

t′∈[t]0

msgs(t′)
)
,

otherwise sk is called useful. As we will show below, if a CGKA scheme satisfies
correctness and post-compromise security, then for all t ∈ N, n ∈ [N], j ∈ [k] it
must hold that at least one of the user’s personal keys sktn ∈ SKtn as well as all
group keys sktSj

are useful at time t.
To decide whether a message is useful, one has to consider the information it

contains, where messages can be arbitrarily nested applications of encryption Enc
and secret sharing S. Thus, a message m is said to encapsulate a (pseudo)random
key sk if m = e1(e2(. . . (ej(sk)) . . .)) where ei = Encpki or ei = Shi

(for some
public key pki and hi ∈ [h]). A message is then called useful if it encapsulates a
useful key.

Definition 2 (Key graph [14]). The key graph KGt = (Vt, Et) for a CGKA
scheme at time t is defined as follows. Vt consists of all the keys that are useful

27

at time t, and E ⊆ V × V consists of all ordered pairs (sk1, sk2) such that one of
the following is true:

1. There exists j ∈ [l] auch that sk2 = Gj(sk1).
2. There exists a message m ∈

⋃
j∈[t]0 msgs(j) with m = e1(Enc(pk1, e2(sk2)))

with pk1 = KGen(sk1). Here e1 and e2 are some sequences of encryption and
secret sharing, and we require that e2 does not contain any encryption under
a public key that has a matching secret key that is useful at time t.

Edges of the second type are called communication edges.

One can show that for any node sk in KG there is at most one edge of the
first type incident to sk (the proof is analogous to [14, Proposition 1]). Note
that edges of the first type do not incur any communication cost, while edges
of the second type require at least one message. Thus, in the following we will
be interested in the number of communication edges. To this aim, we prove the
following properties of key graphs. In particular, we show that even if a CGKA
scheme does not rely on the use of a fixed key-derivation graph as discussed in
Section 3, after every update the key graph must still have the properties of
Definition 1.

We will rely on the following Lemma that can be proved analogously to [14,
Lemma 1].

Lemma 6. Consider a secure and correct CGKA scheme for N ∈ N, S1, . . . , Sk ⊆
[N]. Then, for any t ∈ N and sequence of updates (n1, . . . , nt), the corresponding
key graph KGt satisfies the following. For every set of keys SK, and key sk2 that

is useful at time t, such that sk2 ∈ Rec
(
SK ∪

⋃
t′∈[t]0 msgs(t′)

)
, there exists a

useful sk1 ∈ SK such that there is a path from sk1 to sk2 in KGt that only consists

of keys sk with sk ∈ Rec
(
SK ∪

⋃
t′∈[t]0 msgs(t′)

)
.

Note that the converse of Lemma 6 is not true, since, for example, a message
Enc(pk1,S1(sk2)) with useful keys sk1, sk2 and pk1 = KGen(sk1) incurs an edge
(sk1, sk2) while sk2 can only be recovered from sk1 if {1} ∈ Γ .

6.2 Lower Bound on the Average Update Cost.

The communication complexity of a CGKA scheme after t updates is given by∣∣∣⋃t′∈[t]0 msgs(t′)
∣∣∣. To measure the efficiency of the scheme we will consider the

amortized communication complexity

ComA :=
∣∣∣ ⋃
t′∈[t]0

msgs(t′)
∣∣∣/t .

We now are ready to compute a bound on the expectation of ComA in the sce-
nario where, in every round, the updating party is chosen uniformly at random.
In the full version of this work [3] we prove an analogous bound for multicast

28

encryption that improves on [14, Theorem 1] in two aspects. It generalizes the
bound to the setting of several, potentially overlapping groups, and further gives
a bound on the average communication complexity of updates, as opposed to a
worst case bound.

Theorem 3. Consider a CGKA scheme CGKA for N ∈ N, S1, . . . , Sk ⊆ [N]
that is secure in the symbolic model. Then the expected amortized average com-
munication cost after t updates is bounded from below by

E[ComA] ≥ (1− 1/t) · 1

N

∑
∅6=I⊆[k]

|PI | · log(|PI |) .

and the asymptotic (in the number of update operations) update cost of the pro-
tocol is at least 1

N

∑
∅6=I⊆[k] |PI | · log(|PI |).

Due to space constraints, we defer the proof to the full version of this work [3].

7 Open problems

We conclude by discussing some open problems.

7.1 Optimal Key-derivation Graphs

Unfortunately we are not able to tell how far from optimal the solutions gener-
ated by Algorithm 1 are for concrete group systems. We consider it an interesting
open question to resolve this issue.

General kdgs. We first discuss this problem in its general form. I.e., given a
system S = {S1, . . . , Sk} of subgroups of the set [N] of users compute the key-
derivation graph for S (as defined in Definition 1) that has minimal update cost.
The question of whether a polynomial time algorithm for solving this problem
exists can be naturally asked in various ways. E.g., when polynomial means
polynomial in the number of users N (think of N being given in unary), or
polynomial in a reasonable description of the set system S, say, when we are given
the sizes of all non-empty intersections of sets in S. Here N can be exponential
in the input length, so a potential solution would need to have a very succinct
description. Algorithm 1 (which we do not know whether is optimal) can be
turned into one of the latter kind by using an implicit representation during the
Huffman coding step.

We are thankful to one reviewer of this work, who pointed out an interest-
ing connection of key-derivation graphs for a group system S = {S1, . . . , Sk}
to the disjunctive complexity of S, which, given variables x1, . . . , xN ∈ {0, 1},
corresponds to the size of the smallest circuit of fanin-2 OR-gates computing∨

i∈S1

xi, . . . ,
∨
i∈Sk

xi . (10)

29

Note that circuits computing (10) correspond exactly to key-derivation graphs
for S. So the two problems differ only by the used metric; while disjunctive
complexity counts the number of non-sources in the graph, the update cost of a
kdg weighs each of these nodes by the number of sources below it. As there exist
upper and lower bound on the disjunctive complexity of group systems (see e.g.
[12]), we consider it an interesting open questions whether these can be used to
establish bounds on the update cost of kdgs. We want to point out, however,
that this metric might be not fine-grained enough to capture certain properties
of kdgs: E.g., for N ∈ N the systems S1 = {[N]} and S2 = {[1], [2], . . . , [N]}
both have disjunctive complexity N −1, but their total update costs as kdgs are
of order N · log(N) and N2 respectively.

Lattice based kdgs. If we restrict our view to algorithms using Boolean-lattice
based graphs as defined in Section 5.3, and are willing to make simplifying as-
sumptions, the question of optimality translates to an optimization problem on
graphs: we are going to (a) consider only lattice graphs Glat where all nodes v
are connected with their descendants v′ ∈ D(v) by an unique path, and (b)
assume in our analysis of the update cost that the algorithms second step (i.e.,
the generation of Huffman trees) is instead implemented with an idealized code,
that has average codeword length matching the entropy of the leaf distribution.
This essentially corresponds to ignoring the terms of +1 in Lemma 1.

Recall that for groups system {S1, . . . , Sk} the nodes vI ∈ Vlat of a lattice
graph correspond to index sets I ⊆ [k]. It is easy to see that the correctness of
Glat together with condition (a), are equivalent to requiring that the only sinks
in the graph are the singleton sets {i}, and that for every vI ∈ Vlat

I = I1 ·∪ · · · ·∪ I` (11)

holds, where vI1 , . . . , vI` are the children of vI and disjointness enforces unique
paths.

The total update cost of a graph satisfying this property can be computed

as follows. To every node vI we associate the weight wI =
∣∣∣⋂i∈I Si \⋃j∈[k]\I Sj∣∣∣

corresponding to the number of users exactly in the groups specified by I. Fur-
ther, we inductively define the total weight tI of vI as

tI =

{
wI if vI is source

wI +
∑
I′ : vI′∈P(vI)

tI′ else
,

where P(vI) denotes the set of parents of vI . By assumptions (a) and (b), and
Lemma 5, the update cost contributed by node vI thus corresponds to

Upd(vI) = tI log(tI)−
∑

I′ : vI′∈P(vI)

tI′ log(tI′) , (12)

and we end up with the following optimization problem on lattice graphs.

30

Problem 1. Let k ∈ N. Given weights {wI}I⊆[k] with wI ∈ N among the sub-
graphs of the Boolean lattice with respect to the power set of [k] that satisfy
Condition 11 find the subgraph Glat of minimal total update cost

Upd(Glat) =
∑
I⊆[k]

Upd(vI) .

We consider it an interesting open question whether Algorithm 1 solves this
problem and, if not, to find an efficient algorithm that does.

7.2 Security

In this work we focused on the communication complexity of key-derivation
graphs and only gave an intuition on their security. Security proofs for secure
group messaging are typically quite complex, and protocols rely on additional
mechanisms (e.g. confirmation tag, transcript hash, and parent hash) ensuring
that users of the system can not be tricked into inconsistent views of the graph.
We consider it an important open question, to adapt these mechanisms to kdgs
for several groups and give a formal security proof for the resulting CGKA
protocols.

7.3 Efficiency of Dynamic Operations

In the full version of this work [3] we show that the techniques of blanking
and unmerged leaves can be adapted to key-derivation graphs, in order to allow
dynamic changes to the group membership. As is the case for singular groups,
blanking and unmerged leaves decrease the efficiency of updates of a user n, since
they destroy the binary structure of the graph, resulting in potentially more than
a single ciphertext per node in D(vn) having to be generated. However, the graph
gradually recovers from this, assuming that parties with update trees overlapping
D(vn) update. It is an interesting open question how the decrease in efficiency
compares to that of the trivial algorithm.

References

1. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improve-
ments for the IETF MLS standard for group messaging. In: Micciancio, D., Risten-
part, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 248–277. Springer,
Heidelberg (Aug 2020)

2. Alwen, J., Coretti, S., Jost, D., Mularczyk, M.: Continuous group key agreement
with active security. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS,
vol. 12551, pp. 261–290. Springer, Heidelberg (Nov 2020)

3. Alwen, J., Auerbach, B., Baig, M.A., Cueto, M., Klein, K., Pascual-Perez,
G., Pietrzak, K., Walter, M.: Grafting key trees: Efficient key management
for overlapping groups. Cryptology ePrint Archive, Report 2021/1158 (2021),
https://ia.cr/2021/1158

31

4. Barnes, R., Beurdouche, B., Millican, J., Omara, E., Cohn-Gordon, K.,
Robert, R.: The Messaging Layer Security (MLS) Protocol. Internet-
Draft draft-ietf-mls-protocol-11, Internet Engineering Task Force (Dec 2020),
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-11, work in Progress

5. Bhargavan, K., Barnes, R., Rescorla, E.: TreeKEM: Asynchronous Decentralized
Key Management for Large Dynamic Groups (May 2018)

6. Bienstock, A., Dodis, Y., Rösler, P.: On the price of concurrency in group ratcheting
protocols. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551,
pp. 198–228. Springer, Heidelberg (Nov 2020)

7. Canetti, R., Garay, J.A., Itkis, G., Micciancio, D., Naor, M., Pinkas, B.: Multicast
security: A taxonomy and some efficient constructions. In: IEEE INFOCOM’99.
pp. 708–716. New York, NY, USA (Mar 21–25, 1999)

8. Cohn-Gordon, K., Cremers, C., Garratt, L., Millican, J., Milner, K.: On ends-to-
ends encryption: Asynchronous group messaging with strong security guarantees.
In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 1802–
1819. ACM Press (Oct 2018)

9. Cremers, C., Hale, B., Kohbrok, K.: Efficient post-compromise security
beyond one group. Cryptology ePrint Archive, Report 2019/477 (2019),
https://eprint.iacr.org/2019/477

10. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on
Information Theory 29(2), 198–208 (1983)

11. Huffman, D.A.: A method for the construction of minimum-redundancy codes.
Proceedings of the IRE 40(9), 1098–1101 (1952)

12. Jukna, S.: Boolean function complexity: advances and frontiers, vol. 27. Springer
Science & Business Media (2012)

13. Mapoka, T.T., Shepherd, S., Abd-Alhameed, R., Anoh, K.O.: Novel rekeying ap-
proach for secure multiple multicast groups over wireless mobile networks. In:
2014 International Wireless Communications and Mobile Computing Conference
(IWCMC). pp. 839–844. IEEE (2014)

14. Micciancio, D., Panjwani, S.: Optimal communication complexity of generic mul-
ticast key distribution. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 153–170. Springer, Heidelberg (May 2004)

15. Wallner, D.M., Harder, E.J., Agee, R.C.: Key management for multicast: Issues
and architectures. Internet Draft (Sep 1998), http://www.ietf.org/ID.html

16. Wong, C.K., Gouda, M., Lam, S.S.: Secure group communications using key graphs.
IEEE/ACM Transactions on Networking 8(1), 16–30 (Feb 2000)

17. Zhong, H., Luo, W., Cui, J.: Multiple multicast group key management for
the internet of people. Concurrency and Computation: Practice and Experience
29(3), e3817 (2017), https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3817,
e3817 CPE-15-0502.R1

32

